
5.1. Background and related works

architecture is reported in Fig. 5.1. It enables to dynamically change the generator poly-

nomial of the LFSR. This is a key feature in the implementation of an adaptable BCH

encoder.

Figure 5.1: Architecture of a r -bit PPLFSR with s-bit parallelism [60].

The gray box of Fig. 5.1 highlights the basic adaptable block of this circuit. It exploits

a multiplexer, controlled by one of the coefficients of the desired divisor polynomial,

to dynamically insert an XOR gate at the output of one of the related D-type flip-flops

composing the register. The s vertical stages of the circuit implement the parallelism of

the PPLFSR computing the state at clock cycle i+s, based on the state at cycle i . However,

this solution has high overhead. In fact, such PPLFSR is able to divide by all possible r -bit

polynomials, while just well selected divisor polynomials are required.

Although Chen at al. deeply analyze the encoding process and the issues related to

the storage of parity bits, the decoding process is scarcely analyzed, without provid-

ing details on how adaptability is achieved. Four different correction modes, namely

t = (9,14,19,24) are considered in [37] for a BCH code defined on GF (213) with a block

size of 512B (every 2 KB page of the flash is split in four blocks). The selection of the

4 modes is based on considerations about the number of parity bits to store. How-

ever, there is no provision to understand whether additional modes can be easily im-

plemented. As an example, when selecting correction modes in which the size of the

codeword is not a multiple of the parallelism of the decoder, alignment problems arise,
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which are completely neglected in the paper.

5.2 Optimized Architectures of Programmable Parallel LFSRs

In this section, we will introduce an optimized block to perform an adaptable remain-

der computation. In fact, one of the most recurring operations in BCH encoding/de-

coding is the remainder computation between a polynomial representing a message to

encode/decode and a generator/minimal polynomial of the code, that depends on the

selected correction capability. The PPLFSR of Fig. 5.1 can perform this operation [37].

An r -bit PPLFSR can potentially divide by any r -bit polynomial by properly control-

ling its configuration signals (g0 . . . gr−1). However, in BCH encoding/decoding, even

considering an adaptable codec, just well selected divisor polynomials are required (e.g.,

the generators polynomials g9 (x), g14 (x), g19 (x), g24 (x) of the four implemented correc-

tion modes of [37]). This computational block is therefore highly inefficient. Moreover,

the set of divisor polynomials required in a BCH codec usually share common terms

among each other. Such terms can be exploited to generate an optimized PPLFSR (OP-

PLFSR) architecture.

Let us consider, as an example, the design of a r =15-bit programmable LFSR able to

divide by two polynomials p1(x) = x15 +x13 +x10 +x5 +x3 +x +1 and p2(x) = x13 +x12 +
x10 +x5 +x4 +x3 +x2 +x +1 using a s=8-bit parallelism.

A traditional PPFLSR implementation would require 15×8 = 120 gray boxes (i.e., 120

XORs-MUXs). According to this implementation, this PPLFSR could divide by any 215 =
32,768 possible 15-bit polynomials, even if just 2 polynomials (i.e., the 0.006% of its full

potential) are required.

An analysis of the target divisor polynomials can be exploited to optimize the PPLFSR

architecture. Table 5.1 reports the binary representation of the two polynomials.

In it, three categories of polynomial terms can be identified:

1. Common terms (represented in bold), i.e., terms defined in all considered polyno-

mials (x13, x10, x5, x3, x, and 1 in Table 5.1). For these terms, an XOR will be always

required in the PPLFSR, thus saving the area dedicated to the MUX and the related

control logic.

2. Missing terms (represented in underlined italic zeros), i.e., terms not defined in any

of the considered polynomials, (x14, x11, x9, x8, x7 and x6 in Table 5.1). For these
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terms both the XOR and the related MUX can be avoided.

3. Specific terms, i.e., terms that are specific of a subset of the considered polynomials

(x15, x12, x4, x2 in Table 5.1). These terms are the only ones actually required.

We can therefore implement an optimized programmable LFSR (OPPLFSR) with th-

ree main building blocks:

1. each common present term (i.e., columns of all "1" of Table 5.1) needs an XOR,

only;

2. each common absent term (i.e., columns of all "0" of Table 5.1) needs neither XOR

nor MUX;

3. each specific term has a gray box, as Fig. 5.1;

Fig. 5.2 shows the resulting design for the portion x15, x14 and x13.

(a) PPLFSR (b) OPPLFSR

Figure 5.2: Example of the resulting PPLFSR (a) and OPPLFSR (b) with 8-bit parallelism for x15,
x14 and x13 of p1 (x) and p2 (x) [60]

This optimization also applies to polynomials with very different lengths. As an exam-

ple, an OPPLFSR with single bit parallelism and able to divide by p1(x) = x225 +x +1 and

p2(x) = x+1, would only require a single adaptable block, compared to the 226 blocks re-

quired by a normal PPLFSR. Furthermore, the advantage of the OPPLFSR increases with

the parallelism of the block. In fact, with the same 2 polynomials, a 8-bit OPPLFSR would

require 8 adaptable blocks compared to 226×8 = 1,808 adaptable blocks of a traditional

PPLFSR.

For sake of generality, Fig. 5.3 shows the high-level architecture of a generic OPPLFSR.

Such a block is able to divide by a set p1 (x) , ..., pM (x) of polynomials. We denote with q

the number of required gray boxes.
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Figure 5.3: High-level architecture of the OPPLFSR [60]

The OPPLFSR interface includes: a s-bit input port (b) used to feed the data, a
⌈

log2 (M)
⌉

-

bit input port (sel) used to select the polynomial of the division, and a s-bit port (o)

providing the result of the division. Two blocks compose the OPPLFSR: OPPLFSRnet and

ROM. The OPPLFSRnet represents the complete network, partially shown in the example

of Fig. 5.2. Given the output of the ROM, the q-bit signal g controls the MUXs of the q

gray boxes (Fig. 5.2) according to the selected polynomial. The ROM is optimized ac-

cordingly with the design of the OPPLFSR, which leads to a reduced ROM and to a lower

area overhead w.r.t. a full PPLFSR.

5.3 BCH Code Design Optimization

In this section, we address first the issue of choosing the most suitable set of polynomials

for an optimized adaptable BCH code. Then, we propose a novel block, shared between

the adaptable BCH encoder and the decoder, which reduces the area overhead of the

resulting codec core.

5.3.1 The choice of the set of polynomials

The optimization offered by the OPPLFSR introduced in Section 5.2, may become in-

effective if not properly exploited. It depends on the number and on the terms of the

shared divisor polynomials implemented in the block. As an example, an excessive num-

ber of shared polynomials may make it difficult to find common terms, leading to an un-

willed increase of the area overhead. Therefore, the choice of the polynomials to share is

critical and must be properly tailored to the overall design.

Let us denote byΩ the set of t generators gi (x) and t minimal polynomials ψi which

fully characterize an adaptable BCH code (see Section 5.1). Since for GF (2m) several
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primitive polynomials ψi (x) can be used to define the code, several set Ωi can be con-

structed. Choosing the most suitable setΩi is critical to obtain an effective design of the

OPPLFSR. On the one hand, it can be shown that the complexity of Ωi increases with

m [92, 118, 132]. On the other hand, the current trend is to adopt BCH codes with high

values of m (e.g., GF (215)) because current flash devices features a worse bit error rate

[52]. Therefore, a simple visual inspection of each set Ωi is not feasible to find the most

suitable set of polynomials. An algorithmic approach is mandatory.

Each setΩi can be classified resorting to a Maximum Correlation Index (MCI). We de-

fine as MC I
(
p1, p2, ..., pN

)
the maximum number of common terms shared by a generic

set of polynomials p1, p2, ..., pN . As an example, the polynomials of Table 5.1 have

MC I
(
p1, p2

)= 12.

In the sequel, we introduce an algorithm to assess each set Ωi according to its MCI.

Given i = {1, ...,Y }, for each setΩi :

1. considerΩi =
{

p1, ..., pN
}

and v0 = p1;

2. determine the polynomial ph such that the partition Si ,1 = (
v0, ph

)
has the maxi-

mum MC I
(
v0, ph

)
, where h = {1, ..., N } and ph 6= v0;

3. determine the polynomial pk such that the partition Si ,1 = ((
v0, ph

)
, pk

)
has the

maximum MC I
(
v0, ph , pk

)
, where k = {1, ..., N } and pk 6= ph 6= v0;

4. repeat step 3 until all polynomials have been considered in the partition Si ,1;

5. change the starting polynomial to the next one, e.g., v0 = p2, considering Si ,2 and

repeat steps 2-4;

6. when v0 = pN , consider the next setΩi+1.

The algorithm ends when all setsΩi have been analyzed. For eachΩi , the output is a

set of partitions:

Si , j =
{
Si ,1,Si ,2, ...,Si ,N

}
(5.5)

Fig. 5.4 graphically shows the MCI of two partitions generated from two different

starting points, for an hypothetical setΩi .

Fig. 5.4 shows that MCI always has a decreasing trend with the size of the partition

S. This is straightforward since adding a polynomial may only decrease or keep constant
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Figure 5.4: MCI examples of two hypothetical partitions Si ,1 and Si ,2

the current value of MCI. The curves, reported in 5.4, are critical in the choice of the

most suitable set of polynomials for an optimized BCH code. For each partition Si , j with

j = {1...N }, we can compute the average MCI (MC Iav g ) as:

MC Iav g (Si , j ) = 1

N

N−1∑
l=1

MC Il (5.6)

Eq. 5.6 applies to each setΩi where i = {1...Y }.

The best partition of the set Ωi is then computed selecting the one with maximum

MC Iav g :

Sbesti = ar g max
j

[
MC Iav g

(
Si , j

)]
(5.7)
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Finally, Eq. 5.8 compares the best partition of each setΩi to find the best set of poly-

nomials:

SbestBC H = ar g max
i

[
Sbesti

]
(5.8)

Eq. 5.8 defines the family of polynomials SbestBC H , with the maximum average num-

ber of common terms.

Table 5.2: An example ofΩi

x6 x5 x4 x3 x2 x1 1

p1 1 0 1 0 0 1 0

p2 1 1 0 1 0 1 1

p3 1 0 1 1 1 1 1

p4 0 1 1 0 0 0 1

p5 1 1 0 1 1 0 1

p6 0 0 1 0 0 1 1

Let us provide an example to support the understanding of the algorithm. Suppose

to consider a single set Ωi composed of the polynomials of Table 5.2. The steps of the

algorithm are:

1. Let us start with v0 = p1

2. We first evaluates MC I
(
p1, p2

)= 3, MC I
(
p1, p3

)= 4, MC I
(
p1, p4

)= 3.

