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Abstract

In this paper, the static and free vibration analysis of doubly-curved laminated shells
is performed by radial basis functions collocation. The Reissner-Mixed Variational
Theorem (RMVT) via a Unified Formulation by Carrera is applied in order to obtain
the equations of motion and the natural boundary conditions. The present theory ac-
counts for through-the-thickness deformation, and directly computes displacements
and transverse stresses in each interface of the laminate.

1 Introduction

Examples of multilayered shell structures used in modern industrial applica-
tions are laminated constructions, or sandwich panels.

Exhaustive overviews on classical and refined models for the analysis of multi-
layered structures have been reported in many published review articles. These
include the papers by Grigolyuk and Kulikov [1], Kapania and Raciti [2], Ka-
pania [3], Noor et al. [4–6], Correia et al. [8], Neves et al. [9] and Soldatos and
Timarci [7]. Among the refined theories a convenient distinction can be made
between models in which the number of the unknown variables is independent
or dependent on the number of the constitutive layers of the shell. Follow-
ing Reddy [10], we assign the name ESLM (Equivalent Single Layer Models)
to the first grouping while LWM (Layer Wise Model) is used to denote the



others. Early [11–14] and more recent [15–20] LWMs have shown the superior-
ity of layer-wise approaches over ESL approaches to predict accurately static
and dynamic response of thick and very thick structures. On the other hand,
LWMs are computationally expensive and the use of ESLMs is preferred in
most practical applications.

In the most general cases, the finite element method is used for the analysis of
shell structures and some reviews on finite element shell formulations can be
found in the work by Dennis and Palazotto [21], Merk [22], and Di and Ramm
[23]. In this paper, however, we use collocation with radial basis functions,
with the so-called unsymmetrical Kansa method [24]. The use of radial basis
function for the analysis of structures and materials has been previously stud-
ied by numerous authors [25–39]. The authors have recently applied the RBF
collocation to the static deformations of composite beams and plates [40–42].

In this paper, we propose to use the Unified Formulation (UF) by Carrera [43]
to derive the equations of motion and boundary conditions to analyze lam-
inated shells, according to a layerwise-based shear deformation theory that
accounts for through-the-thickness deformations. The UF is a compact for-
mulation that permits to analyze the bi-dimensional structures irrespective
of the shear deformation theory being considered and it has been applied in
several finite element analysis, either using the Principle of Virtual Displace-
ments, or by using the Reissner’s Mixed Variational Theorem (RMVT) [44–47]
(which is adopted in this paper). The Unified Formulation (here referred as
CUF-Carrera’s Unified Formulation) may consider both equivalent single layer
theories (ESL), or layerwise theories (LW), using the Principle of Virtual Dis-
placements (PVD). However, a more interesting (at a higher computational
cost) approach is to use the layerwise formulation with the Reissner’s Varia-
tional Mixed Theorem (RMVT). The RMVT considers two independent fields
for displacement and transverse stress variables. As a result, a priori inter-
laminar continuous transverse shear and normal stress fields can be achieved,
which is quite important for sandwich-like structures. Details on the RMVT
can be found in Carrera [48,50].

The analysis of laminated shells with RMVT has been implemented success-
fully with finite elements, but never with collocation with radial basis func-
tions. Therefore, this paper serves to fill the gap of knowledge in this research
area.

2 Unified Formulation for the Layerwise theory

In this section, it is shown how the Carrera’s Unified formulation can be
used to obtain the fundamental nuclei, which allows the derivation of the
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equations of motion and boundary conditions, in strong form for the present
RBF collocation.

In the case of Layer Wise (LW) models, each layer k of the given multi-
layered structure is separately considered. According to the CUF, the three
displacement components u, v and w, along the curvilinear coordinates α, β
and z, and their virtual variations can be modelled as:

(uk, vk, wk) = F k
τ (ukτ , v

k
τ , w

k
τ ) (δuk, δvk, δwk) = F k

s (δuks , δv
k
s , δw

k
s ) (1)

where Fτ and Fs are the so-called thickness functions. τ and s are summation
indexes and k indicates the layer of the multilayered structure. In the present
layer-wise formulation, we choose:

F k
τ = F k

s = [F k
b F k

t ] = [
1− 2/hk

(
z − 1

2
(zk + zk+1)

)
2

1 + 2/hk
(
z − 1

2
(zk + zk+1)

)
2

]

Therefore, τ = s = b, t and the polynomial order of the expansion is N = 1.
Note that zk, zk+1 correspond to the bottom and top z-coordinates for each
layer k.

In a similar way, the transverse shear/normal stresses σn = (σαz, σβz, σzz) can
also be modelled as

σkn = Fb σ
k
nt + Ft σ

k
nb = Fτ σ

k
τ (2)

The same expansion is used for the virtual variation of transverse stresses by
considering the index s. We then obtain all terms of the equations of motion
by integrating through the thickness direction.

2.1 Doubly-curved shells

Shells are bi-dimensional structures in which one dimension (in general the
thickness in z direction) is negligible with respect to the other two in-plane
dimensions. The geometry and the reference system of a doubly-curved shell
are indicated in the Figures 1 and 2. Considering this geometry, the square
of an infinitesimal linear segment in the layer dsk, the associated infinitesimal
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area dΩk and volume dVk are given by:

ds2
k = Hk

α
2
dα2 + Hk

β
2
dβ2 +Hk

z
2
dz2 ,

dΩk = Hk
αH

k
β dα dβ ,

dVk = Hk
α H

k
β H

k
z dα dβ dz ,

(3)

where the metric coefficients are:

Hk
α = Ak(1 + z/Rk

α), Hk
β = Bk(1 + z/Rk

β), Hk
z = 1 . (4)

Rk
α and Rk

β are the principal radii of curvature along the orthogonal curvilinear
coordinates α and β, respectively. While, Ak and Bk are the LamÃ¨ parame-
ters, Ωk is the domain of the shell surface and Γk is the boundary of Ωk. For
more details about the description of the geometry in doubly-curved shells,
the readers can refer to the work by Leissa [51]. In this work, the attention
has been restricted to shells with constant radii of curvature (in particular,
spherical shells) for which Ak = Bk = 1.

