
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

DoƩorato in Ingegneria Aerospaziale XXVI Ciclo

Ph.D. Thesis

EvoluƟon of Model-Based System Engineering Methodologies for the
Design of Space Systems in the Advanced Stages of the Project

(Phases B-C)

Academic Tutor:
Prof. Paolo Maggiore

Company Tutor:
DoƩ. Valter Basso
Ing. Mauro Pasquinelli

Student:
Michele Cenceƫ

December 2013

To my family

Contents

Abstract 1

Acknowledgments 3

Acronyms 5

1 IntroducƟon 11
1.1 DefiniƟon of the problem statement . 11
1.2 MoƟvaƟon of the choice . 11
1.3 Purpose of the proposed analysis . 12
1.4 Background . 12

1.4.1 Engineering Design Process . 12
1.4.2 Engineering Analysis Process . 13

1.5 Problem Solving Environments (PSE) . 14

2 System Engineering 19
2.1 Lifecycle management . 21
2.2 System Analysis concepts, methodologies and acƟviƟes 24

2.2.1 Uses cases and Scenarios . 24
2.2.2 Requirements Analysis . 24
2.2.3 FuncƟonal Analysis . 24
2.2.4 OperaƟonal Analysis . 25
2.2.5 Cost Analysis and EsƟmaƟon . 25

2.3 SimulaƟon Model - MathemaƟcal Model . 26
2.4 Space System Engineering . 28

2.4.1 European CooperaƟon for Space StandardizaƟon - ECSS 29

3 Model Based System Engineering Methodology 35
3.1 IntroducƟon . 35
3.2 INCOSE iniƟaƟve . 39

3.2.1 System modeling language - SysML . 40
3.2.2 Taxonomy and definiƟons . 44
3.2.3 SysML tools . 45
3.2.4 SemanƟcally-Rigorous System Engineering using SysML and OWL 46
3.2.5 Systems Modeling & SimulaƟon Working Group (SMSWG) 47

3.3 CollaboraƟve environments . 47
3.4 Examples of MBSE iniƟaƟves and CollaboraƟve Engineering environments 49

3.4.1 Responsive Engineering . 50
3.4.2 ESA-ESTEC iniƟaƟve . 50
3.4.3 Centre NaƟonal d’Etudes SpaƟales – CNES . 54
3.4.4 Thales Alenia Space . 55

3.5 Benefits of MBSE . 56
3.6 Drawbacks and main needs of MBSE . 57

i

4 MulƟdisciplinary Analysis 59
4.1 IntroducƟon . 59

4.1.1 Current needs of MDO techniques . 60
4.1.2 MDO architectures . 61

4.2 Available tools for MDO problems . 70
4.2.1 Drawbacks of the current PIDO tools . 72

4.3 OpenMDAO Framework . 73
4.3.1 Mission . 73
4.3.2 Elements and their funcƟons . 73
4.3.3 Browser GUI (Web Based) . 76

4.4 DAKOTA . 76
4.4.1 SensiƟvity Analysis capabiliƟes . 77
4.4.2 Parameter Study capabiliƟes . 77
4.4.3 Design of Experiments capabiliƟes . 78
4.4.4 Uncertainty QuanƟficaƟon capabiliƟes . 79
4.4.5 OpƟmizaƟon capabiliƟes . 85
4.4.6 OpƟmizaƟon usage . 87
4.4.7 Models - DAKOTA . 87
4.4.8 Variables - DAKOTA . 91
4.4.9 Interfaces - DAKOTA . 93
4.4.10 Responses - DAKOTA . 96
4.4.11 Outputs from DAKOTA . 97
4.4.12 Examples applicaƟons of DAKOTA framework . 97

5 State of the Art 99
5.1 Main problems and characterisƟcs . 99

5.1.1 Management of complex system . 99
5.1.2 CommunicaƟon between domain-specific disciplines 100

5.2 Possible soluƟons . 100
5.3 Examples of research iniƟaƟves . 101

5.3.1 Jet Propulsion Laboratory - JPL . 102
5.3.2 TU DelŌ . 109
5.3.3 University of Michigan . 112

6 Conceptual Infrastructure 115
6.1 IntroducƟon . 115

6.1.1 Current issues . 116
6.2 Taxonomy . 118

6.2.1 Topological definiƟons . 125
6.3 Conceptual framework philosophy . 127

6.3.1 Conceptual meta-model of the proposed methodology 128
6.3.2 Analysis and simulaƟon meta-model concepts . 130
6.3.3 Design Variables main conceptual definiƟon . 131
6.3.4 Constraints and formulas management . 134
6.3.5 OpƟons and alternaƟves management . 139
6.3.6 Scenario types . 143
6.3.7 User conceptual model . 147
6.3.8 QuanƟty, units and properƟes conceptual model 149
6.3.9 Product model concept . 150

6.4 Workflow for the proposed approach . 151
6.4.1 Agile development lifecycle . 151

6.5 Data exchange . 153

ii

6.5.1 Engineering design model of data exchange . 155
6.6 CollaboraƟon mechanisms . 162

7 Analysis, Design and ImplementaƟon 165
7.1 Methodology followed . 165
7.2 Proposed framework . 168

7.2.1 IntroducƟon on DEVICE infrastructure . 168
7.3 Analysis . 169

7.3.1 Scenarios definiƟon and funcƟonal analysis . 170
7.3.2 AssumpƟons and development consideraƟons . 172

7.4 Design and implementaƟon . 176
7.4.1 IntroducƟon . 176
7.4.2 Conceptual overview . 178
7.4.3 Requirements management . 185
7.4.4 Baseline and database integraƟon . 185
7.4.5 Diagram generaƟon and management . 186
7.4.6 Tools, languages and development plaƞorms . 186
7.4.7 DescripƟon on the benefits and advantages of open-source tools. 186
7.4.8 Design manager framework . 190
7.4.9 Current implementaƟon . 191
7.4.10 Main features and realizaƟon aspects . 194
7.4.11 Proposed approach for the integraƟon of MDO techniques 195
7.4.12 Web applicaƟon and networking . 199
7.4.13 Web applicaƟon integraƟon alternaƟves . 200

7.5 Expected results, their significance and applicaƟon . 201

8 Reference Case 203
8.1 IntroducƟon . 203
8.2 Problem descripƟon . 204

8.2.1 Main issues . 205
8.2.2 Analysis of the problem . 205
8.2.3 DescripƟon of the involved disciplines . 206

8.3 Problem formalizaƟon . 206
8.3.1 SimulaƟon models . 207
8.3.2 Design variables . 208
8.3.3 ObjecƟve funcƟons . 210
8.3.4 Constraints . 210
8.3.5 Solving methods . 210
8.3.6 Explicit formulaƟon . 211

8.4 Results . 213
8.4.1 Subcase 1 . 213
8.4.2 Subcase 2 . 216
8.4.3 Subcase 3 . 222
8.4.4 Subcase 4 . 228
8.4.5 Subcase 5 . 233

8.5 ConsideraƟons about the results . 237

9 CriƟcal Assessment, Further Work and Summary Conclusions 247
9.1 CriƟcal assessment . 247

9.1.1 ContribuƟons and benefits . 248
9.1.2 Drawbacks . 248

9.2 Further work . 249
9.2.1 Ongoing features . 249

iii

9.2.2 Future developments . 250
9.2.3 Conceptual infrastructure improvements . 250
9.2.4 External environment integraƟon . 251

9.3 Summary conclusions . 253

iv

List of Figures

1.1 Example of the aspects that can potenƟally affect the definiƟon of a Problem Solving Envi-
ronment. 16

2.1 Development process from customer needs to system soluƟon. 22
2.2 Royce’s Waterfall Model. 22
2.3 Boehm’s Spiral Model. 23
2.4 Forsberg and Moog’s “Vee” Model. 23
2.5 Conceptual overview of the possible ways to study a system [5]. 27
2.6 High-level representaƟon of the main conceptual processes involved in a space system def-

iniƟon [7]. 29
2.7 Department of Defense (DoD) Product Life-cycle Management process [8]. 30
2.8 NASA Product Life-cycle Management process [8]. 30
2.9 ECSS Product Life-cycle Management process. 30
2.10 ECSS disciplines and domains decomposiƟon [9]. 32

3.1 RelaƟonships between different kinds of models [11]. 37
3.2 Process, Methods, Tools and Environment elements and relaƟonships with technology and

people. 39
3.3 INCOSE MBSE Roadmap [14]. 40
3.4 Pillars of SysML language [102]. 42
3.5 NotaƟon for the main relaƟons used to define the object belonging to the overall meta-

model. 46
3.6 Convergence process between INCOSE and NAFEMS [17]. 47
3.7 FUSED Framework: control and data flows between models [105]. 49
3.8 Open Concurrent Design Tool (OCDT) architecture overview. 51
3.9 Engineering domains considered within the VSD project [21]. 52
3.10 VSEE high level architecture. 53
3.11 VSEE funcƟons provided [21]. 53
3.12 Simplified representaƟon of CIC infrastructure (CNES). 55
3.13 Conceptual overview of a collaboraƟve environment infrastructure. 56

4.1 N2 chart example [33]. 63
4.2 Examples of DSM concerning Product Architecture, OrganizaƟon Architecture, Process Ar-

chitecture and MulƟdomain matrix [36]. 64
4.3 Simple example of gradient-based opƟmizaƟon process [35]. 65
4.4 Gauss-Seidel MDA architecture for three coupled analyses [35]. 66
4.5 MDF architecture with Gauss-Seidel MDA integraƟon for three coupled analyses [35]. . . 67
4.6 IDF architecture [35]. 68
4.7 AAO architecture [35]. 68
4.8 CO architecture [35]. 70
4.9 BLISS-2000 architecture [35]. 71
4.10 Overview of an example iteraƟon hierarchy with few drivers [45]. 74
4.11 Data flow among components of the same assembly [45]. 75
4.12 InteracƟon among different assemblies placed on different levels [45]. 75
4.13 Components of the simulaƟon interface [98]. 93

v

4.14 Standard parameters file format [98]. 94
4.15 Results file data format [98]. 96

5.1 Design opƟmizaƟon capability highlighted on MBSE roadmap for the near future [14]. . . 100
5.2 Conceptual meta-model of JPL research iniƟaƟve on MBSE [50]. 106
5.3 Conceptual overview of the lifecycle of an aerospace system and the phases that can be

covered with the proposed Virtual Space ConstrucƟon Process (VSC) [119]. 109
5.4 Overview of the main limitaƟons of the concurrent engineering for space. 110
5.5 Main features and common aspects of MDO and System Engineering. 110
5.6 Main areas directly involved in the integraƟon process of MDO techniques. 111
5.7 Overviewof themain challenges for the integraƟon betweenMBSE environments andMDO

capabiliƟes. 112
5.8 High level representaƟon of the infrastructure considered for the design problem of CubSat

example. 113

6.1 Summary of the elements conceptual classes and related modeling context. 127
6.2 Conceptual relaƟonships between the modeling acƟvity for desired and actual system de-

sign. 129
6.3 Conceptual view of an example definiƟon process related to design variables. 132
6.4 Metamodel associaƟon related to the Design Variable class. 134
6.5 Conceptual view of properƟes esƟmaƟon approaches. 137
6.6 Conceptual overview of the meta-model main relaƟonships related to the Design OpƟon

class. 139
6.7 Example instanƟaƟon of Engineering Data Item, OpƟons Group and Design OpƟon objects. 140
6.8 Conceptual representaƟon of a scenario represenƟng the definiƟon of opƟonal/alternaƟve

objects of other opƟonal/alternaƟve elements. 141
6.9 Simplified example of the alternaƟves/opƟons representaƟon on different nested levels. . 142
6.10 One of the reference cases considered for properƟes/opƟons management. 143
6.11 One of the reference cases considered for properƟes/opƟons management. 144
6.12 One of the reference cases considered for properƟes/opƟons management. 145
6.13 One of the reference cases considered for properƟes/opƟons management. 145
6.14 One of the reference cases considered for properƟes/opƟons management. 146
6.15 One of the reference cases considered for properƟes/opƟons management. 146
6.16 One of the reference cases considered for properƟes/opƟons management. 146
6.17 Example of Agile development lifecycle applied to soŌware design. 152
6.18 AlternaƟve data exchange architectures. 153
6.19 Data exchange mechanism. 154
6.20 Top level view of the SEIM (UML package diagram), [61]. 156
6.21 SEIM main informaƟon object types and relaƟonships (informal UML class diagram), [61]. 159
6.22 SEIM system decomposiƟon and associated modes (UML class diagram), [61]. 159

7.1 How scenarios define and process the system under evaluaƟon [64]. 171
7.2 Example of conceptual allocaƟon between funcƟons and physical systems. 172
7.3 OpƟons management and design variables integraƟon. 173
7.4 Management example of slight different topological architecture. 174
7.5 Conceptual overviewof the layered representaƟon for alternaƟve elementUsages and their

connecƟons. 175
7.6 Conceptual example related to the management of alternaƟve design soluƟons. 176
7.7 Conceptual example related to the management of opƟonal design items. 176
7.8 CombinaƟon of the opƟonal design soluƟons that come out from the previous example. . 177
7.9 Example storing strategy for the management of project data. 179
7.10 Example representaƟon of the possible soluƟon for themanagement of data among system

engineers and domain specialists. 180

vi

7.11 Conceptual overview of the infrastructure for the collaboraƟve framework. 182
7.12 Conceptual overview of the infrastructure for the collaboraƟve framework. 183
7.13 Conceptual overview of the infrastructure for the collaboraƟve framework. 184
7.14 Example storing strategy for the proposed architecture. 185
7.15 Engineering model overview, [61]. 192
7.16 Overview of the conceptual infrastructure and related actual implementaƟon. 195
7.17 Conceptual representaƟon about the considered architecture. 197
7.18 Example architecture for the considered approach. 197
7.19 Example implementaƟon of python wrapper. 198

8.1 Conceptual representaƟon of the project ExploraƟon Gateway Plaƞorm [97]. 204
8.2 Example of payload capability expressing the mass as funcƟon of the alƟtude. 209
8.3 Simplified representaƟon of the primary structure considered in the reference case. 209
8.4 Simplified representaƟon of the thermal model considered in the reference case. 210
8.5 ObjecƟve funcƟons. 214
8.6 Constraints. 215
8.7 Pareto front corresponding to 65 M$ launch cost. 216
8.8 Pareto front corresponding to 75 M$ launch cost. 217
8.9 Pareto front corresponding to 85 M$ launch cost. 217
8.10 Pareto front corresponding to 90 M$ launch cost. 218
8.11 Pareto front corresponding to 120 M$ launch cost. 218
8.12 ObjecƟve funcƟons. 221
8.13 Constraints. 222
8.14 Pareto front corresponding to 75 M$ launch cost. 223
8.15 Pareto front corresponding to 85 M$ launch cost. 223
8.16 Pareto front corresponding to 90 M$ launch cost. 224
8.17 Pareto front corresponding to 120 M$ launch cost. 224
8.18 ObjecƟve funcƟons. 227
8.19 Constraints. 228
8.20 Pareto front corresponding to 75 M$ launch cost. 229
8.21 Pareto front corresponding to 85 M$ launch cost. 229
8.22 Pareto front corresponding to 90 M$ launch cost. 232
8.23 Pareto front corresponding to 120 M$ launch cost. 233
8.24 ObjecƟve funcƟons. 236
8.25 Constraints. 237
8.26 Pareto front corresponding to 75 M$ launch cost. 238
8.27 Pareto front corresponding to 85 M$ launch cost. 238
8.28 Pareto front corresponding to 90 M$ launch cost. 239
8.29 Pareto front corresponding to 120 M$ launch cost. 239
8.30 ObjecƟve funcƟons. 240
8.31 Constraints. 241
8.32 Pareto front corresponding to 75 M$ launch cost. 241
8.33 Pareto front corresponding to 80 M$ launch cost. 242
8.34 Pareto front corresponding to 85 M$ launch cost. 242
8.35 Pareto front corresponding to 90 M$ launch cost. 243
8.36 Pareto front corresponding to 120 M$ launch cost. 243

9.1 Modular structure of Open CASCADE plaƞorm [94]. 252

vii

List of Tables

4.1 MathemaƟcal notaƟon for MDO problems. 62
4.2 Methods classificaƟon and applicable algorithms [98]. 88
4.3 AcƟve set vector integer codes. 95

8.1 Parameters of the MOGA method used for the iteraƟons cycle of subcase 1. 214
8.2 Some of the non-dominated design points: design variables (subcase 1). 219
8.3 Some of the non-dominated design points: objecƟve funcƟons and constraints (subcase 1). 220
8.4 Parameters of the MOGA method used for the iteraƟons cycle of subcase 2. 221
8.5 Some of the non-dominated design points: design variables (subcase 2). 225
8.6 Some of the non-dominated design points: objecƟve funcƟons and constraints (subcase 2). 226
8.7 Parameters of the MOGA method used for the iteraƟons cycle of subcase 3. 227
8.8 Some of the non-dominated design points: design variables (subcase 3). 230
8.9 Some of the non-dominated design points: objecƟve funcƟons and constraints (subcase 3). 231
8.10 Parameters of the MOGA method used for the iteraƟons cycle of subcase 4. 232
8.11 Some of the non-dominated design points: design variables (subcase 4). 234
8.12 Some of the non-dominated design points: objecƟve funcƟons and constraints (subcase 4). 235
8.13 Parameters of the MOGA method used for the iteraƟons cycle of subcase 5. 236
8.14 Some of the non-dominated design points: design variables (subcase 5). 244
8.15 Some of the non-dominated design points: objecƟve funcƟons and constraints (subcase 5). 245

viii

Abstract

The main topic of the present work is addressed to the evaluaƟon of the possible improvements that
can be achieved with the integraƟon of Model Based System Engineering Methodologies in the advanced
phases of space project. In parƟcular a model based approach will be proposed for two main aspects di-
rectly affecƟng the design phases of complex systems. The first one is represented by the management of
design opƟons that becomes difficult to monitor as the project proceeds, increasing the amount of data
to take into consideraƟon. The other one is represented by the integraƟon between MulƟdisciplinary De-
sign OpƟmizaƟon (MDO) techniques and a Model Based System Engineering (MBSE) environment. The
aim of the research acƟvity concerns the feasibility of such connecƟon in order to assess actual advan-
tages and possible drawbacks. In this last case the objecƟve is to show how the MulƟdisciplinary Design
OpƟmizaƟon (MDO) methods may be managed in the context of a MBSE environment with respect to the
tradiƟonal design approach. In parƟcular this analysis is addressed to the demonstraƟon of the benefits
of MBSE methodology and MDO techniques considering a space system reference case. In the first part of
the thesis a briefly descripƟon of the problem statement is introduced to beƩer explain the subjects of the
following chapters. In parƟcular the reasons and the related purposes that have animated this work are
considered. In the next secƟon the state of the art about the considered approach is presented, providing a
background for the following acƟviƟes. In this context a wider analysis of themoƟvaƟons and thesis objec-
Ɵves is considered. The following chapters deals with the survey and criƟcal assessment of the main work
related to this thesis. The analysis, design and implementaƟon of the proposed framework are considered
in the next secƟons. At the end of this part the results obtained are presented without arguing about the
related benefits or drawbacks, which are considered in the following. A criƟcal assessment of the results
is then presented, analyzing the main contribuƟons and related disadvantages with respect to the current
approaches. In the next secƟon the incoming acƟviƟes and further developments are presented. The final
part concerns at last the summary conclusions of the work done.

1

2

Acknowledgments

"I don't like honors. I'm appreciated for thework that I did, and for peoplewho appreciate it, and I noƟce
that other physicists use my work. I don't need anything else. I don't think there's any sense to anything
else. I don't see that it makes any point that someone in the Swedish Academy decides that this work is
noble enough to receive a prize. I've already got the prize. The prize is the pleasure of finding the thing out,
the kick in the discovery, the observaƟon that other people use it. Those are the real things. The honors
are unreal to me. I don't believe in honors. It bothers me, honors. Honors is epilets, honors is uniforms"

Richard Phillips Feynman

With these few lines I thank all the people whowere close tome, encouragedmy efforts and supported
my decisions. A special thanks goes also to Thales Alenia Space Italy for the opportunity, the advice and
the experƟse demonstrated during my PhD studentship.
All cited product named are trademarks or registered trademarks of their respecƟve companies.

3

4

Acronyms

AAO All At Once

AFT Architecture Framework Tool

AIT Assembly IntegraƟon and Test

AMPL A MathemaƟcal Programming Language

ANN ArƟficial Neural Network

AR Acceptance Review

ASV AcƟve Set Vector

ATDD Acceptance Test Driven Development

BDD Block DefiniƟon Diagram

BIM Building InformaƟon Model

BLISS Bilevel Integrated System Synthesis

CAD Computer Aided Design

CAE Computer Aided Engineering

CAM Computer Aided Manufacturing

CAO Computer Aided OpƟmizaƟon

CCB ConfiguraƟon Control Board

CDF Concurrent Design Facility

CDR CriƟcal Design Review

CRR Commissioning Result Review

CE Concurrent Engineering

CER Cost EsƟmaƟng RelaƟonship

CI ConƟnuous IntegraƟon

CM ConfiguraƟon Management

CNES Centre NaƟonal d’Etudes SpaƟales

CO CollaboraƟve OpƟmizaƟon

COSE COllaboraƟve System Engineering

5

CPV Common Pressure Vessel

CSA ConfiguraƟon Status AccounƟng

CWE CollaboraƟve Working Environment

DA Discipline Analysis

DACE Design/Analysis of Computer Experiments

DAKOTA Design and Analysis toolKit for OpƟmizaƟon and Terascale ApplicaƟons

DEVICE Distributed Environment for Virtual Integrated CollaboraƟve

DM Data Management

DoD Department of Defense

DOD Depth Of Discharge

DOE Design of Experiments

DOORS Dynamic Object Oriented Requirements System

DSL Domain Specific Language

DSM Design Structure Matrix

DST Domain Specific Tool

DSTE Dempster-Shafer Theory of Evidence

DVV DerivaƟve Variables Vector

DXF Drawing Interchange Format

DXL DOORS eXtension Language

EA EvoluƟonary Algorithms

ECF Concurrent Engineering Facility

ECSS European CooperaƟon for Space StandardizaƟon

EFFBD Enhanced FuncƟonal Flow Block Diagram

EGO Efficient Global OpƟmizaƟon

EIF Efficient Improvement FuncƟon

ELR End of Life Review

EPS Electrical Power Subsystem

FAI Field Aligned Plasma IrregulariƟes

FCGI Fast Common Getaway Interface

FDD Feature Driven Development

FIDO Framework for Interdisciplinary Design and OpƟmizaƟon

6

FMEA Failure Mode and Effects Analysis

FMECA Failure Mode Effects and CriƟcality Analysis

FRR Flight Readiness Review

GA GeneƟc Algorithm

GLOW Gross LiŌ Off Weight

GP Gaussian Process

GMM Geometrical MathemaƟcal Model

GSE Ground Support Equipment

HLA High Level Architecture

IBD Internal Block Diagram

ICT InformaƟon and CommunicaƟon Technology

ICME Integrated Model Centric Engineering

IDF Individual Discipline Feasible

IDM Integrated Design Model

IGES IniƟal Graphics Exchange SpecificaƟon

INCOSE InternaƟonal Council on System Engineering

IPC Inter Process CommunicaƟon

IPG InformaƟon Power Grids

IPV Individual Pressure Vessel

ISO InternaƟonal Standard OrganizaƟon

ISR Incoherent ScaƩer Radar

ISS InternaƟonal Space StaƟon

ITA Ion Thruster Assembly

I&T IntegraƟon and Test

IVP Interval-valued Probability

JDBC Java DataBase ConnecƟvity

JEO Jupiter Europa Orbiter

JNI Java NaƟve Interface

JSON JavaScript Object NotaƟon

KSA Knowledge Skills AbiliƟes

LHS LaƟn Hypercube Sampling

7

LRR Launch Readiness Review

MARS MulƟvariate AdapƟve Regression Splines

MBED Model Based Engineering Design

MBSE Model Based System Engineering

MCR Mission Close-out Review

MDA Model Driven Architecture

MDA MulƟdisciplinary Design Analysis

MDAO MulƟdisciplinary Design Analysis and OpƟmizaƟon

MDE Model Driven Engineering

MDF MulƟdisciplinary Feasible

MDO MulƟdisciplinary Design OpƟmizaƟon

MDR Mission DefiniƟon Review

MEL Mass Element List

MEMS Micro-Electro-Mechanical System

MOE Measure Of EffecƟveness

MOP Measure Of Performance

MLS Moving Least Squares

MOGA MulƟ ObjecƟve GeneƟc Algorithms

MPMD MulƟple Program MulƟple Data

OCCT Open CASCADE Technology

OCDS Open Concurrent Design Server

OCL Object Constraint Language

OOSEM Object Oriented Systems Engineering Methodology

ORR OperaƟonal Readiness Review

OUU OpƟmizaƟon Under Uncertainty

OWL Ontology Web Language

PBS Product Breakdown Structure

PDES Product Design Exchange SpecificaƟon

PDM Product Data Management

PDR Preliminary Design Review

PIDO Process IntegraƟon and Design OpƟmizaƟon

8

PLM Product Life-cycle Management

POD Proper Orthogonal DecomposiƟon

PoF Probability of Frequency

PRA ProbabilisƟc Risk Analysis

PRR Preliminary Requirements Review

PSE Problem Solving Environment

PSS Product SpecificaƟons and Standards

QMU QuanƟficaƟon of Margins and UncertainƟes

QR QualificaƟon Review

QUDT QuanƟƟes, Units, Dimensions and Types

QUDV QuanƟƟes, Units, Dimension and Values

RAM Reliability, Availability and Maintainability

RBDO Reliability-Based Design OpƟmizaƟon

RBF Radial Basis FuncƟons

REMS Reconfigurable MulƟdisciplinary Synthesis

RIF Requirements Interchange Format

ROM Reduced Order Models

RoR Ruby on Rails

RMI Remote Method InvocaƟon

RSDO Rapid SpacecraŌ Development Office

RTI Run Time Infrastructure

SBO Surrogate Based OpƟmizaƟon

SBOUU Surrogate-Based OpƟmizaƟon Under Uncertainty

S/C SpacecraŌ

SE System Engineering

SEA Systems Engineering Advancement

SEIM Space Engineering InformaƟon Model

SERDL Space Engineering Reference Data Library

SME Small Medium Enterprise

SMM Science Margin Model

SMSWG Systems Modeling & SimulaƟon Working Group

9

SNR Signal to Noise RaƟo

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOGA Single ObjecƟve GeneƟc Algorithm

SOP Second Order Probability

SoS System of Systems

SPMD Single Program MulƟple Data

SSRDB Space System Reference DataBase

SRR System Requirements Review

STEP Standard for The Exchange of Product Model Data

SysML System Modeling Language

SVD Singular Value DecomposiƟon

TAS Thales Alenia Space

TDD Test Driven Development

TMM Thermal MathemaƟcal Model

TOR Terms Of Reference

TPM Technical Performance Measurement

TRL Technology Readiness Level

TR-SBOUU Trust-Region Surrogate Based OpƟmizaƟon

UAV Unmanned Aerial Vehicle

UML Unified Modeling Language

UQ Uncertainty QuanƟficaƟon

VSD Virtual SpacecraŌ Design

XDE Extended Data Exchange

WOA Web Oriented Architecture

XMI XML Metadata Interchange

XML eXtensible Markup Language

WAN Wide Area Network

WBS Work Breakdown Structure

10

Chapter 1

IntroducƟon

1.1 DefiniƟon of the problem statement

This work was mainly animated by the need to proper manage the high number of variables and data
that characterize the advanced phases of a project. Nowadays the increasing number of system complexity,
considering the high number of people involved, procedures and tools, make the product lifecycle difficult
to control. The effecƟvemonitoring of all the features that span from the development phase unƟl the dis-
missal one play a key role within the context of the current market condiƟons. An efficient management of
the available resources and a clear overall perspecƟve provide the basis for the generaƟon of product that
potenƟally shows beƩer behaviour. For this reason different methodologies have been recently consid-
ered to improve the systems performances, reducing both the costs and the Ɵme required to be delivered
to the customer. In parƟcular new system lifecycle methodologies have been analyzed in contrast with the
tradiƟonal ones with the final aim to beƩer manage system complexity. The correct evaluaƟon of system
complexity is in fact one of the most difficult acƟviƟes that must be properly managed to avoid wrong es-
ƟmaƟon of performances and product behavior ([134]).
TheModel Based SystemEngineering (MBSE) paradigm recently seems to be the right choice for an efficient
management of all the phases that characterize a system, considering also the people and the procedures
that are involved on different levels. This work considers the integraƟon of such model philosophy with
a mulƟdisciplinary design opƟmizaƟon framework. In parƟcular a space system reference case has been
chosen among all the possible ones that with this methodology may be however faced.

1.2 MoƟvaƟon of the choice

First of all the choice of the MBSE philosophy for the management of a complex engineering problems
is strictly related to the capabiliƟes that the related methodology allows to exploit. The overall infrastruc-
ture has been conceived following the main guidelines for the definiƟon of a model based architecture.
The object oriented approach enhances both the modeling and the analysis acƟviƟes basically performed
during the development of complex systems. In this context the integraƟon with MulƟdisciplinary Design
OpƟmizaƟon (MDO) techniques has been invesƟgated to understand the current issues that prevent the
applicaƟon within a model based environment. The potenƟal benefits that can be achieved through such
integraƟon are the main reason for the assessment proposed in this work. Such topic is currently not well
invesƟgated and different research iniƟaƟves are working on different direcƟons. The correct formalizaƟon
of the approach used as well as a report acƟvity of the main involved concepts can help to paint a cleaner
overview. Such informaƟon can ideally be used for future developments, paving the way for an innovaƟve
methodology for the management of complex engineering problems. The choice also of a space system
was animated by the need to well represent a scenario that shows an high level of complexity, involving
a great number of people, procedures and disciplines. In this way the main scope was to understand the
actual benefits and to show the deficiencies that may be improved for such an approach. The reference
case chosen as other similar complex systems allows to test all the funcƟonaliƟes and data flows that are

11

considered within this work.
The effecƟve invesƟgaƟon of system performances is in fact one of the most challenging research acƟviƟes
that characterize the development of complex products and the design process of aircraŌ systems repre-
sents an example of such situaƟons, where innovaƟve soluƟons and approaches are conƟnuously assessed
to further improve the current methodologies ([130] and [131]).

1.3 Purpose of the proposed analysis

The purposes of the proposed analysis is to demonstrate how design variables can be monitored in a
clearer way with respect to the tradiƟonal design approaches, reducing the possibility to neglect some de-
sign configuraƟons that enhance beƩer behaviour. This study is addressed mainly towards to evaluaƟon of
the systemmodel methodology and data exchange between different domain-specific environments. This
last feature is parƟcularly related to the definiƟon of a mulƟdisciplinary design context where the close
interacƟon between different modeling philosophies strongly affects the overall system performances.
In this way a well-defined system model architecture allow to improve the whole design processes with
interesƟng results on final product. MDO methodologies integraƟon within the proposed system model
framework is evaluated to show the feasibility and the benefits of thisMBSE approach. In the last few years
MDO methods have been widely used for the evaluaƟon of conceptual configuraƟons and system archi-
tectures. A large number of research projects is currently addressed towards the evaluaƟon of aerospace
systems performances, considering the interacƟons between different engineering domains and exploiƟng
different approaches for the opƟmizaƟon of aircraŌ products (example like [80] can be found in literature
for a wide range of engineering problems).

1.4 Background

Conceptually speaking the definiƟon process that affect the product development and realizaƟon is
briefly expressed through characterisƟc phases that historically have covered important roles. NeglecƟng
the complexity related to the process details and all the different approaches that can be taken, the design
phase can summarized with few steps. AŌer an iniƟal phase of requirements definiƟon we can find the
step associated to the concept creaƟon and selecƟon. This phase is characterized by a more deep involve-
ment of creaƟve skills than any other following acƟviƟes. Once the conceptual design has been defined
(obtaining for example mulƟple conceptual baselines) is possible to perform the preliminary design cre-
aƟon with the final aim to select one parƟcular baseline. The following target is to reach a detailed design
before the implementaƟon of the producƟon baseline. All the presented phases require the definiƟon of
analysis acƟviƟes that allow verifying if the systemdesignmeets the requirements iniƟally established. Pro-
ceeding through the design process the methodologies applied to deal with the problem statement is the
same from a high-level perspecƟve. The main difference is related to the level of detail that is addressed
in the analysis models and the degree of interacƟon between the disciplines involved. One of the most
important acƟviƟes is represented by the problem decomposiƟon. The models interacƟons and the close
coupling between simulaƟons that tradiƟonally belong to different domain-specific disciplines demands
more efforts as the project proceeds. The phases are less set in sequenƟal way but increasingly carried out
concurrently to reduce the development Ɵme. An example can be represented by a spiral product design
process. In this case the concept design, system-level definiƟon, detailed representaƟon, integraƟon, test
and planning are all acƟviƟes accomplished with an higher level of concurrence than in the past (where
the tradiƟonal approach is pointed out as phased, staged or waterfall product process).

1.4.1 Engineering Design Process

Conceptually speaking the engineering design process is the set of steps that a designer takes to go
from first, idenƟfying a problem or need to, at the end, creaƟng and developing a soluƟon that solves the
problem or meets the need. These steps can be summarized in the following list:

12

1. Problem definiƟon

2. Background research acƟvity

3. Requirements specificaƟon

4. AlternaƟve soluƟons creaƟon

5. Best soluƟon idenƟficaƟon

6. Development work acƟvity

7. Prototype building

8. Test and Redesign

The current design pracƟce is characterized oŌen not by a sequenƟal proceeding through these steps.
Solving an engineering problem requires generally back and forth transiƟons between the various phases.
The complexity of design process is difficult to manage in a sequenƟal manner as system details increase
and it is a common situaƟon to return back to earlier states. Such an iteraƟve way to work is currently well
rooted in the current engineering development process. Whatever is the result of such work the creaƟvity
plays a key role within such context. The first three steps are mainly related to the modeling framework
where the representaƟve model of the system under development is defined. The alternaƟve soluƟons
creaƟon is another important phase of the overall process and their role is also strictly linked with the
modeling acƟviƟes. The interesƟng element of such step is represented in parƟcular by the relaƟonships
between the various alternaƟve soluƟons with the nominal one and by their management. It is assumed
also that generally a nominal configuraƟon represents the current chosen soluƟons over the available ones.
These are already considered and not ruled out a priori since the system is however under development
and some soluƟons may be under evaluaƟon, for example because the related analysis are running. A
well-defined process for the management of all these features is currently one of the most challenging re-
search acƟviƟes. The potenƟal capabiliƟes of a well-organized and consistent procedure can help to beƩer
monitor and support the product development, providing the base for an effecƟve way to manage the in-
formaƟon. The present work is addressed to the conceptual definiƟon of such phase since the alternaƟve
definiƟon at this stage lays the foundaƟon for the acƟvity that characterizes the following step. The other
interesƟng process that oŌen plays a key role is the idenƟficaƟon of the best design soluƟon. The improve-
ment of the overall system performances depends strictly on this phase. This phase is the other element
that is considered in the current work. In parƟcular a model based methodology has been proposed for
the management of all the acƟviƟes that orbit around such fundamental step. All the remaining items of
the list are equivalently fundamental for the development of an efficient product but they are not directly
covered in this work.

1.4.2 Engineering Analysis Process

The main features that are generally considered for the overall product evaluaƟon are represented
briefly by performances, costs, schedules and risks. Performances measure how well the system is able to
accomplish to the primary target (mission statement for example in the aerospace industry). Costs include
the development and operaƟon life cycle resources. Schedules are instead related to the Ɵme required
to implement the first unit, producƟon rate and also all the possible acƟviƟes needed to make the system
ready to work. Finally the risks deal with the technical and financial failures that may be encountered. One
of the first main important phases related to the product definiƟon process is covered by the Computer
Aided Design (CAD). AŌer the iniƟal work of conceptual idenƟficaƟon of the possible soluƟons, CAD helps
the designers to create a well-defined system representaƟon. In this way we are able to clarify any doubts
avoiding misunderstandings just during these preliminary acƟviƟes. CAD tools assist the product devel-
opment also during the following detailed process when it is used as one of the principal instruments for
the configuraƟon management, exchange of informaƟon and reference for the simulaƟon analysis. This

13

element plays an important role and for this reason a mulƟdisciplinary approach oŌen integrates it. An-
other important step that characterizes the system definiƟon is represented by the group of acƟviƟes that
involve Computer Aided Engineering (CAE) analysis processes. Within this category we include method-
ologies like FEM for solid mechanics or CFD for fluid dynamics. Other simulaƟons that allow evaluaƟng
system behavior are also contained within this subdivision (as for instance electromagneƟc simulaƟons).
Generally speaking these methods help to understand if there are design errors before the physical real-
izaƟon, evaluaƟng also different alternaƟves through numerical simulaƟons (some of which are listed in
the following lines):

• Finite Element Method

• Boundary Element Method

• Finite Difference Method

• Finite Volume Method

• Mesh-less Method

Many engineering problems are represented with governing equaƟons and boundary condiƟons. From
these ones can be set and solved problems linked to mechanical or thermal field, allowing addressing also
electromagneƟc and fluid flow phenomena. The results generated during these phases are the key-points
for the following design possible reconfiguraƟon, represenƟng the starƟng point for product opƟmizaƟon.
ParƟcular aƩenƟon must be placed in the problems set-up in order to ensure the correctness of the data
generated by the computer.

1.5 Problem Solving Environments (PSE)

The management of complex problems becomes parƟcularly difficult when a wide range of engineer-
ing domains are involved within the design process. The solving tools, methods and process are oŌen not
so easy to handle for different reasons. The codes or models could be wriƩen few years ago by people
that are no longer working on the same subject for example. The use and maintenance of the available
resources (as those coming from company knowledge) becomes difficult and in such cases a Problem Solv-
ing Environment (PSE) represents a well suited soluƟon. A PSE is basically specialized computer soŌware
that is mainly used to solve one or more class of problems. Such objecƟve is obtained through the combi-
naƟon of automated problem-solving techniques with user-oriented tools conceived to guide the problem
resoluƟon. The first examples of PSE were born in the 1990s and iniƟally they were built with the same
language of the related field, employing oŌen a graphical user interface with the solving code. The pur-
pose is the definiƟon of an interface that enables other users to manage a domain specific-soŌware. The
first prototype was generically used above all for data visualizaƟon or representaƟon of large systems of
equaƟons. In the next years they were improved to be also used in the management of narrow field of
science or engineering. In this way a gas-turbine design code could be implemented to simplify the access
and use of the available resource for example.
A PSE generally provides all the computaƟonal faciliƟes that are needed to approach a target class of prob-
lems. In parƟcular these features include advanced soluƟon methods, automaƟc and semiautomaƟc se-
lecƟon of soluƟon methods and also ways to easily integrate new solving techniques. Moreover, PSEs use
the language of the target class of problems, so users can run them without specialized knowledge of the
underlying computer hardware and soŌware. By exploiƟng modern technologies such as interacƟve color
graphics, powerful processors and networks of specialized services, PSEs can track extended problem solv-
ing tasks and allow users to review them easily. Overall, they create a framework that is all things to all
people: they solve simple or complex problems, support rapid prototyping or detailed analysis and can be
used in introductory educaƟon or at the fronƟers of science ([28]).
PSEs can basically be considered all the compuƟng systems and infrastructures that are conceived to help

14

computaƟonal scienƟsts get their work done in a more effecƟve way. Such environments include gener-
ally all the features needed to support the problem-solving acƟvity, from problem formulaƟon, algorithm
selecƟon, numerical simulaƟon and soluƟon visualizaƟon. They are also defined to provide useful capa-
biliƟes to improve the collaboraƟon among people separated in space and Ɵme, oŌen using different set
of codes and machines. Computer Aided Engineering (CAE) is one of the most important Engineering field
and some quite sophisƟcated PSEs have been developed to support the related acƟviƟes. All the current
PSEs follow basically the conceptual guidelines previously introduced and the related implementaƟons are
based on the specific needs of the developed framework. The same solving approach can in fact be ac-
tually implemented through different architectures, as a desktop or web-based soluƟon for example. The
choice between the various alternaƟve soluƟons depends strictly on the primary goal of the research ac-
Ɵvity where the subject has been defined. In literature different PSEs research acƟviƟes a prototype can
be idenƟfied, each one addressed to a parƟcular class of problems or conceived and customized on the
basis of the required capabiliƟes. In the following lines some example will be briefly introduced.
W-DPSE represents one of the prototypes that have been developed to assess the capabiliƟes of a PSE
as useful framework to support CAE technologies. The W-DPSE name stands for web-based distributed
problem-solving environment and has been conceived to provide an effecƟve approach to distributedmod-
eling and simulaƟon, paving also the way for networked collaboraƟon. The main objecƟve is to provide a
tool that can be interacƟvely used to explore and visualize the design work acƟviƟes. This system is built as
a three-Ɵered architecture represented by three main layers: a web client presentaƟon interface (WCPI),
compuƟng solver servers (CSS) and a systemmanagement server (SMS). All the related components of this
infrastructure are implemented with an object-oriented approach using Java as programming language
while the remote method invocaƟon (RMI) technology is used to communicate across the layers. In par-
Ɵcular the developed framework includes efficient interface for wrapping legacy computaƟon codes or
interdisciplinary and diversified applicaƟons defined for example in C, FORTRAN or other languages. Such
objects are wrapped and provided as Java component through the implemented framework. The commu-
nicaƟon mechanisms between Java component and legacy codes are defined through java naƟve interface
(JNI) and UNIX inter-process communicaƟon (IPC) by theway of operaƟng system. Amore detailed descrip-
Ɵon of such PSE framework is available on [29]. In this case the PSE framework has been mainly conceived
to provide useful interface for already valuated and tested solving codes. A well-defined interface, not
only solvers are, respecƟvely independent from the both servers and clients but also clients and servers
are isolated. In this way clients can use the capabiliƟes of the servers without a specific knowledge of the
server architecture and communicaƟon protocol. In parƟcular users can create their own models (for the
available solver implemented) through the use of a registered model generator. The user can also perform
remodeling once for example the analysis responses have highlighted any strange or unexpected behavior.
In this case a new input model can be created and submiƩed to the system for new analysis, paving the
way to re-design acƟviƟes and iteraƟve development processes. InteresƟng results are also provided in [30]
where a research acƟvity has been addressed to the evaluaƟon of a PSE portal for MulƟdisciplinary Design
OpƟmizaƟon. This PSE infrastructure has been conceived to face one of the main problems that character-
ize the applicaƟon of MDO techniques in the context of a complex project. Applying MDO methodologies
in real engineering problems requires the user to spend a lot of Ɵme arranging and interfacing resources
used in the process. In this case a web portal provides useful uƟliƟes for the management of models and
resources within a shared environment. The actual implementaƟon is based on Globus toolkit version 4
(GT4) web service-based technologies for distributed middleware, mainly used for the transmission of a
large amount of data. This toolkit is basically consƟtuted by a series of libraries and programs that handle
the general problems regarding the definiƟon and implementaƟon of grids and distributed systems. In par-
Ɵcular three containers can be idenƟfied in GT4 and they are represented by a Java container, a C container
and a Python container, using the services developed respecƟvely by these ones. The standard protocol
technique used is based on eXtensible Markup Language (XML), ensuring the independence of the portal
from the plaƞorm and the programming language. In this case the user can define the overall process
through a process definiƟon service provided by web interface, ediƟng, storing ad correcƟng the related
process resources. The created process is managed in background as XML format, becoming also read
to be executed. The user interface provides basically five different capabiliƟes summarized as: problem

15

Figure 1.1: Example of the aspects that can potenƟally affect the definiƟon of a Problem Solving Environ-
ment.

descripƟon management, security management, data management, resource management and workflow
management. Globus toolkit funcƟonaliƟes allow providing such web services through a Simple Object Ac-
cess Protocol (SOAP)web service techniquewhile the connecƟonwith the database is realized through Java
Database ConnecƟvity (JDBC) technology. The design resources provided by the implemented framework
are represented by analysis codes, opƟmizaƟon codes and CAD objects. The process flow for the develop-
ment of MDO framework as provided by the portal can be summarized in the following sequenƟal steps.
First the design object must be selected and then the related design resources must be idenƟfied. These
ones can be chose among the object stored in a resource repository where the elements can be saved aŌer
a proper registraƟon. Once the resources have been selected the next step is represented by the workflow
process definiƟon followed by the input-output variables linkage. This acƟvity is done through the uƟliƟes
provided for themanagement of data connecƟons, allowing the correct associaƟons between the available
variables. Once these phases have been accomplished the database is created and an MDO framework is
created, potenƟally ready for design phase. The implemented environment provides all the elements re-
quired for the definiƟon of a MulƟdisciplinary Feasible (MDF) method on a specific problem. The MDF is
an opƟmizaƟonmethod that integrates the design resources as a single design process (conceptually al the
solving codes and models are linked sequenƟally).
An example of the aspect that cab be related to the definiƟon of a problem solving environment are re-
ported in figure 1.1.