Since MC I
(
p1, p3

)= 4 is the maximum, the resulting partition is Si ,1 =
{

p1, p3
}

3. The next step considers MC I (
(
p1, p3

)
, p2) = 3 and MC I (

(
p1, p3

)
, p4) = 3. It is

straightforward that the choice of either p2 or p4 does not affect the final value

of the MC Iav g .

Given Ωi with starting point p1, it can be shown that the final partition is Si ,1 ={((
p1, p3

)
, p4

)
, p2

}
with a MC Iav g = (4+3+3)/4 = 2.5 from Eq. 5.6.

The complete algorithm iterates this computation for all possible starting points. Fig.

5.5 graphically shows the output of the MCI associated with each partition Si , j calculated

for the following starting point j = {1,2,3,4}.

According to Eq. 5.7, Si ,2 (the bold line) is the Sbesti of the example of Table 5.2, with

a MC Iav g
(
Si , j

)
= 4.
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Figure 5.5: The MCI Trend of Table 5.2 [60]

5.3.2 Shared Optimized Programmable Parallel LFSRs

Let us assume to design an adaptable BCH code with correction capability from 1 up to

tM . Such a code needs to compute remainders of the division of:

• the message m (x) by (potentially) all generator polynomials from g1 up to

g tM , for the encoding (5.2);

• the codeword c (x) by (potentially) all minimal polynomials fromψ1 (x) up toψ2tM−1 (x),

to compute the set of syndromes required during the decoding phase.

In a traditional implementation, these computations are performed by two separate

set of LFSRs. In this chapter, we propose to devise a shared set of LFSRs able to: (i)

perform all these computations, and (ii) reduce the overall cost in terms of resources

overhead. Therefore, we can adopt the same shared set of LFSRs both in the encoding

and decoding processes. This is possible since in a flash memory these operations are,

in general, not required at the same time.

The OPPLFSR, introduced in Section 5.2, is the main building block of the set of

shared LFSRs. Therefore, we will refer hereafter to such set of LFSRs as shared OPPLFSR

(shOPPLFSR). Fig. 5.6 shows the high-level architecture of the shOPPLFSR. Its interface

includes: a s-bit input port (IN) used to input the data to be divided, a
⌈

log2 (N)
⌉

-bit in-

put port (en) used to enable each OPPLFSR, an input port (sel) used to select the proper

polynomial by which each OPPLFSR has to divide, and a N× s-bit port (p) providing the

result of the division.
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Figure 5.6: The shOPPLFSR architecture is composed by multiple OPPLFSRs

Given N OPPLFSRs and a maximum correction capability tM , each OPPLFSRi per-

forms the division by a set of generator polynomials g (x) and minimal polynomialsψ (x).

Such shOPPLFSR can be seen as an optimized programmable LFSR able to:

• divide by all generator polynomials from g1 (x) to g tM (x);

• divide by specific subsets of minimal polynomials from Eq. 5.1, as well.

An improper choice of the shared polynomials g (x) and ψ (x) can dramatically re-

duce the performance of the overall BCH codec. Also the partitioning strategy adopted

is critical to maximize the optimization in terms of area, minimizing the impact on the

latency of encoding/decoding operations.

The algorithm presented in Section 5.3.1 provides a valuable support for the explo-

ration of this huge design space. In fact, the proposed method can be exploited to prop-

erly partition polynomials into the different OPPFLSRs of Fig. 5.6, in order to maximize

the optimization of the resulting shOPPFLSR. Such optimization should not be obtained

following blindly the outcomes of the algorithm, but always tailoring them to the specific

design. Regarding this topic, Section 5.6 provides more details about our experimental

setup and the related experimental results.

5.4 Adaptable BCH Encoder

In this section, we propose an adaptable BCH encoder which exploits the shOPPLFSR of

Section 5.3. According to the BCH theory, the shOPPLFSR of Fig. 5.6 is a very efficient cir-

cuit to perform the computation expressed in Eq. 5.2. However, in the encoding phase,
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the message m(x) must be multiplied by xr before calculating the reminder of the divi-

sion by g (x) (see Eq. 5.2). This can be obtained without significant modifications of the

architecture of shOPPFLSR. It is, in fact, enough to input the bits of the message directly

in the most significant bit of the LFSR, instead than starting from least significant bit.

Fig. 5.7 shows the high-level architecture of the adaptable encoder.

Figure 5.7: High-level architecture of the adaptable encoder highlighting the three main building
blocks and their main connections.

The encoder’s interface includes: a s-bit input port (IN) used to input the k-bit mes-

sage to encode starting from the most significant bits, a
⌈

log2 (tM )
⌉

-bit input port (t)

selecting the requested correction capability in a range between 1 and tM , a start input

signal used to start the encoding process and a s-bit output port (OUT) providing the r

parity bits. Three blocks compose the encoder: a shOPPLFSR, a flush logic and a con-

troller.

The shOPPLFSR performs the actual parity bits computation. According to the BCH

theory, adaptation is achieved by supporting the computation of remainders with tM

generator polynomials, one for each value t may assume. The controller achieves this

task in two steps: (i) enabling the proper OPPLFSR through the len signal, and (ii) se-

lecting the proper polynomial through the lsel signal, according to the desired correc-

tion capability t. Then, it manages the overall encoding process based on two internal

parameters:

1. the number of s-bit words composing the message (fixed at design time)

2. the number of produced s-bit parity words, that depends on the selected correction

capability. The flush logic splits the r parity bits into s-bit words, providing them in
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output, one per clock cycle.

To further optimize the encoding and the decoding process, since in a flash memory

these operations are not required at the same time, the encoder’s shOPPLFSR can be

merged with the shOPPLFSRs that will be employed in the syndrome computation (see

Section 5.5.1), thus allowing additional area saving.

5.5 Adaptable BCH Decoder

Fig. 5.8 presents the high-level architecture of the proposed adaptable decoder. The

decoder’s interface includes: a s−bit input port (IN) used to input the n−bit codeword to

decode (starting from the most significant bits), a
⌈

log2 (tM )
⌉−bit input port (t) to select

the desired correction capability, a start input signal to start the decoding and a set of

output ports providing information about detected errors. In particular:

• deterr is a
⌈

log2 (tM )
⌉−bit port providing the number of errors that have been

detected in a codeword. In case of decoding failure it is set to 0;

• erradd and errmask provide information about the detected error positions. As-

suming the codeword split into h−bit words, erradd is used as a word address in

the codeword and errmask is a h−bit mask whose asserted bits indicate detected

erroneous bits in the addressed word. The parallelism h of the error mask depends

on the parallelism of the Chien machine, as explained later in this section;

• vmask is asserted whenever a valid error mask is available at the output of the de-

coder;

• fail is asserted whenever an error occurred during the decoding process (e.g., the

number of errors is greater than the selected correction capability);

• end is asserted when the decoding process is completed.

The full decoder therefore includes four main blocks: (1) the Adaptable Syndrome

Machine, computing the syndromes of the codeword, (2) the Adaptable inversion-less

Berlekamp Massey (iBM) Machine, that elaborates the syndromes to produce the error

locator polynomial, (3) the Adaptable Chien Search Machine in charge of searching for

the error positions, and (4) the Controller coordinating the overall decoding process.
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Figure 5.8: High-level architecture of the adaptable decoder, highlighting the four main build-
ing blocks: the adaptable syndrome machine, the adaptable iBM machine, the adaptable Chien
machine, and the controller in charge of managing the overall decoding process

5.5.1 Adaptable Syndrome Machine

Fig. 5.9 shows the high-level architecture of the proposed adaptable syndrome machine

with correction capability 16 t 6 tM .

According to Section 5.2, remainders can be calculated by a set of Parallel LFSRs (PLF-

SRs) whose architecture is similar to the one of the PPLFSR of Fig. 5.1, with the only

difference that the characteristic polynomial is fixed (XOR gates are inserted only where

needed, without multiplexers). Each PLFSR computes the remainder of the division of

the codeword by a different minimal polynomial ψi (x). Given two correction capabili-

ties t1 and t2 with t1 < t2 ≤ tM , the set of 2t1 minimal polynomials generating the code

for t1 is a subset of those generating the code for t2. To obtain adaptability of the cor-

rection capability in a range between 1 and tM , the syndrome machine can therefore be

designed to compute the maximum number tM of remainders required to obtain 2tM
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Figure 5.9: Architecture of the adaptable Syndrome Machine

syndromes. Based on the selected correction capability t , only the first t PLFSRs out of

the tM available in the circuit are actually enabled through the Enable div. network of

Fig. 5.9.

A full parallel syndrome calculator, including tM PLFSRs, requires a considerable

amount of resources that are underutilized in the early stages of the flash lifetime when

reduced correction capability is required. To optimize the adaptable syndrome machine

and to trade-off between complexity and performance, we exploit the shOPPLFSR in-

troduced in Section 5.2. The architecture proposed in Fig. 5.9 includes two sets of LF-

SRs for remainder computation: (i) conventional PLFSRs, and (ii) shOPPLFSR. Conven-

tional PLFSRs are exploited for parallel fast computation of low order syndromes re-

quired when the requested correction capability is below a given threshold. shOPPLFSR

is designed to divide for selected groups of minimal polynomials not covered by the fixed

PPLFSRs. It represents a shared resource utilized when the requested correction capa-

bility increases. It enables area reduction at the cost of a certain time overhead. The

architectural design, chosen for the fixed PLFSRs and the OPPLFSR, enables to trade-off

hardware complexity and decoding time, as it will be discussed in Section 5.6.

It is worth to mention here that the parallel architecture of the PLFSR, coupled with

the adaptability of the code, introduces a set of additional word alignment problems that

must be addressed to correctly adapt the syndrome calculation to different values of t .

The syndrome machine receives the codeword in words of s bits, starting from the most
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Figure 5.10: Example of the schema of a byte aligner for t = 2 and s = 8

significant word. When the number of parity bits does not allow to align the codeword

to the parallelism s, the unused bits of the last word are filled with 0. To correctly com-

pute each syndrome, the parity bit r0 of the codeword must enter the least significant

bit of each LFSR. The aligner block of Fig. 5.9 assures this condition by properly right-

shifting the codeword while it is input into the syndrome machine. Let us consider the

following example: k = 2KB, m = 15, t = 2, s = 8 and therefore r = m · t = 30. Since 30

is not multiple of s = 8, the codeword is filled with two zeros and p0 is saved in position

2 of the last byte of the codeword (m2047 m2046...m1 m0 p29p28...p1 p0 00). In this case the

PLFSRs require a 2-bit alignment, implemented by the network of Fig. 5.10. It simply

delays the last 2 input bits resorting to two flip-flops, whose initial state has to be zero,

and properly rotates the remaining input bits. Changing the correction capability of the

decoder changes the number of parity bits of the codeword, and therefore the required

alignment. Given the parallelism s of the decoder, a maximum of s alignments must be

provided and implemented in the Aligner block of Fig. 5.9.