3 Strains and stresses

Strains and stresses are separated into in-plane and normal components, de-
noted respectively by the subscripts p and n.
In doubly-curved shells with Ak = Bk = 1, the mechanical strains in the
kth layer can be related to the displacement field uk = {uk, vk, wk} via the
geometrical relations presented in [52], that are:

εkpG = [εkαα, ε
k
ββ, ε

k
αβ]T = (Dk

p+A
k
p) u

k , εknG = [εkαz, ε
k
βz, ε

k
zz]

T = (Dk
nΩ+Dk

nz−Ak
n) uk

(5)
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The explicit form of the introduced arrays is:

Dk
p =


∂α
Hk
α

0 0

0
∂β
Hk
β

0

∂β
Hk
β

∂α
Hk
α

0

 , Dk
nΩ =


0 0 ∂α

Hk
α

0 0
∂β
Hk
β

0 0 0

 , Dk
nz =


∂z 0 0

0 ∂z 0

0 0 ∂z

 , (6)

Ak
p =


0 0 1

Hk
αR

k
α

0 0 1
Hk
β
Rk
β

0 0 0

 , Ak
n =


1

Hk
αR

k
α

0 0

0 1
Hk
β
Rk
β

0

0 0 0

 . (7)

where ∂ indicates the partial derivation.
The stresses are expressed by means of the constitutive relations. For a classical
model, they state:

σkp =Ck
pp ε

k
p +Ck

pn ε
k
n

σkn =Ck
np ε

k
p +Ck

nn ε
k
n (8)

where the material matrices are:

Ck
pp =


C11 C12 C16

C12 C22 C26

C16 C26 C66

 Ck
pn =


0 0 C13

0 0 C23

0 0 C36



Ck
np = CkT

pn ; Ck
nn =


C44 C45 0

C45 C55 0

0 0 C33



(9)

In the case of mixed models, the displacements u and the transverse shear/normal
stresses σn are both a priori variables. From the second equation of (8), one
obtains:

εkn = −(Ck
nn)−1Ck

npε
k
p + (Ck

nn)−1σkn (10)

After substitution into the first equation of (8), the constitutive equations are
rewritten as follows:

σkp = C̃
k

pp(z) εkp + C̃
k

pn(z) σkn

εkn = C̃
k

np(z) εkp + C̃
k

nn(z) σkn (11)
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where the new coefficients are:

C̃
k

pp = Ck
pp −Ck

pnC
k−1

nn C
k
np C̃

k

pn = Ck
pnC

k−1

nn

C̃
k

np = −Ck−1

nn Cnp C̃
k

nn = Ck−1

nn (12)

For further details about the explicit expression of the material constants Cij,
one can refer to [19] and [20].

4 Governing equations by RMVT

In the case of doubly-curved shell geometry, the Reissner’s Mixed Variational
Theorem takes into account the metric coefficients Hα and Hβ, given in equa-
tion (4):

Nl∑
k=1

∫
Ωk

∫
Ak

{
δεkpG

T
σkpC + δεknG

T
σknM + δσknM

T
(εknG − εknC)

}
HαHβ dΩkdz =

Nl∑
k=1

δLke

(13)
where Nl is the number of layers, Ak is the integration domain along the
thickness and Lke is the work done by the external loads. The meaning of the
subscripts is: M = modelled a-priori, G = derived from geometrical relations
and C = obtained via the constitutive equations. Substituting the geometrical
relations for the shell (5), the constitutive equations (11) and the CUF for
both the displacement components (1) and the transverse stresses (2) , and
then performing the integration by parts, the governing equations in the case
of RMVT are:

δuks
T

: Kkτs
uu u

k
τ + Kkτs

uσ σ
k
nτ = P k

uτ

δσkns
T

: Kkτs
σu u

k
τ + Kkτs

σσ σ
k
nτ = 0 (14)

with the following boundary conditions:

Πkτs
u ukτ + Πkτs

σ σknτ = Πkτs
u ūkτ + Πkτs

σ σ̄knτ (15)

The arrays introduced (the so-called fundamental nuclei) are described in de-
tail in the following section.
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4.1 Fundamental nuclei

The following integrals are introduced to perform the explicit form of funda-
mental nuclei:

(Jkτs, Jkτsα , Jkτsβ , Jkτsα
β
, Jkτsβ

α

, Jkτsαβ ) =
∫
Ak

FτFs(1, Hα, Hβ,
Hα

Hβ

,
Hβ

Hα

, HαHβ) dz

(Jkτzs, Jkτzsα , Jkτzsβ , Jkτzsα
β

, Jkτzsβ
α

, Jkτzsαβ ) =
∫
Ak

∂Fτ
∂z

Fs(1, Hα, Hβ,
Hα

Hβ

,
Hβ

Hα

, HαHβ) dz

(Jkτsz , Jkτszα , Jkτszβ , Jkτszα
β

, Jkτszβ
α

, Jkτszαβ ) =
∫
Ak

Fτ
∂Fs
∂z

(1, Hα, Hβ,
Hα

Hβ

,
Hβ

Hα

, HαHβ) dz

(Jkτzsz , Jkτzszα , Jkτzszβ , Jkτzszα
β

, Jkτzszβ
α

, Jkτzszαβ ) =
∫
Ak

∂Fτ
∂z

∂Fs
∂z

(1, Hα, Hβ,
Hα

Hβ

,
Hβ

Hα

, HαHβ) dz

(16)

The expression of fundamental nuclei for the left-hand side is expressed as:

Kkτs =

Kkτs
uu Kkτs

uσ

Kkτs
σu K

kτs
σσ

 (17)

where

Kkτs
uu =

∫
Ak

[
[−Dp +Ap]

T C̃
k

pp[Dp +Ap]
]
FsFτHαHβ dz , (18)

Kkτs
uσ =

∫
Ak

[
−Dp +Ap]

T C̃
k

pn + [−DnΩ +Dnz −An]T
]
FsFτHαHβ dz , (19)

Kkτs
σu =

∫
Ak

[
[DnΩ +Dnz −An]− C̃k

np[Dp +Ap]
]
FsFτHαHβ dz , (20)

Kkτs
σσ =

∫
Ak

[
− C̃k

nn

]
FsFτHαHβ dz , (21)

and the nuclei for the boundary conditions are:

Πkτs
u =

∫
Ak

[
ITp C̃

k

pp[Dp +Ap]
]
FsFτHαHβ dz , (22)

Πkτs
σ =

∫
Ak

[
ITp C̃

k

pn + ITnΩ

]
FsFτHαHβ dz , (23)

7



Using the notation given in equations (16), the nuclei components Kkτs
uu in

explicit form are given as:

Kkτs
uu =


Kkτs
uu11

Kkτs
uu12

Kkτs
uu13

Kkτs
uu21

Kkτs
uu22

Kkτs
uu23

Kkτs
uu31

Kkτs
uu32

Kkτs
uu33

 (24)

where

Kkτs
uu11

=− ∂τα∂sαCk
11J

kτs
β/α − ∂τα∂sβCk

16J
kτs − ∂τβ∂sαCk

16J
kτs + ∂τα∂

s
α

Ck2

13

Ck
33

Jkτsβ/α+

∂τα∂
s
β

Ck
13C

k
36

Ck
33

Jkτs + ∂τβ∂
s
α

Ck
13C

k
36

Ck
33

Jkτs + ∂τβ∂
s
β

Ck2

36

Ck
33

Jkτsα/β − ∂τβ∂sβCk
66J

kτs
α/β

(25)

Kkτs
uu12

=− ∂τα∂sβCk
12J

kτs − ∂τα∂sαCk
16J

kτs
β/α − ∂τβ∂sβCk

26J
kτs
α/β + ∂τα∂

s
β

Ck
13C

k
23

Ck
33

Jkτs+

∂τα∂
s
α

Ck
13C

k
36

Ck
33

Jkτsβ/α + ∂τβ∂
s
β

Ck
23C

k
36

Ck
33

Jkτsα/β + ∂τβ∂
s
α

Ck2

36

Ck
33

Jkτs − ∂τβ∂sαCk
66J

kτs

(26)

Kkτs
uu13

=− 1

Rk
α

∂τβC
k
16J

kτs − 1

Rk
β

∂τβC
k
26J

kτs
α/β +

1

Rk
α

∂τβ
Ck

13C
k
36

Ck
33

Jkτs +
1

Rk
β

∂τβ
Ck

23C
k
36

Ck
33

Jkτsα/β−

1

Rk
α

∂ταC
k
11J

kτs
β/α −

1

Rk
β

∂ταC
k
12J

kτs +
1

Rk
α

∂τα
Ck2

13

Ck
33

Jkτsβ/α +
1

Rk
β

∂τα
Ck

13C
k
23

Ck
33

Jkτs

(27)

Kkτs
uu21

=− ∂τβ∂sαCk
12J

kτs − ∂τα∂sαCk
16J

kτs
β/α − ∂τβ∂sβCk

26J
kτs
α/β + ∂τβ∂

s
α

Ck
13C

k
23

Ck
33

Jkτs+

∂τα∂
s
α

Ck
13C

k
36

Ck
33

Jkτsβ/α + ∂τβ∂
s
β

Ck
23C

k
36

Ck
33

Jkτsα/β + ∂τα∂
s
β

Ck2

36

Ck
33

Jkτs − ∂τα∂sβCk
66J

kτs

(28)

Kkτs
uu22

=− ∂τβ∂sβCk
22J

kτs
α/β − ∂τα∂sβCk

26J
kτs − ∂τβ∂sαCk

26J
kτs + ∂τβ∂

s
β

Ck2

23

Ck
33

Jkτsα/β+

∂τα∂
s
β

Ck
23C

k
36

Ck
33

Jkτs + ∂τβ∂
s
α

Ck
23C

k
36

Ck
33

Jkτs + ∂τα∂
s
α

Ck2

36

Ck
33

Jkτsβ/α − ∂τα∂sαCk
66J

kτs
β/α

(29)

Kkτs
uu23

=− 1

Rk
α

∂τβC
k
12J

kτs − 1

Rk
β

∂τβC
k
22J

kτs
α/β +

1

Rk
α

∂τβ
Ck

13C
k
23

Ck
33

Jkτs +
1

Rk
β

∂τβ
Ck2

23

Ck
33

Jkτsα/β−

1

Rk
α

∂ταC
k
16J

kτs
β/α −

1

Rk
β

∂ταC
k
26J

kτs +
1

Rk
α

∂τα
Ck

13C
k
36

Ck
33

Jkτsβ/α +
1

Rk
β

∂τα
Ck

23C
k
36

Ck
33

Jkτs

(30)
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Kkτs
uu31

=
1

Rk
α

∂sβC
k
16J

kτs +
1

Rk
β

∂sβC
k
26J

kτs
α/β −

1

Rk
α

∂sβ
Ck

13C
k
36

Ck
33

Jkτs − 1

Rk
β

∂sβ
Ck

23C
k
36

Ck
33

Jkτsα/β+

1

Rk
α

∂sαC
k
11J

kτs
β/α +

1

Rk
β

∂sαC
k
12J

kτs − 1

Rk
α

∂sα
Ck2

13

Ck
33

Jkτsβ/α −
1

Rk
β

∂sα
Ck

13C
k
23

Ck
33

Jkτs

(31)

