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Macromodel-based iterative solvers for simulation
of high-speed links with nonlinear terminations

Salvatore Bernardo Olivadese, Stefano Grivet-Talocia, Senior Member, IEEE, Claudio Siviero, Dierk Kaller

Abstract—Data transmission on high-speed channels may be
affected by several undesired effects, including coupling from
nearby interconnects, dispersion, losses, signal reflections from
terminations and from internal discontinuities, and nonlin-
ear/dynamic effects of drivers and receivers. The latter are
often neglected, leading to very fast solvers, whose results may
however be questionable when driver/receiver nonlinearities are
important. This paper presents a framework for the transient
analysis of complex high-speed channels with arbitrary nonlinear
termination circuits. The approach is based on decoupling chan-
nel and terminations through a scattering-based Waveform Re-
laxation (WR) formulation. The channels are here cast as delay-
rational macromodels, which are solved in discrete time domain
through fast delayed recursive convolutions. The terminations
can be either arbitrary circuits, solved by SPICE, or nonlinear
behavioral macromodels, which are here formulated in discrete-
time scattering representations. In order to overcome the known
convergence issues of standard WR methods, we apply here
more general iterative solution schemes, such as GMRES and
BiCGSTAB, integrated into inexact Newton iterations, obtaining
a set of numerical schemes with guaranteed convergence. The
excellent performance of the proposed approach is illustrated on
a large set of benchmarks.

Index Terms—High-speed interconnects, Scattering, macro-
modeling, rational approximation, delay extraction, behavioral
modeling, waveform relaxation, inexact Newton methods

I. INTRODUCTION

The qualification process of a high-speed channel for a
target data rate inevitably requires extensive numerical sim-
ulations [1]–[3]. In fact, transient link analyses are performed
since early design stages in order to assess all possible
signal degradation effects, including crosstalk and coupling
from nearby interconnects, dispersion, losses, signal reflec-
tions from terminations and from internal discontinuities, and
nonlinear/dynamic effects of drivers and receivers. The usual
computed metrics are vertical and horizontal eye diagram
openings and Bit Error Rate (BER) statistical estimates.

The reliability of the above metrics ultimately depends
on how representative are the models for the channel and
its terminations used in the numerical simulations. Channels
are electrically long distributed interconnect structures, whose
parasitic effects are best represented in the frequency domain.
Conversely, drivers and receivers are best represented by their
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transistor-level schematics. The combination of frequency-
domain descriptions of distributed structures with transistor-
level termination circuits is well-known to be troublesome for
standard circuit solvers.

The above difficulties led to several different approaches
to simplify the link simulation process. A very popular ap-
proach [4] neglects completely the nonlinear characteristics of
drivers and receivers. If linear drivers and receiver models are
assumed, the characterization can be completely performed
in the frequency domain, followed by an inverse Fourier
Transform to compute the transient response to an elementary
pulse. Eye diagram and related statistics are then computed
in extremely fast runtimes leveraging on linear superposition
and convolution. If drivers and receivers can be safely ap-
proximated through linear characteristics, no better and faster
approach is possible.

In case the nonlinear effects of drivers and receivers are
important, the above linear approach looses validity. Super-
position does not apply, and the resulting statistics become
possibly flawed, if not validated by a more accurate “golden”
simulation. In principle, it is possible to perform brute-force
transient analyses using transistor-level models of drivers and
receivers. This approach is however not practical due to
the overwhelming circuit complexity. An example will be
provided in Sec. VII. Moreover, transistor-level schematics are
rarely available due to intellectual property restrictions.

These difficultes led to many alternative approaches in the
field of behavioral driver/receiver modeling. We can cite the
various IBIS (lookup table based) models [5], Mπlog [6],
[7] and derived/improved models [8]–[10], Volterra-Laguerre
models [11], [12], Neural Network models [13], and more
recently X-parameter-based models [14]. Most of these ap-
proaches are compatible with standard circuit solvers, thus
enabling more efficient transient analyses.

Most modern circuit solvers allow the direct inclusion of
tabulated frequency-domain Scattering parameters defining a
channel multiport model. This data is internally converted to
a set of channel impulse responses, which are in turn used
as linear convolution kernels during transient analysis. Due to
long-tail memory effects induced by losses, dispersion, and
reflections from discontinuities, this approach may also be
inefficient. For this reason, channel macromodeling has also
been pursued with some success, both in the standard ratio-
nal form [15]–[19] and in the more advanced delay-rational
form [20]–[28], the latter being able to account for explicit
propagation delays embedded in the model transfer functions.
An example of macromodel-based channel simulation using a
standard circuit solver is available in [29].

Transient analysis by standard circuit solvers using channel
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and termination macromodels may still be inefficient for
systematic transient analysis, e.g., due to bad scalability with
the number of coupled links. For this reason, Waveform-
Relaxation (WR) techniques have been recently revitalized,
due to their potential for dramatic speedup. Originally, the WR
framework was introduced for general circuit simulation [30]–
[37], building on the consideration that weakly coupled sub-
systems can be efficiently solved independently after a suitable
decoupling process, provided that an iterative scheme corrects
for the missing coupling terms, cast as relaxation sources.
It was then observed that the WR idea is particularly well
suited for transmission line structures [38]–[42], whereas the
partitioning can be either longitudinal, i.e., decoupling a line
from its terminations [43], [44], or transverse, i.e., decoupling
a multiconductor line into separate scalar lines [45], [46].
Decoupling enables straightforward algorithm parallelization
for deployment on multicore computing architectures [47].

WR-based transient analysis of complex channels (including
irregular routing through packages, cards, boards, connec-
tors and via fields) rather than simpler uniform transmission
lines has been proposed in [48], [49]. Unfortunately, the
analysis in [49] shows that when transverse partitioning is
introduced to improve simulation efficiency, the convergence
of the WR scheme is only conditional and cannot be guar-
anteed in all cases, despite some improvements based on
possibly frequency-dependent over-relaxation have been doc-
umented [50], [51]. This consideration motivated the approach
in [52], [53], where more robust iterative solvers have been
suggested to replace the fixed point iteration typical of basic
WR implementations.