With the proper alignment, the PLFSRs can perform the correct division and the eval-

uators can provide the required syndromes. The evaluators are simple combinational

networks involving XOR operations, according to the Galois Fields theory (readers may

refer to [102] for specific implementation details).

5.5.2 Adaptable Berlekamp Massey Machine

In our adaptable codec, we implemented the inversion-less Berlekamp-Massey (iBM)

algorithm proposed in [142] which is able to compute the error locator polynomial λ (x)

in t iterations.
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The main steps of the computation are reported in Alg. 1. At iteration i (rows 2 to 12),

the algorithm finds an error locator polynomial λ(x) whose coefficients solve the first i

equations of (5.3) (row 4). It then tests if the same polynomial solves also i +1 equations

(row 5). If not, it computes a discrepancy term δ so that λ(x)+δ solves the first i + 1

equations (row 9). This iterative process is repeated until all equations are solved. If, at

the end of the iterations, the computed polynomial has a degree lower than t , it correctly

represents the error locator polynomial and its degree represents the number of detected

errors; otherwise, the code is unable to correct the given codeword.

Algorithm 1 Inversion-less Berlekamp-Massey alg.
1: λ(x) = 1, k(x) = 1, δ= 1
2: for i = 0 to t−1 do
3: d =∑t

j=1

(
λ j ·S2i− j

)
4: λ(x) = δλ(x)+d ·x ·k(x)
5: if d = 0 OR Deg (λ(x)) > i then
6: k(x) = x2 ·k(x)
7: else
8: k(x) = x ·k(x)
9: δ= d

10: end if
11: i=i+1
12: end for
13: if Deg (λ(x)) < t then
14: output λ(x), Deg (λ(x))
15: else
16: output FAILURE
17: end if

The architecture of the iBM machine is intrinsically adaptive as long as one guaran-

tees that the internal buffers and the hardware structures are sized to deal with the worst

case design (i.e., t = tM ). The coefficients of λ (x) are m−bit registers whose number

depends on the correction capability. In the worst case, up to tM coefficients must be

stored for each polynomial.

The adaptable iBM machine therefore includes two m−bit register files with tM reg-

isters to store these coefficients. Whenever the requested correction capability is lower

than tM , some of the registers will remain unused. The number of multiplications per-

formed during the computations also depends on t . Row 3 requires t multiplications,

while row 4 requires t multiplications to compute δλi (x) and t multiplications to com-

pute d · x ·k(x).

We implemented a serial iBM Machine including 3 multipliers for GF(2m) to perform

multiplications of rows 3 and 4. It can perform each iteration of the iBM algorithm in

2t clock cycles (t cycles for row 3 and t cycles for row 4) achieving a time complexity
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of 2t 2 clock cycles. This implementation is a good compromise between performance

and hardware complexity. An input t dynamically sets the number of iterations of the

algorithm, thus implementing the adaptation.

5.5.3 Adaptable Chien Machine

The overall architecture of the proposed adaptable Chien Machine is shown in the Fig.

5.11. The machine first loads into tM m-bit registers the coefficients from λ1 to λtM of the

error locator polynomial λ(x) computed by the iBM machine (ld= 0). The actual search

is then started (ld= 1). At each clock cycle, the block performs h parallel evaluations

of λ(x) in GF(2m) and outputs a h−bit word, denoted as errmask. Each bit of errmask

corresponds to one of the h candidate error locations that have been evaluated. Asserted

bits denote detected errors. This mask can then be XORed (outside the Chien Machine)

with the related bits of the codeword in order to correct the detected erroneous bits.

Figure 5.11: Architecture of the proposed parallel adaptable Chien Machine with parallelism
equal to h

The architecture of Fig. 5.11 provides an adaptable Chien machine with lower area

consumption than other designs [37], having, at the same time, a marginal impact on

performance. Four interesting features contribute to such optimization: (i) constant

multipliers substructure sharing, (ii) adaptability to the correction capability, (iii) im-

proved fast skipping to reduce the decoding time, and (iv) reduced full GF multipliers

area. In the sequel, we briefly address each feature.
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The first feature is represented by the optimized GF Constant Multipliers (optGFCM)

networks of Fig. 5.11. The h parallel evaluations are based on equation (5.4). In the

worst case (t = tM ), the parallel evaluation of equation (5.4) requires a matrix of tM ×h

constant Galois multipliers. They multiply the content of the tM registers byα,α2, ...,αtM ,

respectively. However, we can note that each column of constant GF multipliers shares

the same multiplicand. Therefore, we can iteratively group their best-matching combi-

nations [39] into the tM optGFCM networks of Fig. 5.11. Such optGFCMs provide up

to 60% reduction of the hardware complexity of the machine with no impact on perfor-

mance.

The second feature is the adaptability of the Chien machine. The rows of the ma-

trix define the parallelism of the block (i.e., the number of evaluations per clock cycles),

while the columns define the maximum correction capability of the block. Whenever

the selected correction capability t is lower than tM , the coefficients of the error locator

polynomial of degree greater than t are equal to zero and do not contribute to equation

(5.4), thus allowing us to adapt the computation to the different correction capabilities.

The third feature stems from a simple observation. Depending on the selected correc-

tion capability t , not all the elements of GF(2m) represent realistic error locations. In fact,

considering a codeword composed of k bits of the original message and r = m · t parity

bits, only k+m ·t out of 2m elements of the Galois field represent realistic error locations.

Given that an error location L is the inverse of the related GF element (L = 2m −1−i ), the

elements of GF(2m) in which the error locator polynomial must be evaluated are in the

following range:

 α2m−1︸ ︷︷ ︸
error location L=0

, α2m−k−m·t︸ ︷︷ ︸
error location L=k+m·t−1

 (5.9)

All elements between α0 and α2m−k−m·t
can be skipped to reduce the computation

time. Differently from fixed correction capability fast skipping Chien machines, this in-

terval is not constant here but depends on the selected t . The architecture of Fig. 5.11

implements an adaptable fast skipping by initializing the internal registers to the coeffi-

cients of the error corrector polynomial multiplied by a proper value βt
i ni =α2m−k−m·t−1.

For each value of t , tM m−bit constant values corresponding to βt
i ni ,

(
βt

i ni

)2, . . .,
(
βt

i ni

)tM

must be stored in an internal ROM (not shown in Fig. 5.11) and multiplied by the coeffi-

cients λi using a full GF multiplier.
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This is connected with the last feature, the reduced GF Full Multipliers (redGFFM)

network of Fig. 5.11. Each full GF multiplier has a high cost in terms of area. Since they

are used only during initialization of the Chien, the redGFFM adopts only z 6 tM full

GF multipliers. It also includes a (λ) input port to input z coefficients, per clock cycles,

of the error locator polynomial. This network enables to reduce area consumption, at a

reasonable cost in terms of latency.

For the sake of brevity, a detailed description of the controller required to fully coor-

dinate the decoder’s modules interaction is omitted.

5.6 Experimental Results

This section provides experimental data from the implementation of the adaptable BCH

codec proposed on a selected case study.

5.6.1 Automatic generation framework

To cope with the complexity of a manual design of these blocks, a semi-automatic gen-

eration tool named ADAGE (ADaptive ECC Automatic GEnerator) [54] able to generate

a fully synthesizable adaptable BCH codec core following the proposed architecture has

been designed and exploited in this experimentation extending a preliminary framework

previously introduced in [28]. The overall architecture of the framework is in Fig. 5.12.

The code analyzer block represents the first computational step required to select the

desired code correction capability based on the Bit Error Rate (BER) of a page of the se-

lected flash [107]. The BER is the fraction of erroneous bits of the flash. It is the key factor

used to select the correction capability. Two values of BER must be considered. The for-

mer is the raw bit error rate (RBER), i.e., the BER before applying the error correction. It is

technology/environment dependent and increases with the aging of the page [23, 143].

The latter is the uncorrectable bit error rate (UBER), i.e., the BER after the application

of the ECC, which is application dependent. It is computed as the probability of having

more than t errors in the codeword (calculated as a binomial distribution of randomly

occurred bit errors) divided by the length of the codeword [48]:

U BER = P (E > t )

n
= 1

n

n∑
i=t+1

(
n

i

)
·RBERi · (1−RBER)n−i (5.10)

Given the RBER of the flash and the target UBER, Eq. 5.10 can be exploited to com-

pute the maximum required correction capability of the code and consequently the value
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Figure 5.12: BCH codec automatic generation framework.
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of m that defines the target GF. Given these two parameters, the Galois Field manager ex-

ploits an internal polynomials database to generate the set of minimal polynomials and

the related generator polynomials for the selected code.

Finally, the RTL VHDL code generator combines these parameters and generates a

RTL description of the BCH encoder and decoder implementing the architecture illus-

trated in this paper.

The whole framework combines Matlab software modules with custom C programs.

The full framework code is available for download athttp://www.testgroup.polito.

it in the Tools section of the website.

5.6.2 Architectural-layer characterization

In our specific design, the ECC sub-system has been implemented to work on a full page

of the flash (i.e., k = 4K B). We considered a target UBER equal to 1E-11, as in [106].

Based on equation (5.10), Table 5.3 reports the correction capability required to achieve

the target UBER considering the RBERs of the various programming algorithms charac-

terized in Chapter 4. Clearly the correction capability required to satisfy the target UBER

constraints increases over time. As expected, from the reliability standpoint, the worst

performance is provided by the ISPP-RV algorithm. This algorithm requires at the end

of the life of the device a correction capability of 450 errors per page. This value would

require a considerable hardware and performance overhead that leads to the conclu-

sion that memory pages using the ISPP-RV algorithm will necessarily provide a reduced

endurance. For this reason we selected as target maximum correction capability 88 er-

rors per page corresponding to the requirement of the ISPP-SV algorithm at the end of

life. Given the selected value of k and t the resulting code is designed over GF(216) (i.e.,

m = 16).

Table 5.3: Correction capability required by the ECC to achieve a target UBER=1E-11 (Every ele-
ment of the table reports the memory RBERs for the different programming algorithms (pattern
independent) as characterized in Chapter 4, and the needed correction capability).