Kkτs
uu32

=
1

Rk
α

∂sβC
k
12J

kτs +
1

Rk
β

∂sβC
k
22J

kτs
α/β −

1

Rk
α

∂sβ
Ck

13C
k
23

Ck
33

Jkτs − 1

Rk
β

∂sβ
Ck2

23

Ck
33

Jkτsα/β+

1

Rk
α

∂sαC
k
16J

kτs
β/α +

1

Rk
β

∂sαC
k
26J

kτs − 1

Rk
α

∂sα
Ck

13C
k
36

Ck
33

Jkτsβ/α −
1

Rk
β

∂sα
Ck

23C
k
36

Ck
33

Jkτs

(32)

Kkτs
uu33

=
1

Rk2
α

Ck
11J

kτs
β/α +

2

Rk
αR

k
β

Ck
12J

kτs +
1

Rk2
β

Ck
22J

kτs
α/β −

1

Rk2
α

Ck2

13

Ck
33

Jkτsβ/α−

2

Rk
αR

k
β

Ck
13C

k
23

Ck
33

Jkτs − 1

Rk2
β

Ck2

23

Ck
33

Jkτsα/β

(33)

Kkτs
uσ =


Kkτs
uσ11

Kkτs
uσ12

Kkτs
uσ13

Kkτs
uσ21

Kkτs
uσ22

Kkτs
uσ23

Kkτs
uσ31

Kkτs
uσ32

Kkτs
uσ33

 =


− 1
Rkα
Jkτsβ + J

kτ,zs
αβ 0 −∂τα

Ck13
Ck33
Jkτsβ − ∂τβ

Ck36
Ck33
Jkτsα

0 − 1
Rk
β

Jkτsα + J
kτ,zs
αβ −∂τβ

Ck23
Ck33
Jkτsα − ∂τα

Ck36
Ck33
Jkτsβ

−∂ταJkτsβ −∂τβJkτsα J
kτ,zs
αβ + 1

Rkα

Ck13
Ck33
Jkτsβ + 1

Rk
β

Ck23
Ck33
Jkτsα



(34)

Kkτs
σu =


Kkτs
σu11

Kkτs
σu12

Kkτs
σu13

Kkτs
σu21

Kkτs
σu22

Kkτs
σu23

Kkτs
σu31

Kkτs
σu32

Kkτs
σu33

 =


− 1
Rkα
Jkτsβ + J

kτs,z
αβ 0 ∂sαJ

kτs
β

0 − 1
Rk
β

Jkτsα + J
kτs,z
αβ ∂sβJ

kτs
α

∂sα
Ck13
Ck33
Jkτsβ + ∂sβ

Ck36
Ck33
Jkτsα ∂sβ

Ck23
Ck33
Jkτsα + ∂sα

Ck36
Ck33
Jkτsβ J

kτs,z
αβ + 1

Rkα

Ck13
Ck33
Jkτsβ + 1

Rk
β

Ck23
Ck33
Jkτsα


(35)
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Kkτs
σσ =


Kkτs
σσ11

Kkτs
σσ12

Kkτs
σσ13

Kkτs
σσ21

Kkτs
σσ22

Kkτs
σσ23

Kkτs
σσ31

Kkτs
σσ32

Kkτs
σσ33

 =


Ck44

Ck
2

45 −C
k
44C

k
55

Jkτsαβ
Ck45

−Ck245 +Ck44C
k
55

Jkτsαβ 0

Ck45
−Ck245 +Ck44C

k
55

Jkτsαβ
Ck55

Ck
2

45 −C
k
44C

k
55

Jkτsαβ 0

0 0 − 1
Ck33
Jkτsαβ


(36)

The natural boundary conditions can be applied by computing firstly the
matrix

Πkτs
uu =


Πkτs
uu11

Πkτs
uu12

Πkτs
uu13

Πkτs
uu21

Πkτs
uu22

Πkτs
uu23

Πkτs
uu31

Πkτs
uu32

Πkτs
uu33

 (37)

Πkτs
uu11

=nα∂
s
αC

k
11J

kτs
β/α + nα∂

s
βC

k
16J

kτs + nβ∂
s
αC

k
16J

kτs − nα∂sα
Ck2

13

C33

Jkτsβ/α−

nα∂
s
β

Ck
13C

k
36

Ck
33

Jkτs − nβ∂sα
Ck

13C
k
36

Ck
33

Jkτs − nβ∂sβ
Ck2

36

Ck
33

Jkτsα/β + nβ∂
s
βC

k
66J

kτs
α/β

(38)

Πkτs
uu12

=nα∂
s
βC

k
12J

kτs + nα∂
s
αC

k
16J

kτs
β/α + nβ∂

s
βC

k
26J

kτs
α/β − nα∂sβ

Ck
13C

k
23

Ck
33

Jkτs−

nα∂
s
α

Ck
13C

k
36

Ck
33

Jkτsβ/α − nβ∂sβ
Ck

23C
k
36

Ck
33

Jkτsα/β − nβ∂sα
Ck2

36

Ck
33

Jkτs + nβ∂
s
αC

k
66J

kτs

(39)

Πkτs
uu13

=
1

Rk
α

nβC
k
16J

kτs +
1

Rk
β

nβC
k
26J

kτs
α/β −

1

Rk
α

nβ
Ck

13C
k
36

Ck
33

Jkτs − 1

Rk
β

nβ
Ck

23C
k
36

Ck
33

Jkτsα/β+

1

Rk
α

nαC
k
11J

kτs
β/α +

1

Rk
β

nαC
k
12J

kτs − 1

Rk
α

nα
Ck2

13

Ck
33

Jkτsβ/α −
1

Rk
β

nα
Ck

13C
k
23

Ck
33

Jkτs

(40)