PSEs frameworks have gained increasing importance in the field of aerospace design process, above all
in the last few years. The developments of new soŌware methodologies, advanced approximaƟon meth-
ods, data storage and fusion techniques as also the improvements in computaƟonal hardware have driven
a deeper integraƟon of such technologies within the development process with respect to the tradiƟonal
design approach. Such improvements have lead in fact to conceive new ways of manage the design pro-
cess of complex systems, all the related features and organizaƟons. A well-documented evaluaƟon about
the tradiƟonal design approach in aerospace field and the increasing needs are available in [31]. The same
arƟcle provides a clear list of the improvements that can be idenƟfied in the design process and the related
technologies:

• Improvement of the quality control

• Support of the team decision making process

• Improvement of the design environments

• CreaƟon of a seamless integraƟon between design and analysis

• Understanding of the product realizaƟon process

• Storage and re-use of design history

16

• DeterminaƟon of the impact of decisions

• PromoƟon of conƟnuous learning

• IntegraƟon between analysis tools

• Enhancement of creaƟvity and innovaƟon

• ReducƟon of the development Ɵme by increasing parallelism

• Improvement of the informaƟon infrastructure

• ProducƟon of globally opƟmized designs

• Management of complexity and risk

• Enhancement of the criƟcal thinking and evaluaƟon methods

• IntegraƟon of product design data

• Improvement of communicaƟon of design specificaƟons to remote sites and companies

• IntegraƟon of product manufacturing process development

• IntegraƟon of large-scale systems

The enhancement of creaƟvity and innovaƟon is one of the main interesƟng and challenging feature
related to the proposed ones since it is directly related to the development of new soluƟon and technolo-
gies for the market.
The tradiƟonal soŌware environment is based on the funcƟonaliƟes provided by a corporate intranet at
which the user workstaƟon is connected. Corporate CAD systems (as commercial soluƟons and Product
Life-cycle Management (PLM) infrastructures, including in this one also the Product Data Management
(PDM) system), analysis soŌware (for structural, cosƟng or performance computaƟons) and compuƟng
node are all connected to the same corporate network. This environment can be improved integraƟng
more infrastructures with the final aim to paving the way for the definiƟon of a PSE framework. Different
user’s workstaƟons cab be connected with a team leader workstaƟon and all ones can be linked amulƟme-
dia and virtual reality system. A corporate network as a can be used to connect such workstaƟons with a
data-base master, a design process monitor, compuƟng grid and an opƟmizaƟon system. Database master
can be configured to manage both the design data-bases (containing the current project informaƟon) and
a design archive (storing all the available and accessible data coming from previous project) for example.
This example represents one possible conceptual soluƟon for PSE architecture but other different config-
uraƟons can equivalently be chosen. The PSE architecture considered in [31] is basically represented by
a Wide Area Network (WAN), which represents the corporate network on which graphical user interface
is used to manage for example the computaƟon nodes. CORBA wrappers are instead used to integrate
the computaƟonal soŌware and resources on the same network, providing all the required uƟliƟes for the
management of system design.
These examples show how the applicaƟon of web-based technologies can help and support the analysis
acƟviƟes. In parƟcular the developed frameworks have been mainly addressed to the execuƟon of simu-
laƟon scenarios providing a graphical user interface for the management of the available resources. The
user interface has been conceived to handle already definedmodels and simulaƟon codes in the large part
of the considered cases. The management of analysis resources not already registered in the same system
make the overall framework difficult to realize. This situaƟon represents a challenging problem and differ-
ent soluƟons can be considered for the right evaluaƟon of the possible approach. In parƟcular one of the
current integraƟon issues that limits the capabiliƟes of PSEs frameworks is represented by a correct inte-
graƟon between a system modeling environment and analysis ones. The objecƟve of this work is mainly
addressed to the assessment of the possible connecƟon between a modeling environment and analysis

17

infrastructure. In parƟcular their integraƟon will be based on web-based technologies since such choice
has highlighted interesƟng results in the case for example of already developed PSEs, as briefly introduced
in the previous lines.

18

Chapter 2

System Engineering

System engineering is currently gaining an increasing key-role within the design process of complex
products. Generally speaking it represents a mulƟdisciplinary approach addressed to the development of
balanced system soluƟons with respect to different stakeholders needs. This balance involves both the
management and technical processes with the main aim to reduce the possible risks that can affect the
success of a certain project. Management acƟviƟes are mainly addressed to the monitoring of develop-
ment costs, schedules and technical performances, ensuring that the project objecƟves are met. All this
processes are deeply related to the managing risk and decision making acƟviƟes. On the other side the
technical process are mainly related to the specificaƟon, design and verificaƟon of the system to be build.
Technical processes can be summarized with the following conceptual acƟviƟes: the system specificaƟon
and design, the system integraƟon and test, and finally the component design, implementaƟon and test.
All these simplified class are strictly interrelated and iteraƟvely applied during the development of the sys-
tem. Some of the most important acƟviƟes that cover a fundamental role are reported in the following
list:

• Elicit and analyze stakeholder needs

• Specify system

• Synthesize alternaƟve system soluƟons

• Perform trade-off analysis

• Maintain traceability

Two of the most interesƟng and challenging phases are represented by the capability to synthesize al-
ternaƟve soluƟons and perform trade-off analysis which are alsomainly discussedwithin the present work.
A clear understanding of the stakeholders needs is one of the complex phases since the decisions made
during this early definiƟon process can heavily affect the effecƟveness of the final product. It is extremely
important to understand how the external systems, users and physical environments are interfaced with
the system itself to clearly demarcate the boundary of the system and the associated interfaces. This
process may also be characterized by a well definiƟon of the funcƟons that have to be considered to be
compliant with the consumer requirements (funcƟonal analysis), specifying their sequence and ordering.
Once certain specificaƟons are made the following phase regards the design of components and their test,
providing the right feedbacks to the system specificaƟon process. In this way the design evolves iteraƟvely
towards the definiƟon of the final system soluƟon. It is important during this process to well define the
informaƟon flow that starts from the stakeholder needs down to the components requirements. System
representaƟon oŌen includes a wide set of stakeholder perspecƟves, involving the parƟcipaƟon of many
engineering and non-engineering disciplines. A typical mulƟdisciplinary system engineering team should
include viewpoints from each of these perspecƟves and people coming from different domain-specific
fields that have to work together within a system that is increasingly complex and where all the various
disciplines are deeply integrated. The complexity of the systems considered oŌen drives towards the defi-
niƟon of a System of Systems (SoS) structure. This viewpoint is based on the idenƟficaƟon of an element as

19

the part of another system on a higher level of definiƟon. The need for the correct management of system
complexity has lead to the definiƟon of a various standards as support for the different perspecƟves that
characterize a certain project. In parƟcular different systems engineering standards are matured over the
last several years with the main purpose to reduce as much as possible the errors related to the data ex-
change between different environments. Some of the possible system engineering standards are reported
in the following list [1]. Process standards:

• EIA 632

• ISO 15288

• IEEE 1220

• CMMI

Architecture framework:

• FEAF

• DoDAF

• MODAF

• Zachman FW

Modeling methods:

• HP

• OOSE

• SADT

System modeling standards:

• IDEF0

• SysML

• UPDM

System simulaƟon and analysis standards:

• HLA

• MathML

Interchange and metamodeling standards:

• MOF

• XMI

• STEP/AP233

20

It is important within this context to provide useful definiƟons for the concepts that are widely con-
sidered in the present work, highlighƟng in parƟcular the terms of engineering processes and methods.
Generally speaking the term system engineering process idenƟfies what acƟviƟes are performed during
the project but not give details about the ways they are performed. The system engineering method de-
fines instead how the various acƟviƟes are performed, describing the types of product that have to be
obtained and how they are designed and developed. Another important feature is represented by the
concept of operaƟons which defines how the system interacts with the external environments and how it
has to behave from the stakeholders’ perspecƟves. The main objecƟve of the modeling standards is rep-
resented by the idenƟficaƟon of a common language for the descripƟon of system physical architecture,
behavioural models and funcƟonal flow. Model and data exchange is one of the most challenging and
criƟcal acƟvity during the development process, above all when different domain specific tools have to in-
terface for the data sharing. The XMLMetadata Interchange (XMI) specificaƟon has been conceived within
the context of OMG and has the purpose to support and make easy the model data exchange when MOF-
based languages are used (such as SysML or UML). In the same way the Model Driven Architecture (MDA)
paradigm is addressed to the definiƟon of further standards, ideally enabling the transformaƟon between
the models and different modeling language. All these efforts are addressed towards an improvement of
tool interoperability, modular modeling process and reuse of system design product, reducing the Ɵme
and costs related to the implementaƟon of already defined objects.

2.1 Lifecycle management

In industry, lifecycle management stands basically for product lifecycle management (PLM) and all the
related concepts must take into account such definiƟon. PLM can be defined as the process of manag-
ing the enƟre lifecycle of a product from the iniƟal idea to the following phases of design, manufacturing,
operaƟve service and final disposal. Product lifecycle management basically integrates people, data, pro-
cesses and business infrastructures, building up the product informaƟon backbone for companies and their
enterprise. Lifecycle management processes can be characterized by slightly different phases that show
different Ɵme extensions and convenƟons but they are all conceived to organize the work from the pre-
liminary steps to the more detailed ones. The brief introducƟon about the current lifecycle management
process descripƟons allows beƩer understanding the context for the following work. The present research
acƟviƟes is developed starƟng from the actual lifecycle management process strategies with the final aim
to propose and evaluate a model based modeling and analysis infrastructure. This concept requires a well
clear view of the system engineering methodologies for the management of product development from
the early phases to the more advanced ones, unƟl the final disposal. Figure 2.1 conceptually reproduces
the acƟviƟes and related relaƟonships that generally characterize the overall process from customer needs
to the final system soluƟon.

Such concepts and their correlaƟons can however beƩer explain through other diagrams and repre-
sentaƟon models. In the last few years large-scale system projects have been created through the use of
different lifecycle development models. There are no parƟcular constraints on the development model
that must be used and organizaƟons, academia and industry oŌen use their lifecycle paƩerns also if three
main typologies can be idenƟfied. At the moment such lifecycle development models are summarized
by Royce’s Waterfall Model [2], Boehm’s Spiral Model [3], and Forsberg and Moog’s “Vee” Model [4]. All
such models approach the definiƟon of lifecycle in different manners as shown in their related conceptual
representaƟons in figure 2.2, 2.3 and 2.4. Such lifecycle model representaƟons are parƟally derived from
the paƩerns used also to implement soŌware product and the same approach can also be applied and
extended to the development of complex systems.

The definiƟon of lifecycle development process through V-diagram allows to graphically describing the
overall process of system design and manufacturing. This representaƟon can be used to equivalently re-
produce the same conceptual process at different details levels since the same structure can be adopted to
define the whole system as also a single subsystem or component. The same diagram can in fact be applied
at different detail levels to show the process of design and manufacturing, providing a visual organizaƟon

21

Figure 2.1: Development process from customer needs to system soluƟon.

Figure 2.2: Royce’s Waterfall Model.

22

Figure 2.3: Boehm’s Spiral Model.

Figure 2.4: Forsberg and Moog’s “Vee” Model.

23

of acƟviƟes as the integraƟon, tesƟng, verificaƟon and validaƟon for example.

2.2 System Analysis concepts, methodologies and acƟviƟes

Models creaƟon frommathemaƟcal relaƟonships and physics-based rules is now one of themost inter-
esƟng research topics. In parƟcular the informaƟon gathered within the system data model may be used
to properly define its virtual representaƟon. The development of this relaƟon can be realized under differ-
ent approach, depending on the required informaƟon. In parƟcular in the last few years some modeling
infrastructures and languages have been developed. An example of a promising modeling languages that
has started to spread across different engineering domain is represented by Modelica. In parƟcular it is a
well suited language for the characterizaƟon of the system behavior, providing useful capabiliƟes over a
wide range of applicaƟons in the field of system analysis. The equaƟons related to a parƟcular element of
the system could be used for example to set the physical laws that are successively used to build up and
manage virtual simulaƟons. The main issue concerns about the translaƟon of the involved equaƟons into
useful codes that may be processed in the right way.
In the following subsecƟons some example of the most widespread analysis acƟviƟes and other associated
concepts are reported to beƩer describe the analysis process that characterizes the overall system.

2.2.1 Uses cases and Scenarios

Analysis acƟviƟes are oŌen characterized by the clear understanding of product use cases as well as
the correct idenƟficaƟon of the related scenarios. Such concepts must not be confused and a much more
detailed descripƟon of these terms will be provided in the following secƟons. These words have two dif-
ferent meanings in the context of System Engineering and they must be understood to avoid future mis-
understandings.
Use case is defined as a group of scenarios linked together by a common user goal while a scenario can be
defined as sequence of steps that describe the interacƟon between an actor and a system.

2.2.2 Requirements Analysis

One interesƟng aspect that is strictly related to the methodologies of System Engineering is repre-
sented by the requirements analysis. In the preliminary phases a clear understanding of requirements,
their significance and relaƟonships are fundamental step for the right start of the development process.
Customer needs provide the informaƟon from which the project requirements are built, ensuring the def-
iniƟon of such guidelines that drive the design. The correct capture and analysis of system requirements
cover a basic role and different methodologies can be considered for such acƟviƟes. System requirements
can basically be disƟnguished between funcƟonal requirements and non funcƟonal ones. In the first case
the requirements refer directly to those funcƟons that system must perform, such as doing parƟcular ac-
Ɵons and acƟvity or showing certain capabiliƟes. These requirements are generally not linked to numerical
quanƟfiable properƟes. Non funcƟonal requirements are instead represented by those specificaƟons that
can be expressed or traced to numerical values. Performances requirements belong to this second cate-
gory for example. This classificaƟon can be further detailed but such disƟncƟon provides enough details
for the main purposes of the present work.

2.2.3 FuncƟonal Analysis

FuncƟonal analysis covers a key-role for an effecƟve development of complex products and represents
one of the main pillars of System Engineering discipline. Such acƟvity is mainly addressed towards the
idenƟficaƟon of all the funcƟons that the product must perform during its operaƟve lifeƟme. The right
definiƟon of these funcƟons and their relaƟonships with the product elements is parƟcularly important to
allocate the resources that will be provided by the system. This analysis do not involve all the engineering

24

domains at the same level or during the same lifecycle phases. Some disciplines exploit funcƟonal analysis
to mainly support the preliminary development phases while other ones are characterized by this acƟv-
ity much more extensively during their processes. For example Mission OperaƟons discipline is basically
affected by the results coming from funcƟonal analysis which plays a fundamental role for the correct iden-
ƟficaƟon of the interacƟons between actors and product components (procedures definiƟon). The main
aim of funcƟonal analysis can be summarized by the collecƟon of all the acƟviƟes that are animated to-
wards the clearly characterizaƟon of what the product is able to do. It is important not to confuse such
concept with that related to the OperaƟonal Analysis which can be slightly similar with respect to some
acƟviƟes but are basically conceived with two different purposes.

2.2.4 OperaƟonal Analysis

The OperaƟonal Analysis is another important acƟvity of System Engineering domain that generally
characterizes the development process of complex products. The main purpose of such analysis can be
summarized with the idenƟficaƟon of how the system behaves mainly during its operaƟonal lifeƟme. In
this case the main emphasis is not on the funcƟons that the system is able to perform (aspects handled
with funcƟonal analysis) but mainly on its states during one of the possible operaƟonal scenarios. This
analysis includes for example the acƟviƟes directly regarding state machine modeling for the system under
development. In this case it is more important to understand the relaƟonships between the possible states
inwhich the systemcanbe aswell as the events that regulate the transiƟons among these ones. This acƟvity
can help to get a clear vision of system behaviour, providing the instruments to support the invesƟgaƟon
of the possible combinaƟons of a complex situaƟon. OperaƟonal analysis covers a fundamental role for
Mission OperaƟon domain as well as the funcƟonal analysis. The correct idenƟficaƟon of system states
supports the proper scheduling for the acƟviƟes that can be performed by the product. The procedures
that the usersmust follow to rightly operate the system are directlymade from the output coming from the
operaƟonal analysis. Power budget represents an example of the possible evaluaƟons that can be basically
performed starƟng from the data provided by operaƟonal analysis.

2.2.5 Cost Analysis and EsƟmaƟon

An important definiƟon that mainly covers a key role in the evaluaƟon of system costs is represented
by the Work Breakdown Structure (WBS). Such term refers to the hierarchical decomposiƟon of the work
necessary to complete a project/program. Such breakdown structure can also contain the Product Break-
down Structure (PBS), which can be idenƟfied with the term System Breakdown Structure with US DoD
notaƟon. Cost esƟmaƟon methods can be summarized in the following ones:

• Parametric cost models: the esƟmaƟon of project costs is achieved on the basis of equaƟon based
approach. In parƟcular some system key parameters are used as independent variables to compute
costs. Such driving variables can be represented by weight or performances indexes, ensuring the
repeatability of the achieved results but at the same Ɵme the accuracy of the obtained responses is
not well pursued. This method is basically used during the trade studies or however the preliminary
design phases.

• Analogy: this method is applied when the system under development shows some similar character-
isƟcs with respect to another one that has already been developed and built. In this case the current
esƟmaƟon is obtained through the evaluaƟon of the costs already known about the similar product
and some correcƟon can be introduced to take into account for liƩle differences.

• Grassroots: cost esƟmaƟon is evaluated through a boƩom-up approachwhere a parƟcularly detailed
data about the project is required. Such an approach is used mainly during the advanced phases of
the program.

25

2.3 SimulaƟon Model - MathemaƟcal Model

The main aim of simulaƟon modeling is basically represented by the analysis of the nature and be-
havior of a parƟcular system. Generally speaking system can be idenƟfied as a facility or process that is
under consideraƟon due to different reasons. In order to analyze the behavior of a parƟcular system one
of the most important process is represented by the making of a set of assumpƟons about its response
to external input. The whole set of assumpƟons that are made to define the nature of the system can
be expressed in the form of mathemaƟcal or logical relaƟonships and all contribute to define the model
characterisƟcs and how it behaves. In this way the final objecƟve is to build instruments that can be used
to imitate or simulate the responses that we want to study. When the previously introduced relaƟonships
can be defined through the use of mathemaƟcal methods to obtain exact funcƟon about the informaƟon
of interest, we are in the case of analyƟc soluƟon. With the mathemaƟcal methods are referred algebra,
calculus and probability theory. Real-world system oŌen cannot be defined analyƟcally and in these cases
the simulaƟon represents the unique feasible soluƟon. The system behavior is evaluated through the use
of numerical model in order to esƟmate the desired response. The same system may be modeled with
different approach depending on the features that want to be studied and also from which viewpoints.
Considering these characterisƟcs the simulaƟon methodology became one of the most import aspects of
the model building phase. In the following secƟons a brief introducƟon on the main features of system
modeling is described and a clear definiƟon of the terms system, model and simulaƟon can help to bet-
ter understand the studied methodology [5]. System idenƟfies the collecƟon of enƟƟes, such as people
and machines that interact together for the accomplishment of some final objecƟve [this definiƟon was
proposed by Schmidt and Taylor (1970). What the term system refers to depends oŌen on the parƟcular
objecƟves that were faced within a certain study. For example what is defined as a subset model for a
parƟcular system can represents the whole system under different simulaƟon condiƟons. The term model
is usually used for a structure which has been built purposely to highlight some parƟcular features and
characterisƟcs of some other components [6].
Another important definiƟon is represented by the state term. The state of a system refers to the collecƟon
of variables that must be defined to completely describe the model at a parƟcular Ɵme. Systems can be
categorized as discrete or conƟnuous. A discrete system is characterized by state variables that change
their values instantaneously at different points during temporal evoluƟon. In the case of conƟnuous sys-
tem instead the state variables change in conƟnuous manner during model simulaƟon. In the real-world
representaƟon it is difficult to find systems that are wholly discrete or wholly conƟnuous but is however
possible to classify their belonging on the fact that one of the two types of state variables predominates
over the other. During system analysis the need to study the relaƟonships between some components as
the possibility to face different boundary condiƟons drives to different ways under which system can be
represented. On the basis of the features to be analyzed (for example considering the need to evaluate the
performances under changed condiƟons) there are different ways to study a system as reported in figure
2.5.

System can basically studied starƟng with the disƟncƟon between experiment realized with the actual
system and experiments with a model of the system. In this last category are included the physical model
and the mathemaƟcal model. Another disƟncƟon can be based on the resoluƟon approach that can be
applied on the mathemaƟcal model, disƟnguishing between the analyƟcal soluƟon and simulaƟon. The
term simulaƟon refers mainly to the numerical soluƟon of a mathemaƟcal model. The first main disƟnc-
Ɵon between experimentwith actual systems and experimentwith amodel of the systemdepends strongly
on the available resources. The beƩer soluƟon is always to experiment over the actual system to obtain
more reliable informaƟon on responses to the input parameters but oŌen this condiƟon is not possible
to realize. This situaƟon is desirable but oŌen the experiments over the whole system become a costly
operaƟon or in other cases the tests to be done are disrupƟve for the system (as for example in the case of
thermal or structural tests). In other situaƟons, at the Ɵme the experiments are needed, the system is not
present or however is not possible to realize such experiments for security problems or not-repeatability of
operaƟons (such in the case of system involving nuclear applicaƟons). These reasons animated the build-
ing of a model as a representaƟon of the system to be studied as a surrogate for the actual system. One

26

Figure 2.5: Conceptual overview of the possible ways to study a system [5].

of the problems that the modeling acƟviƟes involve is represented by the need to well understand the
validity of the model (referring to the capability to well model the responses that the model is defined for).
The other two categories refer to the disƟncƟon between the physical and mathemaƟcal model. Physical
models are represented by actual models that reflect some parƟcular system characterisƟcs (for example
they refer to the model used in the case of wind-tunnel simulaƟons), depending on the output that have
to be monitored in that parƟcular case. In other context the term physical model is equivalently expressed
as iconic model. These models are not cost-effecƟve for the main analysis purposes so they are oŌen
overwhelmed by the definiƟon of mathemaƟcal models that are currently the main approach for predict
system responses. These models define the logical and quanƟtaƟve relaƟonships that are manipulated
to evaluate system reacƟons and that can be used to understand which would be the actual responses.
The same classificaƟon is defined as concrete versus abstract models according to other references. The
essenƟal feature of mathemaƟcal model can be idenƟfied in the involvement of a set of mathemaƟcal
relaƟonships, such as equaƟons, inequaliƟes, logical dependencies, etc. The other main subdivision that
characterizes the mathemaƟcal model class is represented by the disƟncƟon between the analyƟcal solu-
Ɵon and simulaƟon. In the case the model is simple enough to be managed through the implementaƟon
of exact relaƟonships between the quanƟƟes involved in the problem the soluƟon can be defined analyt-
ically. When the relaƟonships and equaƟons that are directly bounded to the problem are complex, the
soluƟon of the problem can generally be obtained through numerical approaches. In this case the analysis
of the response funcƟons on the basis of the chosen input parameters are studied by means of simulaƟon.
Once what is defined as simulaƟon model is implemented it is possible to introduce other classificaƟons
that allow characterizing other different ways of representaƟon. In parƟcular these classificaƟons are rep-
resented by the following couples, generaƟng all the possible combinaƟons between each other.

• StaƟc and Dynamic SimulaƟon Models

• DeterminisƟc and StochasƟc SimulaƟon Models

• ConƟnuous and Discrete SimulaƟon Models

StaƟc simulaƟonmodels are represented by those cases where the problem is defined at a certain Ɵme
or in the cases where the Ɵme does not cover an important role. On the other side dynamic simulaƟon

27

model refer to the problems where Ɵme parameter covers a not negligible role. StaƟc simulaƟons can be
represented for example by some Monte Carlo models. DeterminisƟc simulaƟons are those characterized
by the absence of any probabilisƟc quanƟƟes. In parƟcular the output funcƟons are determined once the
input values and their relaƟonships are uniquely specified, not depending on how much Ɵme the simu-
laƟon lasts. When the simulaƟon models include at least one random variable the simulaƟon is defined
as stochasƟc and output quanƟƟes must be analyzed through probability theory. Roughly speaking deter-
minisƟc models are a special case of stochasƟc models as demonstraƟon of the close correlaƟon between
the elements of this class of simulaƟons. Discrete models are represented by the case where system under
study is analyzed as discrete simulaƟon while conƟnuous models can be represented by the definiƟon of
variables belonging to a conƟnuous domain. The choice between discrete or conƟnuous modeling for the
same phenomena depends strictly on the needs and the objecƟves that are desired or required. Another
important concept that is recurring in the field of models simulaƟon it is represented by event. This term
stands in parƟcular for the instantaneous occurrence that may change the state of the system. Mathe-
maƟcal programming as defined does not refer to computer programming concept while it expresses the
planning acƟviƟes behind the problem formulaƟon. Most of engineering applicaƟons that involve math-
emaƟcal programming are generally addressed to the resoluƟon of opƟmizaƟon problems also if that is
not the only acƟvity that characterizes its implementaƟon. MathemaƟcal programming can be applied on
different models categories as expressed in the following list.

• Linear Programming Models

• Non-linear Programming Models

• Integer Programming Models

• StochasƟc Programming Models

2.4 Space System Engineering

The integraƟon of MBSE methodology within the project of complex system has found a producƟve
environment in the context of Space Engineering. This field has always been characterized by a high level
of complexity with respect to other engineering applicaƟons. The wide number of products, people, do-
mains and processes involved favours the creaƟon of an environment difficult to manage and control. The
developments of methodologies that can help to beƩer organize such context are seen as extremely in-
teresƟng and strategic for the right design of a correct system. The product life-cycle management (PLM)
process covers a key-role for the definiƟon of a complex space system. A comprehensive work about the
formalizaƟon and definiƟon of the PLM guidelines mainly addressed to the definiƟon of space systems is
available in [7]. Some of themain important concepts on which is based the present work are derived from
the definiƟons and informaƟon provided by this handbook. In parƟcular the high-level perspecƟve on the
integraƟon between themodeling and analysis environments has been selected as primary element for the
implementaƟon of the proposed framework. In this way the developed infrastructure is consistentwith the
concepts already available from the system engineering pracƟce and knowledge coming from space field.
The system design main process can be conceptually represented as in figure 2.6. The schema provides a
clear paƩern of all the relaƟonships that characterize the design acƟvity of a space system. The high-level
design phases can be summarized in the block representaƟon where the product breakdown structure is
idenƟfied aŌer the requirements analysis and the funcƟonal decomposiƟon, clearly separaƟng acƟviƟes
that involve procedures, people, tools and methods different from each other. The main processes of de-
sign and product breakdown structure, funcƟonal and logical decomposiƟon as also requirements analysis
and allocaƟon are all include within the modeling infrastructure of the proposed methodology and frame-
work. The processes of funcƟonal and performances analysis are instead approached within the analysis
infrastructure of the same environment. In this way the main idea is to clearly keeping separated the mod-
eling acƟvity (including processes, people, tools and methods) from the analysis one, which refers mainly
to the evaluaƟon of the design baseline already modeled.

28

Figure 2.6: High-level representaƟonof themain conceptual processes involved in a space systemdefiniƟon
[7].

The product life-cycle management can be approached considering different phases interspersed with
different key decision points. Their definiƟon is strictly dependent on the knowledge matured throughout
the years and for this reason different aerospace agencies have oŌen their own lifecycle management
procedures, milestones and acronyms. Some examples of suchmanagement process are briefly reported in
the following, providing a high level perspecƟve of how space systems development acƟviƟes are organized
[8]. The main phases are oŌen idenƟfied with the most important key decision points and the related
milestones are followedby the delivery of document and reports on the project status. All these documents
contain the descripƟon of the current development level of the system, the results coming from analyses
of its performances and currently opened issues. The considered Ɵmelines are used to properly allocate
the available resources on the basis of the related phase, providing both the Ɵme slots for the organizaƟon
of workload and useful indicaƟons for acƟviƟes coordinaƟon. In figures 2.7, 2.8 and 2.9s are reported the
Ɵme allocaƟons for the various lifecycle phases.

2.4.1 European CooperaƟon for Space StandardizaƟon - ECSS

Some of the topics introduced in the current work have also been developed and extended from the
concepts and definiƟons provided by the European CooperaƟon for Space StandardizaƟon (ECSS) organi-
zaƟon. Such insƟtuƟon is mainly devoted to the coordinaƟon of standardizaƟon acƟviƟes with parƟcular
emphasis on space systems. It is supported by several agencies and companies that are interested in the
definiƟon of a common set of elements, definiƟons and guidelines that can be shared among them. More
details are available on the related web portal [9].
UnƟl few years ago there is no uniform system of space standards and requirements in Europe. Although
the presently used standards and requirements are quite similar, the remaining differences result in higher
costs, lower effecƟveness and in a less compeƟƟve industry.
At the beginning of 1993 the European space community realized that a soluƟon had to be found to over-
come these problems, and expressed their will to develop a new coherent system of European space stan-

29

Figure 2.7: Department of Defense (DoD) Product Life-cycle Management process [8].

Figure 2.8: NASA Product Life-cycle Management process [8].

Figure 2.9: ECSS Product Life-cycle Management process.

30

dards.
The European CooperaƟon for Space StandardizaƟon (ECSS) was started officially in the autumn 1993,
when the partners signed the ECSS terms of reference (TOR), which defined the framework and basic rules
of the system. At this point, the partners jointly undertook the development of the system, designed to
meet themain objecƟve of providing a single coherent set of standards for use in all European space acƟvi-
Ɵes and parƟcularly projects. The European space industry was fully associated with ECSS from the outset.
The first task of the ECSS was to draw up a policy document. A dedicated working group was set up in
late 1993, leading to the publicaƟon of a document enƟtled "StandardizaƟon Policy" under the number
ECSS-P-00. This document reports the different aspects of the system, including scopes, objecƟves, imple-
mentaƟon, authority, organizaƟon and documentaƟon.
ECSS policy dictates, that ECSS standards shall promote the conƟnuous improvement of methods and tech-
niques, and the avoidance of unnecessary work. Experience from past projects and other appropriate
sources shall be systemaƟcally incorporated into the ECSS system. ECSS standards must saƟsfy all Euro-
pean and internaƟonal clients, and shall encourage industrial efficiency and compeƟƟveness by limiƟng
the variety of products and processes. ExisƟng standards like ESA's Product SpecificaƟons and Standards
(PSS) line of documents stated exact details of funcƟons and its quality, together with the means required
to produce the wanted products or services. ECSS standards shall be harmonised with internaƟonal stan-
dards or working pracƟces where these have been, or are in the course of being, generally adopted by
the European space industry. One of the key element of ECSS is represented by the documentaƟon archi-
tecture, which is designed to help the organisaƟon and retrieval of informaƟon within the ECSS standards
system.
The documentaƟon (ECSS documents as Standards, Handbooks and Technical Memoranda) is basically or-
ganized in four main branches that are listed below:

• Space engineering

• Space project management

• Space product assurance

• Space sustainability

The branches are in turn decomposed in several disciplines and domains, as reported in figure 2.10.
The purpose of a space project [92] is to deliver to a customer (and subsequently support or operate if

required) a system which includes one or more elements intended for operaƟon in outer space. The acƟv-
iƟes carried out by the system supplier are conveniently and convenƟonally categorised into five domains,
briefly reported in the following list:

• Project management, responsible for achievement of the totality of the project objecƟves, and
specifically for organisaƟon of the project, and its Ɵmely and cost-effecƟve execuƟon.

• Engineering, responsible for definiƟon of the system, verificaƟon that the customer's technical re-
quirements are achieved, and compliance with the applicable project constraints.

• ProducƟon, responsible formanufacture, assembly and integraƟon of the system, in accordancewith
the design defined by engineering.

• OperaƟons, responsible for exercising and supporƟng the system in order to achieve the customer's
objecƟves during the operaƟonal phases (note; operaƟons may be carried out by the customer, by
the supplier or a third party on the customer's behalf, or by a combinaƟon of these)

• Product assurance, responsible for the implementaƟon of the quality assurance element of the
project and also for certain other specialist acƟviƟes.

The boundaries between such acƟviƟes are not always clearly defined and formalized since for example:

31

Figure 2.10: ECSS disciplines and domains decomposiƟon [9].

32

• The engineering, producƟon, operaƟons and product assurance domains each includes an element
of management which overlaps with the project management domain proper.

• ProducƟon and operaƟons include preparatory and supporƟve engineering acƟviƟes, whichmay also
be considered as part of the engineering domain.

• Product assurance includes reliability, availability, maintainability and safety acƟviƟes, which form
an essenƟal part of the design process in the engineering domain.

HarmonizaƟon between the three branches of the ECSS system - Management, Product Assurance and
Engineering - was iniƟally the acƟvity of a coordinaƟon group including the Secretariat and the Technical
Panel Chairman. ECSS standards are publicly available documents agreed as a result of consultaƟon and
coordinaƟon with space agencies in Europe and with industry, and are designed to secure acceptance by
users and customers.
ParƟcipants in the ECSS incorporate parƟcipaƟng member agencies and the European Space Agency (ESA),
industry and associates. Associates are those governmental and scienƟfic organizaƟons desiring a formal
connecƟon with the ECSS, through which they can monitor the development process of technical docu-
mentaƟon and contribute to the ECSS System.

33

34

Chapter 3

Model Based System Engineering Methodology

3.1 IntroducƟon

Nowadays the Model Based System Engineering (MBSE) philosophy has started to play an important
role for the definiƟon of system model characterisƟcs. The increasing number of variables involved as
also the presence of stakeholders oŌen coming from different backgrounds make very difficult to proper
manage a complex product. MBSE with respect to the tradiƟonal approach provides the basis for a raƟo-
nal organizaƟon of work. Some of the features that contribute to make MBSE one of the most spreading
modeling philosophies are introduced in the following secƟons. A parƟcularly comprehensive and clear
definiƟon of MBSE is reported in the following lines: “Model-based systems engineering (MBSE) is the
formalized applicaƟon of modeling to support system requirements, design, analysis, verificaƟon and val-
idaƟon acƟviƟes beginning in the conceptual design phase and conƟnuing through-out development and
later life cycle phases” and it was available within [10]. One of the main important concept related to the
MBSE approach is represented by the termArchitecƟng. This definiƟon is strictly related to the process that
drives the idenƟficaƟon of certain design soluƟons starƟng from system objecƟves. This process is charac-
terized by the analysis of the objects and their relaƟonships for the invesƟgaƟon of the beƩer configuraƟon
for the system under evaluaƟon. The main objecƟve is represented by the generaƟon of a balanced ar-
chitecture where all the elements are harmoniously connected as much as possible. During this phase
the system engineering work is also affected by the presence of policies, principles, procedures, budgets,
reviews and other acƟviƟes. Under these condiƟons the system design process can be characterized by
the appearance of omissions, misinterpretaƟons and inconsistencies that later in the development phases
can be the sources for a wide range of problems. The main target of MBSE methodology is the reducƟon
of such problems that can considerably affect the system performances or delay foreseen Ɵme to market.
The generaƟon of a system model in a structured form with a well-defined modelling formalism is one of
the most challenging features of the current research topic. In this way it is possible to follow the design
during the development process in a more structured manner with respect to the tradiƟonal approach as
the project matures.
A model based approach shows also the characterisƟcs for a seamlessly integraƟon with object-oriented
infrastructures andmethodologies. Object-oriented philosophy is currently evaluated for a deeper integra-
Ɵon within simulaƟon environments as can be seen for example in [86]. The benefits that can be achieved
are reflected in a more effecƟve management of the overall lifecycle of a system.
TradiƟonally large projects have employed a document-based (also known as document-centric) systems
engineering approach. All the informaƟon related to the system design and the data exchanged are mainly
managed through documents. The generaƟon of textual specificaƟons and design documents character-
izes the process of informaƟon exchange between all the stakeholders that are involved within the project
(customers, users, developers and testers). This approach oŌen lead to a Ɵme consuming acƟviƟes that
are not directly related to the project itself, since documents generaƟon, consistencies check and pro-
duced drawings validaƟon cover a large amount of Ɵme. This approach has deeply influenced the system
engineering acƟvity of the last years but when the system begins to increase its complexity this methodol-
ogy becomes difficult to control and manage. For example requirements traceability becomes even more

35

challenging when the development process proceeds. This approach of document-based exchange of in-
formaƟon and specificaƟons is difficult to update and oŌen results in a poor synchronizaƟon between the
involved resources. These and other problems can result in an ineffecƟve product development and po-
tenƟal quality issues come out during integraƟon and tesƟng acƟviƟes. In the worst scenario system faults
are discovered once the product has been delivered to the customer. Model-based approach has shown
the capability to reduce these problemswith an improvedmanagementmethodology. AmathemaƟcal for-
malism of this methodology has been introduced in the 1993 and electrical and mechanical domains were
the first to be characterized. This standard pracƟse has started to spread over other disciplines, showing
the benefits of a beƩer structured approach.
System model generally is defined with the support of a modeling tool and all the informaƟon is gathered
within a model repository and includes data related to specificaƟons, design, analysis and verificaƟon. Sys-
tem model is tradiƟonally created from a document-centric vision and all the informaƟon are exchanged
through documents that oŌen are not well synchronized with the data available for a parƟcular design
phase. This situaƟon leads generally to a difficult management of all the informaƟon above all when the
product complexity increases. In this context the SysML language can provide some interesƟng capabil-
iƟes for a correct development of system features. Within the MBSE perspecƟve system model can also
be characterized by the integraƟon with engineering analysis and simulaƟon with the final aim to provide
useful computaƟon funcƟonality. The other fundamental element of MBSE paradigm is represented by
the model repository, highlighƟng the same importance of the system model itself. This element allow
to proper store all the diagrams and informaƟon associated to the system model, reporƟng all the data
involved up to a parƟcular phase of system development. In this way it is possible to generate the docu-
mentaƟon directly from the model, reducing the Ɵme required for the creaƟon of the proper report as in
the tradiƟonal design methodology. In this case in fact the modeling environment is not directly linked to
the tool used for the generaƟon of report and documents. MBSE methodology is instead centred on the
formalizaƟon of all the systemmodel informaƟonwithin the samemodeling tool, allowing for an automaƟc
or semiautomaƟc generaƟon of reports. In this way the same elements on different diagrams represent
the same things and the problems related to consistency check are reduced. This approach limits also the
definiƟon of wrong objects since the semanƟc architecture of the modelled system can be implemented
only following certain rules and specificaƟons. In this way is possible to guide the characterizaƟon of the
data introduced. In the same manner it is possible to beƩer control the possible violaƟons of constrains,
reporƟng the elements affected and providing the instruments for the correcƟon of such situaƟons. The
potenƟal benefits, current issues and open points are available from different research iniƟaƟves and an
interesƟng descripƟon can be found in [70].
The current transiƟon towards amodel-based approach is animated by different reasons and a few of them
are summarized in the following list.

• Enhancement of communicaƟons between all involved stakeholders

• ReducƟon of development risk

• Quality improvement

• ProducƟvity increase

• Enhancement of the knowledge transfer

Clear definiƟons of Method and Model term may be useful for the analysis provided in the following
secƟons. Model term represents one or more concepts that are used for the descripƟon and evaluaƟon of
something in the physical world. Generally the model is an abstract definiƟon referred to a certain domain
of interest and does not contain all the required details for the descripƟon of thewhole system. Models can
be generatedwithin different contexts depending on the parƟcular needs for a certain situaƟon. Graphical,
mathemaƟcal or logical models are all different manners to represent the same system under various per-
specƟves. Also a physical prototype represents a parƟcular form of model that allows represenƟng some
parƟcular aspect of the product under evaluaƟon. The model taxonomy of this work follows the definiƟon

36

Figure 3.1: RelaƟonships between different kinds of models [11].

introduced by Eisenmann, Miro and De Koning [11] and formally expressed in figure 3.1 where the main
six model objects are reported.

The term Method refers generally to a group of acƟviƟes, techniques and convenƟons that are used
to define one or more processes through the support of tools. This element is fundamental to organize
the workflow and to proper define the data exchanges between the stakeholders involved within a certain
project. The main objecƟves of system modeling can be summarized in the following ones.

• CharacterizaƟon of an exisƟng system

• SpecificaƟon and design of a new or modified system

• EvaluaƟon of system features/performances

• Training of the users/stakeholders on how to operate and maintain the system

One important disƟncƟonmust be introduced when considering the model and design terms. A model
is defined on the basis of its intended purposes, considering a certain context of applicability. Design refers
instead to howwell a certain system soluƟon is capable to saƟsfy customer requirements. The same physi-
cal element can be represented with different models on the basis of a certain parƟcular needs. The scope
of the model affects significantly the level of resources employed for its implementaƟon and can be for-
malized through the definiƟon of model breadth, depth and fidelity. Model breadth represents how many
elements are needed in the definiƟon of systemmodel for a certain level of implementaƟon. Model depth
refers instead to the hierarchical depth of the considered objects. For example the model depth increases
as the project proceeds through the development. The same thing is represented on different levels as the
object complexity increases as the project becomes more detailed. Finally model fidelity is related to the
capability to generate responses that are equal to real results as much as possible.
The consistency of model constraints can be checked through the use of different approaches supported
by various instruments, ensuring the correctness of implemented elements. For example object constraint
language (OCL) is one of the ways used to formalize the relaƟonships between some system parameters,
allowing for a beƩer control of potenƟal requirements violaƟon.