Alg/progr. cycles 1 100 1000 10000 100000
ISPP-RV 1.000E-06 / 3 6.104E-05 / 11 3.052E-04 / 28 1.526E-03 / 88 9.0332 E-03 / 450
ISPP-SV 1.000E-06 / 3 1.000E-06 / 3 2.747E-04 / 26 3.357E-04/ 29 1.000E-03 / 65
ISPP-DV 1.000E-06 / 3 1.000E-06 / 3 3.052E-05 / 8 3.052E-05 / 8 9.155E-05 / 14

In the remaining of this section the ECC sub-system will be characterized to show

the different trade-offs offered by its programmability. It is worth to mention here that
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our ECC implementation features a 8-bit parallelism to meet the I/O parallelism of the

target flash, and a 8-bit parallelism of the Chien machine allowing 8 evaluations per clock

cycle to speed-up the decoding process. Table 5.4 reports the area required for this block

synthesized using Synopsys DesignCompiler with the STM-45nm [46] technology library.

The full design works at 100MHz clock frequency.

Table 5.4: ECC encoder and decoder area footprint. Synthesis has been performed using the
STM-45nm technology library.

Area (µm2)
Encoder 169931.76
Decoder 514398.40

Let us start with the evaluation of the amount of redundancy (i.e., parity bits) intro-

duced by the ECC. In the worst case (e.g., t = 88) the code requires to store m ·t = 16·88 =
1408bits. This accounts for about 78.5% of the spare area available on our device that cor-

responds to 224B per page. ECC parity bits, are not the only extra information stored in

a flash memory. High-level functions such as filesystem management and wear-leveling

need to save considerable amount of information and when the spare are is not enough

a certain amount of pages of the flash must be reserved, thus reducing the overall flash

capacity. However, looking at Fig. 5.13, if reduced correction capability is required, either

because the device is in the early stage of its life, or because a more reliable programming

algorithm is applied, the spare area occupation can be reduced up to 74% (3.57% occu-

pation for t = 3). This provides a high degree of freedom for the flash memory controller.

The choice of t also makes it possible to tune the ECC latency and its power con-

sumption.

Fig. 5.14 shows that, carefully tuning the correction capability, the ECC subsystem can

introduce a significant save in the decoding time compared to the worst case (t = 88).

Simulations have been performed in the worst case conditions, i.e., t errors injected into

the last bits of the page to make sure that the Chien machine has to evaluate the full

page in order to find the corrupted bits. The encoding latency is instead almost constant

regardless of the selected correction capability.

Similarly to the ECC latency also the ECC power consumption can be traded-off by

carefully selecting the correction capability. Fig. 5.15 shows that, also in this case, we

can reach up to ∼33% of saving in the decoding power consumption when reducing the

correction capability.

100



5.6. Experimental Results

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Correction capability (t)

0

10

20

30

40

50

60

70

80

90

100
%

 S
pa

re
 a

re
a 

fo
r 

pa
ri

ty
 b

its

Figure 5.13: Percentage of spare area dedicated for storing parity bits as a function of the selected
correction capability.
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Figure 5.14: Worst case ECC encoding and decoding latency. Simulations have been performed
at a clock frequency of 100MHz.

101



5. ADAPTABLE ECC ENCODING/DECODING STRUCTURE (ARCHITECTURAL-LEVEL ADAPTIVITY )

3 20 40 60 80
Correction Capability (t)

2

3

4

5

6

7

8

9

10

11

T
ot

al
 P

ow
er

 [
m

W
]

Decoder
Encoder

Figure 5.15: Worst case ECC power consumption.

To conclude the characterization of the designed programmable ECC sub-system,

Fig. 5.16 reports the relation between UBER and RBER for the selected correction mode

obtained by plotting equation (5.10). The figure shows an additional degree of freedom

the controller can achieve in which also the UBER can be tuned together with the other

parameters.
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Figure 5.16: RBER vs. UBER relationship for the selected code and selected correction modes.

SUMMARY

This chapter proposed a BCH codec architectures and its related automatic

generation framework which enables its code correction capability to be se-

lected in a predefined range of values. Designing an ECC system whose cor-

rection capability can be then modified in-field has the potentiality to adapt

the correction schema to the reliability requirements the flash encounters

during its life-time, thus maximizing performance and reliability.

Experimental results on a selected NAND flash memory architecture proved

that the proposed solution reduces spare area usage, decoding time, and

power dissipation whenever small correction capability can be selected.

The whole design process was supported by the novel ADaptive ECC Auto-

matic GEnerator (ADAGE) design environment. ADAGE is a fully customiz-

able tool aimed at automatic generation of adaptable BCH architectures.

ADAGE is able to automatically generate the VHDL code of the designed

adaptable BCH-based architecture. Such a code can be thoroughly simu-

lated, validated and synthesized on ASIC or FPGA.
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6
CROSS-LAYER OPTIMIZATION FRAMEWORK

Contents of this chapter

6.1 EF3S Framework

6.2 Cross-layer Optimized NAND flash access modes

6.3 Storage services at work

The goal of this thesis is to enhance the degree of run-time reconfigurability of

an MLC NAND Flash controller through the provision of user-selectable dif-

ferentiated memory access modes based on an adaptive ECC decoding struc-

ture (architecture-level adaptivity) combined with an adaptable memory programming

circuitry (physical layer adaptivity).

After having considered the flexibility and the trade-offs in the physical layer and in

the ECC sub-system in isolation, this thesis also aims at characterizing the tuning range

achievable with such modes. Acting upon their parameters at the same time, the main

purpose is to show unprecedented degrees of adaptivity to application requirements in

the reliability/performance/power optimization space, thus identifying a set of differen-

tiated access modes that can be configured in the memory controller.

For this purpose, an extensive modeling, simulation and implementation framework

has been designed and implemented: EF3S [56]. EF3S is an an easy-to-use, highly con-

figurable, and modular advanced EDA tool which aims at supporting the design of flash-
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based systems. It offers the possibility of modeling: the physical NAND device, the mem-

ory controller, the NAND flash driver, the Flash File System (including wear leveling and

garbage collection), and the application workloads. This framework enable an accurate

quantification of the trade-offs between the quality metrics of NVMs accesses on a set of

real-life work-loads and benchmark applications. EF3S has been set up to assess the ana-

log and the digital parts of an MLC NAND flash memory sub-system in an homogeneous

45nm industrial technology substrate.

The chapter is organized as follows: Section 6.1 introduces the developed framework

called EF3S. Sections 6.2 and 6.3 explores the trade-offs proposed by the cross-layer op-

timization in the NAND memory controller and shows the performance of the proposed

system on a set of real-life applications, respectively.

6.1 EF3S Framework

EF3S enables designers to evaluate the NVM subsystem characteristics (e.g., power con-

sumption, latency, performances, aging) resorting to both synthetic workloads and real

traces automatically extracted from real applications.

EF3S is designed for a Linux based environment featuring a Flash File System (FFS),

the Linux Memory Technology Device (MTD), and operating system support for raw

flash management, including wear leveling and garbage collection. The whole frame-

work combines Linux scripts, C programs, and Matlab software modules. Figure 6.1

shows the EF3S architecture. EF3S comprises three main modules:

• System Configurator: the user interface in charge of collecting different design pa-

rameters to properly configure the target NVM subsystem;

• EF3S daemon, embedded in the Linux Kernel, in charge to monitor the target ap-

plication workload profiling flash memory operations. Extracted data are then ex-

ploited by the Simulation Aging.

• Simulation Aging, that elaborates information provided by the System Configura-

tor and the EF3S daemon, simulates the behavior of the target flash memory, and

outputs the desired statistics. They include information about throughput, power

consumptions, reliability, and aging of the considered system. To assist users in

the design space exploration, Fig. 6.1 provides combined and synoptic views of the

EF3S architecture.
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Figure 6.1: EF3S Architecture

In the next section, the different modules composing EF3S will be analyzed in detail.

6.1.1 System Configurator

Designing a NVM subsystem requires the investigation of several design choices, whose

characteristics must be specified to EF3S in order to carry out the desired simulations.

The System Configurator is in charge of collecting these information items. NVM char-

acteristics can be classified into Hardware Level and Software Level parameters. These

design choices fully characterize the NVM subsystem and can be provided in input to

the system configuration through a set of dedicated configuration files. The remainder

of this section will detail each specific configuration item available in EF3S.

Software Level parameters Software Level design parameters include: the target appli-

cation and workload, the selected Flash File System, the Wear Leveling algorithm, and

the Garbage Collection strategy.
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The workload, i.e., the system application interaction with the NVM subsystem, is

one of the most critical elements to properly evaluate specific software applications. Two

main parameters allow the designer to configure the target workload:

• Workload Type. The user may select a set of internally generated workloads pro-

duced resorting to the FileBench software suite [7, 134], or resort to a custom work-

load generated profiling the execution of a custom software application reflecting

the specific mission of the simulated system.

• Workload Running Time. It is the time for which the workload is executed and pro-

filed. It has to be large enough to perform a significant amount of operations on

the system thus collecting enough information about the system’s behavior.

In addition, the System Configurator also enables to select among the following sys-

tem’s design choices:

• Flash File System (FFS). The selected Flash File System and its configuration param-

eters strongly affect the NVM performance. EF3S is designed to enable simulations

using different Linux based Flash Filesystems including YAFFS2 (Yet Another Flash

File System 2), UBIFS (UBI File System) [13] or JFFS2 (Journaling Flash File System

2) [12].

• Garbage Collection and Wear Leveling algorithms can be switched among a selec-

tion of available strategies that depend on the selected filesystem.

• Caches. In the NVM Subsystem Software Stack several level of caches at the Virtual

File System (VFS) and Flash File System (FFS) level are used. These caches can be

enabled or disabled to reflect the desired system configuration.

Software Level parameters are used by the System Configurator to properly instru-

ment the Linux Kernel as well.

Hardware Level parameters At the Hardware Level, EF3S enables the user to configure

the NVM subsystem acting on the flash memory, the ECC and the flash interconnection

type.

The target flash memory can be configured according to the following parameters:
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• Logical Parameters. Include page size, block size (or pages per block), device parti-

tion size (or blocks per partitions) and total size (or number of device partitions).

• Operational Parameters, which may be found on the device datasheet. Such pa-

rameters include:

– device clock frequency;

– read/program/erase elementary physical operations specifications (e.g., pro-

gram verify algorithm [144]);

– elementary operation timing and power consumptions, with the possibility of

defining time or aging dependent values;

• Bare Memory Reliability Model to be used for reliability status estimation of the

memory. Raw Bit Error Rate (RBER) may be assumed as a measure of the reliability

status of the bare flash memory as widely presented in Chapter 3.