This work extends the preliminary results of [53], by
introducing a general framework for iterative solution of high-
speed channels with nonlinear terminations. A suitable time
discretization process casts the transient simulation problem
as the solution of a possibly very large (but very sparse) non-
linear algebraic system. The unknowns collect the discretized
scattering wave variables at all channel ports and at all time
steps to be computed. The system is never formed explicitly,
but the evaluation of the (nonlinear) residual is based on the
successive evaluation of a channel operator and a termination
operator. The former boils down to fast recursive convolutions
arising from a delay-rational channel macromodel. The latter
amounts to the solution of the (decoupled) termination circuits
excited by known incident scattering waves. The solution of
the nonlinear system is achieved through an inexact Newton
iteration [54], [55] combined with a Krylov subspace itera-
tion. Two implementations based on the Generalized Mini-
mal RESidual (GMRES) scheme [56] and the BiConjugate
Gradient STABilized (BiCGSTAB) scheme [57] have been
realized and are here documented. The main new contribution
of this formulation with respect to earlier approaches is the
guaranteed convergence, albeit with a possibly large number
of iterations. However, the numerical results show that, even in
the most challenging situations, convergence is always reached
within very few (up to 5-6) iterations.

The proposed schemes are based, as basic WR, on decou-
pling the channel from its terminations. Therefore, dedicated
solvers can be used for channel and termination operators.
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Fig. 1. Topology of the system under investigation. Each dot represents an
electrical port.

R0R0

2R
1/2
0
bℓ 2R

1/2
0
aℓ

 aℓ

 

bℓ

 aℓ

 

bℓ

(ℓ) (ℓ)

T
er
m
in
a
ti
o
n

C
h
a
n
n
el

Fig. 2. Definition of scattering waves and longitudinal partitioning sources
at a single interface port (`) between channel and terminations.

In particular, we present two different implementations. The
first uses an external call to SPICE to solve for the termina-
tions. This approach requires a suitable interface to exchange
transient relaxation sources between SPICE and the main
iterative solver, thus limiting efficiency. However, this scheme
is useful when the terminations are known as complex and
even encrypted netlists. We use this implementation to validate
the convergence of proposed schemes in the most critical sit-
uations, i.e., with strongly nonlinear and mismatched termina-
tions. A novel and more application-oriented implementation
is instead based on behavioral macromodels of drivers and
receivers. In particular, we adopt a new scattering-based for-
mulation extending the results of [63], by suitably modifying
the Mπlog macromodel format [6], [7], in order to obtain
termination equations that are compatible with our simulation
setup. We show excellent convergence and performance when
applying the solver to various industrial channels from [29],
driven by production-level driver models.

II. PROBLEM STATEMENT

We consider the general structure depicted in Fig. 1. The
channel is formed by Q coupled point-to-point interconnects,
with ports (2i − 1) and (2i) denoting near and far end of
the i-th link, for i = 1, . . . , Q. The channel is known by
frequency samples of its P × P (with P = 2Q) scattering
matrix Ŝν = Ŝ(jων) at frequencies {ων , ν = 1, . . . , L}
suitably spread over the frequency band of interest.

No particular structure is imposed on the terminations,
which can be formed by any arbitrary circuit, including
complex transistor-level schematics. The terminations include
some transient sources for launching signals into the channel.
Our objective is to compute the transient voltages and currents
at the channel ports. More precisely, we will assume a uniform
time discretization tk = k δt, and we will compute the
time samples of port voltages v`,k ≈ v`(tk) and currents
i`,k ≈ i`(tk) for ` = 1, . . . , P and k = 0, . . . ,K up to a
prescribed maximum time T = K δt.
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Some remarks on notation. Standard italic fonts x will
denote scalar variables, boldface italic fonts x(t) or X(jω)
will represent time- or frequency-dependent port variables
collected in vectors or matrices with leading size P , whereas
boldface normal fonts x will denote vectors collecting discrete-
time samples. Operators on these vectors will be denoted by
calligraphic fonts X .

III. FORMULATION

A. Scattering-based formulation

Our formulation is based on scattering wave variables.
With reference to Fig. 2, we denote with a`(t) the transient
scattering wave that is incident into port (`) of the channel,
and with b`(t) the corresponding reflected wave. Clearly, b`(t)
can also be regarded as the incident wave into port (`) of
the termination network, with a`(t) being the corresponding
reflected wave. Upon time discretization, we can form the
vectors

a` = (a`,0, a`,1, . . . , a`,K)T, b` = (b`,0, b`,1, . . . , b`,K)T

(1)
collecting all K + 1 time samples of the scattering waves at
port (`). These vectors are then collected for all ports

a = (a1;a2; . . . ;aP ), b = (b1;b2; . . . ;bP ) , (2)

where ”;” denotes vertical stacking. We have a,b ∈ RN ,
where N = P (K + 1).

B. Channel characterization

Denoting with S(s) the Laplace-domain scattering matrix
of the channel, and with A(s),B(s) ∈ CP the corresponding
incident and reflected wave vectors, we have by definition
B(s) = S(s)A(s). Inverse Laplace transform leads to the
continuous-time convolution

b(t) =

∫ ∞
0

h(t− τ)a(τ)dτ , (3)

where a(t), b(t) ∈ RP are transient scattering wave vectors
and where h(t) is the matrix of scattering impulse responses
of the channel.

1) Direct convolution: The simplest approach to obtain
a discrete-time representation of the channel operator is to
discretize (3) with the prescribed time step δt. Writing the
resulting expression componentwise leads to

b`,k =

P∑
m=1

k∑
r=0

δt h`,m(tk − τr)am,r , (4)

where τr = r δt. The discrete-time impulse response samples
can be obtained, e.g., by an inverse Fast Fourier Transform
(FFT) applied to the set of raw scattering frequency samples
Ŝν . This operation should be performed with care, in order
to minimize aliasing and truncation artifacts due to the finite-
size and bandlimited nature of the available samples. We refer
the Reader to [64]. In case the time step δt is matched to
the highest frequency ωmax in the input scattering data, we
expect a total number of impulse response samples h`,m(tk)
that is equal to the number L of raw frequency samples, unless

interpolation, extrapolation or other postprocessing operations
are performed. This implies that the equivalent “memory” of
the convolution is L, since only up to L terms are considered
in (4) for each component (`,m).