Πkτs
uu21

=nβ∂
s
αC

k
12J

kτs + nα∂
s
αC

k
16J

kτs
β/α + nβ∂

s
βC

k
26J

kτs
α/β − nβ∂sα

Ck
13C

k
23

Ck
33

Jkτs−

nα∂
s
α

Ck
13C

k
36

Ck
33

Jkτsβ/α − nβ∂sβ
Ck

23C
k
36

Ck
33

Jkτsα/β − nα∂sβ
Ck2

36

Ck
33

Jkτs + nα∂
s
βC

k
66J

kτs

(41)
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Πkτs
uu22

=nβ∂
s
βC

k
22J

kτs
α/β + nα∂

s
βC

k
26J

kτs + nβ∂
s
αC

k
26J

kτs − nβ∂sβ
Ck2

23

Ck
33

Jkτsα/β−

nα∂
s
β

Ck
23C

k
36

Ck
33

Jkτs − nβ∂sα
Ck

23C
k
36

Ck
33

Jkτs − nα∂sα
Ck2

36

Ck
33

Jkτsβ/α + nα∂
s
αC

k
66J

kτs
β/α

(42)

Πkτs
uu23

=
1

Rk
α

nβC
k
12J

kτs +
1

Rk
β

nβC
k
22J

kτs
α/β −

1

Rk
α

nβ
Ck

13C
k
23

Ck
33

Jkτs − 1

Rk
β

nβ
Ck2

23

Ck
33

Jkτsα/β+

1

Rkα
nαC

k
16J

kτs
β/α +

1

Rk
β

nαC
k
26J

kτs − 1

Rk
α

nα
Ck

13C
k
36

Ck
33

Jkτsβ/α −
1

Rk
β

nα
Ck

23C
k
36

Ck
33

Jkτs

(43)

Πkτs
uu31

= 0 (44)

Πkτs
uu32

= 0 (45)

Πkτs
uu33

= 0 (46)

In a similar way, we can impose boundary conditions in terms of the transverse
stresses as

Πkτs
σ11

= 0; Πkτs
σ12

= 0; Πkτs
σ13

= nα
Ck

13

Ck
33

Jkτsβ + nβ
Ck

36

Ck
33

Jkτsα

Πkτs
σ21

= 0; Πkτs
σ22

= 0; Πkτs
σ23

= nβ
Ck

23

Ck
33

Jkτsα + nα
Ck

36

Ck
33

Jkτsβ

Πkτs
σ31

= nαJ
kτs
β ; Πkτs

σ32
= nβJ

kτs
α ; Πkτs

σ33
= 0

(47)

The dynamic problem is expressed as:

Nl∑
k=1

∫
Ωk

∫
Ak

{
δεkpG

T
σkpC + δεknG

T
σknM + δσknM

T
(εknG − εknC)

}
HαHβ dΩkdz =

Nl∑
k=1

∫
Ωk

∫
Ak

ρkδukT ük HαHβ dΩkdz +
Nl∑
k=1

δLke

(48)

where ρk is the mass density of the k-th layer and double dots denote acceler-
ation.

By substituting the geometrical relations, the constitutive equations and the
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Unified Formulation, we obtain the following governing equations:

δuks
T

: K*kτsuu ukτ = Mkτsükτ + Pk
uτ (49)

In the case of free vibrations, the fundamental nucleus of the external work is
Pk
uτ = 0 and one has:

δuks
T

: K*kτsuu ukτ = Mkτsükτ (50)

where K*kτsuu = Kkτs
uu − Kkτs

uσ [Kkτs
σσ ]−1Kkτs

σu and it is obtained after a static
condensation procedure.
Mkτs is the fundamental nucleus for the inertial term. The explicit form of
that is:

Mkτs
11 = ρkFτFs; Mkτs

12 = 0; Mkτs
13 = 0 (51)

Mkτs
21 = 0; Mkτs

22 = ρkFτFs; Mkτs
23 = 0 (52)

Mkτs
31 = 0; Mkτs

32 = 0; Mkτs
33 = ρkFτFs (53)

At this point, we would like to note that the same radial basis functions are
used for the interpolation of all the unknowns, displacements and stresses
alike.

5 The radial basis function method

5.1 The static problem

Radial basis functions (RBF) approximations are mesh-free numerical schemes
that can exploit accurate representations of the boundary, are easy to imple-
ment and can be spectrally accurate. In this section the formulation of a global
unsymmetrical collocation RBF-based method to compute elliptic operators
is presented.

Consider a linear elliptic partial differential operator L and a bounded region Ω
in Rn with some boundary ∂Ω. In the static problems we seek the computation
of displacements (u) from the global system of equations

Lu = f in Ω (54)
LBu = g on ∂Ω (55)
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where L, LB are linear operators in the domain and on the boundary, re-
spectively. The right-hand side of (54) and (55) represent the external forces
applied on the plate or shell and the boundary conditions applied along the
perimeter of the plate or shell, respectively. The PDE problem defined in (54)
and (55) will be replaced by a finite problem, defined by an algebraic system
of equations, after the radial basis expansions.

5.2 The eigenproblem

The eigenproblem looks for eigenvalues (λ) and eigenvectors (u) that satisfy

Lu + λu = 0 in Ω (56)
LBu = 0 on ∂Ω (57)

As in the static problem, the eigenproblem defined in (56) and (57) is replaced
by a finite-dimensional eigenvalue problem, based on RBF approximations.

5.3 Radial basis functions approximations

The radial basis function (φ) approximation of a function (u) is given by

ũ(x) =
N∑
i=1

αiφ (‖x− yi‖2) ,x ∈ Rn (58)

where yi, i = 1, .., N is a finite set of distinct points (centers) in Rn.
Note that, from this point on, we use x, y, z to avoid confusion with other sym-
bols. Actually, one has to consider that we mean α, β, z and all the variables
expressed in the curvilinear reference system.