All provided parameters may be time or memory aging dependent. An accurate for-

malism has been introduced to allow designers to specify parameters according to either

program/erase cycles or time intervals (e.g., flash operation latencies strongly depend on

the aging of the memory).

Together with the target flash memory, the ECC subsystem can be also fully config-

ured according to the following parameters:

• ECC family, chosen between BCH, LDPC, Reed Solomon (RS)[40] and Product Codes[139];

• correction capability or target reliability, measured as UBER (Uncorrectable Bit Er-

ror Rate) value, i.e., the error rate after applying ECC [107];

• message length, with the possibility to apply the code to portions of a page;

• adaptability, i.e., a fixed correction capability ECC schema versus a variable one

can be chosen [59, 144];

• encoding/decoding latency and power consumptions or implementation technol-

ogy, in terms of technology node used to synthesize the ECC, and possibly running

clock frequency upper limit.

Finally, the Interconnection System is characterized by the Flash Interconnection Type

with the rest of the system, i.e., the particular topology of interconnection and protocol.
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6.1.2 EF3S daemon

The EF3S daemon interacts with the basic Linux software modules required to deal with

flash based storage systems. In particular it filters and records exchanged data between

FFS and MTD in order to collect flash memory operation traces.

For sake of comprehension, it is worth mentioning here that the MTD [94] is a driver

that provides a uniform interface to different (raw) flash chips. The MTD, if properly

instrumented, emulates the presence of a raw NAND flash chip, providing thus the ca-

pability to run even when no physical memory devices are available.

In particular, EF3S daemon is instrumented to produce a log file of all flash operations

required by the target application workload. This log file is pivotal to Simulation Aging

to analyze the system’s behavior and provide output statistics.

6.1.3 Simulation Aging

The Simulation Aging is responsible for simulating the configured NVM subsystem.

The Filter Set is the main interface of the Simulation Aging with the EF3S daemon. It

contains a set of filters, based on regular expressions, which are applied to the log file

produced by the EF3S daemon during the execution of the target application. The log

file must be properly filtered before performing the required aging simulations accord-

ing to user requirements. After filtering, a sequence of operations (hereinafter referred

to as operation trace) is produced. Each operation is described according to a custom

formalism:

〈t i me〉 〈r /w (/e)〉 〈
pag e (/bl ock) addr ess

〉
where: 〈t i me〉 is the time when the operation was issued; 〈r /w (/e)〉 represents the op-

eration type (r stands for read, w for write, e for erase);
〈

pag e (/bl ock) addr ess
〉

is the

operation target page or block address.

The Model Interface acts as an interface between the System Configurator and the

Simulation Environment. It elaborates the hardware specific configuration parameters

in order to setup the simulation of the computed operation traces. In particular, this

module evaluates the piecewise functions defining the Flash Operational Parameters:

the right subinterval is identified and expressions are evaluated. The model interface

also evaluates the reliability model equations. Finally, the Model Interface module sets

the ECC characteristics and correction capability required to satisfy specifications and
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computes the ECC run-time parameters such as encoding/decoding latencies and power,

resorting to previously characterized ECC schema.

Simulation Environment is the core module of the Simulation Aging. Here all data

are combined. The operations to simulate the memory aging are read from the operation

trace. Each operation is emulated using the parameters that are concurrently updated by

the Model Interface, according to the status (i.e., aging) of the simulated flash memory.

At the same time, the Simulator Environment estimates the relevant NVM subsystem

features (e.g., average operation latency and throughput, average power and energy per

operation, and aging of the pages) that are then provided in output. Of course, produced

output accuracy stems from the input models and data accuracy.

The Statistics Extractor works in parallel to the Simulation Environment. By solely an-

alyzing the input operation traces, this module extracts statistics about the Flash mem-

ory usage, like number of read, write or erase operations per page or block, write/read

intensity (ratio between read and write operations) and total number of operations.

Finally, the Output Renderer manages the data produced by the Simulator Environ-

ment and the Statistics Extractor, to offer a meaningful and synoptic vision of the reli-

ability, performance and behavior of the simulated system by a means of plots, graphs

and tables which are automatically generated.

In the next section, EF3S is employed to enable an accurate quantification of the

trade-offs between the quality metrics of NVMs accesses on a set of real-life work-loads

and benchmark applications, showing the valuable results of the proposed SONVM ar-

chitecture.

6.2 Cross-layer Optimized NAND flash access modes

The EF3S framework enables an accurate quantification of the trade-offs between the

quality metrics of NVMs accesses on a set of real-life work-loads and benchmark appli-

cations. Fig. 6.2 provides an overview of how the NAND flash sub-system reacts when

selecting different programming algorithms and ECC correction capabilities. Three main

parameters of the flash are considered in Fig. 6.2:

• the UBER of the flash;

• the read throughput (RT), i.e., the number of page read requests per second the

system is able to serve;
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• the write throughput (WT), i.e., the number of write requests per second the system

is able to serve.

Reduced	  t	   Standard	  t	   Enhanced	  t	  

ISPP	  –	  RV	  	  
UBER	  worst	  
RT	  best	  
WT	  best	  

UBER	  worsens	  
RT	  =	  

WT	  improves	  

UBER	  trade-‐off	  
RT	  worsens	  
WT	  improves	  

ISPP	  –	  SV	  
UBER	  worsens	  
RT	  improves	  
WT	  almost	  =	  

Reference	  level	  
UBER	  improves	  
RT	  worsens	  
WT	  almost	  =	  

ISPP	  –	  DV	  
UBER	  trade-‐off	  
RT	  improves	  
WT	  worsens	  

UBER	  improves	  
RT	  =	  

WT	  worsens	  

UBER	  best	  
RT	  worst	  
WT	  worst	  

RT	  =	  Read	  Throughput	  (Flash	  Page	  Read	  Time	  +	  ECC	  Decoding	  Time)	  
	  

WT	  =	  Write	  Throughput	  (Flash	  Page	  Write	  Time	  +	  ECC	  Encoding	  Time)	  
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Figure 6.2: Set of access modes provided when tuning the programming algorithm and the ECC
correction capability in a cross-layer adaptation framework.

If we consider the ISPP-SV programming algorithm with an ECC designed for UBER

of 1E-11 as a reference operating point, the following behaviors can be foreseen:

• UBER worsens when lower values of t , or programming algorithms with reduced

verifications are used.

• WT is mainly affected by the programming algorithm. As pointed out in Fig. 5.14

the ECC encoding time is almost constant regardless the selected correction capa-

bility.

• RT is mainly affected by the selected ECC correction capability that directly affects

the ECC decoding time (see Fig. 5.14). It increases if a lower t is used.

• The combination of reduced t and ISPP-RV represents the best performance cor-

ner, but offers the worst reliability.
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• The combination of increased t and ISPP-DV represents the best reliability corner,

but offers the worst performances.

• In the bottom-left and upper-right access modes in the table, the UBER stems from

a trade-off between correction strength and the chosen algorithm

An example of these trends can be appreciated in Fig. 6.4. It shows how the modu-

lation effect of RT and WT (for a target UBER=10−11), achievable by changing the pro-

gramming algorithm selection and ECC correction strength, varies over time along with

memory aging. The correction capability of the ECC is adapted as aging increases ac-

cording to Table 3 to preserve the target UBER in spite of memory aging. For the sake

of comparison, the figure shows the performances of a non-adaptive controller using

the ISPP-SV programming algorithm and a fixed correction capability t = 65 required to

meet the target UBER at the end of the memory lifetime.

Figure 6.3: Adaptation of the ECC correction capability to the flash aging for different program-
ming algorithms and target UBER

Fig. 6.4 (a) clearly shows that, acting on the programming algorithm, we can modify

the write performances of the flash with 30% improvement obtained with ISPP-RV prog.

t used instead of ISPP-SV fixed t. Moreover WT modulation capability is preserved over

memory cycling. The non-adaptive and the adaptive ISPP-SV solutions are almost over-

lapped because encoding latencies are barely affected by the ECC correction strength.

Fig. 6.4 (b), instead, shows that we can tune the RT of the system by using ISPP-DV as

opposed to ISPP-RV. In these cases the RT can be improved by 36% or degraded by 59%

calculated at program/erase (PE) cycle 10k, respectively, and compared to the reference

adaptive ISPP-SV solution. Of course, the RT degradation of ISPP-RV is the price to pay

for its WT improvement. The comparison of the ISPP-SV prog. t curve with the baseline
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Figure 6.4: WT and RT comparison among different configurations of the controller for a target
UBER=10−11

ISPP-SV fixed t curve shows that tuning the ECC correction capability over the life of the

flash enables a significant improvement of the RT with no penalties on WT.

Fig. 6.4 (b) also shows that, in the early stage of the memory life, the modulation

capability of RT is marginal. The reason lies in the similar RBER figures of programming

algorithms in fresh devices. On one hand this means that RT boost with respect to the

reference case will be achieved only after hundreds PE cycles. On the other hand, this

also means that in fresh devices WT can be broadly modulated at marginal RT penalty.

Overall, Fig. 6.4 shows a usage model of the access modes: the correction capability

is used to preserve a target UBER over flash life, whereas the programming algorithm

is used to trade WT with the RT. At a given PE cycle, a higher RT can be achieved by

switching the programming algorithm (i.e., from ISPP-SV prog. t to ISPP-DV prog. t), and

the ECC correction strength (since ISPP-DV needs a lower t to preserve the target UBER

with respect to ISPP-SV). The WT can be traded-off similarly. Finally, Fig. 6.4 (b) clearly

shows that for most of memory life, the non-adaptive approach results in a significant

device under-utilization from the RT standpoint.

Other usage models are clearly feasible. For instance, switching from ISPP-SV prog. t

to ISPP-DV prog. t, while keeping t unchanged, results into a minimization of the UBER

figure beyond 10−11 leaving RT unaltered at the cost of WT. Similarly, a switch to ISPP-

RV progr. t achieves a WT improvement. If at the same time we decrease t the UBER is

largely degraded while improving RT. Otherwise with a constant t the UBER is degraded

to lower extent but RT is unaltered.
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Finally, the upper-left access mode in Fig. 6.2 can be used in those cases where an

ultra-low power operating mode is required while, at the same time, largely degrading

UBER and therefore application-perceived reliability are accepted. This could be the

case of a mobile system which is about to drain its battery: the user will then decide

whether to keep using it in spite of the reduced quality of service or to power it off. In

contrast, the lower-right access mode in Fig. 6.2 provides the best achievable reliability

at the cost of increased power consumption and largely degraded performance.