37

Model definiƟon is a process that requires parƟcular aƩenƟon when people with different domain-specific
educaƟon have to interface with each other on the same framework. It is important in this sense to under-
stand how the model is understandable since informaƟon not directly needed by the single stakeholder is
all presented together. InformaƟon overload is in this case one of the problems that may arise during the
process of data exchange and visualizaƟon. Modeling tools can offer different funcƟonality for the man-
agement of such informaƟon since all data are formalized following a parƟcular paƩern. In this manner
the informaƟon can be filtered on the basis of the specific needs of the related stakeholder. For exam-
ple thermal engineers can filter and manage only the informaƟon directly related to their thermal domain
environment. Model based approach offers also interesƟng instruments for the invesƟgaƟon of design
quality. The availability of formalized data within the systemmodel allows building specific metrics regard-
ing design features for example and these one can be used to evaluate design performance and saƟsfacƟon
level for the implemented requirements. Different techniques can also be used to monitor the progresses
of project development once the system model is defined in the proper way (for example properƟes man-
aged through standard technical performance measurement - TPM).
In the same manner the progresses and development efforts required to reach a certain degree of com-
pleteness of the system project can be monitored, ensuring a beƩer control of the available resources. An
esƟmaƟon of the efforts and costs to complete the design can be foreseen with the use of proper model of
invesƟgaƟon in the context of model based approach. This last feature represents surely one of the main
advantages with respect to the tradiƟonal design methodology.
In order to beƩer explain the concepts that will be introduced in the following secƟons should be useful to
properly define the terminology that will be used. A brief explanaƟon of the terms used will help to avoid
the possible misunderstandings about the topics and features that will faced. The definiƟons used for the
explanaƟon of the current concepts come from thework [12], where a clear disƟncƟon amongwords oŌen
used as synonymous is provided. The word methodology is oŌen expressed as synonymous of the word
process while they should refer to different concepts. To beƩer understand the differences between such
two words the definiƟons of process,method, tool and environment are considered:

• A Process is a logical sequence of tasks performed to achieve a parƟcular objecƟve. Such term basi-
cally defines “WHAT” is to be done, independently from the way such tasks are done.

• A Method includes the techniques that are used to perform a certain task, defining “HOW” each
task must be done. The word method can be alternaƟvely interchanged with the term technique,
pracƟse and procedure. The process tasks are basically performed using methods and such paƩern
is repeated for different detail levels. In parƟcular each method can also be seen as a process itself
since the “HOW” of one level becomes the “WHAT” for the next lower level.

• A Tool is an instrument that is applied in the context of a parƟcular method to improve the efficiency
of a specific task. The applicaƟon of a specific tool is oŌen realized through somebody with proper
skills and training. Referring to the previous definiƟon a tool can be considered as the element that
enhances both the “HOW” and the “WHAT”. Computer Aided Engineering (CAE) tools fall within
such class since they are conceived mainly to support the design and analysis phases for system
development.

• An Environment represents the surroundings, the external elements, condiƟons, or factors that af-
fect the acƟons and/or responses of an object, individual person or group. The cited condiƟons can
be represented by social, cultural, personal, funcƟonal, organizaƟonal or physical events.

Once these concepts have been clarified through the proper definiƟon of the related terminology the
wordmethodology can be beƩer understood. In parƟcular a methodology can be defined as a collecƟon of
related processes, methods and tools that are conceived and integrated to approach a certain class of prob-
lems that share some common element (as expressed in [13]). The main focus of a project environment is
to provide the proper support for the integraƟon and applicaƟon of tools and methods used in the related
project. The relaƟonships between all the just introduced concepts can be graphically represented in figure
3.2, where the correlaƟons with technology and people are also reported [12]. Technology capabiliƟes and

38

Figure 3.2: Process, Methods, Tools and Environment elements and relaƟonships with technology and
people.

limitaƟons must be well understood before the definiƟon of a methodology and related infrastructure. In
fact the correct development of a project will be affected in the way the technology is exploited since it
can help or slowdown system engineering efforts. The definiƟon of methodology infrastructure requires a
balanced parƟƟoning of Process, Methods, Tools, and Environment, considering also the knowledge, skills
and abiliƟes (KSA) of the people involved.

3.2 INCOSE iniƟaƟve

The InternaƟonal Council of System Engineering (INCOSE) represents the organizaƟon that covers a
key-role in the definiƟon of MBSE ontology and its spreading all over different engineering fields both
in academic and industry. Regular workshops and conferences are organized by INCOSE to support the
integraƟon of such methodologies within the current system engineering strategies. A well-defined MBSE
roadmap has been idenƟfied to schedule the main objecƟves and improvements that might be reached in
future developments. The desired maturity levels with respect to the temporal evoluƟon are reported in
figure 3.3 as presented in [14].

The conceptual paƩern refers to the areas reported in the lower-right corner and they are also briefly
repeated in the following list:

• Planning and support

• Research

• Standards development

• Processes, pracƟces and methods

• Tools and technology enhancements

• Outreach, training and educaƟon

The main topic of the current work can be related with the concepts presented in the just introduced
diagram. In parƟcular the capabiliƟes I refer to are both represented by design opƟmizaƟon across broad
trade space and cross domain effects based analysis.

39

Figure 3.3: INCOSE MBSE Roadmap [14].

The primary efforts are addressed towards the improvement ofMBSE architecture and their maturity level.
In parƟcular the main direcƟon is represented by the passage from the emerging MBSE standards to dis-
tributed and secure model repositories crossing mulƟple domains. The extension of maturity level is con-
currently characterized also by the improvement of MBSE capabiliƟes. In this context the reduced cycle
Ɵmes turns into system of systems interoperability and finally introducing design opƟmizaƟon across broad
trade space. In this utopian vision the MBSE paradigm provides a clear environment for analyses based on
cross domain effects. InteresƟng challenge teams and research groups have been involved within the IN-
COSE iniƟaƟve and space applicaƟons have been approached with such methodology. The INCOSE Space
System Working Group (SSWG) is one of such teams and their reference case to assess the benefits of
such modeling technique has been idenƟfied with the FireSat mission, available from the literature (Space
Mission Analysis and Design [15]).

3.2.1 System modeling language - SysML

Currently one of the most widespread modeling languages that has been used for the definiƟon of
system characterisƟcs from different viewpoints is represented by System Modeling Language (SysML). In
parƟcular this language is now drawing the aƩenƟon in the context of system engineering due to the well
suited advantage to model a high number of system features, starƟng from the topological ones but also
covering other fields as the operaƟonal and funcƟonal characterisƟcs for example. Its capability to repre-
sents the main features in a flexible way and covering different domain- specific modeling techniques is
one of the most interesƟng key-role. Currently different research groups are involved in the assessment
of the feasibility of aerospace system modeling. The main aim is the evaluaƟon of the potenƟal benefits
and drawbacks related to the modeling of complex system (such as product related to space applicaƟon),
where a wide range of people with different skills and backgrounds are involved on the same project. In
parƟcular study research topics are addressed towards the understanding of the actual scalability of SysML
to system with a high level of details and the possible integraƟon of such language with automated code
generaƟon. This last feature is directly related to the possibility to run simulaƟons starƟng from the “rep-
resentaƟve” model definiƟon. With this last term we idenƟfy the model that contains all the informaƟon
related to the model characterisƟcs but it does not contain codes or similar runnable simulaƟon model. In
this way the evaluaƟon of system performances can be realized already in the early phase of the project. In
this case one of the main challenging topics is represented by the integraƟon between the representaƟve
system model and external (or SysML embedded) simulaƟon solver (as for example external simulaƟon
proprietary tools). Currently an increasing number of commercial tools offer the capability to support and

40

developMBSE concepts within the system project. In parƟcular as SysML/UML tools offer the implementa-
Ɵon of simulaƟon capabiliƟes through the installaƟon of proper plug-ins also mulƟdisciplinary simulaƟon
tools offer the funcƟonality to implement some of theMBSE project methodologies. In the first case SysML
tools allow to build simulaƟon codes starƟng from the available informaƟon provided through parƟcular
classes of diagrams. For example the parametric diagrams are defined within SysML environment and
they are mainly used with this purpose. They allow formalizing the physical and constraint relaƟonships
between the model classes and objects introduced within the project. Numerical values and parameters
can be related to the object in a more effecƟve way with respect to the tradiƟonal approach, reducing the
possibility to introduce consistence errors between the modeled elements. This informaƟon can then be
used to build simulaƟon codes that are sent for example to external solvers. The results coming from these
simulaƟons can then be post-processed in the same modeling environment with the proper instruments.
In this way is possible to manage and check the possible inconsistency between the elements involved
within the product development.
For this reasons some projects are currently evaluaƟng the SysML for the architecture design, simulaƟon
and visualizaƟon as reported in [83].
From the previous consideraƟon SysML seems to be an interesƟng language for the modeling of system
features from different point of view, above all considering the different disciplines that have to deeply in-
teract during the development. One of the main benefit related to SysML modeling tools are represented
by the flexibility to manage different aspects of the same project. This modeling approach is addressed to
system engineering that have to monitor and check a wide range of variables and parameters during the
project. In this case the system engineers have to learn a new modeling instrument for their space appli-
caƟon purposes. This last aspect seems to be one of the drawbacks related to the use of SysML language.
This language is however designed to unify the diverse modeling language currently used by system en-
gineers as Unified Modeling Language (UML) is conceived to standardize the modeling languages used by
soŌware engineers. As previously introduced SysML allows supporƟng the specificaƟons, analysis, designs,
verificaƟons and validaƟons of a wide range of complex systems. The diagrams used for such a purpose
are represented by the Block DefiniƟon diagram, Internal Block diagram, Package diagram, Parametric di-
agram, Requirements diagram, AcƟvity diagram and Use Case diagram. Nowadays different commercial
soŌware-houses offer SysML plug-in as complementary elements for their UML soŌware suites.
The SysML specificaƟon includes the definiƟon of the previously set of diagrams that allow to manage all
the system informaƟon in a consistent way. Each diagram is related to a parƟcular aspect of the system
architecture and offers a wide range of features for the parƟcular element to be modeled. These diagrams
can be associated to four main groups which are oŌen denoted as the four pillars of SysML language. A
conceptual overview of these four pillars is represented in figure 3.4.

SysML Block DefiniƟon Diagrams (BDD)

This class of diagrams is used to define the features of a block and any other relaƟonships between
blocks such as associaƟons, generalizaƟons and dependencies, characterizing properƟes, operaƟons and
aƩributes. This kind of diagrams is generally used to model the system hierarchy or a system classificaƟon
tree. They are used to clearly define structural composiƟon, interconnecƟon and classificaƟon of the in-
volved technologies. FuncƟon-based representaƟons are also integrated and allow to model state-based
behavior of the system. In parƟcular this diagram is used to represent structural elements (also defined
as blocks), their relaƟonships, composiƟons and classificaƟons. SysML BDD is derived from UML class dia-
gram with some modificaƟons.

SysML Internal Block Diagram (IBD)

SysML Internal Block Diagram (IBD) is typically used to model the restricƟons and extensions that char-
acterize the represented element. An IBD captures the internal structure of a Block in terms of properƟes
and connecƟons among the properƟes. In this case the ports, the connectors and the linked parts are rep-
resented with the final aim to highlight how the objects are internally defined. SysML IBD has been derived

41

Figure 3.4: Pillars of SysML language [102].

from UML composite structure diagram with liƩle modificaƟons.

SysML Package Diagram

Another class of diagrams is represented by the SysML package diagrams. They are typically introduced
to organize models by parƟƟoning model elements into groups and establishing also the dependencies be-
tween other packages or model elements. The project can be effecƟvely organized in a more suited way
with the package elements since also the view object are organized within such representaƟon. UML lan-
guage also implements the same kind of diagrams with no differences.

SysML Parametric Diagram

SysML Parametric Diagram can be considered as a special case of the IBD class. They are quite similar
with the only difference represented by the fact that the connectors allowed are the binding connectors.
Such diagrams are mainly used to model the constraints that affect the properƟes of a parƟcular block.
They will contain both constraint properƟes and constraint parameters, defining the relaƟonships that
bound certain parameters to other one. In this way it is possible to model physical relaƟonships, con-
straints and similar associaƟons between the parameters modeled. This kind of diagram is generally used
to build trade-off analysis for the configuraƟons modeled in the same project. A constraint block can be
used for example to define an objecƟve funcƟon to compare all the available and alternaƟve soluƟons.
This kind of diagram is not present in UML modeling environment.

SysML Requirements Diagram

SysML Requirements Diagram is one of the most interesƟng elements introduced within the SysML
formalism since UML does not include such representaƟon types. Text-based requirements can be stored
properly and it is also possible to clearly define relaƟonships with other requirements, design objects and
also test cases. In this manner it is possible to ensure a well-organized traceability between the various
elements involved in the design process.

42

SysML AcƟvity Diagram

SysML AcƟvity Diagram has been derived from UML with liƩle modificaƟons. This type of representa-
Ɵon is used mainly to model the behavior of the system with respect to the input and output flows that
characterize the interconnecƟons between objects. In parƟcular it is possible to order acƟons that interact
between each other on the availability of inputs and outputs, defining how the acƟons themselves trans-
form these ones.

SysML Use Case Diagram

SysML Use Case Diagram is used to represent the funcƟonaliƟes that the system is able to accomplish,
considering in parƟcular how the involved enƟƟes are used or managed by external users or other ele-
ments. The main aim of this visualizaƟon is to clearly define the relaƟonships of the involved enƟƟes in
reaching some targets. This type of diagram is also present within the UML language specificaƟon.

SysML Sequence Diagram

SysML Sequence Diagram has a corresponding representaƟon within the UML language. This type of
diagram equivalently has been conceived to report the behavior of the system of interest as a temporal se-
quence of the informaƟon exchanged (physical quanƟƟes, electrical signals, messages, etc. for example).
This kind of representaƟon is quite similar to the one considered in the acƟvity diagrams but in this case the
focus is on the temporal evoluƟon of the involved acƟons rather than the enƟty involvedwithin the process.

SysML State Machine Diagram

SysML State Machine Diagram is generally used to model the behavior of a system in terms of the tran-
siƟons between the different stages that characterize how the system model responds to commands or
external inputs. These events can trigger the transiƟon from one stage to another for the system under
evaluaƟon and this aspect is captured within state machine diagrams.
The diagram type chosen for the modeling of a certain system feature constrains the elements that can be
modeled within such diagram and this characterisƟc reduces the possibility to introduce errors within the
modeled context.
SysML represents a valid alternaƟve for the management of complex system from its early development
phases and its main use is related to the support of acƟviƟes in the context of MBSE methodology. SysML
does not impose a specific method to model system informaƟon starƟng from the requirements. The
method chosen is strictly related to the industry knowledge and development process paƩern which de-
termine what acƟviƟes are performed first and the arƟfact that have to be delivered before pass to the
following acƟon. One method is represented by the decomposiƟon of system funcƟon from the require-
ments specificaƟon. The idenƟfied funcƟons are then allocated to components and then system perfor-
mances are evaluated before starƟng another decomposiƟon for a more detailed level. AlternaƟvely the
use case driven approach starts from the scenarios that the system has to face. The funcƟonaliƟes that the
system must show are derived from the operaƟonal scenarios and all the funcƟons are then derived and
allocated to the various elements. The interacƟons among parts are then invesƟgated and beƩer defined
before proceeds to the next phases. In both case the illustrated processes are iteraƟvely performed unƟl a
saƟsfactory design has been obtained (consistently with the customer needs). The two methods can pro-
duce different diagrams and informaƟon in various manners to represent system design but in both cases
SysML can be used to support and formalize the modeling acƟviƟes.
SysML language can be used iteraƟvely to proper obtain the final design and some of the main involved
acƟviƟes are summarized conceptually in the following list.

• Capture, analyze and formalize system requirements

43

• Define and develop one or more design soluƟons to saƟsfy customer needs

• Perform engineering and trade-off surveys to invesƟgate and idenƟfy/select a valid architecture

• Specify and allocate requirements to components, ensuring traceability to system requirements

• Verify that the design saƟsfy the requirements performing system-level test cases

One of the main advantages of SysML semanƟcs is the development of an integrated and consistent
model where the model objects defined on one diagram can be related to model objects on other diagram
(represenƟng however the same enƟty), avoiding the need to redefine the same element just created
and automaƟcally ensure that the element is consistent with the other representaƟons of itself (on other
diagrams for example).

3.2.2 Taxonomy and definiƟons

The notaƟon used to describe the features of the proposed infrastructure is based on the UML/SysML
notaƟon. In this way it has been possible to formalize all the concepts used for the definiƟon of the concep-
tual framework. The related notaƟon includes in fact all the elements needed to clearly define the objects
and conceptual data. The definiƟon ofmodel andmeta-model terms is strictly related to the following con-
ceptual acƟviƟes and a first explanaƟon of such concepts is provided in the following lines. In this context
they are used to beƩer describe SysML/UML notaƟon but a more extended descripƟon is provided for the
definiƟon of the overall conceptual infrastructure (in the following chapters).
Amodel can basically be defined as an abstract and conceptual representaƟon of a system (or generally of
any conceivable enƟty) that emphasizes both the "sub-objects" (or sub-enƟƟes) which compose the over-
all system and the relaƟonships between them and their properƟes and behaviours.
On the other side ameta-model generally defines all the "rules" regarding how a model must be done. It
highlights in parƟcular what kind of objects, properƟes, and relaƟonships the model could envisage, and
how properƟes and objects contain or are associated to others.
A more explanatory definiƟon for the meta-model term is available from [91] and is provided in the follow-
ing lines for the sake of clarity.

"A view of the real world (i.e. human--oriented concepts) in terms of object types, their characterisƟcs
and relaƟons between object types. Knowledge about the real world is expressed in terms of elementary
facts, constraints and derivaƟon rules. Different terminology is used for the same concepts within different
modelling methodologies. [...] A conceptual model can be seen as a network of object types and relaƟons,
further refined by constraints and rules that shall or should be saƟsfied. Some of these relaƟons are of part
of nature and of special interest for determining the user views of the model, i.e. a conceptual model is not
just a network of definiƟons but organized into hierarchical sets of definiƟons that represent the user views"

Meta-model notaƟon is derived from the SysML one, referring to the UnifiedModeling Language(UML)
specificaƟon, the conceptual model is defined using the standard UML class diagram notaƟon. To compre-
hend the meta-model diagram it is first necessary to describe the typology of exisƟng relaƟons between
the different Engineering Data Item (EDI) Classes which compose themodel database (EDI classes concepts
are detailed in the appendices). Conceptual data are represented by rectangles in the diagrams, and rela-
Ɵons are represented by arrows with different ends, depending on their role, which link the rectangles. A
conceptual data represents a concept whose instanƟaƟon is a specific data item, related to definiƟon of a
class. There are four main kind of relaƟon:

• AssociaƟon is a relaƟonship where all object have their own lifecycle and there is no owner. Let’s
take an example of Teacher and Student. MulƟple students can associate with single teacher and
single student can associate with mulƟple teachers but there is no ownership between the objects
and both have their own lifecycle. Both can create and delete independently.

44

• AggregaƟon is a specialize form of AssociaƟon where all object have their own lifecycle but there is
ownership and child object cannot belongs to another parent object. Let’s take an example of De-
partment and teacher. A single teacher cannot belong to mulƟple departments, but if we delete the
department teacher object will not destroy. We can think about “has-a” relaƟonship.
AggregaƟon differs from ordinary composiƟon in that it does not imply ownership. In composiƟon,
when the owning object is destroyed, so are the contained objects. In aggregaƟon, this is not neces-
sarily true. For example, a university owns various departments (e.g., chemistry), and each depart-
ment has a number of professors. If the university closes, the departments will no longer exist, but
the professors in those departments will conƟnue to exist. Therefore, a University can be seen as a
composiƟon of departments, whereas departments have an aggregaƟon of professors. In addiƟon,
a Professor could work in more than one department, but a department could not be part of more
than one university.

• ComposiƟon is again specialize form of AggregaƟon and we can call this as a “death” relaƟonship.
It is a strong type of AggregaƟon. Child object does not have their lifecycle and if parent object
deletes all child objects will also be deleted. Let’s take again an example of relaƟonship between
House and rooms. House can contain mulƟple rooms there is no independent life of room and any
room cannot belongs to two different house if we delete the house room will automaƟcally delete.
Let’s take another example relaƟonship between QuesƟons and opƟons. Single quesƟons can have
mulƟple opƟons and opƟon cannot belong to mulƟple quesƟons. If we delete quesƟons opƟons will
automaƟcally delete.
Both are ways of designaƟng or grouping items by relaƟonship. In the case of composiƟon, if the
links that bind the objects are broken, then all objects are destroyed. In aggregaƟon, it's a looser
grouping, and if the links are broken the original objects sƟll exist.

• GeneralizaƟon is not an AssociaƟon, because it is not defined at instance level, but at class level.
It indicates that a concept is a subtype with respect to a second concept, in the sense that the last
one comprises the first one. It is indicated with a hollow triangle in the side of the general concept.
It is basically used to define the relaƟonship between two classes where one of them inherits the
aƩributes and funcƟons from the more general one. In this way it is possible to group the properƟes
andmethods that are common across different classes while the specialized class can include specific
aƩributes and funcƟons.

MulƟplicity defines the number of instances of one class which may be linked to one instance of the
other class. They indicate the maximum and the minimum allowed value of this number. RelaƟons de-
scribed above are represented (perhaps even more clearly) in figure 3.5:

3.2.3 SysML tools

Different soluƟons following SysML specificaƟon are currently available both commercial and open-
source. A brief list of SysML commercial tools is represented in the following.

• Enterprise Architect + MDG Technology for SysML (vendor: Sparx Systems)

• UModel Enterprise EdiƟon (vendor: Altova)

• MagicDraw + SysML plugin (vendor: No Magic)

• RaƟonal Rhapsody Developer (vendor: IBM)

• ArƟsan Studio (vendor: Atego)

The following list reports instead some of the open-source SysMLmodeling tools and plugins, which are
typically free to use for personal use and their uƟlizaƟon is regulated by open-source licensing condiƟons.

45

Figure 3.5: NotaƟon for the main relaƟons used to define the object belonging to the overall meta-model.

• Modelio Free EdiƟon + Modelio SysML Designer module (source: Modelio Open Project)

• TOPCASED-SysML (source: TOPCASED Modeling Framework Open Source Project)

• Papyrus for SysML (source: Papyrus Open Source Project)

3.2.4 SemanƟcally-Rigorous System Engineering using SysML and OWL

SysML language is currently one of the most widespread and accepted graphical modeling soluƟon for
system engineering. OMG specificaƟons are supporƟng such modeling language, providing useful help
for the management of system engineering acƟviƟes. OWL language (which stands for Ontology Web Lan-
guage) is currently widespread as knowledge representaƟon language. The specificaƟons of such language
are defined by the W3 industry consensus and the main strength is represented by the logical formalism
and general applicability. Currently different research acƟviƟes are addressed to the integraƟon of both
this formalmodeling language ([16]). One of themost important features related to systemdesign is strictly
related to the definiƟon of logical reasoning formalism. This element can be involved in the requirements
tracing process, allowing for a beƩer management of the specificaƟons themselves. The interface compat-
ibility can also be beƩer checked through the formalism defined within this context. Another important
aspect is also related to the control of viewpoint consistency between different system perspecƟves.
Themain acƟvity relate to the integraƟon of OWL and SysML languages are represented by the definiƟon of
a well based set of OWL ontologies for the formalizaƟon of general concept and properƟes in a hierarchical
context. These categories can be represented for example by discipline, applicaƟon, mission and project.
The main idea is represented by the development of OWL ontologies for SysML. These are then used to
formalize and capture the object properƟes with the main aim to allow for SysML to OWL transformaƟon.
One of the other interesƟng features is represented by the extracƟon and transformaƟon for specialized
analysis tools (through a clear formal representaƟon of the exchanged data – Maple and MathemaƟca for
example). Future developments regard mainly the possibility to simplify the profile generaƟon code.

46

Figure 3.6: Convergence process between INCOSE and NAFEMS [17].

3.2.5 Systems Modeling & SimulaƟon Working Group (SMSWG)

The integraƟon of simulaƟon and analysis capabiliƟes within a model based infrastructure is one of the
most challenging and promising research acƟviƟes. Such interest is also highlighted by the recent creaƟon
of a joint working group between the InternaƟonal Council on Systems Engineering (INCOSE) and the In-
ternaƟonal AssociaƟon of the EngineeringModelling, Analysis and SimulaƟon Community (NAFEMS). Such
joint iniƟaƟve is addressed towards the mutual parƟcipaƟon and collaboraƟon for the advancement of en-
gineering simulaƟon and model based systems engineering. One of the main objecƟves is represented by
the promoƟon of a deeper understanding of the integraƟon strategies for mechanical analysis and simula-
Ɵon within a model based system engineering environment. Nowadays the successful evoluƟon of MBSE
methodologies with the supervision of INCOSE has shown the significant opportuniƟes which come out
from a stronger cooperaƟon with key engineering disciplines such as soŌware and CAE. More details about
such cooperaƟon can be found in the presentaƟon concerning the NAFEMS – INCOSE CollaboraƟon Kick
Off during the INCOSE InternaƟonal Workshop 2013 [17]. This recent joint relaƟonships highlights how the
integraƟon between a model-based system modeling environment and analysis framework is currently
one of the most invesƟgated area of research. The purpose of such iniƟaƟve can be summarized in figure
3.6where the convergence between the corresponding project is highlighted.

3.3 CollaboraƟve environments

CollaboraƟveWorking Environments (CWE) have been conceived to support people work both individ-
ually as well as from a cooperaƟve perspecƟve. The main objecƟve of such environments is addressed
towards the definiƟon of infrastructures that ideally involve people not directly working within the same
geographical place. The capability to enhance the overall effecƟveness with respect to a parƟcular project
is strictly related to different aspects that range from support faciliƟes to conceptual organizaƟon of the
work. ApplicaƟon sharing, document management, collaboraƟve workspace or workflow organizaƟon are
some of the elements that generally make the difference in the development process of a certain product.
In the last few years the development of increasingly complex system has lead towards the definiƟon and
invesƟgaƟon of a wide range of collaboraƟve architectures and related processes. The main aim of such
research acƟviƟes has been addressed to the idenƟficaƟon of the best soluƟon for the management of
all the available resources. Different collaboraƟve infrastructures have been conceived with such purpose
and they are mainly applied during the preliminary design phases. Such infrastructures become difficult to
manage and properly exploit as the development process move towards more detailed steps. One of the

47

main objecƟves of the present work is also represented by the invesƟgaƟon of the possible improvements
that a MBSE methodology can introduce in the design of space systems during the advanced stages of the
project (phases B-C for example). Currently some research efforts are also addressed towards the analysis
of the possible alternaƟve soluƟons that can be chosen for the integraƟon of a distributed environment
and web-services capabiliƟes.
Some of the most interesƟng research acƟviƟes performed few years ago have led to the development
of a collaboraƟve environment which is known as Concurrent Design Facility (CDF). CDF has been mainly
conceived for the preliminary phases of space systems and it is basically a state-of-the-art facility equipped
with a network of computers, mulƟmedia devices and soŌware tools, which allows a team of experts from
several disciplines to apply the concurrent engineering methods to the design of future space missions
[18]. The main focus of such infrastructure can be idenƟfied with the capability to perform the assessment
studies of future missions with fast and effecƟve interacƟon of all disciplines involved, ensuring consistent
and high-quality results in a much shorter Ɵme. The acƟviƟes that can be performed within such environ-
ment can be summarized in the following ones: conceptual design, mission trade-offs, reviews of industrial
phase A studies, scienƟfic requirements definiƟon and consolidaƟon, opƟons evaluaƟon, new technology
validaƟon, anomaly invesƟgaƟon, educaƟon and training [19].
The Concurrent Design Facility was established at ESTEC in November 1998 within the framework of the
General Studies Programme and has been directly involved on different European scienƟfic missions.
CollaboraƟve environments basically built on the basis of the CDF architecture can be found within differ-
ent scienƟfic organizaƟon or industrial companies. They are mainly used in the field of space systems to
support the preliminary development phases. Such environments are currently not conceived to be used
in the advanced phases of the project where a collaboraƟve process is strictly affected by each company
experƟse or project seƫngs. CDF shows some interesƟng advantages with respect to the tradiƟonal ap-
proach in the management of a collaboraƟve workflow. In this case a more effecƟve improvement may
be achieved with an extension of the related philosophy also to the more detailed phases of the design.
The related concepts can in fact also applied in the case of more advanced phases but such integraƟon re-
quires the redefiniƟon of the overall infrastructure. The main ideas are sƟll valid but the constraints linked
to the resources involved during the overall process need to be properly managed. CDFs are generally rep-
resented by open-space workplace where around twenty persons work together, involving basically differ-
ent specialists coming from various domains. The same approach is not pracƟcally applicable in the more
advanced phases and the overall architecture must be rethought. In this case a distributed environment
seems to show some promising features with respect to previous concept of a collaboraƟve environment
located in the same place, corresponding also to the same room in the case of CDF.
Working environments based on distributed approach can enhance themulƟdisciplinary integraƟon across
the advanced phases of the project, easing the coordinaƟon and collaboraƟon between different engineer-
ing teams oŌen located in different places (not necessarily in the same room). Such situaƟon generally
characterizes the advanced phases of system design where groups of different domains start to grow with
respect the preliminary phases. During the later phases the number of people and resources involved be-
comes difficult to manage through an infrastructure similar to CDF and alternaƟve soluƟons are then con-
sidered. New model-based methodologies have been developed to manage the next-generaƟon complex
systems and they are mainly conceived in the context of collaboraƟve environments. InteresƟng results
are provided by different research iniƟaƟves and [103], [104] and [105] are examples of these projects (a
conceptual representaƟon of the environment proposed in [104] is provided in figure 3.7).

One of the main important aspects in the context of CollaboraƟve Environments is represented by the
data exchange and such element must be taken into account with parƟcular aƩenƟon. The correct defini-
Ɵon of such process makes the difference between an effecƟve and an ineffecƟve collaboraƟve workplace.
The right definiƟon of data exchange process must be built from a conceptual model of data classes and
their relaƟonships. A more detailed descripƟon about data model will be introduced in the following.

48

Figure 3.7: FUSED Framework: control and data flows between models [105].

3.4 Examples of MBSE iniƟaƟves and CollaboraƟve Engineering envi-
ronments

Currently there are different research iniƟaƟves focused on the evaluaƟon of MBSE methodology as
a useful infrastructure for the management of complex systems. In parƟcular such acƟviƟes have mainly
involved companies and organizaƟons that work on aerospace systems which have started first to inves-
Ɵgate the potenƟal benefits of such approach with respect to the tradiƟonal one. An interesƟng survey
on the advancing of System Engineering methodologies and on the early phases of integraƟon of MBSE
methods is provided in [88]. In parƟcular the main focus of such acƟvity is represented by experience ma-
tured through the Systems Engineering Advancement (SEA) Project. The SEA Project developed products,
services, and training to support managers and pracƟƟoners throughout the enƟre system life-cycle. In
parƟcular the main efforts were addressed towards the invesƟgaƟon for the possible improvements of the
following funcƟons and acƟviƟes:

• Systems architecture

• Requirements management

• Interface definiƟon

• Technical resource management

• System design and analysis

• System verificaƟon and validaƟon

• Risk management

• Technical peer reviews

• Design process management

• Systems engineering task management

49

This analysis shows how the need for a well-defined methodology for the management of such aspects is
of great interests several years ago.
The design and analysis of complex aerospace products have been characterized earlier by such innovaƟve
methodologies but the same concepts can likewise be applied in other engineering domains (mechanical,
biomedical, etc.). The basic concepts and the related formal infrastructure can in fact be exploited to
manage other kind of systems.
In the following secƟons some examples about the assessment of MBSE methodology are reported. In
parƟcular they refer mainly to the the applicaƟon of such methods to space systems.

3.4.1 Responsive Engineering

The actual development processes related to the implementaƟon of the design engineering tools are
all animated by the same concepts. Some of the main conceptual elements that will affect the future de-
velopment are represented by parallelizaƟon of tasks, building block modular approach, standardizaƟon
of interfaces, standardizaƟon of requirements and acceptance of higher risk and possibly of lower quality.
Some other interesƟng aspects are the integraƟon of design tool, test by simulator, fast AIT, avoidance of
just in Ɵme procurement and finally a responsive procurement method [20].
InteresƟng acƟviƟes are represented in this direcƟon by different research evaluaƟon project. Other in-
teresƟng iniƟaƟves are directly involved within the evaluaƟon of space system project as for example the
NASA RSDO. The Rapid SpacecraŌ Development Office (RSDO) is responsible for example for the manage-
ment and direcƟon of a dynamic and versaƟle program direcƟng the definiƟon, compeƟƟon, and acquisi-
Ɵon of mulƟple fixed-price Indefinite Delivery/Indefinite QuanƟty (IDIQ) contracts. These contracts offer
NASA and other Federal Government Agencies fast and flexible procurement of spacecraŌ and spacecraŌ
components for future missions.

3.4.2 ESA-ESTEC iniƟaƟve

Concurrent Engineering acƟviƟes at ESA can be basically idenƟfied with the development of the Open
Concurrent Design Tool (OCDT) iniƟaƟve. Themain efforts are addressed in the applicaƟon of suchmethod-
ologies as support instrument for feasibility studies. The other primary acƟviƟes are strictly related to the
formalizaƟon and standardizaƟon of the conceptual data model. An upgrade of collaboraƟve environment
is under development and highly secure connecƟon for external resources as also the authenƟcaƟon proce-
dures are under implementaƟon. The same environment has been conceived for future distributed design
sessions, review support procedures and anomalies invesƟgaƟons. Such acƟviƟes are all considered as
new applicaƟons of Concurrent Design Facility (CDF).
The OCDT architecture can be briefly represented in the following overview (figure 3.8).

A central persistent data repository is used to store and synchronize the informaƟon related to the sys-
temmodel while HTTP(S) protocol allows consistent connecƟonswith ConCORDE framework (Excel based).
The single domain uses the domain specific tools while ConCORDE ensures data exchange with the other
disciplines. It is basically an Add-In on top of MicrosoŌ Excel 2010 with the main aim to reduce as much
as possible the learning curve (since Excel environment is one of the most used tool in some engineering
fields). In this way the transiƟon from exisƟng CDF IDM architecture is not so criƟcal and at the same Ɵme
Excel shows some flexible features. Excel provides in fact the capability to rapid create interfaces with any
kind of external tool as the generaƟon or modificaƟon of worksheet for computaƟon purposes. ConCORDE
provides reference data library (parameter types, units and scales, rules, etc…), engineering model cata-
logue (OpƟons, Element DefiniƟon, etc…) or other uƟliƟes as support to design acƟviƟes. IDM and OCDT
architecture show some differences. The main differences are related to the informaƟon exchange pro-
cess, data ownership, decomposiƟon level and opƟons management. It is interesƟng to note above all the
management of system opƟons since this topic will be deeper invesƟgated in the current work. IDM ap-
proach supports an opƟon specific architecture basically builds by copy and paste. In this case there is one
workbook for opƟon. OCDT approach instead is based on different philosophy. The opƟons are defined
singularly and the various architectures are generated through an automated process staring from the re-

50

Figure 3.8: Open Concurrent Design Tool (OCDT) architecture overview.

51

Figure 3.9: Engineering domains considered within the VSD project [21].

quired informaƟon. In this manner one worksheet per opƟons is created and managed. Virtual SpacecraŌ
Design (VSD) project represents another interesƟng research acƟvity developed under the coordinaƟon
of ESA [21]. This project has been conceived to define a model based methodology and a related envi-
ronment, developed with the main purpose to improve the organizaƟon of engineering data at system
level. The developed framework has been conceived to allow a more effecƟve exchange of design param-
eters between different domains and their respecƟve models through an object oriented approach [22].
This asset belongs to a larger project aimed to assess the applicaƟon of MBSE philosophy within System
Engineering, evaluaƟng the benefits of a mulƟ-disciplinary approach applied to the industrial phases of
aerospace products [23]. The related acƟviƟes have been thought from the fact that almost every project
faces the problem of handling a wide quanƟty of data and informaƟon available at system and sub-system
level and maintaining its coherence and consistency over all the development process. The effecƟveness
of System Engineering process is oŌen limited by the presence of unstructured data and informaƟon not
properly interlinked among all the disciplines involved in a project. The engineering domains considered
within the proposed model-based methodology are briefly summarized in figure 3.9 [21].

Each domain oŌen formalizes only some of the overall aspects of a system, focusing on the elements
that mainly affect the related discipline. In this case the discipline models are defined for a specific sim-
ulaƟon scenario and ensuring the consistency across such models is a challenging problem. The demon-
straƟon of the advantages achievable by such model based approach VSD project focused on three main
key-points: engineering data representaƟon, data exchange interfaces and process consideraƟon. All the
conceptual definiƟons and associaƟonsmade within such project have been used to implement a soŌware
prototype to assess the actual effecƟveness of the proposed environment. The overall soŌware infrastruc-
ture is also called Virtual SpacecraŌ Engineering Environment (VSEE) and it is parƟƟoned in three main
building blocks: a reference database (Space System Reference Database - SSRDB), a design tool (Space
Systems Design Editor - SSDE) and a visualizaƟon tool (Space Systems VisualizaƟon Tool - SSVT). An high
level representaƟon of such scheme is provided in figure 3.10. The funcƟons provided by the developed
framework are briefly represented in figure 3.11. In parƟcular they are grouped with respect to the related
capabiliƟes associated with the Design Editor, the VisualizaƟon Tool and the Reference Database.

All the three building blocks provide different funcƟonaliƟes and capabiliƟes that drive the project
modeling acƟviƟes, supporƟng the system engineering process. A more detailed descripƟon is however
available from the project site [21].
VSD project basically involved themain European companies that work on space systems. They have joined
such acƟviƟes at different level and with various roles. The important aspect is that the conceptual data
model that lays the foundaƟon of the overall infrastructure has been defined through the contribuƟon
of the companies directly involved in the design and manufacturing of space products. In this way it was

52

Figure 3.10: VSEE high level architecture.

Figure 3.11: VSEE funcƟons provided [21].

53

possible to start a confrontaƟon on model-based methodologies, paving the way for future collaboraƟon
and definiƟon of a common standard approach for the management of project data. Such topic draws the
aƩenƟon of the involved aerospace companies since the developed design and modeling methodologies
will strictly affect future collaboraƟons. It is not uncommon in fact that they work on the same space pro-
gram due to the complexity of the related product and to the specific knowledge that each one possesses.
A shared data model for the representaƟon of system data and informaƟon will cover a key role in the next
few years. For this reason both Astrium and Thales Alenia Space are currently interested in such topic and
their aƩenƟon has been highlighted by the contribuƟon on Virtual SpacecraŌ Design project.

3.4.3 Centre NaƟonal d’Etudes SpaƟales – CNES

A concurrent design approach that follows the characterisƟcs of the model based system engineering
paradigm can also be idenƟfied in the research acƟviƟes of CNES. In parƟcular the developed architecture
has been conceived mainly to design mission feasibility studies [24]. All the funcƟonaliƟes are provided
through what can be defined as a Concurrent Design Facility (CIC - Centre d’Ingénierie Concourante). The
focus of the related architecture and all the involved design process is represented by the assessment about
the feasibility of space mission candidates, supporƟng the decision making acƟvity. Such environment al-
lows also invesƟgaƟng new technology concepts providing the basis for future developments and improve-
ments. The architecture follows the standards defined within ECSS-ETM-10-25A, regarding the conceptual
of engineering designmodels for data exchange. The system engineering informaƟonmodel has been con-
ceived on the basis of the same standards (SEIM) which also provide useful guidelines for the definiƟon of
a reference data library (SERDL). All system informaƟon are managed through Excel worksheet descripƟon
(equipments, sub-systems, payload, satellite, mission phases, etc.) while preliminary analysis and compu-
taƟons (as for example mass budget or power budget) are performed within the same Excel environment
(for example through the proper execuƟon of a macro/visual basic scripts). The various informaƟon and
data are edited and monitored by different system level designers interacƟng with Excel worksheet. The
same approach is used by the various disciplines (thermal, configuraƟon, data-handling, AOCS, etc.) while
concurrently the data are synchronized within such collaboraƟve environment. Import/export funcƟons
are for example employed to proper manage the data flow between the central IDM-CIC workbook (Excel
based repository) with domain specific tools. In this way CATIA files are managed through STEP files to ex-
tract the required informaƟon that are then stored within the workbook. Such example shows in parƟcular
the process through which the geometrical informaƟon are stored and managed. VisualizaƟon capabiliƟes
are also provided within such environment, allowing the plot of the data stored within the main central
model. A structured XML file is build from the informaƟon available for the system model and such data
are properly managed from a desktop applicaƟon for example to help configuraƟon analysis. This same en-
vironment is also used to highlight operaƟonal modes and power consumpƟons of the elements reported
in the model. Concurrently to such applicaƟon, the IDM-CIC workbook provides also some interesƟng uƟl-
iƟes for a simple visualizaƟon through Google Sketch-Up tool.
Such a collaboraƟve plaƞorm has been mainly conceived to support the early design phases providing
technical instruments for the establishment of system budgets above all in the context of feasibility stud-
ies about mission design. The same approach is now under further developments and IDM-CIC roadmap
is characterized by the invesƟgaƟon of a new architecture paving the way from the IDM-CIC version 2 to
IDM-CIC version 3. The IDM-CIC V2 data exchange between subsystem and system models (both consid-
ering the definiƟon of the related properƟes on an EXCEL workbook) is based on VBA API. The informaƟon
collectedwithin the singleworkbook is then interfacedwith the STEP export andGoogle Sketch-Up through
XML files. This approach is shared with all the disciplines involved within the project (data handling, ther-
mal, AOCS, payload, configuraƟon, system, etc…). IDM-CIC V3 is however based on the SERDL ECSS model
with some adaptaƟons with respect to geometrical descripƟons with arƟculaƟons, management of op-
Ɵons and subsystem modes. This new approach foresees the definiƟon of a shared folder locaƟon that
contains the data exchange model as XML file. The single user computer accesses such data through API
based on MicrosoŌ .NET framework while an EXCEL GUI (also this based on MicrosoŌ .NET framework)
is used to manage and edit informaƟon, working on a related Workbook. The same EXCEL GUI is used to

54

Figure 3.12: Simplified representaƟon of CIC infrastructure (CNES).

export files through XML format as also manage the interfacing with external tools (STEP export, Google
Sketch-Up, etc…). The current elements under developments regard tests, import/export units and STEP
interface improving. Possible evoluƟons that are under invesƟgaƟon are represented by HTTP web ser-
vices implementaƟon (Web GUI and External tool) for the communicaƟon of the shared data repository
(currently represented by XML file) and external environments. The user computer data exchange paƩern
is basically the same of IDM-CIC V2 while the main difference is represented by the definiƟon of a server-
client architecture for the management of the data contained within the XML file.
A simplified representaƟon of the IDM-CIC architecture is reported in figure 3.12.

3.4.4 Thales Alenia Space

Thales Alenia Space (TAS) interest towards System Engineering is highlighted by the various research
iniƟaƟves promoted in this direcƟon. Main efforts are addressed to the definiƟon of a concurrent engi-
neering meta-data model and a formalizaƟon of mulƟ-domain representaƟon [25].
In this case a discrete amount of research efforts are addressed towards the invesƟgaƟon ofMBSEmethod-
ologies and their integraƟon within company processes. Such acƟviƟes are also conceived to understand
the possible enhancements that can be achieved with respect to collaboraƟve environments. Different
soluƟons are currently under evaluaƟon to idenƟfy the beƩer choice from a methodological viewpoint,
considering also the possible infrastructural alternaƟves [26].
In parƟcular TAS is introducing a tool for complex architectures modeling and funcƟonal representaƟons
(lacking in some of the tools currently used) called Melody Advance. Such tool has been developed on
the basis of Thales Group company experƟse about system architecture. Basically it is implemented as
a variance of SysML language with the main purpose to improve its usage across system engineering. In
the same way TAS is also introducing a tool for performances evaluaƟon and verificaƟon called Arcadia, a
Thales Group tool developed in Aerospace division.
Melody Advance tool is conceived for system and soŌware architecture modeling and belongs more gen-
erally to System and SoŌware development environment. Along with other tool Melody Advance is part of
a more extended frame with the main idea to beƩer control and support the design process from system
perspecƟve. For this reason a high level framework called Orchestra has been developed. Some of the
principal objecƟves of such approach are reported in the following list:

• Automate rouƟne acƟviƟes

55

Figure 3.13: Conceptual overview of a collaboraƟve environment infrastructure.