The most common RBFs are

Cubic: φ(r) = r3

Thin plate splines: φ(r) = r2 log(r)

Wendland functions: φ(r) = (1− r)m+p(r)
Gaussian: φ(r) = e−(cr)2

Multiquadrics: φ(r) =
√
c2 + r2

Inverse Multiquadrics: φ(r) = (c2 + r2)−1/2
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where the Euclidian distance r is real and non-negative and c is a positive
shape parameter.

Hardy [53] introduced multiquadrics in the analysis of scattered geographical
data. In the 1990’s Kansa [24] used multiquadrics for the solution of par-
tial differential equations. Considering N distinct interpolations, and knowing
u(xj), j = 1, 2, ..., N , we find αi by the solution of a N ×N linear system

Aα = u (59)

whereA = [φ (‖x− yi‖2)]N×N ,α = [α1, α2, ..., αN ]T and u = [u(x1), u(x2), ..., u(xN)]T .

5.4 Solution of the static problem

The solution of a static problem by radial basis functions considers NI nodes
in the domain and NB nodes on the boundary, with a total number of nodes
N = NI + NB. We denote the sampling points by xi ∈ Ω, i = 1, ..., NI and
xi ∈ ∂Ω, i = NI + 1, ..., N . At the points in the domain we solve the following
system of equations

N∑
i=1

αiLφ (‖x− yi‖2) = f(xj), j = 1, 2, ..., NI (60)

or
LIα = F (61)

where
LI = [Lφ (‖x− yi‖2)]NI×N (62)

At the points on the boundary, we impose boundary conditions as

N∑
i=1

αiLBφ (‖x− yi‖2) = g(xj), j = NI + 1, ..., N (63)

or
Bα = G (64)

where
B = LBφ [(‖xNI+1 − yj‖2)]NB×N

Therefore, we can write a finite-dimensional static problem asLI
B

α =

 F
G

 (65)
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By inverting the system (65), we obtain the vector α. We then obtain the
solution u using the interpolation equation (58).

5.5 Solution of the eigenproblem

We consider NI nodes in the interior of the domain and NB nodes on the
boundary, with N = NI +NB. We denote interpolation points by xi ∈ Ω, i =
1, ..., NI and xi ∈ ∂Ω, i = NI +1, ..., N . At the points in the domain, we define
the eigenproblem as

N∑
i=1

αiLφ (‖x− yi‖2) = λũ(xj), j = 1, 2, ..., NI (66)

or
LIα = λũI (67)

where
LI = [Lφ (‖x− yi‖2)]NI×N (68)

At the points on the boundary, we enforce the boundary conditions as

N∑
i=1

αiLBφ (‖x− yi‖2) = 0, j = NI + 1, ..., N (69)

or
Bα = 0 (70)

Equations (67) and (70) can now be solved as a generalized eigenvalue problem

LI
B

α = λ

AI

0

α (71)

where
AI = φ [(‖xNI − yj‖2)]NI×N

5.6 Discretization of the equations of motion and boundary conditions

The radial basis collocation method follows a simple implementation proce-
dure. Taking equation (13), we compute

15



α =

LI
B


−1  F

G

 (72)

This α vector is then used to obtain solution ũ, by using (7). If derivatives of
ũ are needed, such derivatives are computed as

∂ũ
∂x

=
N∑
j=1

αj
∂φj
∂x

(73)

∂2ũ
∂x2

=
N∑
j=1

αj
∂2φj
∂x2

, etc (74)

In the present collocation approach, we need to impose essential and natural
boundary conditions. Consider, for example, the condition w = 0, on a simply
supported or clamped edge. We enforce the conditions by interpolating as

w = 0→
N∑
j=1

αWj φj = 0 (75)

Other boundary conditions are interpolated in a similar way.

5.7 Free vibrations problems

For free vibration problems we set the external force to zero, and assume
harmonic solution in terms of displacements u1, u2, · · · , v1, v2, · · · , as

u1 = U1(w, y)eiωt; u2 = U2(w, y)eiωt; u3 = U3(w, y)eiωt; u4 = U4(w, y)eiωt

(76)

v1 = V1(w, y)eiωt; v2 = V2(w, y)eiωt; v3 = V3(w, y)eiωt; v4 = V4(w, y)eiωt

(77)

w1 = W1(w, y)eiωt; w2 = W2(w, y)eiωt; w3 = W3(w, y)eiωt; w4 = W4(w, y)eiωt

(78)

where ω is the frequency of natural vibration. Substituting the harmonic
expansion into equations (71) in terms of the displacements and transverse
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stresses, we may obtain the natural frequencies and vibration modes for the
plate or shell problem, by solving the eigenproblem

[
L − ω2G

]
X = 0 (79)

where L collects all stiffness terms and G collects all terms related to the
inertial terms. In (79) X are the modes of vibration associated with the natural
frequencies defined as ω.

6 Computation of stresses

Taking into account the large number of degrees of freedom per node, the
solution of the static problem is obtained after a static condensation procedure
as follows. Consider the global system of equations (after imposing boundary
conditions):

Kuu Kuσ

Kσu Kσσ


 u
σ

 =

 f
0

 (80)

The problem is reduced to

K*uuu = f (81)

where K*uu = Kuu − Kuσ[Kσσ]−1Kσu. After computation of the solution,
transverse stresses are readily computed at each interface by

σ = [Kσσ]−1 (−Kσuu) (82)

7 Numerical examples

All numerical examples consider a Chebyshev grid and a Wendland function,
defined as

φ(r) = (1− c r)8
+

(
32(c r)3 + 25(c r)2 + 8c r + 1

)
(83)

where the shape parameter (c) was obtained by an optimization procedure, as
detailed in Ferreira and Fasshauer [54].
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7.1 Spherical shell in bending

A laminated composite spherical shell is here considered, of side a and thick-
ness h, composed of equal thickness layers oriented at [0◦/90◦/0◦] and [0◦/90◦/90◦/0◦].
The shell is subjected to a sinusoidal vertical pressure of the form

pz = P sin
(
πx

a

)
sin

(
πy

a

)
with the origin of the coordinate system located at the lower left corner on
the midplane and P the maximum load (at center of shell).