Fig. 6.5 summarizes the way UBER can be tuned by selecting different ECC correction

capability or programming algorithm. Values in the figure are computed considering the

RBER of the flash at 10,000 PE cycles, i.e., quite late in the flash lifetime. Similarly to the

performances, Fig. 6.5 shows that we can achieve important trade-offs in the reliability

of the access mode, with the possibility of varying the UBER of the NVM system of several

orders of magnitude.
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Correction capability (t)
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Figure 6.5: Trade-off on the storage reliability by selecting different programming algorithms and
different ECC correction capability. UBER is computed at 10,000 PE cycles of the flash.

In order to properly exploit the advantages provided by the proposed adaptive NAND

Flash controller, a strategy to decide which memory access mode to use at run-time is of

course mandatory. While a complete discussion of this topic is out of the scope of this

thesis, a set of preliminary insights can be provided here. There are essentially two fac-

tors that must be considered, at run-time, to properly select the available tuning knobs:

1. the application reliability/performance/power requirements and
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2. the memory aging.

The first factor is static for a given application or for selected portions of data of an

application. Even if not straightforward, applications can be carefully profiled in order to

assign different reliability/performance/power requirements to the different set of data

they manage. The application profile can be then exploited to choose the best storage

service for each type of information. We envision in this thesis to split the flash memory

into different partitions providing different services based on Fig. 6.2, according to the

requirements of the application to be executed on the target system. Each application

can be then instrumented in order to redirect its memory access to the partition provid-

ing the access mode that is more suited for the specific data that is going to be accessed.

A single application can therefore benefit from data stored in different partitions with

different services in order to optimize the overall system performance.

While for a given access mode the selected programming algorithm is in general con-

stant over the memory life-time, the ECC correction capability must be continuously

tuned to compensate for the memory aging. Several models in the literature correlate

the RBER of a page to the number of performed PE cycles [130]. If this information is

constantly tracked during flash operations it can be exploited to adapt the ECC correc-

tion capability according to the selected aging model. In this context, one of the most

efficient and easy solutions is to demand this operation to the Flash Translation Layer

(FTL) or to the File System. At each programming operation the PE cycles of the pages are

incremented and stored together with other file system related information. This value

can then be exploited at run-time to select the best correction capability every time the

page is programmed.

6.3 Storage services at work

To appreciate the benefits of differentiated flash access modes on the execution of a set

of real applications, we constructed a simulation environment running under the Linux

Operating System. User applications communicate with the Linux Virtual File System

(VFS) that decouples the application from the specific file system. YAFFS (Yet Another

Flash File System) [15] is the selected flash memory file system. YAFFS is an open-source,

fully documented flash memory file system whose source code can be easily modified

and instrumented to perform required simulations. Finally, the NAND Driver or Mem-
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ory Technology Device (MTD) communicates with the flash memory controller in charge

of performing the requested operations on the flash device. The MTD has been instru-

mented to emulate operations on a NAND flash memory with 4,096 blocks of 128 pages,

with a page size of 4 kB. YAFFS has been also instrumented to trace the list of operations

performed through the MTD. Read, write and erase operations have been traced. The

log essentially contains information about the sequence of operations, the target page

address and the timing. To obtain unbiased measurements of the flash performances

both VFS and YAFFS caches have been disabled.

Several file system benchmarks are available on the Internet (e.g. IOzone [8], Post-

mark [81], SPEC benchmarks [11], Filebench [134], etc.). We selected the Filebench bench-

mark for our analysis. It is an open source File System benchmark originally developed

by Sun Microsystem and now by FSL (File systems and Storage Lab) group of the Com-

puter Sciences Department of the Stony Brook University, NY (USA). It provides a large

variety of behaviors, also named personalities, specified using the Workload Model Lan-

guage (WML) [7]. They either perform simple file I/O operations, or emulate complex

I/O activities.

Among the available personalities, we selected three benchmark applications:

• varmail: has different threads performing create-append-sync, read-append-sync,

read and delete operations on the files (representing emails) contained in a single

directory (workload similar to Postmark);

• webserver: opens, reads and closes multiple files in a directory tree while append-

ing data in log file;

• videoserver: reads a file set containing videos that are actively served, and writes

another file set containing videos that are available but currently inactive.

One of the main characteristic that differentiate the three selected benchmarks is the

ratio between the number of read operations (#R) and the number of write operations

(#W ). This is a critical parameter that influences the type of access mode required by

the application to maximize its performance. Table 6.1 summarizes this information.

varmail is a typical example of write intensive application requiring fast programming of

the flash. On the contrary, videoserver is a read intensive application requiring fast read

access to the data stored in flash. Finally, webserver is between the other two benchmarks

and performs a more equalized set of read and write operations to the flash.
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Table 6.1: #R/#W ratios of different Filebench personalities

Personality #R/#W

varmail 32.46%
webserver 153.41%

videoserver 1084.70%
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Figure 6.6: Varmail throughput for a fixed UBER=10−11

Fig. 6.6,6.7 and 6.8 show the opportunities the controller programmability provides to

the three applications for a target UBER=10−11. All figures report the overall application

throughput, i.e., number of operations (read or program operations) performed on the

flash per unit of time. Comparison is again performed with a non-adaptive controller us-

ing the ISPP-SV programming algorithm and fixed ECC with t=65. Erase operations have

been neglected in the calculations of the throughput. In fact, the analysis of the bench-

mark traces reports that the number of erase operations is far lower than the number of

program operations (an average of 1 erase for 2000 program operations).

Looking at Fig. 6.6, that reports the throughput of varmail, it is evident that ISPP-RV

prog. t enables a significant improvement of the overall performances of the application.

This improvement comes however with a reduced endurance of the flash due to the high
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Figure 6.7: Webserver throughput fixed UBER=10−11

RBER introduced by this programming algorithm when the number of PE cycles exceeds

10,000.

If we move, instead, to the opposite application profile represented by the read in-

tensive videoserver reported in Fig. 6.8 we can notice an interesting result. Looking at

the overall flash lifetime, the ISPP-SV prog. t seems the best option for this application

even if looking at Fig. 6.4 we could expect better performances from ISPP-DV prog. t.

The main motivation for this behavior is that the flash programming time is dominant

over the flash read time and therefore it negatively influences the overall application per-

formances. This opens new opportunities for the proposed controller. In fact, Fig. 6.8

suggests that not only the ECC correction capability must be adapted to compensate for

page aging. In this specific application profile, the ISPP-DV can be selected when the

flash reaches more then 10,000 PE cycles to sustain the overall performance and reliabil-

ity level.

The last situation represented by webserver (Fig. 6.7) obviously provides an interme-

diate behavior. In this situation ISPP-DV prog. t reduces the overall performances and

is therefore not a good choice for the application. However, both ISPP-SV prog. t and

ISPP-RV prog. t introduce significant performance improvements.
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Figure 6.8: Videoserver throughput fixed UBER=10−11

The analysis performed so far highlights how the proposed flash memory controller

improves the performance of selected applications when mapped to dedicated access

modes. The same programmability can be also exploited to provide access modes with

different reliability levels as reported in Fig. 6.9, 6.10, and 6.11 for the videoserver appli-

cation. In this comparison we considered a standard reliability service (UBER=10−11), an

enhanced reliability service (UBER=10−13) and a reduced reliability service (UBER=10−9).

Considering the increased reliability service, the target choice will be between ISPP-

SV prog. t and ISPP-DV prog. t. In both cases switching to a higher reliability level does

not introduce major penalties in the performances. However, ISPP-DV prog. t guaran-

tees performances that are more constant over the overall flash lifetime. This could be

a benefit especially when real-time applications are considered. When moving to the

reduced reliability service, instead, the choice can be between the ISPP-RV prog. t and

ISPP-SV prog. t. In this case however the choice is a trade-off between performance and

memory endurance.

Finally, Fig. 6.12 reports how the reliability of the memory sub-system can now be

traded for the reduced power consumption. In power savings scenarios the functionali-

ties of the system need to be preserved in order to either prolong battery life for portable
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Figure 6.9: Videoserver throughput with ISPP-RV program. t at different target UBER

and embedded systems or to reduce cooling issues in high performance computing sys-

tems. Under such conditions the quality of service (QoS) of a target application (i.e.,

video playback) can be degraded to a minimum acceptance level. This is the case of the

ISPP-RV prog. t access mode, which can significantly reduce the memory energy con-

sumption by a 10% factor at the beginning of the memory lifetime with respect to the

non-adaptive ISPP-SV case.
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Figure 6.10: Videoserver throughput with ISPP-SV program. t at different target UBER

SUMMARY

In this Chapter, we presented benefits due to the valuable interaction be-

tween the physical-layer and the architectural-level. The quantification of

the trade-offs between the quality metrics of NVM accesses (i.e., reliabil-

ity, performances, power consumption) have been performed by resorting

to a sophisticated framework called EF3S. Experimental results have been

performed on a set of real-life workloads and benchmark applications. We

found that a wide range of access modes, each meeting highly differentiated

requirements across the embedded and the high-performance computing

domains, can be achieved through a cross-layer approach. This opens up

new perspectives for a NAND flash device in real-life systems.

122



6.3. Storage services at work

1 10 100 1000 10000 1e+05
PE cycles

3500

4000

4500

Th
ro

ug
hp

ut
 [O

pe
ra

tio
ns

/s] ISPP - DV, UBER=1e-9
ISPP - DV, UBER=1e-11
ISPP - DV, UBER=1e-13

Figure 6.11: Videoserver throughput with ISPP-DV program. t at different target UBER

1 10 100 1000 10000 1e+05
PE cycles

0

0,005

0,01

0,015

0,02

0,025

T
ot

al
 P

ow
er

 C
on

su
m

pt
io

n 
[W

]

ISPP - RV
ISPP - SV, fixed t=65
ISPP - SV
ISPP - DV

Figure 6.12: Average power per operation during the execution of the videoserver benchmark
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CONCLUSIONS

Introducing for the first time the concept of the Service Oriented Non Volatile Memo-

ries (SONVMs), the present PhD thesis aims at enhancing the degree of run-time recon-

figurability of an MLC NAND Flash controller, through the provision of user-selectable

differentiated memory access modes (i.e., services). Each mode implements a specific

trade-off between read throughput, write throughput, reliability, and power.