2) Delayed Rational Macromodeling: A more advanced
approach for the discretization of (3) is to resort to an analytic
inverse Laplace transform, preceded by a frequency-domain
approximation. For electrically-long structures such as the
channels under investigation, the state of the art approach is
to approximate each component of the scattering matrix S(s)
with a Delayed Rational Macromodel (DRM)

S`,m(s) ≈
N`,m

d∑
d=1

N`,m
p∑
n=1

R`,mdn
s− p`,mdn

e−sτ
`,m
d +D`,m (5)

whose coefficients (poles p`,mdn , residues R`,mdn , and delays
τ `,md ) are determined through specialized curve fitting algo-
rithms. This process is well documented in the literature and
is not repeated here. We refer the Reader to [20]–[29]. As a
result, the continuous-time convolution (3) is approximated as
a one-tap recursive convolution

b`,k =

P∑
m=1

N`,m
d∑
d=1

N`,m
p∑
n=1

{
α`,mdn bm,k−1

+β`,mdn am,k−k̄`,md
+ γ`,mdn am,k−1−k̄`,md

}
, (6)

where k̄`,md =
⌊
τ `,md /δt

⌋
is the time index corresponding

to the individual delay τ `,md . The precise definition of the
coefficients in (6) in terms of the coefficients of (5) is
available in [49]. The DRM formulation (6) is competitive with
respect to the direct convolution (4) when the total number of
coefficients {α`,mdn , β

`,m
dn , γ`,mdn } is less than P 2L.

3) Discrete-time channel operator: Both the direct convolu-
tion formulation (4) and the delayed recursive convolution (6)
can be cast in the compact operator form

b = Ha , (7)

where a,b are as in (2), and H ∈ RN×N is a square matrix
that represents an algebraic description of the linear channel
operator that, applied to a known set of incident discrete-
time scattering waves, returns the corresponding reflected
wave samples. This matrix description is only formal, since
H is never formed explicitly. Application of this operator is
performed componentwise using (4) or (6), depending on the
adopted formulation.

C. Terminations

Let us now consider the termination networks. In order to
properly setup the interface with the channel, we consider a
scattering-based input-output formulation of the termination
equations, where the incident scattering waves b(t) are con-
sidered as inputs, and the reflected waves a(t) are the corre-
sponding outputs. The proper setup for this characterization is
depicted in Fig. 2.
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The termination equations can be formulated as nonlinear
state-space equations

ẋ(t) = F(x(t), b(t),u(t)), (8)
a(t) = G(x(t), b(t),u(t)), (9)

where x denotes an internal state vector, u is a vector collect-
ing the independent sources, and F ,G are the nonlinear state
and output maps. Considering again a time discretization with
uniform step δt, we can solve numerically the nonlinear state
equation (8) for the discrete time samples of the state vector
x(tk) which, inserted in the output equation (9), provides the
discrete-time samples of the reflected waves a(tk).

The above solution process can be cast in a compact
operator form as

a = T (b;u) , (10)

where a,b are as defined in (2), and where u collects all
time samples of all independent sources over the time span
of the simulation. The operator T is purely algebraic, and
represents the sequence of operations that, given a set of
discrete time samples of the independent sources embedded
in the terminations and the corresponding samples of the
incident scattering waves into the terminations, returns the
time samples of the corresponding reflected waves. Under a
practical standpoint, the operator T performs the same steps
that a circuit solver of the SPICE class would execute when
solving for the termination networks loaded at their ports as in
Fig. 2 (hence decoupled from the channel), and exporting the
computed output scattering waves a(t) at uniformly sampled
time steps tk = k δt.

D. Waveform Relaxation approaches

Collecting discretized channel and termination equations,
we obtain the nonlinear system{

b = Ha,
a = T (b;u) .

(11)

Earlier WR formulation approaches, as summarized in [49]
setup fixed-point iterative schemes to compute the solution of
this system by simple forward evaluations of the channel and
termination operator. In particular, Longitudinal Partitioning
(LP) approaches start at some initial guess a0 and apply the
two operators sequentially as{

bµ = Haµ−1

aµ = T (bµ;u)
µ = 1, 2, . . . (12)

until the solution stabilizes. Transverse Partitioning (TP) ap-
proaches take further advantage of the small couplings be-
tween individual links to split the channel operator H = D+C
into a “diagonal” part D that neglects inter-channel couplings,
and a remainder part C. The latter becomes a relaxation
(equivalenty, a correction) source w within the following
iterative loop wµ−1 = Caµ−1

bµ = Daµ + wµ−1

aµ = T (bµ;u)
µ = 1, 2, . . . (13)

where the last two rows are solved concurrently at the µ-th
iteration, e.g., by an inner WR-LP iteration, leading to the
so-called WR-LPTP scheme [49].

In all above cases, the WR scheme can be interpreted as a
fixed point iteration that, starting from some initial condition
a0, produces a sequence of estimates a0 → a1 → a2 → . . .
that hopefully converges to the correct solution a∗. Each new
iteration can be expressed as

aµ = P(aµ−1;u) (14)

where P is the iteration operator. Convergence holds only if P
is a contraction, as discussed in [30], [36], [49]. This condition
is not always verified [50], [51], and more robust approaches
are required.

IV. PROPOSED ITERATION

Let us consider the discretized system (11). Upon elimina-
tion of vector a, we obtain

b−HT (b;u) = N (b) = 0. (15)

where N is the nonlinear residual or simply the residual. Since
the source vector u can be considered as constant, it will be
omitted in the following derivations. The classical approach for
the approximate solution of (15) is by means of the Newton
sequence

bµ+1 = bµ − [J (bµ)]
−1N (bµ), (16)

with µ iteration number and J (bµ) the Jacobian matrix of N
evaluated at bµ. Equation (16) is the first order approximation
for the nonlinear system N (b) near bµ, thus it provides good
accuracy only in the neighborhood of the linearization point
bµ. A more robust implementation of the Newton iteration
involves the following steps

1) compute an estimate of N (bµ);
2) find the numerical solution sn of the linear system

J (bµ)sµ = −N (bµ); (17)

3) construct bµ+1 = bµ + λµsµ, where the step length λµ
is selected to guarantee a decrease in the residual error
‖N (bµ+1)‖ < ‖N (bµ)‖.