The orthotropic material properties for each layer are given by

E1 = 25.0E2 G12 = G13 = 0.5E2 G23 = 0.2E2 ν12 = 0.25

The transverse displacements are presented in normalized form as w =
103w(a/2,a/2,0)h

3E2

Pa4
.

The shell is simply-supported on all edges.

In table 1, an assessment of the present model is presented for the plate case
(R → ∞). We compare the deflections obtained with the RBF method with
the LW analytical solution given in [45] and the results obtained with two
different shell finite elements: MITC4 and MITC9. These elements are based
on CUF and they are described in details in [56] and [57], respectively. Various
thickness ratios and laminations are considered. In all the cases, the table
shows that the present method is in good agreement with the FEM solution.

In table 2 we compare the static deflections for the present shell model with
results of Reddy shell formulation using first-order and third-order shear-
deformation theories [55] and the LW analytical solution given in [45]. We
consider nodal grids with 13× 13, 17× 17 , and 21× 21 points. We consider
various values of R/a and two values of a/h (10 and 100). Results are in good
agreement for various a/h ratios with the higher-order results of Reddy and
the LW analytical solution.

In figure 3 it is illustrated the evolution of the transverse shear stresses τxz,
for a/h = 10, laminate [0◦/90◦/0◦]. As can be seen, the formulation does not
produce zero top and bottom shear stresses, for two reasons. First, the formu-
lation is not based on C1 definition of transverse displacement, and second the
load is not applied at the middle surface, but at the top surface. As can also
be seen, because of the mixed formulation, and consideration of transverse
stress variables at each interface, the transverse stresses are continuous at the
laminate interfaces.
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Method a/h = 10 a/h = 100

[0◦/90◦/0◦] LW [45] 7.4095 4.3400

present (13× 13) 7.3985 4.3065

present (17× 17) 7.3980 4.3063

present (21× 21) 7.3979 4.3062

MITC4 (13× 13) 7.2955 4.2573

MITC4 (17× 17) 7.3427 4.2915

MITC4 (21× 21) 7.3657 4.3082

MITC9 (5× 5) 7.4067 4.3375

MITC9 (9× 9) 7.4092 4.3397

MITC9 (13× 13) 7.4095 4.3399

[0◦/90◦/90◦/0◦] LW [45] 7.3148 4.3420

present (13× 13) 7.3551 4.3058

present (17× 17) 7.3547 4.3056

present (21× 21) 7.3545 4.3054

MITC4 (13× 13) 7.2011 4.2593

MITC4 (17× 17) 7.2482 4.2935

MITC4 (21× 21) 7.2711 4.3102

MITC9 (5× 5) 7.3120 4.3396

MITC9 (9× 9) 7.3145 4.3418

MITC9 (13× 13) 7.3147 4.3420

Table 1
Non-dimensional central deflection, w = w 103E2h3

P0a4
for different cross-ply laminated

plates.

In figure 4 it is illustrated the evolution of the normal stresses σxx, for a/h =
10, laminate [0◦/90◦/0◦]. In both figures, a Chebyschev 17× 17 grid was con-
sidered.
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Fig. 3. Evolution of the transverse shear stresses τxz, for a/h = 10, laminate
[0◦/90◦/0◦].
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Fig. 4. Evolution of the normal stresses σxx, for a/h = 10, laminate [0◦/90◦/0◦].

7.2 Free vibration of spherical and cylindrical laminated shells

We consider nodal grids with 13× 13, 17× 17 , and 21× 21 points. In tables 3
and 4 we compare the nondimensionalized natural frequencies from the present
layerwise theory for various cross-ply spherical shells, with analytical solutions
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by Reddy and Liu [55] who considered both the first-order (FSDT) and the
third-order (HSDT) theories. The first-order theory overpredicts the funda-
mental natural frequencies of symmetric thick shells and symmetric shallow
thin shells. The present radial basis funtion method is compared with analyt-
ical results by Reddy [55] and shows excellent agreement.

Table 5 contain nondimensionalized natural frequencies obtained using the
the present layerwise theory for cross-ply cylindrical shells with lamination
schemes [0/90/0], [0/90/90/0]. Present results are compared with analytical
solutions by Reddy and Liu [55] who considered both the first-order (FSDT)
and the third-order (HSDT) theories. The present radial basis funtion method
is compared with analytical results by Reddy [55] and shows excellent agree-
ment.

8 Concluding remarks

In this paper a Reissner Mixed Variational Theorem was implemented for the
first time for laminated orthotropic elastic shells through a RBF discretiza-
tion of equations of motion and boundary conditions. The radial basis function
method with a Wendland function was presented for the solution of shell bend-
ing and free vibration problems. Results for static deformations and natural
frequencies were obtained and compared with other sources. This meshless ap-
proach demonstrated that is very successful in the static deformations and free
vibration analysis of laminated composite shells. Advantages of radial basis
functions are absence of mesh, ease of discretization of boundary conditions
and equations of equilibrium or motion and very easy coding. We show that
the static displacements and stresses and the natural frequencies obtained
from present method are in excellent agreement with analytical or reference
solutions.
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Method R/a