The thesis proofs that combining settings at the physical and architectural level in

an MLC NAND flash sub-system holds promise of exposing unprecedented trade-offs

between performance, reliability and power for memory access. Our cross-layer op-

timization of NAND flash controllers includes the correction strength of an adaptive

ECC framework and the programming algorithm of memory cells, thus yielding access

modes for trading off ultra-high performance, and ultra-high reliability. When put at

work exploring real-life workloads, the user-selectable access modes prove capable of

better adapting to application requirements than non-adaptive controllers. By model-

ing memory endurance effects, the thesis points out that the most suitable access mode

for each application change through the entire memory lifetime, to fully countermeasure

the memory aging effects. Finally, the architecture- and circuit level implications of the

memory access modes on controller design have been investigated. Based on the gath-

ered results, the RTL coding of the run-time reconfigurable memory controller will be

our future work, thus materializing an adaptive NVM sub-system that can complement

the current ongoing efforts in adaptive computing.

Furthermore, ongoing research is currently focusing on the exploration of the pre-

sented SONVM approach in the framework of the so-called emerging memories that are

devices featuring both high-performances of SRAMs and DRAMs and the persistence of

NVMs at the same time. In this context, we are approaching MRAMs and PRAMs tech-

nologies since they are considered the best promising ones.
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NAND FLASH MODEL

The flash model developed in this work is a SPICE-based compact model de-

vised for Monte Carlo simulation of a floating gate transistor. The model cap-

tures the threshold voltage evolution of a NAND Flash cell during the ISPP

algorithm within a memory array, by adding to the calculated cell’s threshold voltage, at

each time step of the writing algorithm, the following variability sources:

• Geometrical variability: since the transistors within the array do not feature the

same geometrical parameters, mainly due to lithographic concerns, a displace-

ment on the channel length (L) and channel width (W) from their nominal values

σL and σW is considered in each Monte Carlo run. These latter parameters fea-

ture a Gaussian distribution with mean value equal to 1nm and standard deviation

of 0.2 nm. Since the geometry of the transistor affects also the threshold voltage

evolution, these parameters are calculated before the definition of the transistor

structure to be simulated, therefore affecting the final cell’s threshold voltage.

• Cell-to-Cell Coupling: the SPICE compact model for the NAND array includes par-

asitic capacitive couplings between each cell and its first neighbors along the same

word- and bit-line. The capacitances are derived from 3D-TCAD simulations, and

feature the typical values for a 45 nm technology (i.e., roughly about 20 aF). The

cell’s threshold voltage calculated at each ISPP step takes into account that the elec-
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tron tunneling current, and the channel potential of the transistor, deviates from

the nominal value by adding a ∆VT H to the voltages exploited for the writing oper-

ation.

• Injection statistics: the discrete nature of the electronic flow charging the floating

gate represents an additional variability source to be considered when dealing with

the program operation of nanoscale cells since the statistical process ruling discrete

electron injection into the floating gate introduces fluctuations in cell VT H after

the application of a writing pulse [128]. On this basis we introduced this additional

variability contribution in our compact model for the program operation by adding

a displacement from the cell’s threshold voltage having the following spread:

σ∆VT =
√

q

γCPP

(
1−e

−γ
(
∆VT

))
(A.1)

where q is the electronic charge, γ is the slope of the tunneling characteristic of the

floating gate transistor, Cpp is the floating gate capacitance calculated with geo-

metrical variability and
(
∆VT

)− is the voltage step magnitude of the ISPP algorithm.

• Random Dopant Fluctuation (RDF): The atomistic nature of substrate doping has

been clearly shown to result into a fundamental threshold voltage spread for MOS

field effect transistors (MOSFETs) given by:

σRDF = 3.19×10−8 ×
(

tox (NA)0.4

p
W L

)
(A.2)

where tox is the tunnel oxide thickness subjected to geometrical variability and

equal to 7.5 nm + 0.1 nm, and NA is the substrate doping of the cell which follows a

profile retrieved by TCAD simulations.

• Oxide Trap Fluctuation (OTF): Referring to traps placed at the substrate/oxide in-

terface (where they have the strongest impact on cell VT H ) and assuming a Pois-

sonian fluctuation of their number due to process variability, a spread in cell VT H

results according to the following:

σOT F = KOX × tox ×
√

QOXp
W L

(A.3)

128



where Qox is the surface density of traps assumed equal to 10−11 cm−2 , tox is the

tunnel oxide thickness, and Kox is a constant equal to 10−6V × cm.

• Aging effect: The threshold voltage of a memory cell increases due to charge trap-

ping with the number of write cycles. There are two types of traps that form in

the tunnel oxide: interface traps and bulk traps, both of which contribute to the

increase in the threshold voltage. It has been shown that both these traps have a

power-law relation to the number of cycles on the memory cell [128] as:

∆Ni t = A× c ycle0.62 (A.4)

∆Not = B × c ycle0.30 (A.5)

where A and B are fitting constants, cycle is the number of write cycles on the cell,

and the terms∆Ni t and∆Not are the interface and bulk trap densities respectively.

In addition to providing this power-law relationship. The authors calculated the

values of constants A and B to be 0.08 and 5, respectively for the considered tech-

nology. The total threshold voltage increase due to trapping is divided into inter-

face trap voltage shift (∆Vi t ) and bulk trap voltage shift (∆Vot ), by using the follow-

ing equations.

∆V i t = ∆Ni t ×q

Cox
(A.6)

∆V ot = ∆Ni ot ×q

Cox
(A.7)

where Cox is the capacitance of the tunnel oxide.

All these variability sources contributes to the final threshold voltage value approximately

with the following percentile values: geometrical variability (15%), oxide trap fluctua-

tions (15%), random dopant fluctuation (25%), parasitic coupling capacitances, injec-

tion statistics, and aging (45%).
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PRINCIPLES OF ERROR CORRECTING CODES

Contents of this appendix

B.1 ECC Principles

B.2 BCH Codes Design Flow

B.3 Error Detecting and Correcting Codes: The actual trend

B.4 Error correcting techniques for future NAND flash memory

This appendix introduces the main concepts related to Error Correcting Code

(ECC). The interested reader not familiar with ECCs may delve into the fol-

lowing concepts.

B.1 ECC Principles

The basic principle of all possible ECCs is fairly simple. Let us assume data composed of

k-bit. A general ECC algorithm performs two main steps: (i) encoding and (ii) decoding.

Fig. B.1 shows the encoding/decoding process.

The encoding process converts (i.e., encode) the k-bit data string in a new string (i.e.,

codeword) of n bits, with n > k. In other words, r = n −k bits (i.e., parity bits) are added

to the k-bit data string. The n-bit codeword is stored in the memory and can be affected

by errors.
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B. PRINCIPLES OF ERROR CORRECTING CODES

Figure B.1: General Encoding/Decoding structure of Error Correcting Code

The decoding is dual to the encoding process. The n-bit codeword is read out from

the memory and is converted (i.e., decoded) into a k-bit data string.

Let us summarize the two steps. Encoding adds r = n −k parity bits to the k-bit data

string. The codeword is stored in the memory. Decoding converts the n-bit codeword

into the most probable k-bit data string. In case of errors, we need suitable metrics to

determine them.

Code A code is the set of all codewords of a given length that are constructed by adding

a specified number of parity bits in a specified way to a specified number of data bits. All

the codewords of this set are said to be valid, whereas all the others are not valid.

Hamming distance The Hamming distance of two codewords is the number of corre-

sponding bits that differ between them [64].

Minimum Hamming distance The minimum Hamming distance dmin of a code is the

minimum of the Hamming distance between all possible pairs of codewords of that code.

Table B.1 shows a 4-bit binary code with dmin = 2.

Table B.1: The Hamming distance between pairs of codewords of 4-bit code

0000 0011 0100 0111 1000 1011 1100 1111

0000 - 2 2 2 2 2 2 4

0011 2 - 2 2 2 2 4 2

0100 2 2 - 2 2 4 2 2

0111 2 2 2 - 4 2 2 2

1000 2 2 2 4 - 2 2 2

1011 2 2 4 2 2 - 2 2

1100 2 4 2 2 2 2 - 2

1111 4 2 2 2 2 2 2 -
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Table B.1 shows that each (valid) codeword of a code is far at least dmin from all the

other (valid) codewords.

B.1.1 Error Detection

Fig. B.2 shows how a single-bit error can modify a 0000 codeword.

Figure B.2: A "0000" codeword after a single-bit error

E.g., if we read the 0001 codeword from the memory, it is not a valid codeword. In

fact, 0001 does not belong to the code of Table B.1. Therefore, the error can be detected.

Fig. B.3 provides a generic example of the encoding/decoding process.

Figure B.3: Generic case Codeword

Fig. B.3 shows that each (valid) codeword is far from the other (valid) codeword at

least dmin. At least dmin single-bit errors have to occur in order to produce another valid

codeword. As a consequence, all dmin-1 single-bit errors can be detected.

"A code with dmin=d+1 is able to detect d single-bit errors"

E.g., the code of Table B.1 has dmin = 2. Therefore, it is able to detect all 1-single-bit

error. In fact, a single-bit error on a valid codeword never provides a valid codeword.
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B.1.2 Error Correction

Let us discuss the correction. Supposing a single bit error, Fig. B.4 shows how the wrong

0001 codeword can be corrected.

Figure B.4: The wrong "0001" read codeword

0001 is "halfway" between any pair of these codewords1. Therefore, it is not possible

to understand which codeword 0001 originally was. In other words, this code can only

detect 1-single-bit errors and is not able to correct any error.

If the codeword Ca of Fig. B.3 is affected by less than dmin/2 single bit errors, then the

closest codeword to the faulty one is Ca itself.

"Any codeword affected by #er r or s ≤ (dmi n −1)/2 is correctable. Therefore,

the correcting power of the code is t = b(dmi n −1)/2c"

In order to correct t errors, we need a code with:

dmi n ≥ 2t +1 (B.1)

B.1.3 Hamming bound

Let us assume to have a n-bit codeword, a k-bit data, q symbols2, minimum Hamming

distance dmin and a correction capability t = b(dmi n −1)/2c.

Eq. B.2 has to be satisfied in order to proof the validity of Eq. B.1.

n −k ≥ l ogq

{
t∑

i=0

[(
n

i

)(
q −1

)i

]}
(B.2)

We usually refer to Eq. B.2 as Hamming bound [63].

1"0101" and "1001" are not valid codewords and will be not valid options
2if q = 2, symbols are called bits
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B.2 Bose-Chaudhuri-Hocquenhem Codes Design Flow

Fig. B.5 resumes the BCH codes design flow.

Figure B.5: BCH Code Design Flow

Three main functional steps compose the BCH design flow: (i) Design Requirements,

(ii) Parameters Evaluation, and Code Characterization. After the last step, the BCH code

is completely defined.

B.2.1 Design Requirements

The first step of each BCH code design flow is to define the mission-critical requirements.