The second step is the most time consuming, since the evalu-
ation of the Jacobian matrix and its inversion are prohibitive
for large-scale systems as in our application. However, an
approximate solution for the descent direction sµ can be
computed to satisfy the inequality

‖J (bµ)sµ +N (bµ)‖ ≤ ηµ‖N (bµ)‖ (18)

usually denoted as the inexact Newton condition [55], through
an iterative scheme that does not even require to compute,
store and factor J (bµ). The action of the Jacobian on a given
vector is approximated as through a forward difference. The
parameter ηµ is determined as discussed in [54].

Several iterative methods are available to compute the step
sµ with (18) as a stop condition. We adopt here two among
the most popular techniques, namely the GMRES (Generalized
Minimal RESidual) [56] and the BiCGSTAB (BiConjugate
Gradient STABilized) [57] methods. Both schemes provide
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estimates of the solution based on suitably constructed Krylov
subspaces, used both for projection and for the determination
of appropriate search directions for residual minimization. The
main complexity of these solvers is dictated by the size q of
such Krylov spaces. Using the two above methods to solve
for (18) leads to two implementations, denoted in the following
as WR-NGMRES and WR-BiCGSTAB, respectively. Further,
we test the nonlinear preconditioner for inexact iterative meth-
ods proposed by [62]. We will see that for the problem at hand,
resorting to such a preconditioning technique is generally not
advantageous due to the very fast convergence rate that is
already achieved with the standard Newton-Krylov iterations.

A. Initialization, convergence, and termination

In order to ensure good convergence properties for the
Newton-based iterative schemes, some technical assumptions
are required:

1) system (15) admits at least one solution b∗;
2) the nonlinear operator N is Lipschitz continuous near

the solution b∗;
3) the Jacobian J (b∗) is nonsingular.

Under the above assumptions, classic or inexact Newton
methods converge to the correct solution b∗ if the initial guess
b0 for the iterative scheme is close to b∗.

We ensure a good starting point for the Newton iterations
by running a number µi of initial iterations of the WR-LP
or WR-LPTP schemes outlined in (12)–(13) and in [49]. If
µi is small, i.e., µi = 1 or 2, this results in a very fast and
sufficiently accurate initialization, without running into pos-
sible convergence issues. In our implementation, we keep on
executing these initialization iterations by increasing µi, while
monitoring the evolution of the error between two subsequent
iterates, see (19) below. If a lack of convergence is detected
at some iteration µ̄ by an error increase, the next iterations
are performed via GMRES or BiCGSTAB schemes, initialized
with the solution estimate bµ̄−1. This process achieves the
condition bµ̄−1 ≈ b∗ and standard results [58], [59] on local
convergence of the adopted Newton method apply. In order to
achieve global convergence, we use the linear search method
denoted as the Armijo rule [60], which guarantees a good
estimate of the optimal step length λµ towards the solution,
avoiding oscillations in the convergence process.

In our implementation, the stopping condition of the itera-
tive solver is based on checking the decrease in norm of the
nonlinear residual (15) through

‖N (bµ+1)‖ ≤ τr‖N (bµ)‖+ τa, (19)

with absolute and relative thresholds. In all numerical experi-
ments, these thresholds are set to τr = τa = 10−4. It will be
shown that in all tested configurations, the proposed schemes
always reach condition (19) in only 5–7 iterations.

B. DC initialization

Most often the terminations force a DC bias along the
channel. Examples are differential drivers and/or pull-up/down
receivers. For this reason, the transient scattering wave vari-
ables at the first time step k = 0 assume nonvanishing values

aDC = a(0) and bDC = b(0). We compute these initial DC
bias levels before setting up the main iterations, by solving
system (11) including only the unknowns at t = 0. In this
situation, the channel operator H stores the entries of the
scattering matrix of the channel at DC only, whereas the
termination operator T becomes equivalent to a DC SPICE run
using the intial conditions imposed by the embedded sources
u(t) at t = 0.

Once the initial DC bias is computed, we redefine the main
variables as the deviation of the transient scattering waves with
respect to this bias,

â(t) = a(t)− aDC , b̂(t) = b(t)− bDC , (20)

and the main solver is setup to calculate the corresponding
discrete-time unknown vectors â, b̂. As a result, the first
sample at t = 0 of the actual variables being computed by the
solver is always vanishing, leading to a simplified treatment
of the discretized convolution (6).

C. Differences with standard time-stepping solvers

The proposed solver is completely different from standard
circuit solvers based on time-stepping, such as SPICE. A
SPICE solver computes all circuit variables at each time
step by solving a nonlinear algebraic system through Newton
iterations. The number of Newton solves equals therefore the
number of time steps to be computed. In other words, the time
stepping scheme is implemented as an outer loop, whereas the
Newton iteration is embedded in an inner loop.

Our solver basically reverses inner and outer loop. The
unknowns that are solved for are large-size vectors, collecting
all time samples. These unknowns are found through a single
outer loop based on inexact Newton iterations combined with
the selected Krylov solver. The outcome of each Newton
iteration is an estimate for the complete set of time samples,
which are all computed at once. Since these samples describe
port signals, whose estimates are refined through iterations,
we consider the proposed schemes as belonging to the class
of WR solvers, albeit based on more robust iterative solvers.

V. VALIDATION RESULTS

In this section, we report a set of numerical results obtained
on several test cases. The implementation that is benchmarked
here is based on an external circuit solver [65] for solving
the termination circuits. Therefore, the termination operator
T (b,u) consists of the following operations, which are re-
peated at each iteration

1) export the time samples in vector b to external files;
2) run an external SPICE solver on the termination network

loaded by relaxation sources as in Fig. 2;
3) export from the SPICE solver the computed time sam-

ples in vector a;
Since this implementation is far from being optimal, due to
the need of exchanging time-dependent relaxation sources (via
external files) between circuit and channel solvers, the main fo-
cus here is on accuracy and convergence of the outer iteration
loop. Results for an all-macromodel based implementation that
does not require external circuit solvers (the main objective



6

of this paper) will be reported in Sec. VII. Moreover, all test
cases in this section were executed by disabling the automated
initialization scheme (see Sec. IV-A), and by initializing the
various Newton schemes via only µi = 1 standard WR-LPTP
iteration.