• Improve and ensure quality

• Interface legacy methods, products and services

• Provide and an effecƟve set of services

In this context Melody Advance has the primary purpose to foster new system/soŌware engineering
methodologies, ensuring a support for Model Driven Engineering (MDE) approach (involving for example
processes, acƟviƟes, data and milestones). Currently Melody Advance is a user friendly tool that guaran-
tees traceability and consistency between models and implements rules checking.
A conceptual representaƟon of a possible infrastructure of a collaboraƟve environment is reported in fig-
ure 3.13. In parƟcular the features of such architecture are currently invesƟgated within a research project
led by Thales Alenia Space Italy. The name of the environment related to such project is DEVICE and more
informaƟon about such iniƟaƟve are provided in the following secƟons. A well-defined invesƟgaƟon of the
capabiliƟes that can be achieved with a model-based approach is represented by [107]. In this case the
main advantages of such kind of infrastructures are evaluated, taking into account the potenƟal integraƟon
between system data and complexity indices.

3.5 Benefits of MBSE

One of the main purposes animaƟng the spreading of MBSE methodologies is represented basically by
the capability to accelerate product design andmanufacturing process. The same philosophy can also help
the knowledge exchange among individuals and organizaƟons but can and should improve the knowledge
creaƟon and externalizaƟon (as for example in the case of distributed cogniƟon).
Another important benefit of MBSE methodology can be recognized in the document generaƟon capabil-
ity. This feature is directly related to the availability of system informaƟon within a central system model.
This data can be directly queried to get the informaƟon needed and processed to generate documents
and report without the effort that characterizes the tradiƟonal approach. StarƟng from the MBSE archi-
tecture it is possible to consider different strategies for the creaƟon of the required document resources.
In parƟcular different system modeling tools are now providing various instruments and plug-ins for the
support and definiƟon of documents template. In this manner the informaƟon contained within themodel

56

can be used to proper fill the structure defined within the template, obtaining potenƟally different report
resources, from html to pdf formats. In this way engineers can spend less Ɵme in document generaƟon
acƟviƟes, allowing the use of more efforts on modeling.
The document generaƟon from systemmodel informaƟon can be obtained through the implementaƟon of
proper defined scripts that process the data following the structure defined a priori in a certain template.
Some evaluaƟons of this capability have been done as for example in [27]. In this case the capability to
generate documents has been analysed in the context of space mission applicaƟon. In parƟcular SysML
modeling environment has been considered for this process and a conceptual architecture has been devel-
oped to build a document profile. The informaƟon is elaborated generaƟng XML resources that are then
further processed to obtain an html or pdf file. Internal generaƟon scripts have been used to parse the
SysML informaƟon to prepare the following creaƟon of documents on the basis of defined template and
style sheets. This approach has been used on different applicaƟons to evaluate the actual advantages. JPL
Ops RevitalizaƟon project has used such generaƟon capability as the JPL IntegratedModel Centric Engineer-
ing for the document and reports creaƟon (in this last case in the context of collaboraƟve environment).
Another applicaƟon example is represented by the Mars Science Laboratory where this feature has been
used to elaborate specific porƟons of operaƟons processes and ground data system management.

3.6 Drawbacks and main needs of MBSE

A brief descripƟon of the main benefits that can be achieved through the applicaƟon of MBSE method-
ology is presented in the secƟon above but other advantages can also be found in the rest of the work.
Despite all the posiƟve consideraƟons about model based approaches some drawbacks can arise from the
integraƟon and spreading of suchmethodology in the context of already consolidated processes andmeth-
ods. In parƟcular the use of such innovaƟve approaches need to be tested on actual problems to avoid a
worse result with respect to the tradiƟonal procedures. The integraƟon of such methodology within engi-
neering procedures established over the years requires for example the acceptance from those users that
have matured a certain experience in a specific domain. From this viewpoint the training aspect must not
underesƟmated to allow the integraƟon within the current design methodologies. The overall infrastruc-
ture must also be properly defined to effecƟvely manage an environment based onMBSEmethods. One of
the main problems is also represented by the efforts required in the definiƟon of a well formalized infras-
tructure for modeling and data exchange. In parƟcular the applicaƟon of the concepts related to theMBSE
philosophy oŌen requires a wide conceptual work for the definiƟon of the features and relaƟonships of the
objects that characterize system lifecycle. The use of a model based infrastructure requires the correct in-
tegraƟon with system model informaƟon to provide useful capabiliƟes to support the actors. Such aspect
must be taken into account to properly manage user interacƟons with a model based plaƞorm, feature
that basically does not affects the tradiƟonal modeling approaches and that may be the cause for some
implementaƟon issues that otherwise would not be occurred. The integraƟon of MBSE methodologies
within the design process can widely enhance the current development process but at the moment the
applicaƟon of such philosophy can not rely on a well defined set of tools, languages and plaƞorms. Such
aspects are fundamental for the actual integraƟon of the related methodology with the current design
processes. The availability of already defined instruments for the development of products strictly affects
the spread of MBSE itself. Different soluƟons have been proposed by the organizaƟons and industrial con-
sorƟum to address this lack. SysML for example represents one of the possible soluƟons to face such kind
of issues but other opƟons can also be taken into account. In parƟcular the main benefits and drawbacks
of such language are considered in the following secƟons. A criƟcal assessment of the main features about
this approach and related applicaƟon is provided in the following, proposing also alternaƟve perspecƟve
for the development of strategies with respect to MBSE spreading. Also in this case the main benefits and
drawbacks of the proposed approach and related technologies are highlighted, always keeping inmind that
each possible soluƟon has its own advantages and disadvantages. The final answer to all problems is in
fact difficult to obtain with an unique tool but the idenƟficaƟon of the limits of one approach with respect
to another one can help to understand the direcƟon to follow.

57

58

Chapter 4

MulƟdisciplinary Analysis

4.1 IntroducƟon

As previously introduced this work proposes to invesƟgate the integraƟon of MDO methodologies
within the context of a MBSE system model framework. In parƟcular the issues that can arise from the
considered approach are highlighted to beƩer understand the possible improvements for the proposed
infrastructure as well as also completely different soluƟons must be taken.
During the last few years the mulƟdisciplinary integraƟon between different engineering domains has
started to be one of the most interesƟng and challenging research topics. MathemaƟcal algorithms im-
provement and the concurrent implementaƟon of object oriented soŌware soluƟons seems to be increas-
ingly well suited for the idenƟficaƟon of opƟmal system configuraƟons.
MulƟdisciplinary Design OpƟmizaƟon (MDO) is a methodology that includes all the acƟviƟes related to
the design of systems where strong influences characterize the interacƟons between disciplines. In these
situaƟons, nowmuchmore widespread in the development process than in the previous years, the design-
ers are moƟvated to manage at the same Ɵme variables within several disciplines. For this reason MDO
involves the coordinaƟon of different domain-specific analysis with the final aim to obtain more effecƟve
soluƟons, opƟmizing the configuraƟons of complex systems.
The increasing complexity of space systems and the necessity to opƟmize the available resources have led
to a deeper introducƟon of MDO methodologies within the product design and management process. In
recent years these philosophy of design and implementaƟon has gained increasing interest. The laƩer
one is related above all to the possible advantages and future applicaƟons that this approach will allow to
reach. Nowadays large amounts of systems, not only related to the aerospace area, are characterized by a
close relaƟonship of various disciplines. In this context the proper definiƟon and seƫng up of the problem
covers a key-role for a product successful realizaƟon. The suited management of the data involved, the
correct analysis and good interpretaƟon of simulaƟon results contributes to the choice of the right direc-
Ɵon. In parƟcular we have oŌen to deal with the definiƟon of complex systems, facing in some cases the
possible connecƟons between various disciplines involved at different levels. It is in situaƟons like this that
the MDO provides useful instruments and methodologies to deal with complex design problems. Current
engineering problems are increasingly characterized by a wide set of conflicƟng objecƟves that must be
properly approached to avoid soluƟons that are less effecƟve among the possible ones. Different meth-
ods can be used to employ mulƟ-objecƟve opƟmizaƟons, and interesƟng applicaƟons can be found for the
idenƟficaƟon of concept alternaƟves, as reported in [114].
Systems projects currently involve an increasing number of design variables, constraints and objecƟves.
Furthermore a group of design variables could be generally shared between different disciplines in this
way. They are tradiƟonally associated with consolidate dimensioning processes and such approach can
help to improve the effecƟveness of the overall process. For this reason their studies and analysis process
become difficult to monitor, demanding a greater effort than the approach used tradiƟonally in the past.
The advantages of the considered methodology are mainly linked to the reducƟon of development Ɵme,
allowing a more extensive evaluaƟon of the design variables space. Closely related to this issue it is also
possible to observe even a reducƟon of the costs of project acƟviƟes. The automated process to properly

59

explore the design space with a series of well suited algorithms allows prevenƟng the possibility to neglect
certain system configuraƟons. The laƩer ones could instead potenƟally represent the opƟmal soluƟons
for the scenarios considered. An integrated design is then required to link up all the possible disciplines
involved in system design, ensuring the access to the same data informaƟon and models.
The use of MDO is characterized by the following feature:

• DecomposiƟon acƟviƟes from the system model to mulƟple subsystems or discipline analysis.

• Development acƟviƟes related to the generaƟon of mathemaƟcal model and analysis. In this fea-
ture are included all the process that link “parent” system model with the “child” models and their
interacƟons.

• SelecƟon of the proper MDO formulaƟon and algorithms on the base of the problem considered.

• ResoluƟonof theMDOproblem tofinally generate the soluƟons on the base of the set-up considered.

The main disƟncƟon about the feasibility of the soluƟons explored depends on the number of disci-
plines considered. One possibility is to manage mulƟple disciplines concurrently, trying to move towards a
beƩer design and re-establishing feasibility. The other approach is to consider instead individual discipline
feasibility. In the previous MDO approaches the collaboraƟve opƟmizaƟon techniques define the decom-
posiƟon of system into smaller units that can be individually opƟmized and then linked to the system. The
system level opƟmizer sets the design objecƟve, generaƟng the interdisciplinary compaƟbility constraints
that are then submiƩed to the various subspace opƟmizers. These ones are generally grouped according to
the different domain-specific disciplines. Therefore the single subspace opƟmizermust saƟsfy the assigned
objecƟves ensuring the interdisciplinary compaƟbility, considering the analysis results that are generated.
This approach reflects one of the iniƟal framework that employs MDO methodology and an example can
be found in [32] where it was analyzed an underwater exploratory vehicle.
Approaches similar to the one presented can be oŌen found in the literature, with only slight differences
between each other. The main management process is basically the same. Namely there is a set of design
alternaƟves that require to be analyzed and the same variable potenƟally can affect several domain-specific
models and tools. In this situaƟon oŌen different iteraƟve cycles are required to reach the convergence
of the specific-field models for a parƟcular configuraƟon of the variables set. Once the models physical
meaning is ensured (through the required convergence and assuming the correctness of the mathemaƟcal
formulaƟon considered) is then extracted the results that allow to generate the indexes and the quanƟƟes
for the evaluaƟon of system performances. In literature different researches are addressed towards the
invesƟgaƟon of a wide set of topics that are strictly related to the improvement of the actual mulƟdisci-
plinary analysis techniques applied to complex systems (interesƟng examples can be found in [115], [116],
[117] and [118]).
One of the acƟve research fields related to theMDO and considered in the previous study concerns the cre-
aƟon of surrogate models. ReducƟon of the computaƟonal Ɵme represents one of the interesƟng features
for the future applicaƟons.

4.1.1 Current needs of MDO techniques

Solving techniques are oŌen chosen on the basis of the specific needs and the available resources.
Models with different fidelity levels are used to face engineering problems in different manners. Low fi-
delity models can be represented for example by aerodynamic panel codes or equivalent-plate structures
codes while medium fidelity ones can be idenƟfied with Euler CFD models, FEM structural models or ax-
isymmetric propulsion codes. High fidelity models concern instead Navier-Stokes CFD codes, adapƟve FEM
models or 3D propulsionmodels for example. They are used differently depending in parƟcular on the level
of details required by the current design phase and their integraƟon within the same collaboraƟve envi-
ronment represents a challenging research topic. In the past the management of mulƟdisciplinary design
analyses has been done through system-level coordinaƟon, parƟƟoning the original problem into different
sub-problems (not necessarily disjoint). Each sub-problem had its constraints and objecƟve funcƟon. A

60

collaboraƟve opƟmizaƟon approach ensures a parallel and autonomous processing of the disciplines. It al-
lows also managing the various elements more consistently in the design environment and organizaƟonal
structures. The drawbacks of such methodologies are related to the poor robustness and convergence
characterisƟcs about the evaluaƟon of overall system performances.
A deeper integraƟon between systems analysis andMDAO (MulƟdisciplinary Design Analysis andOpƟmiza-
Ɵon) processes/methods covers a key role with respect to the achievement of an effecƟve product ([109]).
Such need is widely underlined by various research iniƟaƟves available from the literature, as can be found
in [112] and [113]. In the last years some efforts have been addressed towards a clearer representaƟon of
MDAO infrastructures with the final objecƟve to achieve a formal representaƟon ([132], [133]).

4.1.2 MDO architectures

The integraƟon of MDO methods requires a well understanding of the architecture that must be se-
lected for the implementaƟon of analysis process. The term MDO architecture idenƟfies how the simula-
Ɵon blocks, analysis elements and overall process flows are related between each other. Such definiƟon
refers both to problem formulaƟon and the organizaƟonal and algorithmic strategy to solve the problem.
Different MDO architectures are available from the literature but each one is oŌen presented within a spe-
cific research context while a common and shared standard for the descripƟon of such paƩerns could be
very useful. An interesƟng survey is provided in [33] where clear definiƟons and a standard representaƟon
are proposed to basically describe MDO architectures. In parƟcular the considered work presents a uni-
fied descripƟon about MDO architectures, providing a set of mathemaƟcal concepts and notaƟons both
for problem formulaƟon and soluƟon strategy. This approach has been introduced since the same notaƟon
will be considered for the presentaƟon of the most commonMDO architectures in the following secƟon. A
brief descripƟon of the main characterisƟcs of such a unified representaƟon is introduced to beƩer under-
stand the following diagrams. Other studies have faced the problem of providing a unified descripƟon of
MDO architectures such as [34] where a linguisƟc approach called ReconfigurableMulƟdisciplinary Synthe-
sis (REMS) has been proposed. This work provides useful guidelines above all for implementaƟon within
the computaƟonal environment but does not employ visual references on how the input problems are
managed.
OŌen the choice of the MDO architecture depends on many parameters such the problem characterisƟcs,
design environment and available soŌware tools. These elements strongly influence the problem formula-
Ɵon and the soluƟon strategy employed which on the other side affect the resources employed to idenƟfy
a design soluƟon. Two important concepts must be clearly understood before the visual representaƟon of
diagrams is reported. The first one is represented by the data flow among the various problem components
while the second one is the sequence of operaƟons that must be accomplished to find the design soluƟon.
OŌen the descripƟon of both these different concepts is done through the use of same block diagrams,
flowcharts and algorithms representaƟon, reducing the capability to clearly understand of the considered
MDO methodology.
The considered framework includes a common mathemaƟcal notaƟon for the formulaƟon of problems
and diagrams that describe the solving process. The same approach will be used in the current work when
needed. Some useful definiƟons are introduced in the following lines with the main purpose to well clarify
the terms and concepts that will be used in the current work.
A design variable represents a variable that in the context of MDO problem is always under the control of
the designer. In parƟcular the design variables can belong to a specific discipline or to mulƟple ones that
share some common features. This aspect is taken into account in the definiƟon of the design variables
vectors since different arrays are defined for the single discipline with its specific variables. A common
design variable vector is instead used for the shared variables among the various disciplines. The vector
that contains the design variables belonging to discipline i is represented by xi while the vector that stores
all the design variables share with at least two disciplines is denoted as x0.
A Discipline Analysis (DA) idenƟfies a simulaƟon addressed to study a parƟcular aspect of amulƟdisciplinary
system. The execuƟon of a discipline analysis involves the solving of a system of equaƟons (oŌen idenƟ-
fied as the disciplinary equaƟons) which are used to compute a set of disciplines responses. The last ones

61

Table 4.1: MathemaƟcal notaƟon for MDO problems.

Symbol DefiniƟon

x Vector of design variables
y Vector of coupling variables (outputs from DA)
ȳ Vector of state variables (variables used inside only one DA)
f Vector of objecƟve funcƟons
c Vector of design constraints
cc Vector of consistency constraints (between target and state variables)
R Governing equaƟons of a DA in residual form (DA constraints)
N Number of disciplines
n() Length of given variable vector
m() Length of given constraint vector
()0 FuncƟons or variables that are shared by more than one disciplines
()i FuncƟons or variables that apply only to discipline i
()∗ FuncƟons or variables at their opƟmal value
(̃) ApproximaƟon of a given funcƟon or vector of funcƟons
(̂) Independent copies of variables distributed to other disciplines

are oŌen called state variables and their management can be driven or not by the opƟmizaƟon process,
depending on the problem formulaƟon. State variables referring to the discipline i are contained within
the vector yi. Basically some state variables that are computed in a single discipline are also required by
other discipline/disciplines in a mulƟdisciplinary system. Such variables can be defined as coupling vari-
ables and they are represented in the same notaƟon of state ones. The computaƟonal process oŌen is
characterized by the possibility to run some codes in parallel with other simulaƟons. In this case copies of
the vector containing the design and state variables are made to allow DA independent execuƟon. These
copies are idenƟfied with the superscript ∧ in this work since such elements are oŌen called coupling tar-
gets. The target state variables vector of the discipline i is then represented by the notaƟonŷl. This object
is used to share the state variables provided by the discipline i among the disciplines that need at least one
of the state variables contained within the vector yi. The consistency between the state variable yi and
the related target one ŷl must be ensured through the definiƟon of proper constraints that are added to
the problem formulaƟon. The mathemaƟcal notaƟon used in the current work is reported in table 4.1 (all
definiƟons are exposed with more details in [35]).

MDO problems can be defined following the paƩern of a parƟcular formulaƟon and on the basis of
the chosen one the related constraints, equaƟons and relaƟonships are formalized. All MDO architectures
solve opƟmizaƟon problems that can be derived from what is known as the All-at-Once (AAO) formulaƟon
which includes all the analysis equaƟons, design objecƟves, design constraint and consistency between
the inputs and outputs coming from the various DA. Such formulaƟon can be expressed as in the following
lines.
All-at-Once formulaƟon:

minimize: f0(x, y) +
N∑
i=1

fi(x0, xi, yi)

with respect to: x, ŷ, y, ȳ

subject to: c0(x, y) ≥ 0
ci(x0, xi, yi) ≥ 0 for i = 1, · · · , N
cci = ŷi − yi = 0 for i = 1, · · · , N
Ri(x0, xi, ŷj ̸=i, ȳi, yi) = 0 for i = 1, · · · , N

62

Figure 4.1: N2 chart example [33].

WhereN represents the total amount of the involved disciplines and the vectorsx,y, ŷ and y are defined
as:

• x = [xT
0 , x

T
1 , · · · , xT

N]
T

• y = [yT1 , · · · , yTN]T

• ŷ = [(ŷ1)
T , · · · , (ŷN)T]T

• ŷ = [(ȳ1)
T , · · · , (ȳN)T]T

The development of MDO strategies oŌen starts from a clear understanding about the relaƟonships
that characterize the informaƟon exchange between all the various elements defining a mulƟdisciplinary
environment. In parƟcular visual representaƟons like N2 charts allow clarifying the connecƟons among all
the considered objects. An example of an N2 is proposed in figure 4.1 where three coupled analysis are
conceptually considered.

This diagram has been conceived in the context of System Engineering to clearly idenƟfy in a bet-
ter way the dependencies of all the components that characterize our problem. In parƟcular such di-
agram can be used both for the analysis of the relaƟonships between topological/physical components
and acƟviƟes/procedures. In parƟcular the main aim of such representaƟon is the idenƟficaƟon of the
inputs/outputs needed/provided by the single element in the context of the overall architecture. Similar
diagrams are also represented by the Design Structure Matrix (DSM) which is a network modeling tool
used to represent the elements comprising a system and their interacƟons, thereby highlighƟng the sys-
tem architecture ([36]). In parƟcular DSM diagrams can be classified in two ways: as staƟc DSM, which
basically are equivalent to N2 charts, and Ɵme-based DSM. In the first case the representaƟon does not
contains informaƟon related to the Ɵme dependencies of the involved elements while in the second case
the objects are disposed along the matrix structure taking into account for the temporal relaƟonships that
realize through the design process. In Ɵme-based DSM the objects that are involved in the early phases
of a certain process are placed towards the upper leŌ corner of the matrix while the following ones are
located in the lower right corner as Ɵme proceeds. Examples of DSM matrices are reported in figure 4.2.

In the specific context of MDO problems the components represented in DSM diagrams can be disci-
plines analyses, objecƟve and constraint funcƟons, opƟmizers, surrogate models or other computaƟonal
elements. The interacƟons between such elements are mainly represented by the exchange of data such
as design variables, funcƟon values or state variables. The matrix visualizaƟon is oŌen characterized by
the fact that the interacƟons of a specific element with itself are meaningless and the diagonal cells of
the table are not characterized by any informaƟon since they not show any dependencies. In other cases
the same diagonal sub-matrix posiƟons can be occupied by specific elements directly enhancing the re-
laƟonships with the other objects in the matrix through rows and columns informaƟon flows. The most
widespread convenƟon considers the inputs for a certain element (represented on the diagonal) placed on

63

Figure 4.2: Examples of DSM concerning Product Architecture, OrganizaƟon Architecture, Process Archi-
tecture and MulƟdomain matrix [36].

64

Figure 4.3: Simple example of gradient-based opƟmizaƟon process [35].

the same column (data flowing towards the object itself) while the outputs are provided on the row. Terms
like feedback or feed-forward become meaningful when the interfaces are considered. Generally the in-
teracƟons that are highlighted in the lower triangular part of the matrix are idenƟfied as feedbacks while
those in the upper triangular region represent the feed-forward relaƟonships. Such classificaƟon strictly
depends on the flow convenƟon for inputs and outputs while the main concept to clearly understand is
how a certain element interacts with other objects, enhancing the data required and the informaƟon pro-
vided. The same system (orMDO problem) can be represented with different DSM only changing the order
and disposiƟon of the various element on head row and column, maintaining however the dependencies
between the element themselves. Changing such disposiƟon can be done to beƩer manage the overall
process, reducing for example the Ɵme required to solve an MDO problem. In this case sequencing and
clustering algorithms are employed to obtain such result. Some research iniƟaƟves are currently evaluaƟng
the extension of DSM for the descripƟon of mulƟdisciplinary design, analysis and opƟmizaƟon processes
(an interesƟng study is available in [82]).
The diagram notaƟon uses gray connecƟon lines to show the dependencies related to the data exchanged
between the various elements. Such lines allow to understand which inputs and outputs are involved but
do not provide informaƟon about the order in which of object operaƟons or analyses are executed. This
last aspect is managed through the introducƟon of a system of addiƟonal lines idenƟfied with black, thin
connecƟons while the execuƟon order is highlighted with a numbering schema. In this way it is possible
to understand the process order following the sequence steps while potenƟal computaƟonal loops are
denoted with other indexes nesƟng from the root one. When certain components can be executed in par-
allel then the same number is used as entry for both the components. The main execuƟon scheme can be
interfaced with external data as for example an iniƟal design vector (starƟng point) in the case of an opƟ-
mizaƟon problem while at the same Ɵme the overall process produces output informaƟon like the opƟmal
soluƟon idenƟfied. The same notaƟon can also be used to clearly represent the process flows related to
an opƟmizaƟon strategy. A gradient-based opƟmizaƟon procedure can in fact represented as in diagram
4.3.

One of the most challenging processes in the context of system engineering and mulƟdisciplinary anal-
ysis is represented by the determinaƟon of system full state. In parƟcular such process is represented by
the idenƟficaƟon of a complete system state that is consistent with all the disciplines and analysis involved.
This analysis becomes parƟcularly complex when different variables are shared among various disciplines.
In this case the consistence betweenmodels coming fromdifferent disciplines and oŌen also from different
simulaƟon environments is not so easy to manage. An example of mulƟdisciplinary analysis is represented
by the Gauss-Seidel MDA, where the main aim is basically addressed to the evaluaƟon of overall system
state, trying to reach a whole consistent condiƟon. Such analysis in the case of three disciplines is reported

65

Figure 4.4: Gauss-Seidel MDA architecture for three coupled analyses [35].

in figure 4.4.
The same notaƟon will be used in the following lines to describe some of the most famous MDO ar-

chitectures but the same approach can basically be adopted to represent other mulƟdisciplinary paƩerns.
The descripƟon of the following architectures will be considered as preparatory to beƩer understand the
integraƟon of mulƟdisciplinary design framework with the modeling environments. The MDO architec-
tures that we consider are reported in the following list but it is possible to find also other typologies in the
current literature.

• MulƟdisciplinary Feasible (MDF) architecture

• Individual Discipline Feasible (IDF) architecture

• All At Once (AAO) architecture

• CollaboraƟve OpƟmizaƟon (CO) architecture

• Bilevel Integrated System Synthesis (BLISS) architecture – in parƟcular the BLISS-200 variant

The MDF architecture deals with the interacƟon between different disciplines all coupled together
where an MDA analysis (which characterisƟcs are briefly introduced in the previously lines) is performed
to evaluate a consistent overall system state for a certain set of design variables. Each design set must be
properly evaluated through MDA since the opƟmizaƟon algorithm does not know a priori the feasibility of
such choice. In parƟcular each design set must converge to a feasible state, if possible, before the opƟ-
mizaƟon techniques proceedswith the following iteraƟons/funcƟon evaluaƟons. The problem formulaƟon
related to such architecture is expressed with the following relaƟonships:

minimize: f0(x, y(x)) +
N∑
i=1

fi(x0, xi, yi(x0, xi, yj ̸=i))

with respect to: x

subject to: c0(x, y(x)) ≥ 0
ci(x0, xi, yi(x0, xi, yj ̸=i)) ≥ 0 for i = 1, · · · , N

66

Figure 4.5: MDF architecture with Gauss-Seidel MDA integraƟon for three coupled analyses [35].

The analysis and consistency constraints involving all coupling variables have been removed from the
formulaƟon since they are managed in the nested MDA block. In this manner they are automaƟcally saƟs-
fied for each iteraƟon while the opƟmizer deals only with the choice of the design variables set. It is impor-
tant to underline the fact that the same architecture can be implemented using different soluƟon strate-
gies since the diagram representaƟon considered has generic visualizaƟon purposes. The main structure
of MDF process is reported in figure 4.5, where three analysis blocks have been considered in the example.

Another interesƟng scheme is represented by the IDF architecture which problem formulaƟon can be
resumed in the following paƩern.

minimize: f0(x, y(x, ŷ))

with respect to: x, ŷ

subject to: c0(x, y(x, ŷ)) ≥ 0
ci(x0, xi, yi(x0, xi, ŷj ̸=i)) ≥ 0 for i = 1, · · · , N
cci = ŷi − yi(x0, xi, ŷj ̸=i) = 0 for i = 1, · · · , N

The eliminaƟon of disciplines analysis constraintsRi(x0, xi, yj ̸=i, yl, yi) = 0 is allowed thanks to the use
of implicit funcƟon theorem since the yi and yi are not managed independently but are now bounded to
each other. They in fact become funcƟons of design variables and coupling variable copies. The same defi-
niƟon of such architecture can also be idenƟfiedwith distributed analysis opƟmizaƟon and opƟmizer-based
decomposiƟon but all have the same theoreƟcal problem formulaƟon. Each iteraƟon is characterized by
the exact resoluƟon of disciplines analysis equaƟons and this condiƟon all the coupling variables are now
implicit funcƟons of design variables and coupling variable copies. In parƟcular in this case the individual
disciplines are not coupled togetherwhen the systemhas been analyzed. Coupling variable copies are how-
ever used to share informaƟon among disciplines while consistency constraints are checked to control the
correctness through the Coupling variables across the disciplines domains. Basically the IDF architecture is
characterized by the fact that the individual DA resolves the analysis constraints directly on their own. In

67

Figure 4.6: IDF architecture [35].

Figure 4.7: AAO architecture [35].

this way all the DA can be evaluated in parallel before the control will be passed again to themain algorithm
for the next high level iteraƟon. Besides the actual parallel execuƟon the DA is strictly dependent on the
hardware implementaƟon for the overall cycle. The concept of parallel execuƟon considered stands more
generally for the fact that all the DA involved are not necessarily dependent on each other. They can be
run parallel but also sequenƟally (on the basis of the available resources) but the main important things
to understand is the fact that they can be executed each iteraƟon without parƟcular needs from the other
elements (the consistency with the coupling variable copies is resolved internally).
A conceptual example of the IDF architecture is reported in figure 4.6.

Another well-known architecture is represented by the All-At-Once (AAO) scheme. The related formu-
laƟon has already been considered in the first part if this brief introducƟon. The corresponding diagram
can be seen in figure 4.7.

In this case the residual equaƟons are not managed implicitly as in IDF architecture where such equa-
Ɵons are used to resolve internally the dependence between state variables and copies of the coupling
variables. In AAO architecture the residuals of the governing equaƟons are in fact managed as constraints
in the related problem formulaƟon. The evaluaƟon of residuals can be done in parallel or in sequenƟal
manner (on the basis of the available resources) since each one is independent with respect to the other.
In AAO paƩern the computaƟons of objecƟve and constraint funcƟon can be done concurrently with the
residuals evaluaƟons since all the required data are available from the algorithm main driver at each iter-
aƟon. In the case of IDF architecture the evaluaƟon of objecƟve and constraint funcƟons is done instead
aŌer the computaƟons of the various disciplines analyses. Such a situaƟon limits the possibility to run

68

these processes concurrently with the funcƟons evaluaƟons.
The CollaboraƟve OpƟmizaƟon (CO) architecture is one of the other interesƟng paƩern considered in this
secƟon. In parƟcular such scheme shows well-different characterisƟcs with respect to the previous formu-
laƟons. Its main purpose is represented by the management of each discipline with a greater autonomy,
using decomposiƟon and coordinaƟon paƩerns for such objecƟve. Different sub-problems are defined for
each discipline in addiƟon to the main system mulƟdisciplinary problem. In literature two formulaƟons
about CO architectures can be found and the second one is considered since it is the most frequently used.
The related formulaƟon is expressed in the following lines:

minimize: f0(x0, x̂1, · · · , x̂N , ŷ)

with respect to: x0, x̂1, · · · , x̂N , ŷ

subject to: c0(x0, x̂1, · · · , x̂N , ŷ) ≥ 0
J∗
i = ∥x̂0i − x0∥22 + ∥x̂i − xi∥22 + ∥ŷi − yi(x̂0i, xi, ŷj ̸=i)∥22 = 0 for i = 1, · · · , N

Once the overall system formulaƟon has been define the discipline sub-problems are defined with the
following relaƟonships (there is one sub-problem for the i considered discipline/analysis).

minimize: Ji(x̂0i, xi, yi(x̂0i, xi, ŷj ̸=i))

with respect to: x̂0i, xi

subject to: ci(x̂0i, xi, yi(x̂0i, xi, ŷj ̸=i)) ≥ 0

The Ji funcƟons are introduced to ensure the consistency between the variables copies. Each discipline
sub-problem is addressed to the minimizaƟon of data inconsistency and any local objecƟve. At the same
Ɵme the overall system algorithm deals with the minimizaƟon of system objecƟve and the consistency
among the various singularly opƟmized discipline sub-problems. The main drawback related to such an
approach is represented by the fact that each domain sub-problem must be solved once to complete a
single iteraƟon of the mulƟdisciplinary system problem. This architecture can also be idenƟfied as a bi-
level opƟmizaƟon approach. A conceptual representaƟon of CO architecture is reported in figure 4.8.

The last example of MDO schemes considered is represented by the Bilevel Integrated System Synthe-
sis (BLISS-2000 variant) architecture. Such example is quite similar to the CO typology since the overall
opƟmizaƟon problem is decomposed into system and single discipline sub-problems. The main difference
with respect to the CO architecture is related to the fact that the disciplinary sub-problems are managed
through the use of surrogate models. In parƟcular such models are used to analyze the influence of the
coupling design variables on the opƟmality of the single sub-problem. The related formulaƟon is:

minimize: f0(x, ỹ(x, ŷ))

with respect to: x0, ŷ, w

subject to: c0(x0, ỹ(x, ŷ, w) ≥ 0
ŷi − ỹi(x0, xi, ŷj ̸=i, wi) for i = 1, · · · , N

The sub-problems formulaƟons follow instead the following relaƟonships

minimize: wT
i yi

with respect to: xi

subject to: ci(x0, xi, yi(x0, xi, ŷj ̸=i)) ≥ 0

69

Figure 4.8: CO architecture [35].

Where w is the vector of weighƟng coefficients and it is chosen on the basis of the control preferences
over the state variables. These coefficients are in fact directly related to the global objecƟve and they affect
how quickly the sub-problems opƟmal soluƟon is found. The diagram of BLISS-2000 architecture can be
seen in figure 4.9.

One of the characterisƟc aspect of this architecture is represented by the fact that the various DA return
the data not directly to the system sub-problems since the informaƟon are first used to update surrogate
models.
The proposed unified notaƟon is a well-defined instrument for a clear and formal representaƟon of MDO
architectures as can be seen from the proposed example. The same terminology will be used in the current
work for the descripƟon of mulƟdisciplinary problem seƫng and architecture.

4.2 Available tools for MDO problems

The management of mulƟdisciplinary design problems has aƩracted the interest of a quite wide range
of soŌware houses and commercial iniƟaƟves. In parƟcular the current market provides different solu-
Ɵons for the commercial Process IntegraƟon and Design OpƟmizaƟon (PIDO) soŌware [30]. They offer the
capability to interface different kind of external solvers which are oŌen based on heterogeneous analysis
environments. OpƟmizaƟon capabiliƟes can be also provided within the individual analysis environment
but such embedded uƟlity are oŌen not properly conceived to handle complex mulƟdisciplinary problems.
Different simulaƟon environments are however addressing some of their efforts in this direcƟon with the
final aim to provide robust funcƟonaliƟes in a unique framework.
OpƟmizaƟon toolkits that are embedded within the same modeling framework can be found within some
analysis suites. A short list of the available embedded tools for opƟmizaƟon analyses is reported in the
following only to provide actual references to the current approaches.
OpƟmizaƟon funcƟonaliƟes are available within SolidWorks (Design opƟmizaƟon study), Matlab/Simulink
(OpƟmizaƟon Toolkit), Altair Hyperworks (OpƟstruct, Hyperstudy), etc.
More interesƟng results can however be obtained through the integraƟon of mulƟple external solvers.
In parƟcular the connecƟon with external analysis environments becomes fundamental when complex

70

Figure 4.9: BLISS-2000 architecture [35].

mulƟdisciplinary design problems are faced. Some domain-specific analyses are oŌen managed through
validate frameworks but their capabiliƟes do not cover all the possible simulaƟon scenarios. Commercial
tools properly behave when the specific analysis domain is approached but complex scenarios oŌen need
to consider mulƟple physical aspect for the system under development. For this reason the tools used for
parƟcular simulaƟons become not suitable for other ones. Within this context the use of a PIDO soŌware
can help tomodel and analyzemore complex situaƟons, allowing the interacƟon between proprietary tools
that oŌen are not explicitly conceived to interface with other soŌware. Some examples are reported in
the next lines.
The CONSOL-OPTCAD™ tandem is for example a tool for interacƟve opƟmizaƟon-based design of a large
class of systems and has been developed from the InsƟtute for System Research (University of Maryland).
The essenƟal requirements are that a simulator be available for evaluaƟng the performance of instances of
the system under consideraƟon and that the design variables to be opƟmally adjusted are allowed to take
on any real value in a given domain. To date, CONSOL-OPTCAD™ has been used on applicaƟons as different
as design of various circuits, design of controllers for a flexible arm, a high-performance aircraŌ (rotorcraŌ
control systems), a roboƟc manipulator, or determinaƟon of opƟmal flow rate and temperature profile for
a copolymerizaƟon reactor [38].
VisualDOC has been developed by Vanderplaats Research and Development (VRD), Inc. mainly for the
computer aided analysis community. A graphical user interface increases the flexibility of process integra-
Ɵon, system automaƟon, and design opƟmizaƟon. VisualDOC is a mulƟdisciplinary design, opƟmizaƟon,
and process integraƟon soŌware which can be used to define, execute, and automate a design process.
It includes design modules such as OpƟmizaƟon, Design of Experiments, Response Surface Models, and
ProbabilisƟc (Robust and Reliability-based) Analysis which it can add to almost any analysis program. Vi-
sualDOC’s graphical user interface allows the user to easily create a connected work-flow of components
and configure them. VisualDOC supportsmulƟ-level, cyclic, and condiƟonal workflows. Its features include
comprehensive concurrent monitoring and visualizaƟon tools, storage and reuse of generated simulaƟon
data for post-processing, full debugging support for model execuƟon, and the ability to interacƟvely in-
spect andmonitor the design process. It also supports remote execuƟon in a heterogeneous environment,
parƟal and batch-mode execuƟon, and provides programmaƟc access to all the included design modules.
It can integrate with Excel, Matlab, various CAE soŌware, and user-defined libraries and executables. Visu-
alDOC provides a useful and flexible SimulaƟon Data Management (SDM) capability as can also be found

71

in other PIDO soŌware. Many engineers and analysts spend an extraordinary amount of Ɵme engaged in
parametric studies of one or two parameters using one or more different simulaƟon programs. As other
mulƟdisciplinary tools, VisualDOC has been conceived to easily set up simulaƟon(s) fromuser point of view,
providing the basis for an automaƟc run and search of the best design while varying many parameters sub-
ject to many constraints [39].
ModeFRONTIER® is another example of integraƟon plaƞorm for mulƟ-objecƟve and mulƟ-disciplinary op-
ƟmizaƟon. Such tool has been developed by Esteco with the final aim to manage complex engineering
problems [40]. It provides a seamless coupling and interfacing with proprietary codes and third party anal-
ysis tools, enabling the automaƟon of the design simulaƟon process.
The final purpose of such tools can always be basically summarized with the capability to facilitate the pro-
cess of analyƟc decision making. Nexus represents another opƟmizaƟon suite that has been developed
by the iChrome Ltd. to provide useful capabiliƟes in the context of mulƟdisciplinary analyses. It allows
the integraƟon of design process, distribuƟon and scheduling analyses, inter-operaƟon and exchange data
between applicaƟons, management, visualizaƟon and organizaƟon of results [41].
iSIGHT is one of the most widespread tools among the mulƟdisciplinary analysis ones. It originated from
the compuƟng system for Computer Aided OpƟmizaƟon of General Electric (GE) and employs MDO Lan-
guage (MDOL) as a unique operaƟon script language. In this way the main objecƟve is the capability to
provide a customized environment depending on the architecture of problems and user’s circumstances.
Such desktop tool allows the interacƟon with CAD/CAM/CAE/PDM environments across different plat-
form (Windows, LINUX or UNIX). Task Manager secƟon of iSight is able to manage different opƟmizaƟon
methodologies, including gradient methods, geneƟc algorithms, approximate methodologies and quality
engineering methodologies. Parallel processing features are also available as well as the management of
data flow and design strategies.
ModelCenter from Phoenix IntegraƟon currently play a key role within the market of the PIDO soŌware.
It mainly works on Windows O/S but it can construct heterogeneous distributed environments using the
network for the connecƟon with mulƟple analysis servers. In this way is can control different programs
such as commercial CAD tools as well as analysis ones, supporƟng the JScript and VBScript to connect new
enƟƟes. This features makes ModelCenter parƟcularly flexible in cooperaƟng with internet/intranet envi-
ronments and databases. It relies both on a library of opƟmizaƟonmethods and a large set of tool adapters
for external interfaces.
A couple of interesƟng works for the MDO framework coming from academic and NASA acƟviƟes are rep-
resented by Framework for Interdisciplinary Design and OpƟmizaƟon (FIDO) [42] and Intelligent MulƟdis-
ciplinary AircraŌ GeneraƟon Environment (IMAGE) [43]. In the first case the tool has been developed by
NASA Langley while in the second one the framework has been implemented at Georgia Tech AircraŌ Sys-
tem Design Lab (ASDL).
All these tools represent commercial PIDO soluƟons currently present on the market but open-source ini-
ƟaƟves are also available. DAKOTA and OpenMDAO projects are two of the most promising, interesƟng
and well known research iniƟaƟves. They provide useful funcƟonaliƟes for the management of mulƟdisci-
plinary design problems without the cost limitaƟons associated to commercial tools. The related benefits
and drawbackswill be coveredmore extensively in the following secƟons. OpenMDAOhas been developed
more recently with respect to DAKOTA but has already highlighted some interesƟng capabiliƟes as shown
in [79].

4.2.1 Drawbacks of the current PIDO tools

Despite all the features and main advantages of PIDO soŌware they are not the ideal soluƟon for MDO
environment. The PIDO tool concerns mainly opƟmizaƟon methods at the expense of data management
and collaboraƟon between users. Scenarios built from such infrastructure allow the individual user to per-
form complex surveys but limit the interacƟon among different users above all when the number of people
involved in a project becomes large (i.e. in the advanced development phases of a system). In addiƟon,
also if a PIDO tool can handle different engineering soŌware (i.e. CAD, CAE, etc.), it is not parƟcularly
effecƟve and saƟsfactory environment for users frommodeling perspecƟve. A workflowmanagement sys-

72

tem represents a fundamental element for the implementaƟon of an effecƟve collaboraƟve infrastructure.
PIDO tools are currently not well suited for the sharing of a wide range of data and resources. AlternaƟve
soluƟons implemenƟng web-based technologies can beƩer manage such kind of informaƟon. An infras-
tructure based on web services can more effecƟvely combine analysis codes, opƟmizaƟon methods and
data-basemanagement system, enhancing the collaboraƟon and reducing data consistency issues. Current
PIDO tools are not as flexible as can be web-based applicaƟon and oŌen this feature makes the interface
difficult to understand and learn with respect to a web environment.

4.3 OpenMDAO Framework

One interesƟng iniƟaƟve in the field ofMDO is represented byOpenMDAOproject. The acronymMDAO
in OpenMDAO definiƟon stands for MulƟdisciplinary Design Analysis and OpƟmizaƟon, underlining as this
framework has been conceived to face the problems linked to complex system design. This open-source
framework has been wriƩen with Python code as this language offers many advantages in the context of
simulaƟons integraƟon. In the current work such tool has been considered for the possible integraƟonwith
the modeling framework since it shows some interesƟng features for the management and integraƟon
of simulaƟon code. In the following lines a brief descripƟon of this framework is reported to show the
promising capabiliƟes that can be obtained through such infrastructure. More details are available from
[44] and [81].