ECC algorithm works on data of fixed length (i.e., Data Length). The correction capability

is determined w.r.t. probabilistic studies. The Bit Error Rate (BER) of the page [107], i.e.,

the fraction of its erroneous bits, is mainly composed by two values: (i) Raw BER (RBER)

and (ii) Uncorrected BER (UBER).

The former is the Raw BER (RBER), i.e., the BER before applying the error correction.

RBER is technology/environment dependent and is not constant; it increases with aging

of the page [23, 107].

The latter is the Uncorrected BER (UBER), i.e., the BER after the application of the

ECC, which is application dependent. It can be computed as the probability of having
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more than t errors in the codeword (calculated as a binomial distribution of randomly

occurred bit errors) divided by the length of the codeword [48]:

U BER = P (E > t )

n
= 1

n

n∑
i=t+1

(
n

i

)
·RBER i · (1−RBER)n−i (B.3)

if n ·RBER ¿ 1, [63] rewrites Eq. B.3 as:

U BER ≈ 1

n
·
(

n

t +1

)
·RBER t+1 · (1−RBER)n−t−1 (B.4)

B.2.2 Parameters Evaluation

The Bit Error Rate (BER) of the page [107], i.e., RBER and UBER, is the key factor used

to select the correction capability. Fig. B.6 shows the resulting UBER for k = 214 =
16,384bi t s = 2K by tes and t = {0,1, 5,10, 15}.

Figure B.6: Examples of Raw BER and Uncorrected BER

The second parameter is the Galois Field (GF). Many codes are based on the abstract

algebra and, in particular, on GF [14]. A GF is a finite field with order q , i.e., it has a finite

number of elements represented with q symbols). The set of m-tuples of elements from

GF is the GF(qm) vector space. Linear q-ary are a set of m-tuples over GF(q) or, in other

words, are subspaces of GF(qm) [63]. A GF(qm):
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• contains qm elements, defined as pm(x =α) = 0 ⇐⇒αm = bm−1am−1+bm−2am−2+
...+b0;

• all elements can be expressed as αi with iε
(
0, ..., qm −2

)
;

• always αqm−1 = 1 =α0;

• is closed with respect to addition and multiplication (i.e., the sum or the product of

two codewords is a codeword);

Different GFs matches different codes. In particular, two main parameters set the GF:

(i) the data length k and (ii) the correction capability t.

E.g., if q = 2, Eq. B.5 set the minimum GF(2m) required for the data length k [102].

k +m × t ≤ 2m −1 (B.5)

E.g., replacing k = 214 = 16,384 bits = 2KBytes into Eq. B.5, we need at least a Galois

Field with 2m = 215 = 32,767 elements.

Spare area and parity bits Eq. B.5 set the minimum m to generate the related GFm. The

number of parity bits is denoted as r = m × t . Such r parity bits are usually stored in the

spare area of the flash memory. Therefore, a proper trade-off is needed when designing

the ECC in terms of resources overhead.

B.2.3 Code Characterization

Finally, we exploit the correcting power t and the Galois Field to generate the Minimal

Polynomials ψ1(x), ψ2(x), ..., ψ2t (x) [14, 102]. They fully characterize the BCH code.

The set of Minimal Polynomials defines the Polynomial Generator g(x) of the BCH

code [14] as:

g (x) = LC M
[
ψ1 (x) ,ψ2 (x) ...,ψ2t (x)

]
(B.6)

LC M is the Least Common Multiple operator among the 2t minimal polynomials de-

fined above.

Table B.2 summarize the main BCH code properties.
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Table B.2: BCH code properties

Specified by
zeroes α,α2,α3, ...,α2t of all

the codewords w(x)

Codewords Length n = 2m −1

Information Symbols
k = n −deg r ee of the

generator polynomial g (x)

Minimum Distance d ≥ 2t −1

Error Control Capability Corrects t errors

B.2.4 Shortened Codes

In system design, a code of suitable natural length or suitable number of information

digits usually cannot be found. Therefore, it may be desirable to shorten a code to meet

the requirements. Whenever n = k + r < 2m − 1, the BCH code is called shortened or

polynomial. In a shortened BCH code the codeword includes less binary symbols than

the ones the selected Galois field would allow. The missing information symbols are

imagined to be at the beginning of the codeword and are considered to be 0. A shortened

code has at least the same error-correcting capability as the code from which it is derived

[89].

E.g., protecting k = 214 = 16,384 bits data length implies to adopt a GF with 32,767 ele-

ments (refer to Eq. B.5). Assuming to correct t = 5 errors, we have a resulting codeword n

= k+m×t = 16,384 + 15×5 = 16,459 bits < 32,767 = 215-1. Therefore, we may adopt a code

which is shortened of 32,767 - 16,459 = 16,308 bits. A complete BCH[n, k, t] = [32,768,

16,384, 5] becomes a shortened BCH[16,459, 16,384, 5] BCH code.

B.3 Error Detecting and Correcting Codes: The actual trend

ECCs are moving toward two main directions [52]: (i) stronger ECCs and (ii) larger data

block.

A stronger ECC has higher correcting power t . However, bigger t implies a higher

number r = m × t of check bits. An higher complexity is also required to detect/correct

higher number of errors.

On the other hand, the current trend is to adopt k = 512 Byte. A bigger data length size

k may better handle higher concentration of errors. However, bigger k implies bigger

symbol size (see Eq. B.5).
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Fig. B.7 shows an example of moving toward bigger data length.

Figure B.7: ECC Example for point "Large Block..."

The first part of Fig. B.7 has two data blocks with k = 512 Bytes. Each block is protected

with an ECC with t = 8. This is usually denoted as ECC-8. The second part of Fig. B.7 has

one block with k = 1,024 Bytes with ECC-16.

Although the situation looks similar, having 9 and 5 errors in the two k = 512 Bytes

block implies a critical failure. Having 9 + 5 = 16 errors are correctable within the k =

1,024 Bytes data blocks.

B.3.1 Examples

Fig. B.8 shows the UBER for several ECCs.

Figure B.8: Uncorrected BER for different ECCs

Fig. B.8 shows that moving toward bigger data blocks improves the UBER. Further-

more, a 512B-ECC16 and a 1024B-ECC16 are equivalent from a UBER standpoint. We

provide some simple examples to understand the trade-off to tackle during ECC design.
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Example 1 Fig. B.9 shows a first possible example.

Figure B.9: 512B-ECC16 protecting a 2KB page

Let us assume k = 512 Bytes protected by ECC16 (i.e., 16 errors can be corrected). This

is usually denoted as 512B-ECC16. We need:

• Parity Symbol Size (m): Eq. B.5 set m = 13, i.e., 13-bit parity symbols;

• Correcting Power(t ): t = 16, which implies 13 bit × 16 parity symbols/block = 26

Bytes/block;

• Complexity: a 512B-ECC16 requires 4×26 Bytes = 104Byte;

Example 2 Fig. B.10 shows another example.

Figure B.10: 1KB-ECC16 protecting a 2KB page

Let us assume k = 1 KBytes protected by ECC20 (i.e., 20 errors can be corrected). This

is usually denoted as 1KB-ECC20. We need:

• Parity Symbol Size (m): Eq. B.5 set m = 14, i.e., 14-bit parity symbols;

• Correcting Power(t ): t = 20, which implies 14 bit × 20 parity symbols/block = 35

Bytes/block;

• Complexity: a 1KB-ECC20 protecting a 2KB page requires 2×35 Bytes = 70Byte/-

page;

As well as Fig. B.8 shows, the 1KB-ECC20 (Fig. B.9) provides a better UBER than 512B-

ECC16 (Fig. B.10), but at lower resource overhead in terms of occupied spare area.
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B.4 Error correcting techniques for future NAND flash memory

Thanks to their lower RBER, a 512B-ECC1 (i.e., single-bit correction) may be sufficient

for Single Level Cell (SLC) NAND flash. Multi Level Cell (MLC) NAND flashes have higher

RBER. Therefore, they require higher correction capability (e.g., at least 512B-ECC4) [57].

20nm NAND flash The continuous scaling-down and the related increasing density of

NAND flash implies to adopt proper ECC controllers and algorithms. The first 20nm

NAND flash devices are currently available [105]. Such a quick scaling-down implies

fewer electrons to enter the Floating Gate (FG). Therefore, there is a higher uncertainty

about the charge in the FG.

More bits per cell Nowadays, MLC-based NAND flash can store up to 4 or 8 bit per cell.

Although the density of the memory is dramatically increased, also the possible distur-

bances are much worse. As a consequence, ECCs have to increase their correcting power.

Larger page size The current trend is to increase the page size. 4KB or also 8KB is the

most common page size, especially for Solid State Drive.
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LIST OF SYMBOLS AND ACRONYMS

Due to the large number of symbols used in this thesis to support the descrip-

tion of covered material, we provide the following list of symbols and ab-

breviations. This list is intended to help the reader identify the meaning of

a given symbol or acronym in a fast and easy way.

ADAGE ADaptive ECC Automatic GEnerator

B Bulk

BC BL Coupling

BCH Bose-Chaudhuri-Hocquenhem

BED Bit-line Erase Disturbance

BL Bit-Line

BED Bit-line Erase Disturbance

BER Bit Error Rate

BPD Bit-line Program Disturbance

CC Capacitive Coupling

CFAC Coupling Fault between Adjacent Cells
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CG Control Gate

D Drain

DC Direct Coupling or Direct field effects

DDR Double Data Rate

DRAM Dynamic RAM

ECC Error Correcting Code

FFS Flash File System

FG Floating Gate

FN Fowler-Nordheim

FTL Flash Translation Layer

GF Galois Field

HD Hard Disk

ISPP Incremental Step Pulse Programming

MLC Multi Level Cell

NOP Number Of PPP

NVM Non Volatile Memory

OED Over-Erase Disturbance

OEP Over-Erase Program

OPD Over-Program Disturbance

OS Operating System

PD Program Disturbance

PPP Partial Page Programming

PCB Printed Circuit Board
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RAM Random Access Memory

RD Read Disturbance

RBER Raw BER

RDA(E) RD Addressed Erase

RDA(P) RD Addressed Program

RDU(E) RD Unaddressed Erase

RDU(P) RD Unaddressed Program

ROM Read-Only Memory

RS Reed-Solomon

S Source

SAF Stuck-At Fault

SG Select Gate

S Source

SILC Stress Induced Leakage Current

SLC Single Level Cell

SONVM Service-Oriented Non Volatile Memory

SRAM Static RAM

SSI Source Synchronous Interface

SSD Solid State Drive

UBER Uncorrected BER

WED Word-line Erase Disturbance

WL Word-Line

WPD Word-line Program Disturbance
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