A. Channels

Several channel models are used to demonstrate and validate
the proposed solver. We use here the same channels already
introduced in [29], consisting of intra-node, inter-node, or
node-to-peripheral electrical interconnects in high-end server
systems. More details on these structures, as well as a complete
documentation of the corresponding delay-rational macromod-
els, are available in [29], [51]. Under the electrical modeling
standpoint, each channel consists of Q = 9 single-ended
coupled links, resulting in P = 18 electrical interface ports.
These structures are certified up to 2 Gbps data transmission,
with proper terminations. The impedance level of each link is
close to 50 Ω.

B. Terminations

The termination structures that we use in our benchmarks
are deliberately designed to explore the practical behavior of
the solver in challenging situations. In particular, we combine

1) strong nonlinear characteristics (close to piecewise lin-
ear), that nearly violate the last two assumptions for the
local convergence made in Section IV-A; and

2) strongly mismatched terminations, so that undesired
signal reflections are induced, causing oscillations in
the port voltages and currents and thus making more
difficult to obtain a good starting point for the iterative
algorithm. In this way, the hypotheses for the global
convergence are in danger, and the effectiveness of the
Armijo rule [60] can be verified in practice.

Of course, since real drivers and receivers are properly de-
signed to avoid the above effects, many of the proposed
terminations may look (and actually are) unrealistic. A more
practical simulation setup will be considered in Sec. VI,
where the proposed solver is tested with macromodels of real
production-level drivers.

Two termination blocks will be repeatedly used in the
following. The first, denoted as NLA, is a simple overvoltage
protection one-port circuit with a static characteristic depicted
in Fig. 3. The second, depicted in Fig. 4 and later denoted as
NLB, will be used as a nonlinear dynamic driver. In all cases,
the time-varying sources embedded in the driver circuits will
be defined as random bit sequences with Vmin = 0 V and
Vmax = 1.1 V, rise and fall time of tr = tf = 66 ps, and
pulse width Tb = 500 ps. Most of the results will be reported
showing the first few bits of the computed transient voltages,
to enhance visibility on the small waveform features, although
all reported computing times refer to a full 500 bits simulation.

C. Test case 1

In this test, we consider a node-to-I/O channel with strongly
mismatched terminations. The far end (even-numbered) ports

v

i
+

−

0

i,A

v,V

−0.6

1

1

−1

Fig. 3. A nonlinear overvoltage protection circuit.

Fig. 4. A dynamic nonlinear driver. D1 and D2 are based on the default
SPICE model for diodes.

are terminated into 1pF capacitances. The link is driven by
a linear Thevenin data source with series 10Ω resistance on
port 9, and by synchronous aggressor clock signals placed
at all other near end ports (with internal impedance 1Ω). In
addition, two NLA blocks are optionally connected in parallel
to ports 2 and 10 to clip the received voltages and to illustrate
the corresponding nonlinear effects on the solution.

Figure 5 shows the simulation results (only the first 20 ns
are reported for clarity) obtained by the NGMRES solver,
compared to reference results obtained by SPICE. This plot
clearly illustrates the clipping effect of the nonlinearity. De-
spite the strong clipping, the accuracy of the proposed solver is
excellent. Figure 6 shows the reduction of the nonlinear resid-
ual (15) through iterations, until (19) is satisfied. Results are
compared for the linear and the nonlinear case, for NGMRES
and BiCGSTAB implementations, with and without enabling
the preconditioner. It is remarkable that the presence of the
preconditioner has little effect on the number of iterations
required for convergence. This behavior will be confirmed
by all other examples that follow. All implementations show
a very fast convergence, which reaches the target stopping
threshold in up to 6 iterations.

D. Test case 2

In this test case, the driver circuit (applied to port 9
of the channel) is the nonlinear dynamic element NLB of
Fig. 4. Terminations on the aggressor links and receivers
are linear but again strongly mismatched with respect to the
channel impedance. For the complete list of terminations see
Fig. 7. Note the wide variation on the order or magnitude of
both resistive and dynamic elements. Also for this case, we
illustrate the importance of the nonlinear driver effects through
a comparison with a reference linear simulation, obtained by
removing from the driver the dynamic elements, the branch
through diode D2, and shorting diode D1.

Transient results for the linear and the nonlinear setup are
reported and compared to the corresponding reference SPICE
solutions in Fig. 8. The evolution of the nonlinear residual (15)
is reported in Fig. 9. In this case, we note a remarkably fast
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Fig. 5. Voltage signals at ports 2 and 10 of test case 1. Results with (NL)
and without (LIN) the NLA clipping circuit are reported from proposed solver
(dashed lines) and SPICE reference (solid lines).
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Fig. 6. Evolution of the residual error through iterations for various different
simulations performed on test case 1.
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Fig. 8. Transmitted (v9) and received (v10) signals for test case 2. Results
with the nonlinear NLB driver (NL) and a corresponding linearized driver
(LIN) are reported for proposed solver (dashed lines) and SPICE reference
(solid lines).

convergence of the preconditioned BiCGSTAB implementa-
tion in only 4 iterations, although all other implementations
converged in up to 6 iterations.

E. Test case 3

The termination setup for this test case is illustrated in
Fig. 10. A circuit implementaiton of the NLA block is
connected to the driver port 9. All other terminations are
characterized by varying impedance levels, in order to investi-
gate if the convergence properties suffer from load sensitivity.
In addition, we test two different channel models with the
above termination scheme, namely the node-to-I/O channel
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Fig. 10. Simulation deck for test case 3.

already analyzed in the first three test cases, and a node-
to-node channel across a backplane (see [29] for details).
Figure 11 reports the evolution of the residual errors for both
channels, showing that the number of required iterations is
only marginally affected. All proposed solver implementations
reach convergence in up to 6 iterations.