4.3.1 Mission

The main purpose of OpenMDAO research iniƟaƟve is basically represented by the capability to in-
tegrate analyses coming from different sources under the same environment. In parƟcular it allows to
combine analysis tools (or simulaƟon codes) from mulƟple disciplines, at different levels of fidelity, and to
handle the interacƟon between them. OpenMDAO is basically defined to manage the dataflow and the
workflow (that specifies which code is run and when in relaƟon to the other ones) concurrently with op-
ƟmizaƟon algorithms and other advanced solving methods. The current capabiliƟes of OpenMDAO can
be summarized in the following ones. It allows the informaƟon exchange among mulƟple analysis codes
at various levels of fidelity to create simulaƟons and models of complex systems. Such infrastructure pro-
vides also the state-of-the-art MDAO algorithms for solving highly coupled analyses. Such problems can
potenƟally arise when mulƟple tools are combined and integrated between each other. The object ori-
ented approach (enhanced also by the use of Python language) allows quick implementaƟon of new tools
and methods for the management of increasingly complex situaƟons. A recent and detailed report about
its usage is available from [78].

4.3.2 Elements and their funcƟons

OpenMDAO is extremely flexible thanks to the separaƟon between the flow of informaƟon (dataflow)
from the process in which analyses are executed (workflow). Such disƟncƟon is achieved through the use
of four specific constructs, represented by the following ones:

• Component

• Assembly

• Driver

• Workflow

The construcƟon of the overall analysis scenario starts with wrapping or wriƟng from scratch the var-
ious analysis codes. During such phase these elements are basically used to build the Components. They
are basically the building blocks for the construcƟon of more complex system and related analysis. In

73

Figure 4.10: Overview of an example iteraƟon hierarchy with few drivers [45].

parƟcular the Python cross-plaƞorm capabiliƟes are used to wrap the analyses that we want to integrate
together, reducing in this way the efforts required to ensure data consistency, avoiding also the problems
of O/S dependencies. Once a set of Components are available they are integrated to define an Assembly.
In parƟcular a group of Components is linked together within an Assembly to specify the dataflow between
them. The following step is the set up of the workflow once the dataflow has been defined. In parƟcu-
lar the procedure that drives the problem solving is affected by the Driver elements chosen in this phase.
Drivers can be selected among opƟmizers, solvers, design of experiments, etc. Such informaƟon is used to
basically define how to problemwill be solved, scheduling the execuƟon of the various analysis objects. To
beƩer explain the relaƟonships between the dataflow definiƟon and workflow definiƟon it is possible to
say that mulƟple Driver/Workflow combinaƟons may exist for the same dataflow. For example the same
dataflow can be used to run a straighƞorward opƟmizaƟon on the system, to develop a set of surrogate
models first and then perform an opƟmizaƟon on the models or to run a sensiƟvity analysis. In this case
the dataflow is the same but there are three different workflow with different purposes. An example of an
iteraƟon hierarchy involving different drivers is reported in figure 4.10 ([45]).

OpenMDAO is able to provide a wide set of features that make such framework useful to build complex
analyses in the MDAO field. A much higher degree of code sharing, re-use and modularity is also achieved
through a common plaƞorm, enhancing the data exchange among the MDAO community. Algorithms and
solving methods can then be developed and distributed among users and communiƟes, improving also
the validaƟon and invesƟgaƟon of new techniques. The main features provided by OpenMDAO are repre-
sented by a library of built-in solvers and opƟmizers, tools for meta-modeling, data recording capabiliƟes,
support for analyƟc derivaƟves, support for high-performance compute clusters and distributed comput-
ing, extensible plugin library. All such funcƟonaliƟes are available through an object oriented approach that
enhances the integraƟon among different environments. In figures 4.11 and 4.12 are shown two examples
of the possible interacƟons among components within the same assembly as well as between assemblies
on different levels.

The development effort of such framework is driven by the NASA Glenn Research Center, with also
support of NASA Langley Research Center. NASA’s interest in the OpenMDAO project comes from the
evaluaƟon of unconvenƟonal aircraŌ concepts like Turbo-Electric Distributed Propulsion. Although NASA’s
focus is on analyzing aerospace applicaƟons, the framework itself is extremely flexible and can used also
in other disciplines [45].

74

Figure 4.11: Data flow among components of the same assembly [45].

Figure 4.12: InteracƟon among different assemblies placed on different levels [45].

75

4.3.3 Browser GUI (Web Based)

In addiƟon to the advantages previously described (integraƟon capabiliƟes with analysis environments,
object oriented plaƞorm, open-source iniƟaƟve, solvingmethods library, etc.) OpenMDAO has also started
the integraƟon with the current web-based technologies. In parƟcular the tool provides a graphical user
interface as a web-service running on locale machine. It is implemented basically as a local server lunched
from the command linewindow and it can be accessed from the browser andwith no necessarily a network
connecƟon (due to the fact that the server is launched on the same machine). Such interface can help to
set up the dataflow paƩern, providing also the informaƟon needed for the specificaƟon of the workflow.
Such acƟviƟes can be performed also thanks to the aid available of drop down menu and drag and drop
elements, reducing the possibility to erroneously design incorrect connecƟons or instanƟaƟon for example.
The same approach can also be considered for future extension of the same framework, paving the way
for the possible integraƟon within a more complex web-based infrastructure where the mulƟdisciplinary
analyses aremanaged with the support of OpenMDAO (one of the possible services provided by such web-
based infrastructure).

4.4 DAKOTA

DAKOTA project represents one the most interesƟng iniƟaƟve that involves the definiƟon of powerful
open-source tool. In parƟcular we have explored the feasibility to use this instrument for the management
of the development process related to system implementaƟon. In the context of a mulƟdisciplinary design
opƟmizaƟon study DAKOTA provides a series of useful instruments that allows controlling the simulaƟon
data. Generally speaking under the same environment it is possible to process and to transfer the infor-
maƟon among different analysis tools. In this way we can consider the opportunity to automate some
of the pre-processing and post-processing operaƟons that tradiƟonally are performed manually. Within
an industrial perspecƟve this allows to reduce the Ɵme to market feature, reducing consequently also the
costs involved in the development process. The evaluated tool comprehends different key capabiliƟes that
we briefly present in the following lines (more details are available in [77]).
Historically DAKOTA born at Sandia NaƟonal Laboratories as an instrument for the proper predicƟon, simu-
laƟonmanagement and risk-informed design process. Themain goal is to provide all the useful informaƟon
that may be necessary for the decision making phase that a system development generally requires. The
simulaƟon credibility that is pursued relies on various acƟviƟes as those related to validaƟon, to verifica-
Ɵon, to uncertainty qualificaƟon and finally to physics modeling fidelity. All this features depend in turn on
other sub-acƟviƟes that concur in the generaƟon of non-determinisƟc results on which simulaƟon credi-
bility places its success.
DAKOTA includes a wide set of algorithm capabiliƟes and uƟliƟes that allow to manage complex model
simulaƟons, as acronym highlights (i.e. Design and Analysis toolKit for OpƟmizaƟon and Terascale Applica-
Ɵons). Basically it helps to understand which the relevant parameters that affect product behavior are and
to establish howuncertainty influences the system responses. Other funcƟonaliƟes are related to opƟmiza-
Ɵon analysis and to calibraƟon of analyƟcal funcƟons with experimental data. All the tool operaƟons are
based on interpretaƟon of response metrics and generaƟon of process parameters. In parƟcular response
metrics come from computaƟonal model (simulaƟon) as the introduced parameters are required to set the
simulaƟons execuƟon. The computaƟonal model may be black box or semi-intrusive soŌware program. In
the first case are included any codes describingmechanics, circuits, high energy physics, biology, chemistry,
etc whereas in the second one we can find Matlab, ModelCenter, Python, SIERRA mulƟ-physics, SALINAS,
Xyce, etc. All these features may be implemented within an automated iteraƟve analysis, supporƟng for
example also experimental tesƟng through computermodels. In this way is possible to runmany situaƟons
not well understood and then physically test only a reduced number of worst case scenarios. We briefly
introduce also the main tool-kit features. It provides:

• Generic interface for external simulaƟon.

76

• Time-tested and advanced algorithms to manage different type of variables (non-smooth, disconƟn-
uous, mulƟ-modal, discrete and mixed).

• Strategies to combine methods and integrate different environment (advanced studies and surro-
gates generaƟon).

• Capability to address mixed determinisƟc and probabilisƟc analysis.

• Possibility to address the execuƟon of simulaƟons cycle on clusters through scalable parallel compu-
taƟons.

• Advantages of an object oriented code.

4.4.1 SensiƟvity Analysis capabiliƟes

SensiƟvity analysis is one of the main features that DAKOTA helps to manage. The final aim of this
analysis is to understand how code outputs vary depending on changes in code inputs. In parƟcular the
variaƟons on outputs are traced to the input perturbaƟons through the use of automated process. Local
sensiƟviƟes are generally managed with numerical implementaƟon of parƟal derivaƟves while global ones
are found via sampling methods and regression approaches. At the end of the acƟvity the primary pur-
pose is to idenƟfy which variables have main influence on the simulaƟon results, allowing a more efficient
running of the opƟmizaƟon or uncertainty quanƟficaƟon processes.
Generally these methods may be integrated within parameter study, design and analysis of computer ex-
periments. In more detail the general sampling techniques implemented are the following:

• Single and mulƟ-parameter studies (grid, vector, centered).

• DDACE (grid, sampling, orthogonal arrays, Box-Behnken, CCD).

• FSUDACE (Quasi-MC, CVT).

• PSUADE (Morris designs).

• Monte Carlo, LaƟn hypercube sampling (with correlaƟon or variance analysis, including variance-
based decomposiƟon).

• Mean-value with importance factors.

The final responses related to sensiƟvity analysis are basic staƟsƟcs, including mean standard deviaƟon
and possible correlaƟons between the considered input variables. All these informaƟon may be collected
in a tabular output that can be processed with an external third-party staƟsƟcs tool.
The main effects and interacƟons between the variables are not generated through input distribuƟon as-
sumpƟon for this kind of analysis.

4.4.2 Parameter Study capabiliƟes

One of the main features of DAKOTA is represented by the Parameter Study Capability. In this case
the effect of parametric changes through simulaƟon models are shown on output responses. The input
selected points in the parameter space are used to evaluate this parƟcular type of sensiƟvity analysis. The
input data sets can be selected in a determinisƟc way and structured with a parƟcular paƩern also if it is
possible to use user-specified data group. There is also the possibility to use four different parameter study
methods, introduced in the following list:

• Vector

• List

77

• Centered

• MulƟdimensional

These methods are different from each other on the basis of the techniques that are used to idenƟfy
the parameter space points. In the case of Vector method the parameter study is performed choosing the
input design points included on the vector line between two points of an n-dimensional space on the basis
of a selected number of intervals to be sampled. This approach encompasses both single-coordinate pa-
rameter studies as well as mulƟple coordinate vector studies. In the case of list methods the user supplies
the list of input parameter number to be used in the study. The centered approach considers an iniƟal
point of n-dimensional space from which the other points are evaluated moving along the coordinates
axes in different possible manner. This capability could be used for post-opƟmality analysis verifying that
the idenƟfied soluƟon is actually at a minimum or constraint boundary and also in analyzing the shape of
the staƟonary point under consideraƟon. In the final methods a hypergrid in n-dimensional space is cre-
ated and the user has only to specify the number of interval to consider. This study generally is not used
to link the response data set to any specific results interpretaƟon but may be used as starƟng point for
sensiƟvity analysis. In parƟcular the response data set can be integrated with the evaluaƟon of numerical
informaƟon related to the gradients or hessian quanƟƟes. The parameter study can also be used to evalu-
ate the nonsmoothness in the simulaƟon response variaƟons, refining model characterisƟcs or seƫng the
step size for the computaƟon of numerical gradients. This capability can also be used to invesƟgate prob-
lem area in the parameter space as also to perform simulaƟon code verificaƟon, idenƟfying the possible
problem related to simulaƟon robustness. The results coming from this analysis can be used as starƟng
point for minimizaƟon methods as either a pre-processor uƟlity. The same approach is used in the case
of post-processing acƟviƟes for example for post-opƟmality analysis. Parameter study seƫngs require the
definiƟon of iniƟal point and bounds for the design variables (or equivalently the iniƟal state and bounds
in the case of state variable) to proper manage the simulaƟon run over the variables range. Parameter
studies, classical design of experiments acƟviƟes (DOE), design/analysis of computer experiments (DACE)
and sampling methods have all the samemain objecƟve that is the proper exploraƟon of parameter space.
In parƟcular the parameter studies are generally used for simple studies with repeƟƟve structure. Vec-
tor or centered methods are addressed to local sensiƟvity analysis or assessment of funcƟon smoothness.
MulƟdimensional technique is oŌen used for the generaƟon of grid points and ploƫng of the response
surfaces.

4.4.3 Design of Experiments capabiliƟes

One of the other capabiliƟes of DAKOTA toolkit is represented by the Design of Experiments feature
(DOE). In parƟcular the classical DOE and the more recent design and analysis computer experiments
(DACE) methods are both techniques that try to extract as much informaƟon from a parameters space
as possible with a limited number of set points. DOE techniques are usually employed in the case of tech-
nical domains characterized by some randomness and nonrepeaƟbility of the experiments (for example in
agricultural or experimental chemistry fields). In this way the main aim is to disƟnguish between the simu-
lated (computer) experiments and physical experiments. The last one is characterized by a greater stochas-
Ɵc component that drives to the consequences that the same treatmentmay results in different outcomes.
In computer simulaƟon experiments instead there is quite oŌen a determinisƟc code. Central Composite
Design, Box-Behnken Design, Full/FracƟonal Factorial Design are some of the techniques included within
the DOE classical approach. These ones allow extracƟng important informaƟon starƟng from set points
mainly placed at the extremes of the design space, since this locaƟon offer reliable behavior in the pres-
ence of nonrepeaƟbility. The nonrepeaƟbility component in the case of computer simulaƟons is the main
characterisƟc that allows disƟnguishing between DOE techniques and DACE methods. Orthogonal Array
Sampling and LaƟn Hypercube Sampling are in the case of DACE approach the more commonly used for
the extracƟon of proper trend responses from simulaƟon models. Other sampling techniques as Quasi-
Monte Carlo approach are employed in DACE methods to uniformly cover the unit hypercube of design
space. Generally speaking DOE/DACE techniques use only the results coming from the input parameters

78

bounds to construct the set of points for the extracƟon of required informaƟon. From this viewpoint these
methods are substanƟally parƟcular examples of the more general probabilisƟc sampling for uncertainty
quanƟficaƟon. They are used to invesƟgate overall simulaƟon results, idenƟfying the main effect of input
parameters. This informaƟon is potenƟally employed to build the response funcƟon/surface for the fol-
lowing opƟmizaƟon/trade-off algorithm.
DAKOTA toolkit offers several packages for the management of acƟviƟes linked to DOE/DACE processes.
Some of the main important ones are introduced in the following list:

• LaƟn Hypercube Sampling (LHS) package

• Distributed Design and Analysis for Computer Experiments (DDACE)

• Florida State University design and Analysis of Computer Experiments (FSUDACE)

• Problem Solving Environment for Uncertainty Analysis and Design ExploraƟon (PSUADE)

Someof themathemaƟcalmethods implementedwithin the named package can be briefly summarized
in the following list:

• Orthogonal Array

• Box-Behnken Design

• Central Composite Design

• Random Design

• Quasi-Monte Carlo Sampling based on Halton or Hammersley sequences

• Centroidal Voronoi TessellaƟon

• Morris Screening

4.4.4 Uncertainty QuanƟficaƟon capabiliƟes

One of the other important DAKOTA feature is represented by the Uncertainty QuanƟficaƟon. The
main purpose of this type of analysis is to understand how an assumed distribuƟon for the input variables
is propagated on a distribuƟon for the output response. In this case forward propagaƟon is considered
with the aim to quanƟfy the non-determinisƟc effects on model output. The related methodologies allow
managing probabiliƟes of failure (reliability metrics), robust opƟma and also quanƟficaƟon of uncertainty
when calibrated models are used for behavior predicƟon. The uncertainty quanƟficaƟonmethods can also
exploit the results coming from mulƟfidelity modeling to drive complex analysis. On this topic a clear de-
scripƟon is available in [76].
Dakota toolkit provides useful instruments for the evaluaƟon and characterizaƟon of epistemic uncertain-
Ɵes and aleatory uncertainƟes. SimulaƟon models are oŌen affected by the presence of phenomena that
do not show a determinisƟc behavior. In parƟcular some simulaƟon parameters such asmaterial properƟes
or boundary elements (e.g. phenomena external to the system under consideraƟon) are characterized by
uncertain values. These quanƟƟes are modeled through the use of probability distribuƟons that describe
the element response over a parƟcular range of values. The right evaluaƟon of these values is fundamen-
tal for understanding the potenƟal ranges of outputs or scenario implicaƟons. The capability to evaluate
the effect of uncertainty is parƟcularly relevant in the decision making process. Uncertainty evaluaƟon is
generally differenƟated between twomain categories: the epistemic uncertainty and aleatory uncertainty.

• Epistemic uncertainty

• Aleatory uncertainty

79

Epistemic uncertainty represents the uncertainty related to the lack of knowledge of a parƟcular quan-
Ɵty and it is oŌen expressed equivalently as state of knowledge uncertainty, subjecƟve uncertainty, type
B uncertainty or reducible uncertainty [75]. Generally speaking this type refers to the cases where uncer-
tainty can be reduced through increased understanding or increased and more detailed data. InteresƟng
analyses about such topic are available from [73] and [74]. In parƟcular epistemic quanƟƟes are referred
to that elements which have a fixed value in an analysis but we do not known that fixed value. For example,
the elasƟc modulus of a material in a specific component is generally fixed but unknown or poorly known.
On the other side the aleatory uncertainty is characterized by relaƟve randomness which cannot be re-
duced by further data collecƟon. For example the uncertainƟes related to weather cannot be reduced by
gathering further informaƟon. Aleatory uncertainty is also expressed as stochasƟc, variability, irreducible
and type A uncertainty. Aleatory quanƟƟes are usually defined with probability distribuƟons when epis-
temic cannot be modeled in the same way. There are many ways of represenƟng epistemic uncertainty as
for example the probability theory, fuzzy sets, possibility theory and imprecise probability. The right choice
between these alternaƟves represents a challenging research topic. Three of the most widespread way of
epistemic uncertainty evaluaƟon are represented by the interval analysis, Dempster-Shafer evidence the-
ory and second order probability. The last soluƟon is oŌen used in the case of mixed aleatory/epistemic
uncertainƟes. In the case of interval analysis it is assumed that nothing is known about the uncertain
variables except that they lie within certain intervals. In this case the main aim is to idenƟfy the range
of values within which the output values will lie. In Dempster-Shafer evidence theory the choice of input
parameters is managed through the assignment of probability value to the different subranges with which
the overall variables range is divided (Basic Probability Assignment). Finally the second order probability
evaluaƟon is based on the management of both the aleatory and epistemic uncertainty. An example of
such an applicaƟon is represented by the case where the probability distribuƟon type is known (e.g. that
it is distributed normally or lognormally) but the parameters governing the distribuƟon is not well known.
This situaƟon is faced through the use of an outer and an inner loop. The outer loop manages the choice
of epistemic values of the related governing parameters for the considered distribuƟon while the inner
loop is characterized by the sampling. This last process is performed from the aleatory distribuƟon with
distribuƟon parameters set on the outer loop (on epistemic point of view).
Different techniques are used to propagate the aleatory behavior related to the probability distribuƟon:

• LaƟn Hypercube Sampling

• Local Reliability Method (mean value, MPP search, FORM, SORM)

• Global reliability methods (EGRA)

• Non-intrusive stochasƟc expansion methods (polynomial chaos and stochasƟc collocaƟon)

The just considered methods are used to face aleatory uncertainty while the epistemic one is managed
with the following ones:

• Local/global interval esƟmaƟon

• Local/global Dempster/Shafer evidence theory (belief/plausibility)

• “Second-order” probability

In parƟcular DAKOTA can output probability of response thresholds, reliability metrics, response corre-
sponding to a metric, etc... In this case the so defined “Second-order” probability refers generally to the
nested sampling technique that are frequently used in QuanƟficaƟon ofMargins and UncertainƟes (QMU).
Uncertainty quanƟficaƟon (UQ) is one of the main instruments that allow a beƩer understanding the be-
havior of a parƟcular system. DAKOTA toolkit offers a wide range of uncertainty quanƟficaƟon instruments
for the management of informaƟon about the available data. NondeterminisƟc analysis is addressed to
the characterizaƟon of the uncertainƟes on model inputs and their influence on outputs through compu-
taƟonal simulaƟon. In DAKOTA the uncertainty quanƟficaƟon ismainly focused on the forward propagaƟon

80

of the process, involving the staƟsƟc generaƟon of outputs distribuƟon. UQ is parƟcularly linked with sen-
siƟvity analysis since in both case the main aim is to understand how variaƟons in the inputs values affect
outputs probabilisƟc distribuƟon. Generally speaking the output stochasƟc distribuƟons are inferred on
the basis of the assumed input ones. As previously introduced the uncertainty quanƟficaƟon can be dis-
Ɵnguished between the aleatory and epistemic variability. The considered toolkit offers a series of func-
ƟonaliƟes that allowmanaging both these uncertainty types. The main aleatory uncertainty quanƟficaƟon
methods used within DAKOTA are introduced in the following list:

• Sampling-based approaches

– Monte Carlo

– LaƟn Hypercube

• Local Reliability method

• Global Reliability method

• StochasƟc Expansion

– Polynomial Chaos Expansions

– StochasƟc CollocaƟon

The epistemic uncertainty evaluaƟon methods are instead listed in the following:

• Local Interval Analysis

• Global Interval Analysis

• Dempster-Shafer Evidence theory

In the case ofmixed aleatory/epistemic uncertainty quanƟficaƟonDAKOTA supports the followingmeth-
ods:

• Interval-valued probability

• Second Order probability

• Dempster Shafer theory of evidence

The LaƟn Hypercube package provides both Monte Carlo random sampling method and the effec-
Ɵve LaƟn hypercube approach. The probabilisƟc distribuƟons that can be considered within the evalu-
ated toolkit are: normal, lognormal, uniform, loguniform, triangular, exponenƟal, beta, gamma, gumbel,
frechet, weibull, poisson, binomial, negaƟve binomial, geometric, hypergeometric and finally user-supplied
histograms. The uncertainty quanƟficaƟon process can be realized also with the possibility to use a user
provided correlaƟon matrix. In this case the correlaƟons between input and output variables are deduced
from the informaƟon available and not from the simulaƟon results. The incremental LaƟn hypercube sam-
pling is sampling method based on the increase of the sampled points between two consecuƟve extracƟon
operaƟons and carrying the informaƟon gathered from the previous one. The reliability methods imple-
mented in DAKOTA can be applied in some cases with different alternaƟve modes on the basis of the type
of the level mappings. Some techniques solve local opƟmizaƟon problem to find the most probable point
for a parƟcular quanƟƟes and then about this one the probabiliƟes approximaƟons are integrated. Some
of the techniques are reported in the following list:

• Mean Value (MV) method

– First order version (MVFOSM)

81

– Second order version (MVSOSM)

• Most Probable Point (MPP) searchmethod (forward Reliability Index Approach (RIA) mode or inverse
Performances Measure Approach (PMA) mode)

– Advanced Mean Value method (AMV)

– Iterated Advance Mean Value method (AMV+)

– Two-point AdapƟve Nonlinearity ApproximaƟon method (TANA)

– First Order Reliability Method (FORM)

– Second Order Reliability Method (SORM)

The stochasƟc expansion methods employ the use of projecƟon, orthogonality and weak convergence
to evaluate the related staƟsƟcs. Polynomial Chaos Expansion (PCS) uses mulƟvariate orthogonal polyno-
mials which is parƟcularly suited for the representaƟon of a defined input probability distribuƟon. Stochas-
Ɵc collocaƟon instead employs mulƟvariate interpolaƟon polynomials. The evaluaƟon of expansion coef-
ficient in the case of PCE can be done with the following techniques for numerical integraƟon:

• Spectral ProjecƟon approach

– Sampling

– Tensor-product Quadrature

– Smolyak Sparse Grid

– Cubature method

• Regression approach

– Least Squares

– Compressive Sensing

StochasƟc collocaƟon interpolants can be formed with the list reported in the following:

• Tensor-product

• Sparse Grid

The interpolants can be expressed under different combinaƟon:

• Local or Global

• Value-based or Gradient-enhanced

• Nodal or Hierarchical

The Importance Sampling method is more effecƟve than Monte Carlo sampling and is generally used
for failure probabiliƟes computaƟon. In this case the sampled points are generated in preferenƟal regions
of the parameter space oŌen near the failure area for example or however defined by the user. AdapƟve
sampling technique tries to build a surrogate model that allows reducing the computaƟon loads related to
amore complex simulaƟon. A first set of sampled points is chosen (for examplewith LaƟn hypercubemeth-
ods) and then the related grid is adapƟvely modified and updated on the basis of selecƟon criteria. Interval
analysis is mainly used in the context of epistemic uncertainty evaluaƟon and the local or global techniques
implemented are addressed to the idenƟficaƟon of the output bounds on the basis of input ones. In the
case of global approach opƟmizaƟon methods (based in parƟcular on Gaussian process surrogate model)
or sampling techniques are used to assess bounds. The local methods use instead gradient informaƟon
through SequenƟal QuadraƟc Programming (SQP) or Non-linear Interior Point (NIP) to obtain bounds. The

82

Dempster-Shafer Theory of Evidence is mainly used to model the effect of epistemic uncertainƟes, basing
its implementaƟonwith the definiƟon of basic probability assignments (BPA) to each interval for the design
variables space. DAKOTA provides also other instruments as for example those related to the Bayesian Cal-
ibraƟon. In this approach the uncertain parameters are defined through a previous distribuƟon (assumed
on the basis of the known characterisƟcs of the modeled phenomena). This first distribuƟon is then up-
graded with experimental data and aŌer the process of Bayesian CalibraƟon a posterior distribuƟon is
obtained. Reliability methods represent an alternaƟve way to evaluate uncertainty quanƟficaƟon with the
aim to introduce a less computaƟonally demanding with respect to sampling techniques. StarƟng from
specified uncertain variable distribuƟons the response funcƟon staƟsƟcs are computed. The response
staƟsƟcs include mean, standard deviaƟon, cumulaƟve distribuƟon funcƟons (CDF) and complementary
distribuƟon funcƟons (CCDF). The probability calculaƟons involve oŌen mulƟ-dimensional integral over
an irregularly shaped domain for the variables of interest. Under these condiƟons it may be very difficult
to proper manage the informaƟon gathered and also to process the data available. For this reason oŌen
these techniques employ the definiƟon of a variables transformaƟon through the definiƟon of mapping
funcƟons between two equivalent variables spaces where the final one is easier to monitor. In DAKOTA
the implementaƟon of this mapping is obtained through the use of Nataf transformaƟon, which is similar
to RosenblaƩ transformaƟon in the case of independent random variables. The global reliability methods
are generally used to manage non-smooth and mulƟmodal failure surfaces introducing a global approxi-
maƟons based on Gaussian process models. The technique implemented in DAKOTA is idenƟfied with the
Efficient Global Reliability Analysis (EGRA) which belongs the family of Efficient Global OpƟmizaƟon (EGO)
methods. In parƟcular the approximaƟon obtained is used to drive the search acƟvity of the points that
maximize the Expected Improvement FuncƟon (EIF). The exploraƟon of design variables space proceeds to
find the points that show a higher value of probability to represent beƩer soluƟon. Briefly speaking the
opƟmizaƟon methods that reflect the EGO approach are characterized by the following steps:

• DefiniƟon of the iniƟal Gaussian process model for the objecƟve funcƟon.

• Search of the point that maximizes the EIF evaluaƟon, stopping for those points that show a small
EIF with respect to the previous evaluaƟon.

• EvaluaƟons of the objecƟve funcƟon for those points that have highlighted an upper value of EIF.
From this informaƟon in new value of the objecƟve funcƟon in these new points the Gaussian ap-
proximaƟon of the objecƟve funcƟon is updated.

• The process is then repeated from the second step.

The main methods included within the StochasƟc Expansion approach are represented by the polyno-
mial chaos expansion and stochasƟc collocaƟon. The polynomial chaos expansion is based on a mulƟdi-
mensional orthogonal polynomial approximaƟonwhile the stochasƟc collocaƟon is based on amulƟdimen-
sional interpolaƟon polynomial approximaƟon. In both cases the approximaƟon starts from the definiƟon
of standardized random variables. The feature that characterizes these two methodologies is represented
by the fact that the final soluƟon is expressed as a funcƟonal mapping and not only as a set of staƟsƟcs
as in the case of other nondeterminisƟc methodologies. In parƟcular DAKOTA implements the generalized
PCE approach using the Wiener-Askey scheme where different orthogonal polynomials are used for the
modeling of the effect of conƟnuous random variables described by various probability distribuƟons. The
main difference between the stochasƟc expansionmethods implemented (PCE and SC) is that, whereas PCE
esƟmates coefficients for knownmulƟvariate orthogonal polynomial basis funcƟons, SC employsmulƟvari-
ate interpolaƟon polynomial bases for known coefficients. The interpolaƟon polynomials can be local or
global and also value-based or gradient-enhanced. The related four combinaƟons are referred to Hermite,
Lagrange, piecewise linear spline and piecewise cubic spline. In the case of global methods the sensiƟvity
of the variables is evaluated through the use of the Sobol indices. In the case of StochasƟc CollocaƟon it
is possible to follow different procedures to evaluate the orthogonal polynomials which can be generated
from Gauss-Wigert recursion coefficients in combinaƟon with the Golub-Welsch procedures for example.

83

The main goal of adapƟve simulaƟon is to build a surrogate model that can be unused in place of a more
expensive simulaƟon model. The adapƟve simulaƟon model can be implemented following the next step:

• EvaluaƟon of the expensive simulaƟon (considered as the truemodel for the phenomena under anal-
ysis) at the iniƟal sample points.

• Fit/refit of a surrogate model.

• CreaƟon of a candidate set and score based on the informaƟon gathered from the surrogate.

• SelecƟon of new candidate points to evaluate again the true model (the more expensive one).

The evaluaƟon of the score list for the selecƟon of the candidate points is base on different types of
metrics. DAKOTA implements the following ones:

• Predicted Variance

• Distance

• Gradient

Once the score list has been defined the choice of the idenƟfied points can follow different approach on
the basis of variousmethodologies. In fact once the set of points has been ordered the choice of the points
to update the approximaƟon can take count also of the posiƟon of this points along the design variables
space (for example of two point with high score but near each other in the design space it should be beƩer
to select only one of them). On the basis of this consideraƟon in DAKOTA different choice strategies has
been implemented:

• Naive SelecƟon

• Distance Penalized Re-weighted Scoring

• Topological Maxima of Scoring FuncƟon

• Constant Liar

In Dempster-Shafer theory of evidence the ranges of variables are defined through the terms of belief
and plausibility. These funcƟons allow evaluaƟng the staƟsƟcal funcƟons related to a parƟcular simulaƟon
response. The cumulaƟve belief funcƟon is the lower bound on a probability esƟmate that is consistent
with the evidencewhile the cumulaƟve plausibility funcƟon is the upper limit that is consistent with the ev-
idence. Considering again the Bayesian CalibraƟon methods DAKOTA introduces the Markov Chain Monte
Carlo (MCMC) as the standard technique used to compute the posterior parameter densiƟes, starƟng from
the given experimental/observaƟonal data. In parƟcular the variaƟon algorithm used within this frame-
work is called DRAm which stands for Delayed RejecƟon and AdapƟve Metropolis, also if other algorithms
typologies can be implemented and they are however current research area. The DAKOTA implementa-
Ɵons of Bayesian calibraƟon follow two alternaƟves, one called QUESO and the other one GPMSA. QUESO
stands for QuanƟficaƟon of Uncertainty for EsƟmaƟon, SimulaƟon and OpƟmizaƟon. The choice for the
uncertainty quanƟficaƟon method to use depends mainly on the characterisƟcs of uncertainƟes of the in-
put parameters, the available computaƟonal budget and also on the objecƟve accuracy to be obtained.
In parƟcular the once the class of method has been selected (choosing among sampling, local reliability,
global reliability, etc.) the applicable methods (LHS, Monte Carlo, TANA, etc.) depends on the desired
problem features.

84

4.4.5 OpƟmizaƟon capabiliƟes

The opƟmizaƟon capabiliƟes provided by DAKOTA can be recognized in the set of advanced algorithms
available as for example those that allow managing mulƟ-objecƟve opƟmizaƟon as to perform surrogate-
based minimizaƟon. In The opƟmizaƟon problem formulaƟon design variables and design parameters
stand for the same quanƟƟes. They belong to the design space also called parameter space while the
terms design point or sample point refer to a parƟcular set of values within the parameter space. The ob-
jecƟve funcƟon denotes the simulaƟon response that is monitored to manage the design variables choice.
The constraints elements can be defined as linear or non-linear and also can be disƟnguished between
equality and inequality behavior. The feasible and infeasible design points are defined with respect to the
violaƟon or not of the constraints spaces. The opƟmizaƟon capabiliƟes can be analyzed on the basis of
opƟmizaƟon problem type, search goal and search method. The opƟmizaƟon problem type categorizaƟon
is based on the level of complexity that arises from the constraints and objecƟve funcƟons. From a hierar-
chical point of view the constraint categorizaƟon can follow the increasing complexity order, starƟng from
simple bound constraints through linear constraints to full nonlinear constraints. In parƟcular this division
can be reported in the following list with increasing complexity order referred to the constraints type:

• Unconstrained problem: problem with no constraints

• Bound-constrained problem: problem has only lower and upper bounds on the design parameters.

• Linearly-constrained problem: problem has both linear and bound constraints.

• Nonlinearly-constrained problem: this problem can include the complete range of nonlinear, linear
and bound constraints.

• Equality-constrained problem: when all the linear and nonlinear constraints are equality constraints.

• Inequality-constrained problem: when all the linear and nonlinear constraints are inequality con-
straints.

Another categorizaƟon can be made on the basis of the linearity of the objecƟve and constraints func-
Ɵons:

• Linear Programming Problem (LP): a problem where objecƟve funcƟon and all the constraints are
linear.

• Nonlinear Programming Problem (NLP): a problem where at least some of the objecƟve and con-
straint funcƟons are nonlinear.

The search goal refers to the main aim of the opƟmizaƟon algorithm. In parƟcular two different ap-
proaches can be considered:

• Global OpƟmizaƟon

• Local OpƟmizaƟon

In the case of global opƟmizaƟon approach the goal is to find the opƟmal soluƟon over the all design
space. In the case of local opƟmizaƟon the goal is instead to find the opƟmal value in a limited/restricted
region of the design space. The choice between these two alternaƟves depends on the available computa-
Ɵonal budget as on the complexity of the simulaƟon code considered. The searchmethod topic refer to the
implementaƟon of the strategies used to find the new design point with improved objecƟve funcƟon on
the basis of the previous computaƟon. In parƟcular the searchmethod can consider twomain disƟncƟons:

• Gradient-based method

• Nongradient-based method

85

In the gradient-based method the gradients informaƟon related to the response funcƟons are used
to locate the direcƟon of improvement for the next design point. In this case the computaƟon of the
gradient informaƟon can be expensive and oŌen not parƟcularly accurate. In this situaƟon and also in
those cases that show nonlinear behavior the nongradient-based algorithms represent the beƩer choice.
The nongradient-based opƟmizaƟon includes numerous approaches and some of themost widespread are
reported in the following list:

• PaƩern Search methods: methods that belong to nongradient-based local techniques.

• GeneƟc Algorithms: methods that belong to nongradient-based global techniques.

Another class of opƟmizaƟon methods refers to the Surrogate-based opƟmizaƟon (SBO) family. The
main target of these techniques is to reduce the number of actual simulaƟon runs through the construcƟon
of a surrogatemodel on a limited set of funcƟon evaluaƟon. Surrogatesmodels can bemanaged in different
manner:

• Local surrogates

• MulƟpoint surrogates

• Global surrogates

• Hierarchical surrogates

On the basis of the opƟmizaƟon problem different types of methods can be used. A list of the possible
opƟmizaƟon methods categorized about the various families is reported in the following:

• Gradient-Based Local Methods:

– Conjugate Gradient

* Fletcher-Reeves Conjugate Gradient variant
* Polak-Ribiere Conjugate Gradient variant

– SequenƟal QuadraƟc Programming (SQP)

– Newton Methods

– Method of Feasible DirecƟons (MFD)

• DerivaƟve-Free Local Methods:

– PaƩern Search

* Asynchronous Parallel PaƩern Search (APPS) variant
* Coliny PaƩern Search variant

– Simplex

* Parallel Direct Search Method
* Constrained OpƟmizaƟon BY Linear ApproximaƟons (COBYLA)

– Greedy Search HeurisƟc

* Solis-Wets method

• DerivaƟve-Free Global Methods:

– EvoluƟonary Algorithm (EA)

– Division Rectangles (DIRECT)

86

This classificaƟon represents themain subdivision of the available opƟmizaƟonmethods classes. Other
addiƟonal opƟmizaƟon capabiliƟes are represented by themulƟobjecƟve opƟmizaƟon, scaling and solvers
in shared libraries. Recent opƟmizaƟon approaches are represented by the following ones:

• MulƟlevel Hybrid OpƟmizaƟon

• MulƟstart Local OpƟmizaƟon

• Pareto-Set OpƟmizaƟon

4.4.6 OpƟmizaƟon usage

The selecƟon of the opƟmizaƟon methods available from DAKOTA must follow some consideraƟons
about the problem features. In parƟcular the usage guidelines depend mainly on the type of variables
in the problem (conƟnuous, discrete and mixed), the search typologies (it is important to understand if
the global search is needed or if the local is sufficient) and the constraints characterisƟcs (unconstrained,
bound constrained or generally constrained). In the same manner other important evaluaƟons depend
on the efficiency of convergence to an opƟmum (for example defined by the convergence rate) and the
robustness of the method in the case of the design space (as expressed by the nonsmoothness).
The main disƟncƟon that can be done about the choice of the methods can be addressed on Gradient-
based, Nongradient-based and Surrogate-based. The Gradient-based methods are highly efficient opƟ-
mizaƟon methods with the best convergence among the other techniques. In the case where the simula-
Ɵon code provides the analyƟc gradient and hessian informaƟon the applicaƟon of Newton method can
allow reaching the quadraƟc convergence near the soluƟon. In the case where the only gradient infor-
maƟon are provided the hessian ones are computed from the storing of gradient data over the simula-
Ɵon output and superlinear rate of convergence can be obtained. This method is parƟcularly suited for
smooth, unimodal and well-behaved problems. In other case this method may however be applied but
with more accuracy in the gradient search direcƟon and bad results can be reached. Under these condi-
Ɵons mulƟple minima will be missed. For the management of gradient accuracy the analyƟcal funcƟons
oŌen are not available and in this case the numerical implementaƟon is introduced. Forward differences
or central-differences algorithms can be chosen on the basis of computaƟonal budget and gradient accu-
racy required (forward differencing generate more reliable data but with twice the expense with respect
to central differencing). Nongradient-based opƟmizaƟon techniques are mainly introduced in the case of
nonsmooth, mulƟmodal and poorly behaved problems. The convergence rates that can be obtained in
the search acƟvity of the opƟmal design point are slower than those reachable with gradient-based algo-
rithms. The computaƟonal cost of the implemented algorithms is greater than gradient-based methods
since the number of funcƟon evaluaƟons is generally very high. Nongradient-base approaches are oŌen
more robust with respect to the previously introduced category and can be easily integrated in a parallel
computaƟon schemes (exploiƟng the possibility to implement mulƟ-core computaƟons). Surrogate-base
methods try to improve the effecƟveness of opƟmizaƟon algorithms and least squares methods with the
use of surrogate models. The use of surrogate models allow to smooth poorly behaved problems reducing
the disconƟnuous response results that can be obtained from nonlinear simulaƟons. The data fit applied
on the simulaƟon results coming from complex models allow exploiƟng the benefit of gradient-based al-
gorithms, improving in this way the convergence rate. Global search methods are then applied to properly
explore the overall design space with reduced computaƟonal costs while gradient based methods are then
used to efficiently converge towards the set of possible local soluƟons that are idenƟfied. A summary table
that shows the link between the method classificaƟon, the desired problem characterisƟcs and applicable
algorithms are presented in table 4.2.

4.4.7 Models - DAKOTA

DAKOTA toolkit interface is mainly based on the definiƟon of the characterisƟcs of the models to be
managed. Once the iterators (which definiƟon refers to the methods set up for the simulaƟon) are imple-
mented the execuƟon requires the connecƟon with models. In parƟcular this phase involves the mapping

87

Table 4.2: Methods classificaƟon and applicable algorithms [98].