a/h 5 10 20 50 100 109

[0◦/90◦/0◦] 10 present (13× 13) 7.0506 7.2603 7.3286 7.3496 7.3532 7.3551

10 present (17× 17) 7.0505 7.2599 7.3281 7.3492 7.3528 7.3547

10 present (21× 21) 7.0503 7.2598 7.3280 7.3490 7.3526 7.3545

10 HSDT [55] 6.7688 7.0325 7.1016 7.1212 7.1240 7.125

10 FSDT [55] 6.4253 6.6247 6.6756 6.6902 6.6923 6.6939

10 LW [45] 7.0834 7.3252 7.3883 7.4061 7.4087 7.4095

100 present (13× 13) 1.0251 2.3920 3.5881 4.1702 4.2716 4.3058

100 present (17× 17) 1.0255 2.3925 3.5882 4.1721 4.2714 4.3056

100 present (21× 21) 1.0255 2.3925 3.5882 4.1721 4.2714 4.3056

100 HSDT [55] 1.0321 2.4099 3.617 4.2071 4.3074 4.3420

100 FSDT [55] 1.0337 2.4109 3.6150 4.2027 4.3026 4.3370

100 LW [45] 1.0340 2.4120 3.6172 4.2055 4.3055 4.3400

[0◦/90◦/90◦/0◦] 10 present (13× 13) 7.0088 7.2603 7.3286 7.3496 7.3532 7.3551

10 present (17× 17) 7.0086 7.2599 7.3281 7.3492 7.3528 7.3547

10 present (21× 21) 7.0085 7.2598 7.3280 7.3490 7.3526 7.3545

10 HSDT [55] 6.7865 7.0536 7.1237 7.1436 7.1464 7.1474

10 FSDT [55] 6.3623 6.5595 6.6099 6.6244 6.6264 6.6280

10 LW [45] 6.9953 7.2322 7.2940 7.3114 7.3139 7.3148

100 present (13× 13) 1.0251 2.3920 3.5881 4.1722 4.2716 4.3058

100 present (17× 17) 1.0255 2.3925 3.5882 4.1721 4.2714 4.3056

100 present (21× 21) 1.0255 2.3925 3.5882 4.1721 4.2714 4.3056

100 HSDT [55] 1.0264 2.4024 3.6133 4.2071 4.3082 4.3430

100 FSDT [55] 1.0279 2.4030 3.6104 4.2015 4.3021 4.3368

100 LW [45] 1.0284 2.4048 3.6142 4.2065 4.3073 4.3420

Table 2
Non-dimensional central deflection, w = w 103E2h3

P0a4
variation with various number of

grid points per unit length, N for different R/a ratios, for R1 = R2
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Method R/a

a/h 5 10 20 50 100 109

10 present (13× 13) 11.8127 11.6433 11.6003 11.5882 11.5865 11.5859

present (17× 17) 11.8123 11.6431 11.6001 11.5881 11.5863 11.5858

present (21× 21) 11.8123 11.6431 11.6001 11.5881 11.5863 11.5858

HSDT [55] 12.040 11.840 11.790 11.780 11.780 11.780

100 present (13× 13) 31.1204 20.4266 16.6892 15.4798 15.2992 15.2385

present (17× 17) 31.1128 20.4235 16.6881 15.4794 15.2988 15.2382

present (21× 21) 31.1117 20.4231 16.6879 15.4793 15.2988 15.2382

HSDT [55] 31.100 20.380 16.630 15.420 15.230 15.170

Table 3
Nondimensionalized fundamental frequencies of cross-ply laminated spherical shells,
ω = ω a

2

h

√
ρ/E2, laminate ([0◦/90◦/90◦/0◦])

Method R/a

a/h 5 10 20 50 100 109

10 present (13× 13) 11.7720 11.6033 11.5605 11.5484 11.5467 11.5461

present (17× 17) 11.7717 11.6031 11.5603 11.5483 11.5465 11.5460

present (21× 21) 11.7716 11.6031 11.5603 11.5483 11.5465 11.5460

HSDT[55] 12.060 11.860 11.810 11.790 11.790 11.790

100 present (13× 13) 31.0370 20.3936 16.6782 15.4768 15.2974 15.2371

present (17× 17) 31.0294 20.3905 16.6770 15.4763 15.2970 15.2368

present (21× 21) 31.0283 20.3901 16.6769 15.4763 15.2970 15.2368

HSDT[55] 31.0398 20.350 16.620 15.420 15.240 15.170

Table 4
Nondimensionalized fundamental frequencies of cross-ply laminated spherical shells,
ω = ω a

2

h

√
ρ/E2, laminate ([0◦/90◦/0◦])
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[0/90/0] [0/90/90/0]

R/a Method a/h = 100 a/h = 10 a/h = 100 a/h = 10

5 present (13× 13) 20.3473 11.5614 20.3824 11.6067

present (17× 17) 20.3389 11.5611 20.3760 11.6064

present (21× 21) 20.3377 11.5611 20.3751 11.6064

FSDT [55] 20.332 12.207 20.361 12.267

HSDT [55] 20.330 11.850 20.360 11.830

10 present (13× 13) 16.6662 11.5499 16.6778 11.5911

present (17× 17) 16.6634 11.5497 16.6756 11.5909

present (21× 21) 16.6630 11.5497 16.6753 11.5909

FSDT [55] 16.625 12.173 16.634 12.236

HSDT [55] 16.620 11.800 16.630 11.790

100 present (13× 13) 15.2551 11.5462 15.2536 11.5860

present (17× 17) 15.2518 11.5460 15.2532 11.5858

present (21× 21) 15.2517 11.5460 15.2532 11.5858

FSDT [55] 15.198 12.163 15.199 12.227

HSDT [55] 15.19 11.79 15.19 11.78

Plate present (13× 13) 15.2371 11.5461 15.2385 11.5859

present (17× 17) 15.2368 11.5460 15.2382 11.5858

present (21× 21) 15.2368 11.5460 15.2382 11.5858

FSDT [55] 15.183 12.162 15.184 12.226

HSDT [55] 15.170 11.790 15.170 11.780
Table 5
Nondimensionalized fundamental frequencies of cross-ply cylindrical shells, ω =
ω a

2

h

√
ρ/E2
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