The convergence is further visualized in Fig. 12, where the
solution estimates obtained after the first and the sixth itera-
tions are compared to reference SPICE results. We remark that
the first iteration (initialization) is determined by considering
all channels decoupled (i.e., the scattering matrix of the chan-
nel is approximated by its 2× 2 block-diagonal part), and by
successive evaluations of decoupled channel and termination
circuits. It is therefore expected that the small features of the
true response cannot be captured at this stage. The proposed
scheme is however able to reduce the residual error after few
iterations below the desired convergence threshold.

F. Test case 4

In this test, the node-to-I/O channel is terminated as de-
tailed in Table I, with the two receiver circuits depicted in
Fig. 13. This is the case for which convergence was fastest,
as demonstrated in Fig. 14. We justify this fact based on the
improved matching that is provided by the adopted termination
circuits with respect to the other test cases. This example
thus indicates that in a practical channel simulation setup,
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Fig. 11. Evolution of the residual error through iterations for various different
simulations performed on test case 3. Top and bottom panels refer to a node-
to-I/O channel and a node-to-node channel across a backplane, respectively.

TABLE I
TERMINATIONS FOR TEST CASE 4

Driver side Receiver side
Port Circuit Port Circuit

1 1Ω resistor 2 NLA+RCRC
3 1Ω resistor 4 RCRC
5 1Ω resistor 6 RCRC
7 1Ω resistor 8 RCRC
9 NLA+10Ω resistor 10 NLA+RRV
11 1Ω resistor 12 RCRC
13 1Ω resistor 14 RCRC
15 1Ω resistor 16 RCRC
17 1Ω resistor 18 RCRC

where both drivers and receivers are optimally matched to
the channel, it is expected that proposed scheme will be
very effective due to fast convergence. A SPICE validation is
reported for completeness in Fig. 15, where the strong clipping
effects of the nonlinear terminations are clearly visible.

G. Test case 5

The last test case of this section demonstrates the possibilty
to include differential terminations. This case is of particular
interest due to the widespread adoption of differential signaling
for improved speed and immunity in data transmission. We
considered both linear and nonlinear terminations, depicted in
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Fig. 12. Transmitted (v9) signal for test case 3 at iteration 1 (top) and 6
(bottom). The black dashed line is the voltage signal from WR-NGMRES,
while the red continuous line is the SPICE reference.
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Fig. 15. Transmitted (v9) and received (v10) signals for test case 4. Results
with (NL) and without (LIN) the NLA clipping circuit are reported from
proposed solver (dashed lines) and SPICE reference (solid lines).
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Fig. 16. Simulation deck for test case 5 (linear setup).

Fig. 16 and Fig. 17, respectively. The nonlinear case induces
a strong clipping on the resulting waveforms, as demonstrated
in Fig. 19, where the differential voltages at both transmitted
(ports 7-9) and received (ports 8-10) pairs are compared to a
SPICE reference. The corresponding residual error evolutions
are reported in Fig. 18 for linear (top) and nonlinear (bottom)
setup, respectively.

H. Efficiency and runtime

In this section, we report the runtime required by test
cases 1–5 to run a 500-bit transient analysis, using the
complete NGMRES-based implementation (without precon-
ditioning) of proposed solver, and including automated WR
initialization. The cumulative runtime is reported in Table II.
The second column reports the total runtime required by
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Fig. 18. Evolution of the residual error through iterations for various different
simulations performed on test case 5.

SPICE when applied to a single global netlist including both
an equivalent circuit synthesis of the channel macromodel and
the corresponding termination circuits, implemented through
standard elements. The last two columns report, respectively,
the cumulative runtime (all iterations) required by SPICE to
solve for the decoupled termination circuits closed on relax-
ation sources (including overhead due to file-based exchange
of relaxation sources), and by our dedicated Matlab code for
solving the decoupled channel macromodel (also terminated
by relaxation sources) via recursive convolutions. Note that,
in our current implementation, all runs are sequential and do
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Fig. 19. Transmitted (v7−v9) and received (v8−v10) signals for test case 5.
Results for both linear and nonlinear termination schemes are reported from
proposed solver (dashed lines) and SPICE reference (solid lines).

not take advantage of any multicore parallel processing engine.
Table II does not report the additional overhead due to

channel macromodeling. Recalling the main results of [29],
all analyzed channels required from one to 5 minutes for
DRM identification, and from 6 up to 10 minutes for passivity
enforcement. Note that this cost is spent only once for macro-
model generation, since once available, the macromodel can
be reused for any arbitrary subsequent transient simulation.

Table II clearly demonstrates that
1) The full SPICE simulations are much slower than the

WR-based simulations;
2) For each WR simulation, the time spent by SPICE to

solve for (very simple) decoupled termination circuits is
much larger than the time required by the WR engine to
solve for the channel and to perform the outer iteration
loop.

These results suggest that embedding the termination circuits
in the WR solver, e.g., in form of behavioral models, the
corresponding decoupled transient analyses could be computed
much faster and without resorting to a general-purpose solver
like SPICE. This is in fact the approach that we pursue in next
Section.

VI. ALL-MACROMODEL IMPLEMENTATION

In this section, we demonstrate the feasibility of an all-
macromodel implementation of the proposed WR scheme,
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TABLE II
CUMULATIVE RUNTIME FOR TESTCASES 1–5. ALL SIMULATIONS REFER

TO A 500-BIT SEQUENCE. FOR THE WR SCHEME, THE TERMINATION
PARTS ARE SOLVED BY SPICE, WHEREAS THE CHANNEL PARTS ARE

SOLVED BY DEDICATED (MATLAB) CODE.