Method ClassificaƟon Desired Problem CharacterisƟcs Applicable Methods

Gradient-Based Local smooth; conƟnuous variables; no
constraints

optpp_cg

Gradient-Based Local smooth; conƟnuous variables;
bound constraints

dot_bfgs, dot_frcg,
conmin_frcg

Gradient-Based Local smooth; conƟnuous variables;
bound constraints, linear and
nonlinear constraints

npsol_sqp, nlpql_sqp,
dot_mmfd, dot_slp,
dot_sqp, conmin_mfd,
optpp_newton,
optpp_q_newton,
optpp_fd_newton,
weighted sums (mulƟ-
objecƟve), pareto_set
strategy (mulƟobjec-
Ɵve)

Gradient-Based Global smooth; conƟnuous variables;
bound constraints, linear and
nonlinear constraints

hybrid_strategy,
mulƟ_start strategy

DerivaƟve-Free Local nonsmooth; conƟnuous variables;
bound constraints

optpp_pds

DerivaƟve-Free Local nonsmooth; conƟnuous variables;
bound constraints, linear and non-
linear constraints

asynch_paƩern_search,
coliny_cobyla, col-
iny_paƩern_search,
coliny_solis_wets,
surrogate_based_local

Gradient-Based Global nonsmooth; conƟnuous variables;
bound constraints

ncsu_direct

Gradient-Based Global nosmooth; conƟnuous variables;
bound constraints, linear and non-
linear constraints

coliny_direct, effi-
cient_global, surro-
gate_based_global

Gradient-Based Global nonsmooth; conƟnuous vari-
ables, discrete variables; bound
constraints, linear and nonlinear
constraints

coliny_ea, soga, moga
(mulƟobjecƟve)

88

between the input variables and the responses that can be obtained from the simulaƟon. There is also
the possibility to define single interface with a single model or other more complex connecƟon as in the
case where sub-iterators and sub-models are considered. The main ways through which the recursion
capabiliƟes are implemented are represented by the following relaƟonships:

• Nested relaƟonship

• Layering relaƟonship

• RecasƟng relaƟonship

Using these components it is possible to implement and integrate more complex simulaƟon architec-
tures. In the case of nested relaƟonship a sub-iterator component manage the execuƟon of sub-model
simulaƟon. In the case of layered relaƟonship instead the sub-iterators and sub-models are used only
on periodic updaƟng of the main model. Finally in the case of recast relaƟonship the response funcƟons
coming from the simulaƟon are used to define new problem formulaƟon. At the end another model cat-
egory can be defined for the parƟcular case of surrogate model. Recast models are used in the case of
variable and response scaling, transformaƟons of uncertain variables and related response derivaƟves to
employ standardized random variables, mulƟ-objecƟve opƟmizaƟon, merit funcƟons and expected im-
provement/feasibility. As previously introduced the construcƟon of surrogate models can take account for
the various techniques available from DAKOTA packages. The related methods are reported for clarity in
the following brief list:

• Taylor Series Expansion

• TANA-3

• Polynomial Regression

• Gaussian Process (GP) or Kriging InterpolaƟon

– Surfpack GP

– Dakota GP

• ArƟficial Neural Networks (ANN)

• MulƟvariate AdapƟve Regression Splines (MARS)

• Radial Basis FuncƟons (RBF)

• Moving Least Squares (MLS)

• MulƟfidelity Surrogates

• Reduced Order Models

Surrogate model accuracy can be locally improved through the use of correcƟon methods that con-
sider the evaluaƟon of the truth model on parƟcular iteraƟons. AddiƟve correcƟons can be introduced
also for the first and second order funcƟons evaluaƟon to correct respecƟvely the gradient informaƟon
and hessian data. Beta correcƟon as first-order addiƟve correcƟon allows enforcing the convergence and
consistency between the surrogate model and the high-fidelity one. The second-order correcƟons can be
implemented through the use of analyƟc, finite-difference and quasi-Newton Hessian methods. The cor-
recƟons introduced in the trust region can be defined both with addiƟve and mulƟplicaƟve approaches.
All the presented techniques for surrogate models definiƟon represent different procedures with which
the surface of the approximated response funcƟon can be fiƩed. This process can be resumed with three
phases. In the first part we have the selecƟon of the set of the design points to be considered. Then for
the selected points the true funcƟon is evaluated from the related simulaƟon run. Finally the informaƟon

89

gathered is used to compute the unknown quanƟƟes, depending on the approach adopted for the gen-
eraƟon of the surrogate model. For example from these informaƟon the polynomial coefficients, neural
network weights and Kriging correlaƟon factors can be esƟmated, allowing the characterizaƟon of the ap-
proximaƟon assumed. Taylor series for example is well widespread in the definiƟon of some model above
all when a purely local approximaƟon is needed. TANA-3 method is instead a mulƟpoint approximaƟon
technique based on the two point exponenƟal approximaƟon. In parƟcular this approach is characterized
also by the use of Taylor series approximaƟon for the management of intermediate variables. In this case
the powers of these intermediate variables are idenƟfied to match the informaƟon coming from the cur-
rent and the previous expansion point. DAKOTA toolkit offers also the possibility to manage the generaƟon
of polynomial regression model with linear, quadraƟc and cubic approach. Kriging and Gaussian processes
are used mainly for the construcƟon of spaƟal interpolaƟon models. The ANN models are another family
of surface fiƫng techniques that employs a stochasƟc layered perceptron (SLP) arƟficial neural network.
In parƟcular this method uses the neural network based on direct training approach proposed by Zimmer-
mann [71]. The mulƟvariate adapƟve regression spline method is a surface fiƫng technique developed
a Stanford University. In parƟcular the parameter space is parƟƟoned into sub-regions on which forward
and backward regression methods are applied to create the response funcƟon for each sub-region. In this
way each single domain is characterized by its own coefficients and parameters. These values are then
used to build the response funcƟon extended over the enƟre parameter domain to create a smooth and
conƟnuous surface. This approach does not guarantee that the obtained response funcƟon pass through
all the data points evaluated. MARS is however parƟcularly suited for the management of nonparametric
surface fiƫng of complexmulƟmodal data trends. In the case of Radial Basis FuncƟons the valuesmodeled
depends on the distance from a center point defined centroid and the approximaƟon is build starƟng from
a sum of discrete number of weighted radial basis funcƟons. The shape related to the funcƟon chosen
can be of various types but generally the shapes are Gaussian-like or splines-defined. The evaluaƟon of
funcƟons weights are obtained through linear least squares soluƟon. The moving least squares are rep-
resented by an evoluƟon and a more specialized version of the linear regression models. In the case of
linear regression approach the sum of squared residuals (where residuals are represented by the differ-
ences between the approximated models and the true one at a fixed number of points) is minimized. In
the case of more specialized version of weighted residuals the differences is also weighted for the de-
terminaƟon of the opƟmal coefficients governing the polynomial regression funcƟon. The moving least
squares techniques are moreover a class of techniques where the weighted coefficients are moved or re-
calculated for every new point where the response predicƟon is recalculated. The MulƟfidelity Surrogates
models belong to the family of hierarchy type approximaƟons that are oŌen also called mulƟfidelity mod-
els, variables fidelity models or variable complexity models. In parƟcular these approximated models are
obtained through different ways as for example a coarser discreƟzaƟon, a reduced element order, looser
convergence tolerances or omiƩed physics phenomena. The reduced order models are represented for
example by techniques as Proper Orthogonal DecomposiƟon (POD) oŌen used in computaƟonal fluid dy-
namics (also known as principal components analysis or Karhunen-Loeve in other fields). Another example
is represented by the Spectral DecomposiƟon (also known as Modal Analysis) in structural dynamics. The
approximated models are obtained through the use of reduced basis and projecƟon of the original high
dimensional space to a reduced one. Nested models are parƟcularly used in the case where sub-iterators
and sub-models are needed to perform a complex system evaluaƟon. The sub-iteraƟon generally accepts
variables from an outer level, performs the sub-level analysis and computes a sub-level response that is
then passed again to the higher level. The soluƟons provided by this approach can involve different classes
of problems as listed in the following:

• OpƟmizaƟon within opƟmizaƟon (for hierarchical mulƟdisciplinary opƟmizaƟon)

• Uncertainty quanƟficaƟon within uncertainty quanƟficaƟon (for second-order probability)

• Uncertainty quanƟficaƟon within opƟmizaƟon (for opƟmizaƟon under uncertainty)

• OpƟmizaƟon within uncertainty quanƟficaƟon (for uncertainty of opƟmal soluƟons)

90

4.4.8 Variables - DAKOTA

The variables definiƟon within DAKOTA toolkit represents the feature through which it is possible to
set the parameters that are then managed by the available methods. Depending on the method that it-
erate over the model bounded to the simulaƟon the variables cover different meanings. In the case of
opƟmizaƟon study the variables are modified at each iteraƟon with the final aim to obtain an opƟmal de-
sign soluƟon. In parameter study, sensiƟvity analysis and design of experiments the variables are related
to the exploraƟon of parameter space. Finally in uncertainty analysis the variables are instead associated
to aleatory distribuƟon in order to compute the related aleatory characterizaƟon of the response output
funcƟons. The considered framework provides the management of different variables types: design vari-
ables, uncertain variables and state variables. In parƟcular another categorizaƟon is based on the nature
of the variables domains, disƟnguishing between conƟnuous and discrete variables domain. The discrete
variables domain can also subdivided into discrete range, discrete integer set and discrete real set.

• ConƟnuous range

• Discrete range

• Discrete set of integers

• Discrete set of reals

OŌen the nature of the variables range affects the choice of the algorithm or method to be imple-
mented for the problem resoluƟon. For example the presence of variables coming from conƟnuous range
allows the selecƟon of gradient-based methods in the context of opƟmizaƟon study while parameters as-
sociated to discrete range cannot be directly related to the previous defined ones. In parƟcular discrete
design variables are oŌen well suited for the management by a non-gradient based methods as for exam-
ple the geneƟc algorithms. Discrete variables can be classified as categorical and non-categorical ones.
The categorical ones represent the parameters that cannot be relaxed during the running of the soluƟon
method. For example this class is represented by the number of parƟcular mechanical components that
cannot assume values also only slightly different from the designed ones. When the discrete variables
can assume values however slightly different from the designed ones the class is represented by the non-
categorical typology. In this case the variables values can be relaxed during the execuƟon of resoluƟon
method. For example the choice among a series of standard thickness for a parƟcular component can be
managed as non-categorical discrete range due to the fact that the variable under study can change slightly
its value.

• Categorical discrete variables

• Non-categorical discrete variables

Since engineering problems are oŌen related to the presence of a wide class of aleatory uncertainƟes
DAKOTA offers different distribuƟon for the representaƟon of conƟnuous aleatory uncertain variables and
discrete aleatory uncertain variables. In the following list is reported the distribuƟon that can be considered
in the definiƟon of aleatory design variables:

• ConƟnuous Aleatory Uncertain Variables

– Normal

– Lognormal

– Uniform

– Log-uniform

– Triangular

– ExponenƟal

91

– Beta

– Gamma

– Gumbel

– Frechet

– Weibull

– Histogram Bin

• Discrete Aleatory Uncertain Variables

– Poisson

– Binomial

– NegaƟve Binomial

– Geometric

– Hyper-geometric

– Histogram Point

State variable idenƟfy those parameters that are not directly involved in the design process and under
these condiƟons there is no need to map them through the simulaƟon interface. These variables are rep-
resented essenƟally by those values that do not represent the value to be chose within the design process
for a parƟcular problem, They are however important because their values are necessary for the execu-
Ɵon of the computaƟonal model. For example they can be represented by the convergence tolerances,
Ɵme step controls or any quanƟty that is fundamental for the execuƟon of the model but it is not rele-
vant for the design process. In the same way as in the case of design variables they can be classified as
conƟnuous range, discrete range, discrete integer-valued set and discrete real-valued set. They affect the
computaƟonal model but are not acƟve from the soluƟon algorithms and their modificaƟon can result in
the changing of the simulaƟon condiƟons (resulƟng then in different results). The management of mixed
variables by iterator depends strongly on the iteraƟve method related to that study. This choice affects
the subset or views that characterize the variables data that are acƟve during that iteraƟon. The coexis-
tence of variables of different types influences the management of the overall parameters available, since
some variables are modifiable by certain methods while other not. The laƩer one needs to be mapped
through the interface in an unmodified status. The process with which the acƟve variables are established
is fundamental for the determinaƟon of the derivaƟves that must be computed. Another important fea-
ture that needs to be specified in the variables definiƟon block is represented by the domain type that
can be categorized as mixed or relaxed. The simulaƟon interface needed in the case of communicaƟon
between DAKOTA framework and external simulaƟon codes is required to exchange informaƟon through
the file-system. In parƟcular the system calls and forks are obtained through the implementaƟon of read-
ing and wriƟng process of parameters and results files. Before the simulaƟon invocaƟon DAKOTA creates
a parameters file where it is possible to find all the informaƟon needed for the cycle execuƟon. The for-
mat of the related file is available both in standard and APREPRO type (APREPRO denotes a Unix-based
operaƟng system module). Within this file it is possible to specify the variables, the acƟve set vector, the
derivaƟve variables vector and analysis components. Each row specifies the value and the tag with which
the object are idenƟfied. This approach allows managing the dynamic memory allocaƟon. The variables
are listed in a precise ordered representaƟon following the different typologies presented previously (con-
Ɵnuous, discrete, etc...) and the reported tag are those used by DAKOTA as those specified in the user's
DAKOTA input file. In analogous way acƟve variables vector, derivaƟve variables vector and analysis com-
ponents are reported providing first the related idenƟfiers. Data representaƟon provided with APREPRO
format is the same as that adopted in the standard format and all the ordering condiƟons are the same but
represented with a slightly different construct. The use of this module representaƟon is bounded mainly
to the advantage of directly interface the APREPRO uƟliƟes. These ones allow the integraƟon of pre- and
post-processing acƟviƟes, simplifying themodel parametrizaƟon. APREPRO uƟlity allows alsomapping the

92

Figure 4.13: Components of the simulaƟon interface [98].

variables passed through DAKOTA with that related to simulaƟon code in a template file. In this way it is
possible to populate directly the template file with the target variables. The introduced AcƟve Set Vec-
tor represents a vector containing a set of integer codes and there are many integers as the number of
the requested response funcƟons for that study. In parƟcular each response funcƟon has its own integer
which idenƟfies a well-defined set of requests for the corresponding funcƟon. Each integer is associated
to a binary codificaƟon and a precise meaning. These laƩer refer to get hessian, gradient and value of the
response funcƟon or get only gradient for example.

4.4.9 Interfaces - DAKOTA

The interfaces specificaƟon is one of the most important features that allow DAKOTA to manage sim-
ulaƟons related to external codes. There are different types for the possible integraƟon of the simulaƟon
interfaces between DAKOTA and external code simulaƟon through the mapping of input and output pa-
rameters. One of those is represented by the integraƟon of algebraic mappings. This one is represented
by the possibility to bind the process management framework with code implemented in AMPL modeling
language. In this case codes generated in AMPL can be used concurrently with AMPL solver library directly
through DAKOTA. The required constraints are represented by the generaƟon of parƟcular files for the in-
put and output parameters [46].
SimulaƟons interfaces can be managed through three different approaches depending on the implemen-
taƟon of the code connecƟon. The invocaƟon of simulaƟon codes can be realized with a system call, fork
or a direct funcƟon invocaƟon. In the case of system call and fork it is created a separated interface with
respect to the DAKOTA framework and the related communicaƟons are realized through the exchange of
parameter and response files. In the case of direct invocaƟon a separated process is not created and the
execuƟon is realized within the DAKOTA process. The implementaƟon of direct interface allows obtaining
some advantages with respect to the computaƟonal demands. The code calls can be directly bounded
to DAKOTA executable, avoiding the overhead linked the creaƟon of input and output files for the code
execuƟon. This approach allows also the improvement of the performances related to the execuƟon on
parallel computers. The drawback is instead represented by the required conversion of exisƟng simulaƟon
code into a library with a subrouƟne interface. The implementaƟon of forks invocaƟon is recommended
with respect to the system call due to the portability and backward compaƟbility that can be assured.
In the case of system call the invocaƟon of system interface uses the system funcƟon from the standard
C-library. The fork interface uses the fork, wait and exec families of funcƟons to manage the simulaƟon
drivers. In parƟcular a copy of DAKOTA process is created, replacing this copy with the simulaƟon code or
driver process. Transfer of variables and response data between management framework and simulaƟon
code are realized through the file system. The overall structure of the simulaƟon interface components is
represented in figure 4.13.

The elements reported in the representaƟon can be idenƟfied in the system call invocaƟon as in fork

93

Figure 4.14: Standard parameters file format [98].

and direct integraƟon. The input and output filters include the opƟonal faciliƟes that allow pre- and post-
processing acƟons. These modules are needed to integrate the simulaƟon code through the implemen-
taƟon of analysis driver while the input and output parameters are passed as command line arguments.
In parƟcular the related expressions that are directly connected with the funcƟon evaluaƟon depend on
the scripƟng language used to integrate the simulaƟon code (UNIX C-shell, Bourne shell, Perl). In the case
C/C++ program are used then the parameters files are passed as arguments through the tradiƟonal argc
and argv instrucƟons. The possible implementaƟon that regards components interface depends mainly in
the characterisƟcs of the integrated analysis driver. Several soluƟons can be adopted depending on the
needs.

• Single analysis driver without filters

• Single analysis driver with filters

• MulƟple analysis driver without filters

• MulƟple analysis driver with filters

In the case a single analysis driver is used and it is built to process directly the parameters and results
files related to the framework then there is no need to implement filters. The files coming from DAKOTA
are directly used by the simulaƟon code to set the input and finally it generates the responses evaluaƟon.
System call and fork interfaces can be used to support asynchronous operaƟon and also can be executed
exploiƟng background running. The implementaƟon of single analysis driver that filters invocaƟon requires
a different syntax with respect the previous integraƟon. When mulƟple analysis drivers are involved in the
simulaƟon run the processes can be combined in a single system call through the use of syntax structure
slightly different from that relaƟve to the invocaƟon of the single analysis driver. The interface process
is supported by the features offered by the simulaƟon file management that can help to debug potenƟal
errors. These features are represented by the file saving funcƟonaliƟes (before and aŌer driver execuƟon),
file tagging evaluaƟons, management of temporary files and work directories. The work directory set up
is one of the most important features related to the invocaƟon of DAKOTA cycle. In parƟcular it is oŌen
convenient to execute filters and simulaƟon codes in directory which is different from one where DAKOTA
is launched. Moreover the evaluaƟons of input and output files require that they are placed in separated
directories to avoid potenƟal conflicts between the various objects. The available data processing uƟliƟes
allow the execuƟon of various simulaƟon codes in the proper way in order to manage the integrated sim-
ulaƟon interface reducing the possibility of running problems. All the informaƟon that are needed for the
definiƟon of the parameter input file is generated from DAKOTA and then it is used by filters or other pre-
processing files to set the simulaƟon code execuƟon (for example in the case where the proprietary codes
require the generaƟon of an input file following a well-defined template standard format). The related
data are contained within the parameters input file following a certain data paƩern. An example of such
file is reported in figure 4.14.

94

Table 4.3: AcƟve set vector integer codes.

Integer code Binary representaƟon Meaning

7 111 Get Hessian, Gradient and Value
6 110 Get Hessian and Gradient
5 101 Get Hessian and Value
4 100 Get Hessian
3 011 Get Gradient and Value
2 010 Get Gradient
1 001 Get Value
0 000 No data required, funcƟon is inacƟve

The first line contains the integer represenƟng the number of variables that are considered in the anal-
ysis. This row is idenƟfied with the tag "variables" that follows the integer number. Each line that im-
mediately follows the first one represents a variable. The value associated to the considered variable for
the current funcƟon evaluaƟon is followed by the tag name that idenƟfies it. Then the integer that rep-
resent the number of funcƟons is introduced and followed by the tag "funcƟons" that comes before the
lines containing the funcƟons set informaƟon. In parƟcular those lines idenƟfy the acƟve set vector infor-
maƟon (ASV) and their tag. Then the integer represenƟng the number of derivaƟve variables and its tag
"derivaƟve_variables" anƟcipates the lines containing the derivaƟve variables vector (DVV) and their tags.
Finally it is possible to locate the integer for the number of analysis components (with the proper "analy-
sis_components" tag) followed by the analysis components array and their tags. The descripƟve tags for
the variables are defined in this secƟon and are mapped to the names expressed in the user's specificaƟon
(if not provided by user names these tags are introduced as default descriptors). The AcƟve Set Vector
represents both the objecƟve funcƟons and constraints funcƟons. For example if the considered prob-
lem has one objecƟve funcƟon and two constraints then the ASV has dimension three. Along the list the
objecƟve funcƟons come first and then the constraints evaluaƟons. These ones are reported in the order
consistent to the user definiƟon. The derivaƟve variables correspond to the variables introduced in the first
vector specificaƟon. The informaƟon related to the “analysis_components” tags refer to the possibility of
pass addiƟonal informaƟon for the simulaƟon. In this way it is possible to provide at run Ɵme addiƟonal
specifics that the simulaƟon code can use to complete its execuƟon (for example it is possible to pass to a
structural code the name of a parƟcular mesh file to be used). The same data structure can be highlighted
in the representaƟon related to the DPREPRO format parameters input file. StarƟng from the informaƟon
contained within the parameters input file the user's supplied simulaƟon interface must manage the pro-
cess to proper generate the required format output. In parƟcular on the basis of the previously introduced
input file format the output file format have to saƟsfy the contained format direcƟve. User's implemented
interfaces have to access this input parameters file, process it, generate the input required for the external
simulaƟon code, execute this one and gather the created output. AŌer this phase the results informaƟon
has to be elaborated to create the output file that DAKOTAmust process to proceedwith the following cycle
iteraƟon. On the basis of the results for constraints and objecƟve funcƟons DAKOTA provides the new val-
ues for the input design parameters for the next input parameters file. The input parameters file previously
shown contains the direcƟve for the generaƟon of data readable by DAKOTA. In parƟcular starƟng from the
AcƟve Set Vector the output must contain in the same order a list of rows where each line contain first the
value and then the tag of the related object represented (objecƟve funcƟons or constraints). The tags can
be omiƩed due to the fact that the correspondence between the name of the result and its posiƟon along
the list is uniquely determined. The rows containing the AcƟve Set Vector integer data is important for
the determinaƟon of the length of the informaƟon that will be contained in the output parameters file. In
parƟcular depending on that integer value it comes out the typology of data to be bounded with the object
that is referred to. In parƟcular the code that express the data to be included in the output parameters file
(and that it is up to the user to recreate such file through the use of scripƟng module or filters files) are
summarized in table 4.3.

95

Figure 4.15: Results file data format [98].

On the basis of what enƟty is required from this specificaƟon integer number the corresponding simula-
Ɵon quanƟty (objecƟve funcƟon or constraint) holds the computed values. For example if only the funcƟon
evaluaƟon values are required (integer = 1) then there are as many values as the simulaƟon quanƟƟes.

4.4.10 Responses - DAKOTA

The secƟon related to responses tag of the input parameters file manages the definiƟon of responses
specificaƟon. This part provides the paƩern for the formats that the defined elements must follow. In
parƟcular these parameters include the definiƟons for the response funcƟons as objecƟve funcƟons, con-
straints or calibraƟon parameters. Also these specificaƟons introduce the format representaƟon of the first
and second derivaƟves. On the basis of the considered techniques there are different response funcƟons
types that can be chosen. It is possible to define opƟmizaƟon data set, a calibraƟon data set or a generic
data set. Considering the availability of gradient informaƟon different types of gradient evaluaƟon can be
selected. In some cases gradient informaƟon are not needed and so gradients will not be used while in
other context the required gradients data are numerically obtained through the finite differences approx-
imaƟon. In the cases the gradients will be supplied by simulaƟon code the informaƟon gathered can be
considered analyƟcally. Finally it is possible to consider mixed gradients in the case the simulaƟon code
provides some gradient components while DAKOTA will approximate the remaining needed through finite
differences. The hessian availability can be managed in the same way through different approaches on
the basis of the available data. In some cases hessian informaƟon is not required from the iteraƟve code
while in other ones this informaƟon are computed numerically with finite differences applied over first-
order differences of gradients or second-order differences of funcƟon values. In the case quasi-hessian
specificaƟon is present then the required data are evaluated by a series of secant updates from gradient
evaluaƟons. In the case the hessian informaƟon are instead provided by the simulaƟon code then the data
required con be analyƟcally elaborated. Mixed hessian are finally related to the cases where numerical,
analyƟc or quasi-technique approaches are used. DAKOTA results file supports only one format expression
while parameters-input file can be represented with two formats. An example of the results file paƩern is
reported in figure 4.15.

AŌer the model simulaƟon/iteraƟon DAKOTA is expecƟng the generaƟon of a file containing the in-
formaƟon related to the output values with the format represented in the previous introduced figure. In
parƟcular the values provided must follow the funcƟon requests defined in the acƟve set vector specifi-
caƟon. In this file it is generally possible to enhance three different secƟons. The first secƟon contains
the funcƟon values and each row includes the related numeric evaluaƟon and the tag that can also be op-
Ɵonal. DAKOTA follows the order defined in the acƟve set vector and the presence or not of tag string do
not affect the correct evaluaƟon of the contained informaƟon. The second block represents the gradients
informaƟon which are provided within brackets and they must not be idenƟfied with any tag elements. In
the samemanner the hessian data are reported within double brackets and also in this case they do not be

96

idenƟfied by tag strings. The correspondence between the derivaƟves informaƟon and the variables to be
used is provided by the DerivaƟve Variables Vector (DVV). This vector contains the data needed to compute
derivaƟves and the one to one correspondence is realized through the length of the vector itself. Inputs
data of DAKOTA framework can be idenƟfied with two different formats. Annotated matrix and Free-form
matrix represent the two potenƟal alternaƟves that can be chosen for the data input exchange.

4.4.11 Outputs from DAKOTA

AŌer DAKOTA iteraƟon execuƟon the results can be provided in different ways. In parƟcular the out-
puts are reported on a text-based files that summarize the main event and iterator evaluaƟon obtained
from the simulaƟons. During cycle running the data can be ploƩed on screen lisƟng the informaƟon of the
current execuƟon while the same output can also be printed on a text file. In the same manner a text-file
can be used to gather the process overall informaƟon (for example reporƟng the results of variables val-
ues, objecƟve funcƟon and constraints for each iteraƟon corresponding to a parƟcular row of the file) in
a tabular data file that can be easily post-processed with an external tool for visualizaƟon purposes. The
standard output printed on the screen includes basically the evaluaƟon number, the parameter values,
the execuƟon syntax, the acƟve vector and the response data set. First an iniƟal block reporƟng the main
seƫng of DAKOTA process is ploƩed while the central part before the final block visualizes the results of
each evaluaƟon for the current iteraƟon. For each funcƟon evaluaƟon block are ploƩed the input variables
values, the system call to the driver that manage the simulaƟon driver and finally the results from the sim-
ulaƟon execuƟon (objecƟve funcƟon and constraints evaluaƟons). Before the evaluaƟon of the objecƟve
funcƟon and constraint element is reported the acƟve set vector. As previously indicated this object allows
to express the types of data that are required from the simulator for the objecƟve funcƟon and constraint
element. In parƟcular the integers contained code the evaluaƟon of only funcƟon evaluaƟons or also the
gradient informaƟon, hessian etc... (the main guidelines that define this codificaƟon are included within
the previous introduced secƟon on the interface of the simulaƟon code). Depending on the parƟcular
funcƟon evaluaƟons seƫngs the iterator can require for the single funcƟon evaluaƟon addiƟonal compu-
taƟon related to the definiƟon for example of gradient informaƟon. In this case for example each funcƟon
evaluaƟon can require the computaƟon of gradient data through the esƟmaƟon of other funcƟon (and so
simulaƟon) execuƟon as for the finite differences approximaƟon. This computaƟons are like a sort of inter-
nal evaluaƟons for the esƟmaƟon of the data required to compute the direcƟon of variables changes for
that parƟcular iteraƟon. Finally the DAKOTA overall process is summarized in the final block where all the
main informaƟon are summarized. In parƟcular in this secƟon it is possible to highlight the best values ob-
tained for the opƟmizaƟon parameters, objecƟve funcƟon, constraints, total evaluaƟon counts and Ɵming
summary. Some other informaƟon can be ploƩed on the output stream on the screen depending on the
characterisƟcs of the implemented soluƟon rouƟne or coming from the features of the algorithm included
in the soluƟon library used. DAKOTA tabular format is also generated at the end of iteraƟon process and
the main purpose of such capability follows from the need to plot the obtained results on other external
graphics ploƫng package. Some 2D visualizaƟon capabiliƟes are available on UNIX plaƞorm while onWin-
dows one they are not implemented. These features allow to plot the iteraƟon results as the simulaƟon
run.

4.4.12 Examples applicaƟons of DAKOTA framework

In literature are present different examples of object oriented approach for the soluƟon of engineering
issues. Research acƟviƟes have focused on addressing the challenges related to the applicaƟon of itera-
Ɵve systems analyses to complex problems where simulaƟons are expensive to evaluate and the response
metrics may be poorly behaved (i.e., noisy, mulƟmodal, disconƟnuous).
An example of such iniƟaƟve is represented by the rSPQ++ Framework from the department of chemical
engineering of Carnegie Mellon University [72]. This object-oriented tool for successive quadraƟc pro-
gramming has been developed to support Successive QuadraƟc Programming (SQP) algorithms, allowing
the integraƟon with external specialized applicaƟon. In parƟcular different interfaces can be generated for

97

the connecƟon with various linear algebra objects as matrices and linear solvers.
Examples of methods applied in the context of uncertainty quanƟficaƟon area are available from [120],
[121] and [122], where the applicaƟon of local and global reliability methods is invesƟgated. In parƟcu-
lar in [122] such techniques are applied for the study of microelectromechanical systems (MEMS). Other
research acƟviƟes regarding stochasƟc expansion or mixed aleatory-epistemic methods can be found in
literature.
DAKOTA applicaƟon to surrogate-based opƟmizaƟon is invesƟgated in [123] and [124] where interesƟng
results are provided. In the sameway other surveys dealing with opƟmizaƟon andmodel calibraƟon under
uncertainty can be found in [125], [126] and [127].
Another challenging topic approached also with the use of DAKOTA framework is represented by the par-
allel processing and some results are available from [128] and [129].

98

Chapter 5

State of the Art

In the current chapter some of the most recent research iniƟaƟves regarding the integraƟon of model-
based approaches in the advanced phases of a project are briefly introduced. In parƟcular a large number
of examples that can be found in literature regard the integraƟon of mulƟdisciplinary design and analysis
methods within a model based infrastructure. The management of alternaƟves and opƟonal elements is
not sƟll properly considered from a model-based perspecƟve. In the same way the integraƟon of MDO
techniques within a model-based environment is currently not well formalized, also if the design opƟmiza-
Ɵon across broad trade space is one of the main target capability of MBSE (as highlighted in figure 5.1). In
the near future the cross domains analyses will be some of the most challenging acƟviƟes that will charac-
terize the development of MBSE "philosophies" and frameworks.

Different soluƟons may be considered for the actual implementaƟon of MBSE paradigm to MDO de-
sign methods, as can be seen from reference literature for the same type of problem. Each soluƟons show
advantages and drawbacks in relaƟon to the specific context that has been considered and for this reason
a unique, shared and comprehensive architecture is sƟll far from being defined. The iniƟal part of this
work has been characterized by an analysis acƟvity for the formal definiƟon for the integraƟon under eval-
uaƟon. Various conceptual architectures has been preliminary proposed but only that one that seems to
show a beƩer behaviour has finally been considered and directly implemented in the framework under
development.

5.1 Main problems and characterisƟcs

Different kind of issues can arise whenMulƟdisciplinary Design OpƟmizaƟon techniques are integrated
withModel Based System Engineering methodologies. The development of the proper interfaces is strictly
affected by the way such integraƟon is actually implemented as well as it is placed within the overall design
and analysis process. In the following secƟons some of the most important problems are briefly described
to highlight themain aspects thatmust be taken into accountwhen the overall infrastructurewill include all
such features. A clear understanding of the overall process and the related infrastructure must be properly
defined to avoid the increase of issues when the actual implementaƟon of the code is realized. If some
concepts are not clearly well-posed during such phase then the issues can only increase in the following
steps. A clear conceptual framework is then fundamental for the right evoluƟon of the work, paving the
way to the exploitaƟon of the available resources.

5.1.1 Management of complex system

Currently the integraƟon of complex aerospace systems requires the involvement of a large number of
informaƟon. The amount of data stored, processed and exchanged is directly connected with the effecƟve-
ness of the overall process. The main conceptual infrastructure must be conceived to support the design
and analysis process, trying to avoid negaƟve consequences as data surplus for example. Themanagement
of complex systems is currently difficult to take under control as the number of variables is generally wide.
In this case the correct handling of all such informaƟon represent one of the key-elements that affect the

99

Figure 5.1: Design opƟmizaƟon capability highlighted on MBSE roadmap for the near future [14].

integraƟon between MBSE and MDO. All data involved must be reflected in a well formalized conceptual
infrastructure to ensure an effecƟve connecƟon between MBSE environments and MDO capabiliƟes for
example. In parƟcular different strategies can be considered to manage project data since they oŌen de-
pend on various factors such as design processes structure, analysis workflows or used tools.
The effecƟve management of system architectures is one of the most challenging acƟviƟes and different
soluƟons have been proposed and implemented by different research teams. The heterogeneity of all the
subsystems and components that characterize the design phases of a product is an aspect difficult to take
under control. From this point of view interesƟng results have been achieved by the InsƟtute for Systems
Research, University of Maryland. An overview of the related framework is available from [106] where
a promising framework for model-based systems engineering is described. It consists basically by an in-
tegrated modeling hub and various applicaƟon methods/tools which includes also tradeoff analyses via
opƟmizaƟon.

5.1.2 CommunicaƟon between domain-specific disciplines

Another problem that can affect the overall integraƟon is represented by the communicaƟon between
domain-specific disciplines. In this case the interfacing of MDO techniques with MBSE environment must
foreseen the main features of the data exchange process between different domains. The communicaƟon
among people with different backgrounds can widely affect the main purpose of the proposed approach.
The use of different tools, procedures and format tomodel and analyze the same product must be properly
coordinated. A shared conceptual infrastructure can widely improve the effecƟve exploitaƟon of MDO
methods within an MBSE environment, ensuring the seamless exchange of data across the disciplines. In
this way each discipline can however conƟnue to use its own methods, tools and processes but the overall
system model is shared on common basis. The communicaƟon of the data needed for a mulƟdisciplinary
analysis must be properly faced to ensure the connecƟon with a model based methodology.

5.2 Possible soluƟons

The actual integraƟon between MDO methods and MBSE methodologies can be approached in differ-
ent manners, depending in parƟcular on final objecƟves as well as the specific workflow that characterizes

100

the individual company. MulƟdisciplinary analyses can be used to invesƟgate the product performances
on the basis of the available set of data and the way such informaƟon is managed affects the integraƟon
architecture. Generally the soluƟons that can be adopted varies on the basis of the tools chosen as well as
the main features for the plaƞorm to be considered. In parƟcular it is assumed that the mulƟdisciplinary
analyses are managed by a dedicated plaƞorm, clearly disƟnguished from the simulaƟon tools which pro-
vide the results managed by the plaƞorm itself (this disƟncƟon is based on the fact that currently some
mulƟdisciplinary analyses can also be executed within some simulaƟon soŌware while in this case the plat-
form handling the overall cycle is more properly a process manager). From a conceptual point of view it
is possible to idenƟfy two main possible alternaƟves that can be pursued for the final scope (but other
ways can also be followed). In the first case the exploitaƟon of MDO methods is based on the capabiliƟes
provided by an external mulƟdisciplinary analysis plaƞorm. Such environment can be selected among the
current available ones. In parƟcular commercial soluƟons as open-source ones can be evaluated and con-
sidered for such integraƟon. In this case a MBSE environment can be used to store all the representaƟve
informaƟon related to the system model while an actual external plaƞorm uses such data to set up mulƟ-
disciplinary analyses. In this case the strategy foresees the implementaƟon of all the adapters required for
data exchanges among the involved simulaƟon environments (the ones managed by the mulƟdisciplinary
plaƞorm). Data are collected, processed and then properly used to set up the chosen analysis (sensiƟvity
analysis, opƟmizaƟon, uncertainty quanƟficaƟon, etc. for example). The exploitaƟon of the MDO capabil-
iƟes is basically provided to the MBSE framework as an external "service".
In the second approach the MDO capabiliƟes can potenƟally be integrated within the MBSE environment,
paving the way for a beƩer use of the benefits deriving from a model-based philosophy. In parƟcular the
funcƟons provided by a mulƟdisciplinary analysis plaƞorm can be deeper integrate within the design pro-
cess with respect the the previous soluƟon. In this manner the it is possible to exploit the effecƟveness
provided by a model based infrastructure. For example the same opƟmizaƟon cycles can in fact be con-
ceived directly within a model-based architecture (the same approach can be equivalently extended to
the other analysis types such as sensiƟvity analysis, uncertainty quanƟficaƟon, etc.). In this second type,
an object-oriented soluƟon can widely enhance the advantages of a unique environment for the modeling
and set up ofmulƟdisciplinary analyses, reducing for example the efforts required for the consistency check
when data are exchanged directly with an external process manager (disƟnguishing for the sake of clarity
such definiƟon from the mulƟdisciplinary environment which can potenƟally implemented also within a
specific simulaƟon environment with its own Domain Specific Languages - DSL). The process manager can
then be conceived to be directly embedded within a system modeling framework, consƟtuƟng a whole
with the plaƞorm. This way provides promising capabiliƟes but requires at the same Ɵme a clear under-
standing of the back-end structures and mechanisms from the implementaƟon point of view. The overall
interfacing for the involved simulaƟon tools and environment can be pursued with less efforts if a common
conceptual infrastructure is shared among the involved disciplines, reducing the Ɵme spent on consistency
control. Such integraƟon can be realized basically only if the plaƞorms and the relate methodologies are
clear and accessible. This situaƟon oŌen limits the choice to open-source iniƟaƟves and projects which
ensure the possibility to directly manage the source code, customizing the already developed features to
achieve the desired objecƟves.
In the following secƟon some example of the current approaches is provided to show how such research
topic is promising and that however different strategies can be pursued to assess the effecƟveness of this
integraƟon.

5.3 Examples of research iniƟaƟves

Different iniƟaƟves have addressed their efforts towards the invesƟgaƟon of the potenƟal benefits re-
lated to MBSE methodologies in the context of system design and analysis. The greater improvements
have been mainly obtained within research centres or academic organizaƟons. Many studies have been
realized in this direcƟon at the Jet Propulsion Laboratory (JPL). Similar analyses have involved academic
insƟtuƟons as the University of Michigan (System Engineering Department), California InsƟtute of Tech-

101

nology (Caltech) and MassachuseƩs InsƟtute of Technology (MIT). The majority of such surveys has been
characterized by the invesƟgaƟon of SysML language actual benefits in the design and modeling processes
from system perspecƟve. The main applicaƟons regard the definiƟon of architectural and behavioural ar-
chitectures through SysML diagrams, considering in parƟcular a representaƟvemodel of the product. Only
the last few years the research topics have started to evaluate the possible integraƟon of such tools with
external solver. In this way the main objecƟve is to understand which advantages can be reached through
such a methodology.
In the following secƟons some of the briefly introduced iniƟaƟvewill be consideredwithmore details about
the processes and approaches used, enhancing the characterisƟcs that can be recognized among the vari-
ous projects.
Some research acƟviƟes also if not completely addressed to the evaluaƟon of the complete set of MDO
methods are however characterized by the assessment of feasibility of parƟal funcƟonaliƟes. For example
some interesƟng iniƟaƟves are evaluaƟng the integraƟon of SensiƟvity Analysis feature in the context of a
model base framework.
Some interesƟng studies has in fact been done in the context of sensiƟvity analysis for the design process
of space system in the context of model based system engineering environment [48]. In this case the main
idea is represented by the implementaƟon of a central integrated design environment which is then inter-
faced with different external tool (Excel workbooks, QUDV standards and CaƟa V5 script automaƟon link).
The developed framework follows the data model defined in the context of such study. In parƟcular the
data model foresees the presence of a system component that is related to zero or mulƟple parameters.
The single parameter is then associated at least to one value. The system component also contains zero
or mulƟple balancing where this element refers to the equaƟon/relaƟon that formalizes the relaƟonships
between the involved parameters (for example the physical relaƟonship that characterizes the behaviour
of the considered phenomena). The balancing element contains at least one or more source parameters
and they represent the variable that formal cover the right hand side of the equaƟon/relaƟon (in parƟcu-
lar they refer to the variable that are known and that allow to compute the quanƟty on the leŌ hand side
of the equaƟon). The right/leŌ side classificaƟon is not binding but allows to beƩer express the fact that
some variables are available (defined as source parameters) while one is computed explicitly (defined as
target variable). This approach considers only one variable as the computed one. This paƩern then defines
two associaƟon towards the parameter class. One defines the source relaƟonships (at least one or more
parameters) and the other one represents the target relaƟonship (only one parameter involved).
In this case the sensiƟvity analysis process can be considered as an interesƟng instrument in the context
of the overall design and analysis process. StarƟng from the design acƟvity the following phase is repre-
sented by the implementaƟon process at high level. Then there is the tesƟng procedures, followed by the
evaluaƟon acƟvity. Once this laƩer one has been accomplished the analysis process represents the final
phase of overall system development life-cycle. In this context the sensiƟvity analysis can be parƟcularly
useful in case it can be used for the parƟal automaƟon of the evaluaƟon process.
In this case the example considered is represented by the applicaƟon of sensiƟvity analysis to the dimen-
sioning of the tank of the spacecraŌ which represent one of the recurring task that characterize the early
development phases of space system. In parƟcular the example considered involved also three different
engineering domains as mission analysis, propulsion and structure. The implementaƟon process is strictly
related to the specific engineering problem that is considered. The decision depends on which parame-
ters are available and which ones are not. These classificaƟon can change from problem to problem for
the same set of parameters. The unknown variables must be computed while those available are used to
define the boundary constraints for the case study. The objecƟve of such approach is to clearly idenƟfy
the sensiƟvity index of some input variables with respect to the output under evaluaƟon, providing the
informaƟon that the team leader can use to drive the study.

5.3.1 Jet Propulsion Laboratory - JPL

One of the first MBSE experience at JPL is represented by the Systems Engineering Advancement (SEA)
iniƟaƟve. This projectwas aimed to the idenƟficaƟonof the potenƟal improvements that theMBSEmethod-

102

ology can introduce for the management of space mission. The main efforts are addressed towards three
different direcƟons: the full life-cycle program (from early studies to operaƟons and dismissal), the full
depth within a project (from the systems down to components characterisƟcs) and finally the full technical
scope (considering all the various domain-specific environments such for example propulsion, avionics or
electrical fields). The target of SEA project was to understand if possible improvements can be made for
some of the funcƟons directly involved in the space mission definiƟon. This funcƟonality regard mainly:
systemarchitecture, requirementsmanagement, interface definiƟon, technical resourcemanagement, sys-
tem design and analysis, system verificaƟon and validaƟon, risk management, technical peer reviews, de-
sign process management and systems engineering task management. SEA acƟvity developed product,
services and training to accomplish this objecƟve, focusing on processes, products, tools, people and tech-
nology.
SEA project invesƟgated different modeling tools considering a set of criteria to assess their benefits in
the management of real-scenario condiƟons. The evaluaƟon criteria regarded the architecture and de-
sign modeling (considering for example SysML, UML languages or Enhanced FuncƟonal Flow Block Dia-
gram EFFBD), the executable modeling and simulaƟon (evaluaƟng interoperability, trade space modeling
and performances modeling for example), the informaƟon management (user-definable schema, meta-
data query, document linking, etc...), and finally the administraƟon and usage.
As previously discussed the main purpose of SEA iniƟaƟve allowed to beƩer organize the knowledge about
the competence model within the context of System Engineering. This perspecƟve is characterized by the
technical knowledge, the personal behaviours and the processes. Technical knowledge refers to the do-
main/discipline specific viewpoints that are involved in the system development process. SEA has also
shown how one of the most challenging aspect is currently represented by the invesƟgaƟon and integra-
Ɵon of model-based engineering design (MBED) tools.
Another interesƟngMBSE iniƟaƟve has been developed at Jet Propulsion Laboratory in the context of space
mission applicaƟons. Model based system engineering paradigm is mainly related to the work of Modeling
Early Adopters group and IntegratedModel Centric Engineering iniƟaƟve. AŌer an iniƟal phase of feasibility
analysis the main research topics regard the pracƟcality and usability studies. The current model manage-
ment capabiliƟes arewell increased thanks to amaturing standard and tooling interfaces that are addressed
towards the applicability to actual space design programs. MBSE approach not necessarily entails a wide
use of SysML language and its methodologies must not be confused with the conceptual architecture that
SysML covers. Model-based architecture allow tomanagemulƟple languages/tools andmethods, defining
at the same Ɵme different engineering perspecƟves of the same model. AnalyƟcal models has started to
be integrated within this methodology, considering also the current workflow that characterize the devel-
opment of complex systems. The configuraƟon of mulƟdisciplinary design environment can be obtained
through a proper transformaƟon from the SysML model to a mulƟdisciplinary design environment (as for
example ModelCenter, Phoenix IntegraƟon) [49]. The main aim of this approach is represented by an au-
tomated process for the generaƟon of trade space for the support of analysis acƟviƟes for components in
use. The applicaƟon of SysML language to products modelling has been addressed to verify consistency
and completeness of model definiƟon. Another interesƟng feature is directly related to the saƟsfacƟon
of uniqueness for the involved elements (avoiding the potenƟal presence of redundant data for the same
object) and also to the definiƟon of the necessary abstract classes to model what actually is needed.
MBSE methodologies can help to avoid design errors, supporƟng the project development in more consis-
tent way. It becomes even more difficult to control the increasing number of design variables that can be
idenƟfied during the development phases. A model based approach and an unified common tool for the
management of system level characterisƟcs allows to reduce the likelihood of wrong choices and design
errors. Straighƞorward architectural design has historically lead towards errors that has caused the loss
of space system. For example spacecraŌs as DARTS or Mars Reconnaissance Orbit have been affected by
errors that have negaƟvely influenced the accomplishment of their mission. The errors that have compro-
mised their mission might be idenƟfied by a more suited design process with a model based approach.
UML/SysML language has been invesƟgated for the implementaƟon of a model based design approach
within the Jet Propulsion Laboratory experience. The formality and semanƟc rules that characterize the
view diagrams allow to enhance the model consistency and parameter interdependencies. Currently the

103

research topic direcƟon is addressed towards the definiƟon of model management process where the
system can be "compiled" from an evolving model. In this way it is possible to manage the right accom-
plishment of system performance with respect to customer requirements early in the design phases and
also through a more formal workflow. The main features related to this aspect are related to the version
control (for the current baseline of the system), tracing of the dependencies, data integrity, modularity and
reusability. In this context becomes parƟcularly interesƟng also the right management of changes propa-
gaƟon since clashing needs are oŌen highlighted during the development phases.
Enhanced changes propagaƟon allow to rapidly update system characterisƟcs (evaluaƟng different design
soluƟons more quickly) but at the same Ɵme require a consistent check for the people that are working
on the same system (that have to relate to system that change conƟnuously on the other side). Another
important topic is represented by the correct management of system alternaƟves invesƟgaƟon (for exam-
ple how consider the possibility to manage different system alternaƟve on different branches). Another
important feature to be invesƟgated is directly related to the capability to understand when a parƟcular
object can be considered ready for reuse, creaƟng a library of well-defined and common accepted engi-
neering objects (for example the version control of the released library becomes an important feature).
In this context SysML is an evolving standard and one of the main challenging problems is represented by
the backward compaƟbility with previous version, since conƟnuous improvement and changes are intro-
duced. Project that last several years and theMBSEmethodologies are applied from the beginning then an
important effort must be allocated to a refactoring process in the case some new standard features have
been introduced.
The last problems has lead the OMG to manage the standard versions reducing the Ɵme spent for the cor-
recƟon of previous introduced element that are not allowed in the new release for example. The main
aim is represented by the possibility to reduce the risk related to the passing from one version of the lan-
guage standard to the other. The transformaƟon rules in this case must be well defined to avoid relevant
inconsistencies between the models. The main direcƟon of the research topic related to SysML devel-
opment is currently represented by the analyƟcal integraƟon with external domain specific tools/solvers.
Domain-specific tools can gain increasing popularity thanks to SysML interfacing and some classes of such
instrument are reported in the following list.

• Requirement management tools (for example DOORS)

• Satellite Toolkit

• Math solvers

• Modelica tools (for example OpenModelica or Dymola)

• Mechanical CAD tools

• Electrical CAD tools

• OperaƟonal research tools

• Campaign simulaƟon tools

• Process tools

The interconnecƟon between the models in the domain specific environment with the SysML system
model can currently be faced with different approaches since these an interesƟng research topic. Some
examples of such approaches that face the problem of the interconnecƟon between the domain-specific
models (define in the various naƟve domain environment) and central system model are reported in the
following list (they are also currently the alternaƟves consideredwithin the context of JPL research acƟvity).

• ProjecƟon between models for interconnecƟon in naƟve domain (the properƟes coming from the
domain specific environment are connected and loaded within SysML system model).

104

• SemanƟc coordinaƟon.

• Connect relevant parameters

• All models as views on same supermodel.

Themost interesƟng challenge inMBSE is mainly related to the relaƟonship between the computer sci-
ence methods (considering the SysML development environment) and object-oriented approach to man-
age the current engineering design process.
The benefits coming from MBSE approach have been recognized from the JPL experience and can be ex-
pressed in the following lines. CoordinaƟon and enhanced traceability of the product components are
some of the main advantages. Another interesƟng feature is related to the possibility of automated verifi-
caƟon and also generaƟon of documents (directly related to the reducƟon of Ɵme and costs). The formal
definiƟon of rules and connecƟon between the models allow to support the generaƟon of cases and oper-
aƟonal scenario. Finally the definiƟon of a unique central model can enhance the capability to query the
needed informaƟon.
Another example related to the applicaƟon ofMBSEmethodologies to spacemission concept can be idenƟ-
fied in the EuropaMission Concept Study [50]. Jet Propulsion Laboratory has gained important advantages
from the use of MBSE methodology within the design of space mission. In parƟcular the Europa Mission
Concept Study has been done through the integraƟon of MBSE approach which allowed to capture and
analyse the system soluƟonsmore effecƟvely. This study has enhanced the importance of systemmodeling
for the management of space systems architecture. This approach allows to beƩer manage the complex-
ity of the system considered, providing the capability to manage the dynamic architecture soluƟons that
typically characterize the early development phases. This feature shows a beƩer behaviour in the system
design process with respect to the tradiƟonal system engineering modeling.
The reference case used to assess the MBSE methodologies is represented by the Jupiter Europa Orbiter
(JEO). The development of this science mission in the design Phase A was supported also with the part-
nership of the IMCE iniƟaƟve. In this case SysML has been chosen as the modeling language for the inte-
graƟon of MBSE definiƟon architecture. This environment allowed to integrate in the same framework all
the involved stakeholders, providing a common tool to share informaƟon and discuss about the possible
soluƟons in more consistent way.
The MBSE approach allowed to analyse consistently different mission configuraƟons, exploring other pos-
sible soluƟons and proposing the split of the original architecture into two independent soluƟons. In this
case the science instruments are properly placed on the two independent spacecraŌ since the configura-
Ɵons considered show improved performances with respect to the original concept. The architecƟng infor-
maƟon must be managed in a more comprehensive system model as the design becomes more detailed.
A modest architecƟng framework was developed to accomplish this objecƟve and it was subsequently
adapted using an open-source web development tool for collaboraƟve databases. The tool developed
within this context is referred to as Architecture Framework Tool (AFT).
Further improvements can be obtainedwith such tool types in order to support the architecƟng effort. This
approach will allow to beƩer manage the workflow related to the design process, encouraging a deeper
iteraƟve and incremental approach in the development of the product.
The collaboraƟve SysML tool environment chosen for this study has been idenƟfied with the commercial
soluƟon proposed by NoMagic and represented by the MagicDraw tool. The deployment of such tool has
been characterized by a well-supported training phase for the people involved in the systemmodeling pro-
cess. The SysML environment has been properly adapted to the specific needs of the modeling team. A
modeling plan has been developed to drive the system evaluaƟon with a more flexible approach within
the MBSE paradigm. In parƟcular the mission conceptual architecture descripƟon is implemented within
the ATF framework (in parƟcular three mission concepts are evaluated). The single mission concept is then
modelledwith SysML defining the physical decomposiƟon, system and subsystem block diagrams andmass
reports. In this way the team iteraƟvely interact with the system model and the contained informaƟon,
exploiƟng also the capability to parƟally automate the generaƟon of documents or some preliminary anal-
ysis (such as the mass budget).

105

Figure 5.2: Conceptual meta-model of JPL research iniƟaƟve on MBSE [50].

The descripƟon of the architecture is defined on the basis of the concepts inspired by [51] and developed
to properly manage the representaƟon of the various features that characterize the system model such as
hardware, soŌware and operaƟonal aspects. The result of this conceptual analysis is reported in figure 5.2.

The block elements of the previous figure refer to the categories that conceptually describe the space
mission architecture. The various categories defined in this diagram define a group of informaƟon that
the related models must contain. In parƟcular the system components must modelled following the re-
laƟonships defined with this diagram. A similar approach has been considered for the generaƟon of the
system meta-model defined within this work but with slightly different categories and their relaƟonships.
The architecture descripƟon follows the relaƟonships and conceptual categories defined within the previ-
ously introduced meta-model and all the contained informaƟon have to been integrated within the OWL
ontology to consider the possible interface with web-based services. The following consideraƟons briefly
characterize the objects involved within the definiƟon of the space mission architecture.
The Architecture DescripƟon idenƟfy one or more Stakeholder, each with one or more Concern. The Con-
cern itself results in one or more Success Criteria (this object is directly related to the integraƟon of the
requirements coming from the stakeholders). The Concern is considered by one or more Trade and each
of which considers one or more Principle. The Trade element evaluates one or more OpƟon. The View
element is directly related to the FuncƟon, Element, Viewpoint, RelaƟonship, Property, Concern, Scenario
and Model categories. All the interfaces that potenƟally characterize the Element definiƟon are all mod-
elled through the RelaƟonship object. In parƟcular this categories include also all the possible elements
that are associated to the interacƟon between the Elements that compose the system. Model category is

106

used to support the analysis process which is related also to the definiƟon of the informaƟon contained
within the Scenario element.
The Trade element has been introduced to group all the possible OpƟon that are referred to a certain Con-
cern of the Stakeholder object. Certain OpƟon is described by one or more View and within this element
the descripƟon is obtained through the definiƟon of the Element and other objects.
The system definiƟon starts from the proposed model and then consider also the invesƟgaƟon about the
hierarchical composiƟon of product elements. In parƟcular the components of certain elements can be
integrated in different manner obtaining various configuraƟons that can be studied to assess their advan-
tages with respect to another one. The process of integraƟon of atomic elements into a composite product
is also idenƟfied as deployment of such product. Such hierarchical analysis has been captured through the
Internal Block Diagram of SysML language. This diagrams allow the development team to discuss about
the interconnecƟons that are modelled for example.
Another important feature that must be considered is represented by the work breakdown hierarchy. This
aspect is mainly related to the organizaƟon of the work package and its decomposiƟon, allocaƟng the
various resources on the system elements. The management of space mission concept through a level de-
composiƟon based on the disƟncƟon between the equipment and subsystem oŌen results in an oversim-
plificaƟon. The Viewpoint category has be introduced mainly for this reason while the system hierarchical
definiƟon is sƟll maintained to ensure a well-defined organizaƟon and modularity of the analysed system.
Analysis process is as important as its correct documentaƟon. The management of the technical margins
(as for example those related to the mass, the power or also the energy) is one of the criƟcal issue that
characterizes system development also in the early phases. The evaluaƟon of such technical features can
be done with two approaches. The invesƟgaƟon can be realized within the SysML tool itself if the analyses
are not so computaƟonally demanding. The computaƟon can also be interfaced with an external solvers
when the soluƟon is parƟcularly demanding.
Another interesƟng feature that can be found among all the possible capabiliƟes is represented by the
support for the generaƟon of the Mass Equipment List (MEL) which is directly related to assessment of
mass budget assessment. StarƟng from the root node of the product the mass budget can be obtained
iteraƟvely processing all the contained items.
The same modeling approach can be used to monitor and manage the power margin and energy balance
to evaluate preliminary analyses. The SysML implemented model does not sƟll consider the influence of
Ɵme and so the evaluaƟon of power budget is referred to staƟc preliminary computaƟons. This approach is
however not well suited to more detailed design since the Ɵme scheduled components operaƟonal modes
and scenario directly affect such invesƟgaƟon.
Data balance margin can be evaluated and managed similarly to the previous secƟon since the noƟon of
Ɵme is not sƟll well implemented within SysML environment.
The other features evaluated within this study are represented by the radiated equipment lifeƟme, science
margin, cost esƟmaƟon, integraƟonwith costmodels and finally the automated report generaƟon andweb
publishing.
The radiated equipment lifeƟme and margin (RELM) model has been developed to assess the effecƟve-
ness of the current components shielding or if it is required a beƩer protecƟon. The computaƟons of such
evaluaƟons are demanded to an external solver (Wolfram MathemaƟca) for the processing. The science
margin helps to idenƟfy the efforts required to address a science concern. A Science Margin Model (SMM)
is used to quanƟfy the balance between the changes in technical design and the corresponding changes in
science return.
The cost esƟmaƟon is one of the criƟcal element for a quick evaluaƟon of soluƟon feasibility and also for
the right idenƟficaƟon of the resources needed for the project. Most cost models are related to the mass
parameter in the early phase of the development and since this variable can be esƟmated more consis-
tently and before with respect to the tradiƟonal approach.
The report automaƟc generaƟon is one of the most interesƟng benefits related to the applicaƟon of an
MBSE approach to a space mission project. Reports, tables and documents can be generated on the basis
of the informaƟon available in the systemmodel (from the diagrams for example), allowing a beƩer control
and consistency of the data introduced.

107

Some other example of such integraƟon can be found in technical literature as the work [52] where MBSE
methodologies are applied for the analysis of space mission operaƟonal scenarios. In this case the Radio
Aurora Explorer (RAX) mission is modelled using a SysML tool within the context of MBSE methodology.
The choice of a cube sat mission allows to show the capabiliƟes of such amodeling paradigm in the context
of highly integrated and coupled subsystems. The closeness of the involved subsystems and the high level
of equipments integraƟon lead to a parƟcularly challenging design process for such a missions. In this case
the MBSE methodology has been considered for the management of the behavioural and operaƟonal as-
pects. Several simulaƟon tools has been integrated to assess some analysis on the basis of the informaƟon
contained within the SysML model. Data included within the behaviour models, subsystem funcƟons and
internal states are used to set up the simulaƟon scenarios for the spacecraŌ. The main aim has regarded
the demonstraƟon of the applicability of such approach, invesƟgaƟng the feasibility, the evaluaƟon of per-
formances and the computaƟon of system metrics. The informaƟon contained in the central model has
been used to build the representaƟve mission scenarios simulaƟon, highlighƟng also the feasibility of op-
eraƟonal schedules evaluaƟon. This modeling architecture enhances the capability to obtain operaƟonal
performance feedback sƟll in the previous design phase, allowing to proper idenƟfy potenƟal development
errors and also reducing the problems related to the consistency of the data exchanged.
Different analysis approaches has been considered since various strategies can be implemented for the
evaluaƟon of the required parameters. In this case an example of such analysis has been realized exploit-
ing the internal solver available with the SysML modeling tool. Such capability is based on the evaluaƟon
of the design parameters that are defined within a parametric diagram. The relaƟonships between these
parameters model link between the quanƟƟes that characterize some physical law or mathemaƟcal ex-
pression. The modeling approach of SysML parametric diagram allow to define the contained elements
without defining which of these ones are outputs or inputs. This acausal representaƟon of the relaƟon-
ships between some parameter allow to consider the same rule/law also in the case of other evaluaƟons,
when for example the quanƟty that have to be computed is now an input when in another context this
one was an output. In parƟcular the internal solver used in this work is called ParaMagic and it is available
within the SysML MagicDraw modeling environment. The parameter/s to be evaluated are idenƟfied on-
the-fly by ParaMagic and the causaliƟes between the available data are assigned consistently with those
available. This analysis instrument allow to realize some preliminary evaluaƟons without the need to link
to an external solver for the characterizaƟon of some scenarios. This method is well suited in the case of
simple relaƟonships between the considered parameters but the implementaƟon of an high number of
values can be cumbersome and not parƟcularly easy to understand. Also this analysis instrument is not
suited in the case of models slightly more complex or when the parameters to be set are many since the
subsƟtuƟon for the single scenario must be done manually. In this context it is necessary to instanƟated
the invesƟgated scenario starƟng from the block definiƟon diagram of the analysis and system design ele-
ments. In this work the ParaMagic solver approach has been used to solve the communicaƟon download
analysis.
The power analysis is instead performed using the PHX ModelCenter tool to model the workflow between
different external solvers. In parƟcular external solver are used to compute the orbital posiƟon of the
spacecraŌ while Matlab scripts allow to solve for the dynamics of the satellite. Finally the mission system
acƟvity analysis has been performed using the Cameo SimulaƟon Toolkit (a plug-in of theMagicDraw tool),
animaƟng the state machine and acƟvity models. In this way a behavioural analysis of the model has been
performed, checking the data, informaƟon and logical flow between the various elements involved. One of
themajor effort that has been enhanced from this work is idenƟfiedwith the Ɵme spent for the integraƟon
of simulaƟon object and their tesƟng since they are integrated in a common environment. This process
require the definiƟon of different files and scripts that allow to manage the processing of the informaƟon
from one solver to the other (generaƟng the related wrapper funcƟonality). Further improvements are
scheduled in this direcƟon to provide a more consistent simulaƟon environment.
InteresƟng results coming from the integraƟon between different types of data and geometrical models
are also available from [119]. Such work basically concerns the capabiliƟes that can be achieved through
the use of Building InformaƟon Models (BIM) for the management of the data of a complex project. The
connecƟon of various types of analyses beyond pure graphical representaƟons allows to improve the ef-

108

Figure 5.3: Conceptual overview of the lifecycle of an aerospace system and the phases that can be covered
with the proposed Virtual Space ConstrucƟon Process (VSC) [119].

fecƟveness of data exchange. In parƟcular it is invesƟgated the integraƟon between model-based systems
engineering languages/processes (for example SysML) and a powerful geometrical architectural design tool
with BIM capabiliƟes. The related approach is applied on a hypotheƟcal example concerning space habi-
tats in order to evaluate how and in which way the design of complex system can be enhanced in the near
future. A conceptual overview of the workflow of aerospace hardware development and the phases that
can be covered with the proposed Virtual Space ConstrucƟon Process (VSC) is provided in figure 5.3.

5.3.2 TU DelŌ

Another interesƟng iniƟaƟve related to the integraƟon of MulƟdisciplinary Design OpƟmizaƟon and
Concurrent Engineering has been represented by the research acƟviƟes that are developed at DelŌ Uni-
versity of Technology [53]. In parƟcular the academic effort has been addressed towards different direc-
Ɵons as the operaƟve research, educaƟon and applicaƟon. The developed methodologies are evaluated in
the context of actual space applicaƟons as cube sat projects (for example Delfi-C3 and Delfi-n3Xt). At the
same Ɵme the model based system engineering methodology is currently proposed in different university
courses while also mulƟdisciplinary design opƟmizaƟon research acƟviƟes are analysed in the same con-
text.
The applicaƟon of concurrent engineering for space applicaƟons has enhanced certain limitaƟons as this
research group has observed from the actual design approaches. In parƟcular the main limitaƟons can be
summarized in the following ones (also reported in figure 5.4):

• No mulƟple opƟons

• No trade-off

109

Figure 5.4: Overview of the main limitaƟons of the concurrent engineering for space.

Figure 5.5: Main features and common aspects of MDO and System Engineering.

• No opƟmal soluƟon

• Not dynamic (uncertainty)

All these elements come out in the context of a mulƟdisciplinary team working on the same project.
The same problems can be remarked for certain collaboraƟve environments (as for example within struc-
tures similar to Concurrent Design Facility). In parƟcular the interacƟon between people working on the
same product at system level shows as the management of mulƟple opƟons is difficult to formalize. The
same condiƟons lead to a not well established definiƟon for the generaƟon of trade-off and consequently
also for the idenƟficaƟon of opƟmal soluƟon. This situaƟon is then characterized oŌen by a not dynamic
environment where is not so easy to manage the uncertainƟes that can be met during the design process.
The System Engineering area is well described by the definiƟon of technical process and management pro-
cess that in the last several years has been relaƟvely formalized (as can be seen from the NASA System
Engineering Handbook). The MulƟdisciplinary Design OpƟmizaƟon environment is mainly characterized
by the definiƟon and a clear understanding of the opƟmal design scheme. Another important feature is
represented also by the construcƟon of a well reliable mulƟdisciplinary math models. The contact points
between such areas are represented by the synthesis and the interdisciplinary (figure 5.5).

One of the most interesƟng objecƟve of this study is represented by the assessment of the feasibility
related to the integraƟon of MDO into exisƟng System Engineering/Concurrent Engineering architecture.
One of the key feature that characterizes such potenƟal integraƟon is represented by a clear understand-
ing of the overall interface and synergies that can be idenƟfied when different design processes are put
together. From this perspecƟve the MDO approach used covers a key-role in the definiƟon of the prod-
uct development. The interrelaƟons between different models and various design acƟviƟes figures out
how difficult is to put all together the integraƟon between theMDO techniques and SE/CE methodologies.

110

Figure 5.6: Main areas directly involved in the integraƟon process of MDO techniques.

Some of the difficulƟes that characterize the applicaƟon of MDO can be resumed in the following areas,
represented in figure 5.6 for the sake of clarity:

• IntegraƟon

• UƟlizaƟon

• Modeling

The incorporaƟon of MDO paradigm within SE architecture requires a clear definiƟon of different in-
volved elements. The main idea is represented by the incorporaƟon of automaƟc search of opƟmal solu-
Ɵon under uncertainƟes and the informaƟon available in quanƟtaƟve, qualitaƟve and uncertain form. The
other objects to be considered are the knowledge and the exisƟng S/C SE framework.
The analysed methodology is based on the principles of Knowledge Based Engineering (KBE) where all
the elements that characterize the definiƟon of specific system are formalized following a certain pat-
tern. StarƟng from requirements the space system is then decomposed defining the space segment (bus
and payload) and ground segment, proceeding through all the levels to clearly idenƟfy the required fea-
tures. The same project has considered the evaluaƟon of such integraƟon on a case study represented
by a distributed space system. This scenario has also been modelled considering also the idenƟficaƟon of
uncertainty source, providing the base for a problem of Uncertainty MulƟdisciplinary Design OpƟmizaƟon.
Independent input (design variables) have been managed to proper evaluate the dependent output (at-
tribute values), obtaining the opƟmal configuraƟon for the conceived opƟmizaƟon problem.
The overall system model has been implemented considering also the definiƟon of RAM model, lifecycle
model and cost model. In this manner the tradiƟonal technical models are kept separated from those
that are more related to the management perspecƟve of a product. For example the mission analysis
model, spacecraŌ model, launcher model and ground segment model are all included in what is called
a performance-based context (also if the previously defined group of models can also be considered for
the evaluaƟon of system performances). The RAM model is used in parƟcular to evaluate the reliability,
the availability and the maintainability on the basis of lower level system (contained elements) reliability,
TRLs, redundancy, etc. The lifecycle model is instead used to define the list of acƟviƟes that are needed to
proceed from user requirements to the a specific phase. The cost model is based mainly on the esƟmaƟon
of three principal sources. In parƟcular these are represented by the development costs, the launch costs
and finally the operaƟonal costs. This approach for the evaluaƟon of the costs related to the invesƟgaƟon
of overall system costs can be defined in different manner on the basis of different methods and of avail-
able informaƟon. The current challenges for the integraƟon of MDO techniques are conceptually reported

111

Figure 5.7: Overview of the main challenges for the integraƟon between MBSE environments and MDO
capabiliƟes.

in figure 5.7 from the perspecƟve of TU DelŌ analysis and experience (they are referred to the present
pracƟse for concurrent engineering for space).

One of the most important phase is represented by a clear understanding of the interconnecƟons be-
tween the various models and in parƟcular the feedback and forward links that can strictly couple two or
more simulaƟons.
The problem has beenmodelled through the assignment of uncertainƟes to systemmodel parameters and
the incorporaƟon of uncertain events. In parƟcular the lifecycle model includes the possibility to stochas-
Ɵcally introduce delays within an acƟvity. In the same manner the component failure can be modelled as
a distribuƟon. Finally the CER model considers the effects of probability distribuƟon to properly evaluate
the uncertainƟes that can affect the costs esƟmaƟon.
The integraƟon ofMDO into SE/CE framework has been conceived through the definiƟon of concepts trade
space, soluƟons idenƟficaƟonand assessment, design parameters invesƟgaƟonandfinally system/subsystem
evaluaƟon. The final aim of such approach can be recognized as the idenƟficaƟon of the opƟmal design
soluƟon.
This research acƟvity is focused on the assessment of such integraƟon and future developments are ad-
dressed to the interfacing with the Concurrent Design Facility available in TU DelŌ.

5.3.3 University of Michigan

The integraƟon of MDO techniques with an MBSE environment is currently invesƟgated with the sup-
port of different research iniƟaƟves, as can be seen for example from theworks developed in the context of
University of Michigan. In parƟcular some interesƟng research acƟviƟes, as reported in [69], [52] and [93],
show how the integraƟon of opƟmizaƟon techniques within a MBSE framework is a promising approach
for the development of complex aerospace systems. In this case the development process of small satellite
systems has been supported through the use of a SysML tool integrated with external solvers. SysML has
been used to model all the representaƟve informaƟon of the system itself, allowing also the definiƟon of
the rules and laws that characterize the relaƟonships among the properƟes of the satellite. In this case
the parameter diagrams have been used to link all the values that are directly related with each other for
the computaƟon of a certain variable. The SNR Analysis link budget for example has been built with such
an approach. All the data required to define the current status of the project are stored though SysML,
used also to define the topological architecture of the subsystems modeled for such reference case, con-
sidering however the preliminary phases of a project. The aƫtude determinaƟon and control subsystem
is modeled with all the related components in the same environments that allows also a clear and con-

112

Figure 5.8: High level representaƟon of the infrastructure considered for the design problem of CubSat
example.

sistent representaƟon of all the involved elements. The SysML system model for the Cubsat mission is
then connected with external solving environments through proper developed interfaces and plugins to
compute the needed quanƟƟes. In this case the simulaƟon capabiliƟes mainly regarded power analysis,
communicaƟon download analysis, mission system acƟvity analysis and orbit dynamics. The informaƟon
collected within the system model are also used to set up opƟmizaƟon analysis through the use of devel-
oped interfacewith amulƟdisciplinary analysis tool (PHXModelCenterrin parƟcular). The informaƟon are
properly processed to parƟally automate the definiƟon process for an opƟmizaƟon analysis, directly man-
agedwithin theModelCenter environmentwith the data provided by the SystemModel. Such environment
monitors the overall execuƟon of the opƟmizaƟon as well as all the simulaƟons required to achieve the de-
sired results (for example Matlab©codes and Excel ©spreadsheets are also included within the cycle). In
this case the integraƟon between MBSE environment (represented by the SysML System Model modeled
with a commercial tool) and the MDO techniques (provided within the context of PHX ModelCenterr) is
obtained though proper developed interface plugins and script that manage the generaƟon of the overall
scenario. An high level representaƟon of the model based approach can be conceptually represented in
figure 5.8.

The main advantages highlighted by such approach are represented by the capability to parƟally au-
tomate the generaƟon of simulaƟon scenario on the basis of the available informaƟon. In this way it is
possible to reduce the consistency problems that can arise whenmodel transformaƟons or data exchanges
are required to built a simulaƟon case. At the same Ɵme has been possible to beƩer exploit the overall
informaƟon to define an opƟmizaƟon study that was able to beƩer explore the design space with less ef-
forts from the user. At the same Ɵme some challenging issues must also be properly faced.
Different licenses are oŌen required to properly set up the used simulaƟon tools, considering also the re-
lated vendor support in some cases. This problem oŌen rises with the use of commercial tools and their
related environmentswhile the alternaƟve soluƟon is represented by open-source soŌware. In this case on
the other side the documentaƟon and support is oŌen not necessarily ensured by the developing teams.
Another problem highlighted by such studies is represented by the large efforts required to set up the sim-
ulaƟon environments, including creaƟng wrapper files, wrapping models, saving and re-opening models.

113

114

Chapter 6

Conceptual Infrastructure

One of the most important features directly related to the developed framework is represented by
the need to analyze the potenƟal introducƟon and formalizaƟon of trade-off capabiliƟes within a con-
sistent modeling environment. The evaluaƟon of system performances and the study of feasible solu-
Ɵons/configuraƟons represent some of the most important acƟviƟes of a system project. The early de-
velopment phases are mainly involved in the definiƟon of product characterisƟcs and heavily affect the
following system behaviour. This process is lead by the correct idenƟficaƟon of the criteria that are then
used to invesƟgate the responses to external environment. A formal definiƟon of the criteria used to quan-
Ɵfy the effecƟveness of certain system soluƟons is a complex acƟvity and oŌen is strictly related to personal
knowhow of single person, driving someƟmes to a subjecƟve perspecƟve. The focus of the current work
is also represented by a feasibility assessment about the possibility to formalize the overall architecture
evaluaƟons. The proposed approach theoreƟcally shows interesƟng benefits regarding the reducƟon of
possible misunderstandings and subjecƟve interpretaƟons of system results.
A correct evaluaƟon of an architecture has generally to take into account different elements:

• Requirements

• Scenarios (operaƟonal and not-operaƟonal)

• Stakeholder’s concerns and related preferences

• Overall architecture properƟes

All these elements must be used to properly support the decision making process, providing the in-
struments to jusƟfy certain choices and correctly invesƟgate impacts on design soluƟons. Such aspects
can be differently approached and managed by various system modeling tools. All the previous general
consideraƟons can in fact be processed developing different high level formalizaƟon oŌen on the basis of
the company or organizaƟon know-how about System Engineering. The key-role in such procedures is also
represented basically by a correct understanding and conceptual definiƟon of the metrics and evaluaƟon
criteria for the invesƟgaƟon of the response under analysis.

6.1 IntroducƟon

The previous secƟons have highlighted the current needs with respect to the research field of System
Engineering. In parƟcular the considered examples and research iniƟaƟves had the role to show how a for-
malized infrastructure for the management of the advanced phases of a project is currently not properly
defined. The definiƟon of a consistent conceptual architecture that includes the great part of the avail-
able scenarios is difficult to obtain, above all for the most advanced phases of a space product where the
possible cases cover a wide range and a unique set of common concepts is difficult to establish. The main
aim of the present work focuses on the understanding of the possible alternaƟves that can be chosen and
then the development and invesƟgaƟon of one soluƟon among these ones. In this way the final purpose

115

is addressed towards the idenƟficaƟon of the missing elements and concepts that must be taken into ac-
count. The applicaƟon of model-based methodologies in the advanced phases of complex system requires
in fact a well-understanding of all the involved enƟƟes (from people to the processes and designmethods),
avoiding the possibility to neglect some modeling methods or analysis mechanisms. This aspect must be
not undervalued since it strictly affects the evoluƟon and effecƟveness of the methodologies associated to
the Model Based System Engineering "philosophy".
The next secƟons first provide a descripƟon of the common issues that that can be found during the appli-
caƟon of a model based methodology in the advanced phases of a development process. Then the main
definiƟons of the terms used are reported. The classificaƟon of the involved concepts as well as the rela-
Ɵons among them is reported, presenƟng what can be considered as a simple taxonomical or ontological
analysis that paves the way for the overall infrastructure. The main concepts are presented in this secƟon
butmore details are provided in the appendices and they are used to conceptually build the framework that
can then be implemented following different alternaƟves (for example the same conceptual infrastructure
can be implemented differently on the basis of the chosen technologies).

6.1.1 Current issues

Product lifecycle management (PLM) is an all-encompassing approach for innovaƟon and system infor-
maƟonmanagement from preliminary concepts to end of life. PLM shows its capabiliƟes to support model
based systems engineering and system lifecycle. InformaƟon models, meta-data models (different view-
point to represent product model) and procedures need to be developed in order to support mulƟ-domain
systems engineering, simulaƟon-based engineering, and knowledge management, besides the current de-
sign approach. The difficulƟes that can be encountered during data-exchange are partly caused by lack
of general accepted industry standards and protocols for PLM meta-data models and processes. Informa-
Ɵon models and data exchange between virtual prototyping soluƟons and PLM systems need improve-
ment. AddiƟonally, virtual environments are geƫng larger and more closely integrated together oŌen
through proper developed network system. In this context a more effecƟve data structure and collabora-
Ɵve methodology cover a key-role for the definiƟon of the right soluƟon.
The use of a collaboraƟve environment has emerged as a consequence of a conƟnually changing working
place which calls for the collaboraƟon of mulƟple actors, with different background, roles, knowledge, ex-
perƟse and tasks. The capability to collaborate over Ɵme and space, within and across organizaƟons or
corporaƟon, is fundamental to reach this flexibility through the best possible management of the knowl-
edge and resources available (ensuring for example a well-defined way of informaƟon access). The desired
flexibility can be pursued through the implementaƟon of a distributed environment with parƟcular em-
phasis on interacƟon mechanisms among all the involved actors.
The current implementaƟon of system modeling infrastructures for the management of overall informa-
Ɵon, such for example SysML soluƟon, has shown interesƟng features and numerous advantages. SysML
models pave the way to the definiƟon of a well-harmonized system representaƟon that can widely reduce
the development Ɵme and costs with respect to the tradiƟonal design approaches. Such capabiliƟes are
highlighted by the various reference cases and studies that are carried out onMBSEmethodologies through
the use of SysML language. These analyses have also enhanced the difficulƟes that come out when a staƟc
and representaƟve model is interfaced with simulaƟon environments. They show not only the benefits
that can be obtained by such an approach but concurrently also the main fields that require a beƩer def-
iniƟon. The laƩer ones slow down in fact the applicaƟon of such methodology up also to simulaƟon and
analysis environments. Some of the points already opened with respect to SysML language are reported
in the following lines. One of the main aspect refers to the pracƟcal usability of this language for system
knowledge and the related easiness to be learned, used and employed in pracƟse. Such languages is also
evaluated to understand its applicability in daily problems with low overheads, considering for example
the capability not only to manage a restricted subset of problems.
Another important criteria that must be take into account in the choice of SysML as system modeling lan-
guage is affected by the degree of independence. The capability to run across heterogeneous environments
independently by the related plaƞorm is a key-factor for the definiƟon of a collaboraƟve environment. Such

116

issuemust be properly evaluatedwith respect to SysML tools and plaƞorms to figure out if integraƟon prob-
lems can arise when different organizaƟon and corporaƟon work together (for example in the case some
resources are shared in the same project).
The invesƟgaƟon of SysML language involves also its capability to provide a zoom funcƟon, enabling in par-
Ɵcular the users to start at a high modeling level (for example at overall system level) and then navigate to
mode detailed levels (as for example the component or producƟon line level). Various research iniƟaƟves
are currently addressed to the evaluaƟon of such kind of feature since zoom capability can widely improve
the actual design process with respect to the tradiƟonal one. In this way it will be possible to use the same
systemmodeling environment both during the preliminary phases as also in the more detailed ones. Anal-
ysis acƟviƟes are now considering the applicaƟon of such capability to more complex project with the final
aim to idenƟfy all the related issues.
Another important ability that languages as SysML must provide is represented by the effecƟve manage-
ment of system knowledge across different modeling domains. This capability is strictly related to the
future developments of increasingly collaboraƟve environments andmust bewell-demonstrated. The scal-
ability of modeling languages must also be considered since the management of different types of projects
running on different types of companies is a key-factor for the development of a shared modeling ap-
proach (involvement of Small Medium Enterprise – SME and large companies). The ability to readily react
to changing condiƟons (as design changes or organizaƟon changes for example) is currently one of the fea-
tures that is pursued and it is important that such agility is available from modeling languages. The actual
demanding design environment is searching also for modeling soluƟons that are not necessarily bounded
to proprietary aspects since in this way it is possible to develop their own environment with no limitaƟons
on licenses, customizing the framework on specific needs (no costs are associated to the licenses manage-
ment and upgrading). The other benefits is also represented by the reduced or even absent installaƟon
and upgrading costs.
All the efforts involved in such research acƟviƟes are mainly addressed to the evaluaƟon of the actual
economical benefits that modeling languages such as SysML can effecƟvely add to product development
and manufacturing processes. The main interest is addressed to understand howmuch the results of such
modeling languages outweigh the costs of their adopƟon.
The use of an infrastructure based on SysML language have to face oŌen with all the problems related to
its applicaƟon within a collaboraƟve environment. The advanced phases of a project pursue in fact a wide
collaboraƟon among the involved teams and actors for the successful achievement of the objecƟves set.
Currently the integraƟon of a SysML tool wit+hin a collaboraƟve environment is not well defined since all
the available soluƟons are based on desktop applicaƟons without common procedures for the exchange
of the involved informaƟon. In this case the collaboraƟon among different people become difficult to
achieve since the collaboraƟon among person working on the same project requires proper developed
merging mechanisms. Project data stored in the same file are difficult to manage when a large number of
people work on it. Such process needs the correct handling of updates, accesses and ownerships of the
edited informaƟon to avoid data losses and consistency problems. Currently the large part of SysML based
tools provides funcƟonaliƟes that are parƟcularly useful and well suited for the management of a large set
of data on the same file. The management of data across different users working not on the same file (but
for example on copies of it) requires mechanisms and capabiliƟes that can be not necessarily embedded
within a SysML based plaƞorm. In this case alternaƟve approaches can miƟgate such problems through
the use of different types of infrastructure. In parƟcular web-based technologies can improve the collab-
oraƟon process and the current proposed infrastructure has been conceived to enhance such aspect with
respect to the response performances that can be achieved trough a desktop applicaƟon.
The primary objecƟve of this work regards the analysis of a possible alternaƟve soluƟon in the choice of
system modeling language. An evaluaƟon of modeling approach is conceptually defined, formalized and
evaluated starƟng from the just described consideraƟons about system modeling languages main issues
and features. In parƟcular the applicaƟon of an MBSE methodology is invesƟgated considering the de-
sign of space systems in the advanced stages of the project. One of the current most challenging topic
concerns the integraƟon of such recent philosophy with the analysis environments. The capability to in-
terface a modeling environment with analysis and simulaƟon ones covers a key-role for the spreading of

117

model-based approaches. The proposed framework has been evaluated mainly on the capability to man-
age simulaƟon models through a web-based interface, also developing a process for the definiƟon of mul-
Ɵdisciplinary analyses. The focus has been represented by the development and assessment of a frame-
work for the definiƟon of mulƟdisciplinary surveys as soon as possible, theoreƟcally conceived to support
system performances analyses during both the preliminary phases and the more detailed ones. The devel-
oped framework is based on a different design approach with respect to the current soluƟons. Different
research iniƟaƟves have basically driven the definiƟon of various desktop applicaƟons that allow the defi-
niƟon and analysis of aerospace systems ([54], [55]). Open-source projects and proprietary iniƟaƟves have
implemented different kinds of design and dimensioning toolkits, each one concerning a specific problem
as radiaƟon transport and effects, micro-meteoroids and space debris, planetary environments, contami-
naƟon and spacecraŌ plasma interacƟon for example. They are generally not so flexible when the design
scenario moves away from the nominal one since they are oŌen hard coded around a specific design issue.
The customizaƟon of such tools becomes not so easily to handle even supposing the possibility to modify
some applicaƟon parts.
The final purpose of the present work is not aimed to the formalizaƟon and implementaƟon of such a de-
sign infrastructure since the commercial soluƟons and built-in-house toolkits offer already a wide range
of performing capabiliƟes. There is no need in fact to reinvent the wheel since the main issues come out
when such analysis environments are integrated each other in a more complex framework.
The primary objecƟves are the development and assessment of a design approach that enable the integra-
Ɵon at high level with no limitaƟons on the analysis workflow that is oŌen strictly related to both company
knowledge and project needs.
The definiƟon of a different approach for the design process can enhance the capability to properly exploit
the available resources, customizing the simulaƟon uƟliƟes and toolkit funcƟonaliƟes. The main idea is to
develop a problem solving environment where the users can access analysis tools but are not limited by
their naƟve implementaƟon. A mulƟdisciplinary analysis environment where the design flow is not con-
strained by the built-in implementaƟon of the framework shows numerous advantages. In this way the
design workflow can be supported and monitored across its phases through the same environment that
can be used in the same manner on other projects. Such feature enables also the possibility to seam-
lessly exchange data between different projects since all the objects follow the same data structure and
are implemented on the same plaƞorm. In the end such modular approach improves the reuse of already
defined components both from different project developed at the same Ɵme as also from previous ones,
exploiƟng the available historical data. The concepts, main features and related results are presented with
more details in the following secƟons.
The right representaƟon of system configuraƟons is difficult to achieve and different soluƟons can be con-
sidered. Such choice directly affects the development phases of a complex system and different research
acƟviƟes are addressed towards such aspect as [111] for example.

6.2 Taxonomy

The definiƟons considered in the current work are based on the concepts available from ECSS technical
memoranda and are slightly modified in some specific cases [56]. Such changes and addiƟonal integraƟons
to already developed definiƟons are included to take into account aspects that are not iniƟally foreseen or
are not covering some parƟcular situaƟons for the proposed methodology.

• Actor: In the current work the term actor idenƟfies the enƟty that acts through specific means with
other enƟƟes. In parƟcular such integraƟon can involve both human users and computer systems,
depending on the specific situaƟon and involved enƟƟes. For example during system integraƟon and
manufacturing there are potenƟally human actors that interact with a product and its components.
On the other side a web service interacƟon can involve a human user and a client machine that
represents a lifeless enƟty which however can be implemented to provide all the responses needed

118

to interface with other actors. The idenƟficaƟon of actors and their relaƟonships within a specific
infrastructure depends on the context and level of details that are considered.

• Analysis: Analysis represents a verificaƟon method that uses techniques and tools to confirm that
verificaƟon requirements have been saƟsfied. Basically an analysis can be done through different
means. A specific analysis can be done with the support of simulaƟon models and tools but in other
cases analyses can be realized without such elements. For example amass budget can be considered
as an analysis acƟvity but it not necessarily involves a simulaƟon (such affirmaƟon must be properly
understood with reference to the concept of simulaƟon). Generally it is also possible to associate
analysis with an analysis model that can be used for example to set up a specific simulaƟon. In
this manner the same analysis model can in fact be used to generate and manage different simula-
Ɵons. The relaƟonship between analysis and simulaƟon classes places the related concepts on the
same level. The analysis concept can be defined independently to the fact that it is associated to a
simulaƟon items. In the same way a simulaƟon can be used not necessarily within the context of an
analysis since this method has been conceivedwith the final aim to verify one ormore requirements.
A simulaƟon is conceived instead to model and foresees the behavior of a product before its actual
realizaƟon or also to evaluate the possible responses of a parƟcular object (also if already manu-
factured) in some parƟcular scenario before certain acƟons are taken. In this case the simulaƟon is
not done to verify some requirement (providing support to an analysis acƟvity) but only to foresee
system behavior. Both concepts are quite similar but their main difference is related to the final pur-
pose they are associated with. A simulaƟon item can be then defined independently with respect to
a parƟcular analysis. A simulaƟon can be linked to a specific analysis when it is done with the final
aim to assess the product behavior with respect to a certain requirement. Generally the individual
analysis can be associated to a number of different simulaƟons since the verificaƟon of a parƟcular
analysis situaƟon can require the execuƟon of different kind of simulaƟons. In parƟcular in the pre-
liminary phases of a project the single analysis can be supported with a number of simulaƟons. For
this reason the two concepts are considered separated to avoid possible misunderstandings.
Some consideraƟons can help to further describe such concept but in the following expressionsmore
conceptswill be clarified. Considering the common terms used in SystemEngineering anAnalysis can
be linked to an Use casewhile the the SimulaƟon (conceptually related to the concept of SimulaƟon
case) can be linked more properly to a Scenario.

• Baseline: A baseline represents a set of informaƟon which describes exhausƟvely a situaƟon at a
given instant of Ɵme or over a given Ɵme interval. A baseline is generally used as a reference for
comparison with and analysis of subsequent evoluƟons of the informaƟon. In such definiƟon sys-
tems opƟons and alternaƟves can be considered or not as object belonging to the current baseline
on the basis of the desired modeling purposes. In the current work the key point for baseline defi-
niƟon depends on the choice for opƟons and alternaƟves belonging. The term baseline should not
contain opƟons and alternaƟves if literally considered on the basis of ECSS definiƟon. In the same
way the design variables provided by the users must also be managed as external object to the cur-
rent baseline but must be however traced within the same project.
In this sense the opƟons and alternaƟves can be linked to the related project and a specific baseline
at the same Ɵme. They are directly contained within the project but not in the baseline, ensuring
that when the baseline is deleted the linked opƟonal or alternaƟve objects are not removed from
the project. Baseline is basically used to take account of the nominal representaƟon of the overall
system as an instantaneous shot of project nominal state (current configuraƟon without opƟons or
alternaƟves) in a specific Ɵme instant.

• Dataflow: An important concept that must be clearly defined and that is strictly related to the inte-
graƟon of mulƟple analyses within the context of a mulƟdisciplinary environment is represented by
the dataflow. This termmust be not confused with the concept of workflow that is however defined
in the following. The dataflow describe the flow of informaƟon that characterizes the execuƟon of a

119

certain paƩern of analyses. In parƟcular the dataflow basically describes the relaƟonships between
analysis objects within a specific scenario with respect of input/output connecƟons. This definiƟon
does not include show the Ɵme relaƟonships between the involved elements but shows only the
dependence between the variables. The same dataflow can in fact be managed in different ways on
the basis of the Ɵme scheduling chosen for a parƟcular case. The Ɵme dependence is not highlighted
with the dataflow but with the workflow.