Test SPICE WR
terminations channel

1 (LIN) 2h 19min 1h 11min 22min
1 (NL) 2h 21min 1h 15min 22min
2 (LIN) 2h 6min 37min 9min
2 (NL) 2h 14min 35min 9min
3 (NL) 2h 26min 47min 13min
4 (LIN) 2h 28min 5min 3min
4 (NL) 2h 19min 11min 3min
5 (LIN) 2h 8min 8min 6min
5 (NL) 2h 18min 1h 3min 22min

by adopting behavioral macromodels also for the channel
terminations. In the present case of high-speed channel termi-
nations, the Mπlog technique [6] has been demonstrated to be
accurate and reliable for behavioral macromodeling of drivers
and receivers, both single-ended [6] and differential [7]. This
technique is essentially based on parametric models and black-
box identification methods. Model parameters are estimated
from external port current and voltage waveforms that are
available from reference (short) transistor-level simulations.
These parametric mathematical descriptions are very general
and flexible, and in principle they can be cast to describe the
relationship between port variables in any given representation.
Therefore, for the development of macromodels that are com-
pliant with the proposed WR solver as in (10), we modify the
Mπlog technique to express the macromodel equations directly
in the scattering domain, rather than through standard voltages
and currents. A short outline is given below for the single-
ended and the differential driver cases. Receiver modeling is
not critical, so we concentrate only on the driver cases.

A. Single-ended drivers

Let us consider the case of a single-ended (one-port) driver,
with port variables defined as in Fig. 2. We recall that
the transient scattering waves are defined as (we drop the
port index ` for simplicity) a = (v + R0i)/(2

√
R0) and

b = (v−R0i)/(2
√
R0) with R0 port reference resistance e.g.,

R0 = 50Ω. Consistently with the notation of this paper, the
scattering wave b(t) is considered as incident into the driver
output (hence outgoing from the channel), whereas a(t) is the
scattered (launched) wave form the driver into the channel.
With these assumptions, the Mπlog model that describes the
driver behavior through these scattering variables assumes the
form

a(t) = wH(t)aH(b(t), d/dt) + wL(t)aL(b(t), d/dt) . (21)

Representation (21) belongs to the so-called two-piece model
class and represents a modified version of the classic relation
expressed in terms of port voltage and current [6]. Specifically,
• aH and aL are parametric submodels describing the

nonlinear dynamic behavior of the output port in the fixed
High (H) and Low (L) logic states, respectively. Each of

v1

v2

i1

i2

;

b1

; a1

;

b2

; a2

Fig. 20. Differential driver: definition of output ports and signals

these two submodels is identified as a further superposi-
tion of a static nonlinear submodel and a dynamic linear
submodel.

• wH and wL are time-dependent weights accounting for
logic state transitions.

The details of the identification process are discussed in [6].
Since our intention is to plug the model into proposed WR

solver, which operates in the discrete-time, the macromodel
equation (21) is formulated and its parameters identified
directly in discrete time with a time step tk = k δt, such
that the output reflected wave at a given time step tk can
be computed directly from (21) knowing its past samples, as
well as present and past samples of the incident wave. This
description is compliant with (10) and with our proposed WR
solver.

B. Differential drivers

With reference to the basic differential driver structure
depicted in Fig. 20, port scattering waves are defined as an =
(vn+R0in)/(2

√
R0) and bn = (vn−R0in)/(2

√
R0) for n =

1, 2, again with the convention that bn are the incident waves
into the driver output ports, and an are the corresponding
reflected waves. For differential drivers, we define the common
and differential incident waves as bc(t) = (b1(t) + b2(t))/2
and bd(t) = b1(t)− b2(t), respectively. As discussed in [63],
common and differential incident waves form the input set of
choice for the scattering-based Mπlog model for differential
drivers, which consists of the two following equations

a1(t) = w1H(t)a1H(bc(t), bd(t), d/dt)
+ w1L(t)a1L(bc(t), bd(t), d/dt)

a2(t) = w2H(t)a2H(bc(t), bd(t), d/dt)
+ w2L(t)a2L(bc(t), bd(t), d/dt)

(22)

where parametric submodels anν for n = 1, 2 and ν = H,L
and time-dependent weights wnν play the same role as their
counterparts in model (21) by retaining the same time dis-
cretization scheme. We remark that we choose bc,d as model
inputs because under ideal conditions, i.e., when connecting
the driver model to a pair of perfectly matched and balanced
transmission lines with line impedance R0, we obtain bd = 0
independent on the driver logic state. Arguing that under
realistic operations the equivalent channel impedance will not
be far from R0 (a condition that is targeted in the design),
the range of values that will be spanned by bd will be a
small neighborhood of 0, thus making the model outputs
a1,2 very insensitive to its differential input. Also in this
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case, the estimation process of model (22) is standard and
follows the same guidelines that apply for the identification of
voltage-current models [6]. See [63] for more details on the
peculiarities of scattering-based models.

C. Complexity

A few remarks are in order about overall complexity of
proposed framework. We note that the cost for application
of the channel operator H scales as O(N̄dN̄pP

2), where N̄d
and N̄p are the average number of delays and poles for all
channel responses. Conversely, application of the termination
operator T based on Mπlog macromodels, assuming all ports
terminated into single-ended drivers for simplicity, scales only
as O(κP ), where κ is a constant determined by the overall
dynamic order of the H,L submodels. Therefore, we see that
a single evaluation of the nonlinear residual N (b) in (15),
which essentially requires one channel and one termination
operator application, has a quite favorable scaling with system
complexity. The overall WR scheme requires a number of
evaluations that scales linearly with the size q of the Krylov
subspace used by the approximate linear solvers, with an
embedded orthogonalization loop that requires O(q2N) oper-
ations. The latter is the most computationally demanding step
of the algorithm. For this reason, in our implementation we
limit the maximum size qmax = 40, although this limit was
never reached in any simulation.

VII. APPLICATION EXAMPLES

We illustrate the advantages of the all-macromodel WR
formulation through three additional test cases based on three
different driver devices.

A. Test case 6

The first device we consider is the single-ended driver
Fairchild NC7SV126 (Vdd = 3.3 V, 750 ps switching
time), whose reference description is the HSPICE-encrypted
transistor-level model freely available from [66]. In order
to get a preliminary feeling on the accuracy of the Mπlog
macromodel, a basic validation setup has been devised, con-
sisting of a short 400Mbps bit-sequence launched by the driver
into a (50 Ω, 2 ns) ideal transmission line terminated into a
60 Ω resistive load. Figure 21 shows the comparison between
the port current signals obtained by running the encrypted
transistor-level model in HSPICE and the estimated scattering-
based model in the Matlab environment. This excellent match
validates the Mπlog model and enables its systematic use for
channel analysis.

As a more challenging assessment, the scattering-based
Mπlog model has been plugged into the WR solver for
carrying out a realistic channel simulation. The setup at hand
involves nine instances of the driver connected to the (near
end) odd numbered ports of the channel, and nine resistive
50 Ω terminations connected to the (far end) even numbered
ports. All the nine drivers transmit the same 400 Mbps
pseudo-random bit sequence. Figure 22 depicts the comparison
between the voltage at port 9 obtained by running the WR
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Fig. 21. Validation of the single-ended driver model of test case 6 loaded
by a mismatched transmission line load. Reference (solid black line), model
(red dashed line).
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Fig. 22. Channel simulation with single-ended driver terminations (test
case 6). Reference (solid black line), macromodel-based WR solver (red
dashed line).

solver in Matlab, and the corresponding HSPICE simulation
based on the transistor-level driver models connected to a
circuit realization of the channel macromodel. The WR solver
required only 4 minutes, whereas the reference HSPICE sim-
ulation required 50 minutes, with a speedup of about 12.5×.
This speedup was achieved with no loss of accuracy, as Fig. 22
confirms.

B. Test case 7

The second considered device is the differential driver
Fairchild FIN1019 (Vdd = 3.3 V, 1 ns switching time) whose
reference description is again a HSPICE encrypted transistor-
level model freely available from [66]. We setup a transient
simulation with four driver instances connected to four pairs
of odd-numbered channel ports, with resistive 50Ω termina-
tions at all remaining ports. The drivers transmit a pseudo-
random bit sequence at 200 Mbps rate. Figure 23 reports the
comparison between the reference simulation (transistor-level
driver models and equivalent circuit realization of channel
macromodel solver by HSPICE) and the results obtained by
our proposed WR solver. The figure reports common and
differential voltages at the receiver ports 10-12, demonstrating
a good match. The WR simulation only took 3 minutes, with a
12× speedup with respect to the reference HSPICE simulation,
which required 36 minutes.

C. Test case 8

The two above testcases were based on freely available but
relatively simple and slow driver devices. Therefore, we turn
to one last test case based on a real industrial production
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Fig. 23. Channel simulation with differential driver terminations (test case 7).
Reference (solid black line), model (red dashed line).

level driver used for differential signaling on high speed buses
(courtesy of IBM). This differential driver has a nominal
supply voltage Vdd = 1.1 V, with a switching time of 100 ps.
The reference device is the transistor-level schematic coded
for the Spectre simulator. More details on this driver and its
Mπlog macromodeling process can be found in [63].

As the simulation with the transistor-level turned out to
be highly time consuming due to the overwhelming circuit
complexity, we consider a simulation setup with a single
driver instance, launching a pseudo-random bit sequence at
1 Gbps into one pair of channel ports (ports 9-11). All
other terminations consist of synchronous linear aggressors
at the near end ports, and resistive loads at the far end ports.
Figure 24 compares the differential and common voltage at
the driver output ports, highlighting once again an excellent
model accuracy. Note also the very accurate prediction of the
common voltage periodic perturbation due to the synchronous
activity of the aggressors. The WR solver required only 1
minute to complete the simulation, whereas the reference
transistor-level simulation (in Spectre) lasted 2 h 30 min. The
resulting speedup was 150×.

VIII. DISCUSSION AND LIMITATIONS

The proposed scheme overcomes the convergence issues of
earlier WR formulations, and a significant speedup can be
achieved with respect to a pure SPICE channel simulation
when employing macromodels for all system parts. However,
there are some important limitations that should be considered,
itemized below.
• The computational requirements for the simulation of a

complex channel with nonlinear terminations are such
that only bit sequences of few hundreds, up to a few thou-
sands at most, can be handled. Therefore, eye diagram
computations for the extraction of statistical information
such as BER, down to a level that is required by serial
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Fig. 24. Full channel/driver combined simulation (see text). Model response
(dashed red line) is compared to a full transistor-level reference simulation
(black solid line).

high-speed links (e.g., 10−12), is definitely unfeasible
with this approach. This is the price one has to pay for
attaining SPICE-level accuracy in treating full nonlinear-
ities.

• The proposed solver is based on a predefined uniform
time discretization step δt, which is embedded in the
discrete-time operators that represent both channel and
terminations. This implies that signal details at a time
scale smaller than δt cannot be resolved.

• The most efficient implementation or proposed frame-
work is based on macromodels: both channels and non-
linear terminations present some challenges under this
standpoint. On one hand, the channel DRM formula-
tion (5) requires a precise estimation of dominant delays
τ `,md and poles p`,mdn , a task that is numerically challeng-
ing and that, despite the recent advances, is still not robust
as its delayless counterpart, e.g., [15] and its derivatives.
For nonlinear driver/receiver macromodels, the situation
is even more challenging. In fact, although the adopted
Mπlog approach is fairly general, it is constrained to a
quite specific model structure. It is not guaranteed that
this structure will be able to represent future devices
based on new technologies. Should this happen, another
class of nonlinear macromodels will have to be developed
and suitably incorporated in the WR framework. The ap-
proach will remain valid if such models will be available
in a nonlinear discrete-time form (10).

We emphasize that the above limitations were not critical in
any of the (many) test cases that we analyzed, of which the
eight test cases documented in this work form a subset.

IX. CONCLUSIONS

We have presented a Waveform Relaxation (WR) framework
for transient analysis of complex channels terminated by non-
linear drivers and receivers. The main advantage of presented
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approach is the formulation based on behavioral macromodels
for both linear channel and nonlinear terminations. All macro-
models are cast in a scattering representation, which enables
straightforward WR simulation based on system partitioning
and domain decomposition. Global convergence is enforced
through a suitable implementation of inexact Newton methods
combined with Krylov linear solvers.

The numerical results that are documented in this work show
both the excellent convergence and the good speedup with
respect to circuit-oriented SPICE simulations that are achieved
by our WR solver. Our current implementation is based on
a prototypal code in the Matlab environment. However, due
to the intrinsic nature of WR schemes, it is expected that a
suitably parallelized code deployed on a multicore hardware
platform will achieve much faster runtime and good scalability.
This will be part of our future research efforts.
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