• Design: A design can be seen as a set of informaƟon that defines the characterisƟcs of the product.
This definiƟon can be parƟally related to baseline term since their meaning is quite similar. In the
current work the term design also includes all the opƟons and alternaƟves enƟƟes that come out
during the project development. In parƟcular the design refers to the opƟons and alternaƟves that
are currently under invesƟgaƟon and not necessarily to only the nominal configuraƟon. From this
view point the concept of design is wider than baseline one which in this work refers only to the
nominal set of system data.
Design can equivalently be considered as the process used to generate the set of informaƟon defining
the characterisƟcs of a product. In this case it refers mainly to the design acƟvity than to the set of
informaƟon.

• Discipline: The discipline is a specific area of experƟse within a general subject. Such concept is
already considered in the current work and it covers a key role for the correct definiƟon of the col-
laboraƟve infrastructure.

• Environment: Natural condiƟons and induced condiƟons that constrain the design definiƟons or op-
eraƟons of a product. Such definiƟon refers to all such enƟƟes that are not directly part of the system
and their idenƟficaƟon allows a clear understanding of the relaƟonships between the system itself
and external enƟƟes. The boundaries that characterize the interacƟon between various enƟƟes can
change on the basis of what is defined as system for that specific case. The same set of enƟƟes can in
fact be differently termed on the basis of the considered boundaries between the system and exter-
nal environment. Generally the external environment can be confused with the whole environment
where the system is also included. This concept must be clearly idenƟfied. In the current work the
term environment can also be idenƟfied with the external environment. The union between the sys-
tem and the external environment represents the whole world (basically what can also be idenƟfied
as the whole environment) while the system must not be confused with the external environment
since it is not part of such enƟty (considering the differences just introduced).
The environment can be basically considered as an actor but this definiƟon does not necessarily im-
ply that it belongs to the system. A system contains a collecƟon of items but there are no constraints
on which items belong or not to the system itself. This depends in fact on boundaries features.

• FuncƟon: A funcƟon is defined as the intended effect of a product. Such concept is mainly related
to the funcƟonal analysis acƟvity that oŌen comes before the hardware and actual component se-
lecƟon. In parƟcular such process describes completely the funcƟons and their relaƟonships, which
are systemaƟcally characterized, classified and evaluated.

• Item: An itemmay bemore generally a product, a service or an actor. Such term has been considered
to beƩer formalize and describe the concepts introducedwithin such analysis (e.g. systems, product,
service, actor, etc.).

• Mission: A mission is basically defined as a set of tasks, duƟes or funcƟons to be accomplished by an
element. This definiƟon can be scaled on different levels on the basis of the object that is currently
considered. The overall system has its own mission which is different from the one related to a spe-
cific component of the same system.

• Model: A model can be basically defined as a physical or abstract representaƟon used for calcula-
Ɵons, predicƟons or further assessment. A model can also be used to idenƟfy parƟcular instances

120

of the product e.g. flight model, referring in this case to real object that however do not represent
the exact system but is used to assess some specific behavior. In certain cases it is also possible to
consider the definiƟon of simulaƟon models. In parƟcular by simulaƟon models it is meant here
both data models, e.g. geometrical model of a system, and behavioral models, e.g. the algorithms
represenƟng the behavior of a component or environment expressed in a high level programming
language. A model normally (but not always) has inputs, outputs and internal state variables and
constants.
A generic model represents an enƟty (e.g. a power distribuƟon network) that can be configured to
represent any instanƟaƟon of that enƟty.
Although generic models are a powerful concept, they can become over complex and it becomes
more effort to configure a generic model than to develop a specific model from scratch.
Depending on the context, models can be classified according to their fidelity, their domain or their
modeling technique.

• Modeling technique: The modeling technique idenƟfies the method used to analyze and describe
the behavior of a model. Common techniques can be represented by the following types:

– Physical (electrical, mechanical, etc.)

– Behavioral

– FuncƟonal (with respect to external interfaces)

– Geometric

Other different types can also be considered on the basis of the specific modeling needs.

• Performance: In the current work the performance is defined as a quanƟfiable characterisƟcs of a
funcƟon and it allows to evaluate the behavior of certain elements, paving the way for the compari-
son between two different enƟƟes.

• Process: Such concept can be defined as the set of interrelated or interacƟng acƟviƟes which trans-
form inputs into outputs. Inputs to a process are generally outputs of other processes.

• Product: A product is defined as the results of a process and in this terms can be represented basically
by services, soŌware, hardware or processed materials for example. Following such definiƟon the
concept of product can be related both to tangible (physical system) and intangible (service) enƟƟes.
It can at least be associated to a collecƟon of tangible object at one level.

• Project: A project is basically represented by a set of coordinated and controlled acƟviƟes with start
and finish dates, undertaken to achieve an objecƟve conforming to specific requirements, including
constraints of Ɵme, cost and resources.

• Requirements and SpecificaƟons: A disƟncƟon between the terms related to requirements and
specificaƟons will be useful for the following secƟons. Such terms are in fact widely used in the
field of System Engineering and a clear descripƟon of their meaning can help to avoid possible mis-
understandings. Their funcƟon is quite similar but the specific meaning is associate to the processes
of design and analysis of a product.
Requirements are what your product should do, the specificaƟons are how you plan to do it. The re-
quirements represent the applicaƟon from the perspecƟve of the user. The specificaƟon represents
the applicaƟon from the perspecƟve of the technical team.

• Service: The term service refers all the intangible enƟƟes that can be involved during an acƟvity or
an interacƟon between some actors. In parƟcular such definiƟon can be associated to the acƟon
of that characterizes the interacƟon between actors during a specific scenario. The related enƟty is
basically intangible both on macroscopic level and microscopic one.

121

• SimulaƟon: The simulaƟon concept refers to a run of scenario in a simulator with a simulated start-
and end-Ɵme. During the simulaƟon events may be injected into the simulaƟon by the user, a script,
external hardware or another simulaƟon. Such definiƟonmore generally can be extended to run that
not necessarily involves the Ɵme dependence. The most part of simulaƟons are currently defined
in the Ɵme domain but that is not an absolute law since there are other specific types of simulaƟon
that do not involve directly the Ɵme dependence. The dynamic evoluƟon of current in an electrical
power subsystem refers to the first type of simulaƟon for example. The simulaƟon of a structure
response loaded with a set of staƟonary forces and moments represents another type of simulaƟon.
The main purpose of simulaƟons is to foresee the behavior of a system interacƟng or not with an ex-
ternal environment, providing useful data to evaluate the responses before some specific scenarios
occur. In such definiƟon the Ɵme role is not necessarily present since some parƟcular computaƟons
are not directly involving Ɵme dependence.
SimulaƟons can be used to support analyses since they provide the results needed to achieve a cer-
tain response but are but are not necessarily required by a specific analysis. In the same manner a
simulaƟon can be done without a direct connecƟon with an analysis, since it can be formally used
for other purposes (such as representaƟve purposes for customer/supplier for example).

• System: Set of interrelated or interacƟng funcƟons consƟtuted to achieve a specified objecƟve. Such
conceptmust not be confusedwith the product term since a product can be defined as a single enƟty
(able to be idenƟfied as a single enƟty) while the system requires however the presence of interact-
ing enƟƟes. In parƟcular the same enƟty can be described as product or system but on different
levels since in the first case the main aƩenƟon is on the whole enƟty as a unique element while in
the second definiƟon the main focus is on the various enƟƟes and their relaƟonships. Such two con-
cepts are however so similar that they are oŌen considered synonymous. A clear disƟncƟon between
such two definiƟons can help to beƩer organize and formalize the overall meta-model structure. The
actual benefits that can be achieved with the separaƟon of such two terms is not oŌen fundamental
in the applicaƟons that have been developed so far.
A system can be definedmore succinctly as a collecƟon of items and the related interacƟons. System
boundaries allow to clearly idenƟfy which items belong to the system and which do not. The related
classificaƟon strictly depends on the specific case and related scenarios.
System concept must be clearly disƟnguished from the external environment since it generally in-
cludes all the enƟƟes with which the system interact with. The system is affected by external en-
vironment as also in turn it can influenced by system behavior. This disƟncƟon is fundamental to
understand the boundaries for the context under evaluaƟon since such idenƟficaƟon allows to char-
acterize the occurring interacƟons. From this viewpoint the external environment do not belong to
the system but its role is fundamental to model system interacƟons. Space applicaƟons deal oŌen
with the definiƟon of Segment and the use of this definiƟon is fairly widespread to such an extent
that ECSS standard included it. In parƟcular the segment is defined as a set of elements or combi-
naƟons of systems that fulfils a major, self-contained, sub-set of the space mission objecƟves. Such
definiƟon is however not so constraining since the enƟƟes considered in the related definiƟon can be
also considered as systems their own. Segment is basically a convenient representaƟon of a complex
space system that in turn involves other systems. In this way such single system can be termed as a
space segment but what it means is basically the same since it is only a maƩer of scale. A segment
can in fact be considered as a system as any other one but in the context of complex space applica-
Ɵon this disƟncƟon can help to manage all the data involved. Examples of segment are represented
by Space Segment, Ground Segment, Launch Segment and Support Segment.

• Use case and scenario: SimulaƟon scenarios must be disƟnguished from the definiƟon commonly
accepted for the descripƟon of interacƟons in the field system engineering. In parƟcular the concept
of scenario must be well understand with respect with use case

– Use case: defined as a group of scenarios linked together by a common user goal.

122

– Scenario: defined as sequence of steps that describe the interacƟon between a user and a
system.

The development of a system is generally characterized by the idenƟficaƟon a set of goals that are
basically derived from requirements coming from the customer and project statement. The main
purpose of the preliminary phases is represented by the definiƟon of use cases and related scenar-
ios that are first conceptually elaborated and then detailed as the project proceeds. Each system
goals are generally related to one goal which in turn is connected to different scenarios. The same
use case is conceived to globally represent the interacƟons that may appear to achieve a desired
goal. On the other side the scenario defines the difference sequences that may occur during the
interacƟons between users and the system for the achievement of the same goal. In this case the
goal is the same but external situaƟons, iniƟal or boundary condiƟons can affect the Ɵme evolu-
Ɵon of events and users roles (such as acƟviƟes pursued within such scenario). Scenario concept
focuses on the temporal and different situaƟons that can occur for the same use case. For example
achieving the comfort temperature of a building represent the same use case since it is related to
the goal of reach a certain temperature for the comfort of people. The same use case can however
be accomplished in different manners (i.e. scenarios) on the basis of the current iniƟal and boundary
condiƟons. In the same previous example the operaƟons that a single user can do to maintain a cer-
tain comfort temperature depend on the iniƟal temperature. If the iniƟal temperature is lower than
the comfort one, the set of acƟons and system interacƟons are different from those that come out
when the iniƟal temperature is higher with respect to the comfort one. The same reasoning is valid
when the system component that allows reducing environmental temperature (because the actual
temperature is higher than the comfort one) breaks down. Such situaƟon represents however an-
other scenario for the same use case (i.e. achieving the comfort temperature). Scenario descripƟon
basically contains all the informaƟon about who does what and when, expressing the sequence of
acƟons between the involved actors and system components. The concept of scenario can be ex-
pressed in slightly different manner from a simulaƟon viewpoint but the meaning remains basically
the same for the purpose of the current work. In this case the scenario can be reported as a par-
Ɵcular iniƟal configuraƟon of a simulator and sequence of events to represent a parƟcular part of a
mission e.g. launcher deployment, eclipse operaƟons, cruise phase. The idenƟficaƟon of scenario
boundaries depends strictly in the case that is under evaluaƟon.

• ValidaƟon: ValidaƟon can be considered as the process which demonstrates that the product is able
to accomplish its intended use in the intended operaƟonal environment. In this context the verifica-
Ɵon is a pre-requisite for validaƟon.

• VerificaƟon: VerificaƟon is defined as the process which demonstrates through the provision of ob-
jecƟve evidence that the product is designed and produced according to its specificaƟons and the
agreed deviaƟons and waivers, and is free of defects. VerificaƟon can be generally accomplished
by one or more of the following methods: analysis (including similarity), test, inspecƟon, review of
design.

• Workflow: This term is used to define the process within which the analyses are executed. Thework-
flow describes in fact the Ɵme dependence of the involved analyses, ordering the flow between the
various elements. Conceptually if the dataflow defines which variable of which analysis is connected
to which other variable, the workflow tells us when a certain analysis must be performed. Such con-
cepts must be clearly separated to correctly understand the relaƟonships between the analyses that
characterize a mulƟdisciplinary simulaƟon.

In the context of a simulaƟon environment it is also important to clearly define a sharedmeaning for the
words: variables, constants and parameters. Such terms are defined in the following lines apart from the
previous definiƟons since their roles are strictly connected. The following definiƟons are parƟally derived
from the Modelica conceptual classificaƟon since first the related expressions are clearly formalized and

123

secondly they pave the way for the integraƟon with an object-oriented environment (Modelica based for
example).

• Variable: The variable is generally defined as a quanƟty that can be used to describe the behavior
of an object, providing for example the values related to the states of the component itself. Such
definiƟon does not necessarily lead to the fact that the quanƟty is always characterized by a variabil-
ity. Under parƟcular condiƟon a certain variable may not change its value over Ɵme for example. Its
variability is in fact strictly related to the specific simulaƟon and it is generally different from case to
case. From this point of view a variable defines more properly a quanƟty that can potenƟally change
during a simulaƟon. This definiƟon includes both the input and output variables since the related
terms are expressed in the same way. Variables represent basically the quanƟƟes that with con-
stants and parameters allow to compute/simulate the behavior of one or more elements, providing
the numerical values required from the equaƟons/funcƟons available in the code for example.

• Constant: A constant can be basically defined as a quanƟty that does not change during a simulaƟon
and its value is not directly accessible by the user. Such term includes all the physical quanƟƟes and
constants that cannot be freelymodified or chosen by a designer or analyst. Their values are however
needed by the equaƟons/funcƟons of a parƟcular code to compute or simulate the response of the
system under evaluaƟon. From this point of view its role is basically the same of a variable while from
amodificaƟon perspecƟve the access is quite different (the user cannotmodify this values on its own
or through other similar mechanisms). Constants are used to define all such values that cannot be
arbitrarily chosen by the user.

• Parameter: Parameters are defined within this context as those values that are required like con-
stants and variables to solve/compute the equaƟons or funcƟons of a parƟcular simulaƟon. In par-
Ɵcular such term idenƟfies the quanƟƟes that does not change during a simulaƟon but can be set by
the user or however can be modified on the basis of a parƟcular choice. They refer to those values
that can be chosen at the start of a simulaƟon but cannot be modified during the simulaƟon itself.
They are defined once before the simulaƟon starts but can be changed aŌer the execuƟon to set
another computaƟon. The disƟncƟon with the constants values are mainly related to the fact that
the parameters can potenƟally modified by the user/analyst on his/her needs. In fact a parameter
can remain constants during a set of different simulaƟons but this does not means that it can be
included within the constants definiƟon.

Another important disƟncƟon has been done between the concepts of opƟon and alternaƟve. This
consideraƟonwill be reintroduced in the following secƟon to clarify some conceptual choices for the frame-
work. In parƟcular such disƟncƟon is introduced to take into consideraƟon in a beƩerway themanagement
of design changes and configuraƟons. The term alternaƟve refers to the design object that theoreƟcally
subsƟtutes another one. In this case a certain elementmust be present and there are different alternaƟves
that can be considered. In the current work the term "opƟon" refers more properly to a design object that
can be present or not, depending on the specific case. From this perspecƟve an opƟon is not related to an
object that must be present. Such definiƟons is currently not clearly defined in the available standards and
they are not yet formalized. The concept of design opƟon is however present in some formalizaƟon works
but is approached differently on the basis of the related organizaƟon or research iniƟaƟve. Within the
proposed approach such disƟncƟon has been considered quite important for a well-posedmanagement of
design changes.
The previous introduced definiƟons are then used as starƟng point for the formalizaƟon of the concepts
used in the current work. In parƟcular the concept developed in the context of Virtual SpacecraŌ Design
project [57] have been considered and parƟally modified to take in to account some of the aspect that has
been approached. The main concepts related to the topological definiƟons are reported in the following
secƟon. Such terms are mainly used to formalize system physical architecture, allowing the descripƟon
and characterizaƟon of the relaƟonships between product components.
Such definiƟons have been introduced to support the conceptual data structure about the model-based

124

methodology that has been evaluated. They are not the only available from the ECSS technical memoranda
since other expressions and concepts are expressed with more details. In parƟcular they are selected on
the basis of the concepts that are considered for the current study. Such concepts are then properly used
within the data model to define the related classes that are then elaborated to build up the Ruby on Rails
classes used to implement the design framework.

6.2.1 Topological definiƟons

The following concepts have been defined to clearly represent system topology on the basis of an ob-
ject oriented approach. Their meaning is strictly related to the conceptual data model used to support
design acƟviƟes at system level, providing useful capabiliƟes in the context of the proposed infrastructure.

Element DefiniƟon

The term Element DefiniƟon used for the definiƟon of the meta-model refers to the conceptual rep-
resentaƟon of certain object. It includes all the features that characterize the element that has to be
represented within the system architecture. It contains the definiƟon of all the aƩributes, methods and
main characterisƟcs for the represented element. It is substanƟally a class from which the objects used
for the design of the system inherit all the properƟes. All the object that are linked to the same definiƟon
change consistently all their properƟes once the Element DefiniƟon is modified. This concept is parƟcularly
related to the definiƟon of modularity and reusability of the design object.
In parƟcular an element is defined once (the Element DefiniƟon) and then can be used (the Element Us-
age) nay number of Ɵmes in an architecture (which may contain a hierarchical decomposiƟon) about the
system of interest. The Element DefiniƟon and Element Usage structure represent together the architec-
tural design/composiƟon /decomposiƟon of the system of interest. The combinaƟon of containedElement
property and referencedElement property of the Element Usage a hybrid product tree can be represented.
In this case both the logical and concrete (also known as physical) architecture are combined. The contain-
ment relaƟonship between the Element DefiniƟon and Element Usage instanƟated from it allows to inherit
some properƟes. In parƟcular the Element Usage becomes automaƟcally a member of a certain category
if that one is assigned to the relaƟve Element DefiniƟon. From this viewpoint it is possible to say that the
Element DefiniƟon concept reflects the Block concept typically used in the context of the ontology of OMG
SysML.

Element Usage

The term Element Usage idenƟfies the instance object obtained from a certain Element DefiniƟon. It
inherits all the feature assigned to the relaƟve Element DefiniƟon (for example all the related mass prop-
erƟes). It represents the actual usage of certain Element DefiniƟon within a precise context. The same
Element DefiniƟon can have different Element Usage but at the same Ɵme a parƟcular Element Usage
can refers only to one Element DefiniƟon. Once a certain Element DefiniƟon needs to be defined within
a parƟcular context for the definiƟon of another Element DefiniƟon then the conceptual object must be
instanƟated. The Element Usage represents an Element DefiniƟon once this has to cover a certain role
within a design architecture.
Both Element DefiniƟon and Element Usage can be typically related to a top-down viewpoint in the con-
text of design process. In parƟcular the properƟes are defined as they theoreƟcally must have in the actual
project. They are assigned for design purpose but not reflect necessarily the actual properƟes of the sys-
tem (as this start to be produced and realized).
This object idenƟfies in parƟcular those elements that are represent an usage of a certain Element Defini-
Ɵon in the context of an higher level Element DefiniƟon that contains that usages. An Element Usage as
defined has one and only one Element DefiniƟon that contains it.

Element Occurrence

125

The term Element Occurrence instead covers the rolemainly related to the design process for the phase
of simulaƟon and analysis. It represents a parƟcular element or component of the system as it is computed.
This definiƟon is addressed to those phases related to the simulated/computed acƟviƟes. In this case each
Element Usage is directly related to one Element Occurrence. This concept reflects mainly the design pro-
cess from a boƩom-up perspecƟve. In this case the element characterisƟcs reflect those coming from the
compuƟng or simulaƟon process. In this case the properƟes are inherited from the object not as a priori
defined (for example as in the case of Element DefiniƟon and consequently for the Element Usage) but
as computed. This object idenƟfies a specificaƟon of a reference to a specific occurrence of an Element
Usage in a fully expanded tree of Element DefiniƟon and Element Usages. The idenƟficaƟon of a parƟcular
occurrence can be derived from the root Element DefiniƟon and the ordered list of the subtended Element
Usage references. The concept expressed with this object can be referred to the “deeply nested connec-
tor” definiƟon in the context of OMG SysML v1.2.
Element Occurrence concept has been conceived to directly generate and idenƟfy all the possible instances
that can be present on a certain system, exploiƟng as much as possible the use of Element Usages and El-
ement DefiniƟon and their informaƟon, reducing the Ɵme required for the characterizaƟon of elements
already define.
For example if a motor-wheel has been defined (Element DefiniƟon) as the assembly of two Element Us-
ages: the motor and wheel (which in turn are Element Usages of the motor Element DefiniƟon and wheel
Element DefiniƟon), then sixmotor-wheel can be instanƟated as Element Usages for the locomoƟon system
definiƟon of a rover. In this case it is not necessary to redefine the contained elements within each motor-
wheel. The six motors and six wheels represent respecƟvely the six Element Occurrence of the motor and
the six Element Occurrence of thewheel. Their generaƟon (as Element Occurrence enƟƟes) is automaƟcally
obtained through the informaƟon available from the Element DefiniƟon of the single motor-wheel (which
also contains the reference to the Element Usage contained).
The Element Occurrence class has been also been defined to take account for a beƩer direct integraƟon
with the data coming from the various disciplines. This object in fact can be used to properly related the
properƟes coming from the models already defined for certain elements and the informaƟon contained
within themain Element DefiniƟon enƟty. This approach parƟally follows the concept that can be idenƟfied
two main design "direcƟon" during system development where an ideal model definiƟon (by for example
the people working at system level) can be concurrently integrated with an already implemented model
(for example coming from structural design process). The main idea is to consider both such informaƟon
at the same Ɵme, providing an useful perspecƟve to beƩer manage and monitor the system design as the
development proceeds and the maturity level of architecture becomes more detailed.
A descripƟon of such concepts is reported with more details in other secƟons of the present work.

Element RealizaƟon

The Element RealizaƟon concept refers to the system element as realized. In this case the properƟes
(for example the mass properƟes) are not inherited from a conceptual definiƟon (the related Element Def-
iniƟon) but are obtained from a measure process for example. In this case the characterisƟcs are typically
provided by a boƩom-up process. In parƟcular the object properƟes that is idenƟfied with the Element
RealizaƟon definiƟon can be considered as measured. These properƟes and also other element character-
isƟcs are those closer to the actual product. This class has been introduced within the conceptual model to
include the possibility that some design elements are already realized during the development phase. In
parƟcular this object models those elements that are effecƟvely produced at the Ɵme the design soluƟons
are evaluated. This situaƟon can be encountered when some elements produced are reused and their def-
iniƟons can be built from the available informaƟon sƟll from the early development phases.
The conceptual basis of the present work are strictly dependent on the definiƟons just introduced since
they are correlated with the theoreƟcal infrastructure on which the framework has been developed. Fig-
ure 6.1 can help to beƩer understand the role of each class that has been considered, providing a beƩer
explanaƟon of the contexts with which such objects can be linked.

126

Figure 6.1: Summary of the elements conceptual classes and related modeling context.

The Element Usage class is not reported in figure 6.1 since the role of such concept is close to that cov-
ered by Element DefiniƟon. Both this classes are in fact related to the definiƟon of an ideal model of the
system or components under development. They can be grouped within the context of defining an object
as designed, represenƟng the theoreƟcal target towards which the final design is addressed.

Element properƟes

Another important feature to consider during the definiƟon of element properƟes is related to the fact
that they can be differently managed on the basis of their relaƟonships with parent object. In parƟcular
the proposed infrastructure is based on the inheritance of all the possible properƟes from the Element Def-
iniƟon to the related Element Usage but not all such quanƟƟes can be handled in such a way. For example
some properƟes as the mass can be directly inherited from the Element DefiniƟon to the Element Usage.
In this manner once the mass is defined within the Element DefiniƟon then the Element Usagemust have
the samemass. If that is not sƟll true it means in fact that the a new Element DefiniƟon is needed to define
the related Element Usage. Not all the properƟes are defined in such way since some quanƟƟes are not
directly inherited from the Element DefiniƟon type but they depend on the specific instance of the Element
Usage. This case allows to model all such properƟes that can be related to a specific element but are not
directly derived from the corresponding Element DefiniƟon. An example of such enƟƟes is represented for
example by the vector posiƟon of an element that defines the posiƟon within the parent element (geo-
metric posiƟon or center of gravity posiƟon) and it cannot be derived from the related Element DefiniƟon.
This property in fact changes among Element Usages that have the same Element DefiniƟon since it de-
pends on the relaƟve posiƟon within the parent. Such example shows how not all properƟes belonging to
an object instance can be derived from the Element DefiniƟon but they are however fundamental to fully
characterize the element.

6.3 Conceptual framework philosophy

In the next secƟons themain features of the proposed conceptual infrastructure are provided, focusing
in parƟcular on the relaƟons between the concepts and actual objects. Framework philosophy is funda-
mental for the correct definiƟon of the involved concepts and the formal descripƟons of the elements in
the previous lines is then used to clearly formulate the overall methodology. A clear formalizaƟon of such
terms must not be undervalued since oŌen different people work together on the same project and the
same word has different meanings with respect to the person that is currently using it. Such situaƟon
could be the starƟng point for a set of problems and misunderstandings that can arise in other phases. It
is important not just the definiƟons themselves as the fact that they must be globally recognized as shared
definiƟons.

127

6.3.1 Conceptual meta-model of the proposed methodology

Themain core of the conceptual architecture of the current work has been developed starƟng from the
definiƟons, the classes and their relaƟonships available from the current ESA standard ECSS. In parƟcular
the ECSS-E-TM-10-25A and ECSS-E-TM-10-21A technical memoranda have been considered as reference
for the overall evaluaƟon of the current methodology and the related integraƟon. All the formal defini-
Ɵons used in the current work can be found within these technical guidelines. Some of the considered
concepts are well explained and described in the following secƟons. This brief introducƟon allow to beƩer
understand the overall methodology and the choices concerning the development environment.
An important phase during this study was represented first of all by a deep analysis of the current design
methodologies with parƟcular aƩenƟon to the people, processes and tools involved (as already underlined
by the previous consideraƟon regarding the different resources involved within a system design develop-
ment). The correct characterizaƟon of the people involved within a certain process, the skills required to
obtain a parƟcular result and also the tools that can be developed to reach certain objecƟve are all funda-
mental acƟvity for the right generaƟon of a useful soluƟon. The generaƟon of something that can even be
a powerful tool but it is not well suited for the people that have to use this one (for example because the
Ɵme required for the training is too long), is not a smart choice.
An important phase of this study was then devoted to a clear understanding of the process involved in the
system design before a methodology and tool was proposed and analyzed. This process has been char-
acterized by a series of alternaƟve approaches for the integraƟon of MBSE methodologies within design
process, indirectly considering also the actual implementaƟon of such approaches with a correspondent
tools interfacing (since it is also important to understand the actual feasibility of the proposed approach).
This analysis allow also to define which person accesses which resources, considering that different do-
main roles are involved on the same project but not all have the same access credenƟals to edit or delete
something.
The following phase was represented by formalizaƟon of the meta-model structure on the basis of the ini-
Ɵal consideraƟons of this study and the main characterisƟcs of the modeling architecture. The modeling
environment plays a key role in the definiƟon of the main features of the proposed analysis framework
since it defines how all data and informaƟon are stored and exchanged. The conceptual formulaƟon for
the integraƟon between a modeling context (directly related to the representaƟve definiƟon of the sys-
tem) and analysis capabiliƟes (related in parƟcular to the feature provided by external solvers) requires
first of all a clear understanding of the modeling meta-model. The meta-model integraƟon with the con-
cepts coming from the proposed analysis perspecƟve has been introduced once the modeling conceptual
architecture has been evaluated. One of the principal acƟvity was represented by the evaluaƟon about the
feasibility of such integraƟon, idenƟfying also the potenƟal improvements that such approach can directly
introduce within a design process. The objecƟve is to understand in fact if the proposed methodology
can actually provide tools and services that support the work of engineers with different backgrounds but
working on the same project. It is fundamental to understand how, where and when such MBSE approach
can be integrated during the development process, avoiding the definiƟon of a framework that is not easy
to manage and that is completely away from the well rooted approach that characterizes the tradiƟonal
design phases. The idea is to provide a conceptual model that allows the definiƟon of a flexible environ-
ment for the invesƟgaƟon of design process, integraƟng some capabiliƟes such as the set-up of models
simulaƟon and analysis.
The implementaƟon of the conceptual elements starts from the meta-model that characterizes the rep-
resentaƟve definiƟon of system and addiƟonal objects and classes are then added with the final purpose
to manage the various scenarios that have been considered in the first part of this work. The objecƟve
pursued with such a study is the demonstraƟon of the capability to manage the scenarios defined as ref-
erence cases to evaluate framework effecƟveness, showing how the proposed methodology can face real
engineering issues. The previously example scenarios are in fact modeled considering real design situa-
Ɵons, exploring in parƟcular some of the possible configuraƟons that can be evaluated within a project.
First of all the definiƟon of meta-model concepts has been characterized by the introducƟon and definiƟon
of classes to integrate with the ones mainly related to “representaƟve” model of the system. Within this

128

Figure 6.2: Conceptual relaƟonships between the modeling acƟvity for desired and actual system design.

context classes for the definiƟon of analyses, simulaƟons and the related code runs has been introduced to
proper manage the integraƟon with the already defined classes. The overall architecture of such concep-
tual formalizaƟon is based not only on the definiƟon of the involved classes but also on the relaƟonships
that link each other. The proposed definiƟons have also the purpose to cover the majority of the current
domain-specific design processes with eventually minor changes in certain specific cases. The proposed
methodology shows interesƟng behavior with respect to the formalizaƟon of design processes, providing
useful base for the standardizaƟon of the informaƟon collected from different domain-specific environ-
ments (with greater emphasis on those that are characterized by analysis acƟviƟes).
The design process follows the conceptual approach proposed and under evaluaƟon concurrently with the
modeling framework which main features are represented briefly in figure 6.2.

A desired system design represents generally the target of modeling and analysis acƟviƟes and as the
development process proceeds the gap with the actual design decreases. The iniƟal desired system design
may not totallymatchwith final one since during project evoluƟon some requirements and customer needs
may slightly change. Similarly some problems may come out as the system design becomes more detailed
and a configuraƟon modificaƟon is required to saƟsfy other boundary constraints. At the same Ɵme the
current design can be considered as a constant evoluƟon towards the requirements and specificaƟon that
are modeled on the basis of the desired behavior for the overall product. This perspecƟve can be related
to a top-down view for the definiƟon of the desired design and a boƩom-up approach that shows the
actual design. In this manner it is also possible to beƩer figure out the main roles of all the people working
on the same project. In parƟcular system engineers are oŌen involved on the phases as the definiƟon
of design soluƟons (which sƟll need to be analyzed for example) while other domain-specific engineers
are responsible for the implemented models (with analysts role). This conceptual division should not be
understood in the strict sense since also analysts may propose design alternaƟve soluƟons (in the case
some requirements are not saƟsfied) for example. In the same manner also system engineers may be
involved directly in specific modeling acƟviƟes.
In this way the proposedmethodology try to clear define the boundaries between the acƟviƟes that studies
andpropose a soluƟons and those that are insteaddevoted to the verificaƟonof such choices on thebasis of
the implemented models and analysis. These concept are parƟally visible in the structure of the proposed
framework and meta-model classes. The main idea is to clearly highlight the fact that there is a desired
system design (associated with the central systemmodel and managed within the main system repository)
and a current system design (associated in this case to the analysis that are under development as other
domain specific models which are instead managed in the related domain specific repository). This frame
allows to organize all the informaƟon in a beƩer way, providing useful instruments to compare the actual
compleƟon level (on the basis of a shared development schedule for example) and idenƟfying at the same
Ɵme the areas that need more resources.

129

6.3.2 Analysis and simulaƟon meta-model concepts

Some efforts of the present work have been addressed towards the definiƟon and formalizaƟon of such
object needed for the integraƟon of analysis and simulaƟon concepts within the modeling framework. As
in the previous secƟons a conceptual analysis has been done for the idenƟficaƟon of the required objects,
their aƩributes and methods. In parƟcular the approach proposed has been developed considering some
of the inputs available from actual engineering design problems. This analysis has tried to figure out what
acƟviƟes cover a fundamental role during such design processes, idenƟfying all the elements that can be
recognized as common. Once a list of common elements has been defined the following acƟvity has been
addressed to the descripƟon of the concepts that allow to formally represent the cases considered iniƟally.
This reverse process has been done to understand if the data structure and meta-model classes are prop-
erly representaƟve for problems similar to those considered as starƟng point for the proposed framework.
The proposed approach for the management of analysis and simulaƟon starts from the definiƟon within
the meta-model of two different objects with two different purposes. This difference has been introduced
to properly manage the references to files and resources involved during the design process, above all
with parƟcular aƩenƟon to the amount of data that must be processed in the more detailed phases. This
feature is mainly related to the choice of store files on server side or properly map their links (file-system
paths about the related resources). Whichever approach is chosen is important to understand that this
one is strictly related to the following implementaƟon for the files storing and resources links (for example
in the case some results files need to be commiƩed).
The previously consideraƟon are parƟcularly important for the implementaƟon of a mulƟdisciplinary sur-
vey that in fact requires a well-defined simulaƟon environments to properly manage the available infor-
maƟon and to run without problems. The formalizaƟon of such process must be clearly described since it
represents a key-role element for the framework under evaluaƟon.
The considered integraƟon about simulaƟon environments and modeling framework has been conceived
to support the design acƟviƟes from system perspecƟve with the capability to provide such service with
a web-based architecture. This capability should not be confused with similar mulƟ-domain simulaƟon
environments conceived to bound different simulator on different machines (distributed on a network)
as for example HLA (high-level architecture) or other similar protocols. This one is in parƟcular a general
purpose architecture for distributed computer simulaƟon systems and using such protocol, computer sim-
ulaƟons can interact between each other with no restricƟons on the compuƟng plaƞorm used. The overall
interacƟon is managed through the Run Time Infrastructure (RTI) and all the involved simulaƟons must
however follow the paƩern specified by the protocol itself. In this way all the computer simulaƟons can
communicate and all the execuƟons are called in the right order on the basis of a synchronized process.
This simulaƟon integraƟon requires however that all the involved codes are already built and updated to
HLA protocol and for this reason it is not well suited for the management of models that are conƟnuously
changing (as in the case of design process). HLA represents a good choice for the integraƟon of simulaƟons
already validated and working across computer plaƞorms and in parƟcular when a network communica-
Ɵon between the various models is required. The design process is oŌen characterized by models not fully
implemented with respect to some aspects and a more flexible approach for the integraƟon of simulaƟons
represents a good soluƟon.
Meta-models includes also the definiƟons about the operaƟve modes and scenarios regarding the system
under development but they are not directly considered within the conceptual classes for the simulaƟon
set-up. At the end all the concepts and meta-model formulaƟons have been used to implement the fea-
tures related to the modeling framework but a more detailed descripƟon of the framework developed
are reported in the next secƟons. The main purpose is in fact to evaluate the correctness and effecƟve-
ness about the main modeling and design conceptual architecture. From this viewpoint the developed
framework should be considered as a demonstrator for the model-based methodology currently under
invesƟgaƟon.

130

Concepts from other research iniƟaƟves

Both OCDT and VSD projects approached the conceptual definiƟon related to analysis and simulaƟon
also if but they introduced classes and concepts slightly different from each other. In parƟcular OCDT
iniƟaƟve considers the concept of Rule, IteraƟon (strictly related to Concurrent Design Facility), RelaƟon,
Parametric Constraint, OpƟon and Design Method. The iteraƟon concept in this case is strictly related to
the feasibility and trade-off studies that are performed within the context of Concurrent Design Facility.
In this context it represents an iteraƟon in the process of developing an engineering model. Rule and re-
laƟon have been mainly conceived to specify the relaƟonships between categorizable things within the
data model. The parametric constraint class is instead designed to specify a relaƟon that consists of a pa-
rameter (that acts as variable), a relaƟonal operator and a value through equality or inequality constraint.
The opƟon class represents a potenƟal design soluƟon for the system of interest. It is basically a design
alternaƟve that can be compared with other ones to perform trade analyses for example. This concept is
basically conceived to collect opƟons at system level and it is not mainly conceived to model opƟons at a
lower level. Conceptually the design opƟons are not so easy managed as the system complexity increase
with this approach. OpƟons trade-offs can in fact involve design acƟviƟes with elements at a more low
level (component level for example) during the detailed phases of a project. Under these condiƟons the
management of different low level opƟons can becomemore difficult to control and correctly perform. The
methodology proposed in the current work approaches such problem in a different manner introducing a
slightly different conceptual definiƟon. In parƟcular a more detailed overview will be provided in the next
secƟons.
Themain concepts related to analysis and simulaƟon that are coming fromVirtual SpacecraŌDesign project
(already introduced in the first part) can be summarized in the following ones: Analysis ExecuƟon, Anal-
ysis Design, Analysis Model, Analysis Run, Analysis, Analysis Case and Analysis Result. They are currently
implemented within the infrastructure that arise from VSD research iniƟaƟve and are used to validate the
related data model.
In both cases, considering in parƟcular the iniƟaƟves related to VSD and OCDT projects, the previously
introduced concepts are not fully validated and they are currently under invesƟgaƟon to understand the
possible improvements with respect to actual engineering project.

6.3.3 Design Variables main conceptual definiƟon

One of themost important feature of the integraƟon of design variables within themodeling and analy-
sis tool is represented by the correct definiƟon of such elements. Such processmust be supported by awell
formalized conceptual meta-model for the design variables. The related class has been defined considering
mainly the sizing and design process where such object have to be inserted. StarƟng from this perspecƟve
the main aƩributes are idenƟfied and included within the definiƟon. In parƟcular the variable properƟes
selected in the context of the proposed methodology are represented by the name, the descripƟon, the
type and the features related to this one. Other aƩributes as the nominal value and the possibility to con-
sider such object as operaƟonal or not for the analysis to be considered. In the case of closed variability for
the design variable under evaluaƟon the related value chosen can be directly represented by the nominal
one.
The purpose of the aƩribute related to the operaƟonal status of the design variable under consideraƟon
has been introduced to provide the capability to choose if certain design variable is however under eval-
uaƟon or of it can be managed properly for the definiƟon of a parƟcular survey (trade-off, opƟmizaƟon,
uncertainty quanƟficaƟon, etc.). This aƩribute in parƟcular can be denoted with ACTIVE aƩribute, refer-
ring directly to its status in this way. This property can be managed for example through a Boolean value
that allows to understand if the parent design variable is currently under evaluaƟon or if the related value
has been fixed on the basis of the already done analysis. The idea that has animated such a choice is repre-
sented by the advantages to introduce an object for the monitoring of the open design variables. Themain
benefit is also represented by the possibility to proper trace the changes for the single design variable.
The name and descripƟon aƩributes do not require parƟcular explanaƟon about their meaning in the con-

131

Figure 6.3: Conceptual view of an example definiƟon process related to design variables.

text of design variable. The type aƩribute has been conceived to beƩer manage the possible automated
processing once a simulaƟon tool is integrated. Specific range seƫngs and further elements can be in-
troduced starƟng from the type definiƟon, reducing the possibility to introduced erroneous informaƟon
and improving the design process formalizaƟon at the same Ɵme. For example once the design variable
as been defined as conƟnuous then a maximum and minimum values will be provided to define the range
the parameter belongs to. In the same way can be managed discrete variable, enumeraƟon ranges or sta-
ƟsƟcal parameters. The nominal value is instead introduced to guide the seƫngs for potenƟal surveys (as
iniƟal value) but also for example to store the value coming from analysis once this one has been formally
fixed.
For the same Element DefiniƟon it is possible to access different classes of design variables which introduc-
Ɵon will be beƩer understood with the following examples and scenarios considered as reference cases.
The current meta-model formalizaƟon considers three main categories for design variables. In parƟcular
within the same Element DefiniƟon component it is possible to define one or more individual design vari-
ables, one or more groups of design alternaƟves and one or more groups of design opƟons.
AlternaƟves group stands for a set of soluƟons/configuraƟons that are mutually exclusive between each
other while OpƟons group idenƟfies a series of objects that are notmutually exclusive between each other.
This conceptual classificaƟon is the one used in all the present work. Both alternaƟves and opƟons group
are mainly conceived to manage physical components inside parent one as will be beƩer explained in fol-
lowing examples referring to real problems.
A conceptual flow for the modeling acƟviƟes related to design variables is reported in figure 6.3.

The figure conceptually illustrates an example of process flow for entering individual design variable
within a specific Element DefiniƟon. The design variables definiƟon can be done as all the other available
acƟviƟes in the context of the just created object. Name, descripƟon and type aƩributes are defined in
this moment and are available as main characterisƟcs for the Element Usage that are instanƟated from
this object. Nominal and range aƩributes are also defined in the same operaƟon but they are treated
differently since they can be modified once the Element Usage has inherited the first inserted values. In
this way it is possible to model for example two element coming from the same Element DefiniƟon (and
in this way the same design variables) but with the capability to take two different range values. This fea-
ture allows to face design problems in a more flexible way, enhancing the possibility to configure object
conceptually the same but with slightly different boundary condiƟons. In parƟcular the main idea in this
case is represented by the fact that the user is able to modify the range and nominal value independently
among various Element Usages that are all inherited from the same Element DefiniƟon. Once the nominal
value of the design variable has been introduced for the Element DefiniƟon then the Element Usages that
are instanƟated from this one inherit the same nominal value but its change is not prevented since all the
Element Usage are independent between each other. In the case the design variable must assume the
same nominal value among the various Element Usages then such scenario must be modeled introducing

132

a specific constraints for the considered design variables. The Element Usages are in fact proposed as in-
dependent elements a priori but future implementaƟons may consider the possibility to directly impose
from Element DefiniƟon the fact that the nominal value of design variable is the same among the various
Element Usages. The proposed meta-model and the related methodology for the management of design
variables (conceived for the definiƟon in the context of modeling environment) has been conceived to sup-
port the design phases of a system. For this reason is parƟcularly important to clearly understand the role
of such capability and avoid the potenƟal generaƟon of a over detailed set of informaƟon. An excessive
amount of data must be avoided as a lack of informaƟon. The considered approach for the definiƟon of
design variable has been conceived to improve the exchange of data between disciplines strictly involved
on correlated engineering problems. The main idea is based on the sharing of those design variables that
strictly affect the design of different disciplines at the same Ɵme, paving the way for the building of a mul-
Ɵdisciplinary design environment. In this manner it is avoided the possibility to share design variables that
are strictly evaluated and invesƟgated by a specific discipline. The classes definedwith alternaƟves and op-
Ɵons groups are introduced to beƩer organize the available informaƟon in the context of design process.
Both these groups must formalize a set of possible soluƟons strictly related to a specific system aspect.
OpƟons groups can conceptually be represented only by one set since the term opƟons as intended do
not affect the other elements. They are in fact independent from each other and one group of opƟons
for the individual Element DefiniƟon is enough to model own needs. The meta-model schema allows for
the definiƟon of mulƟple opƟons groups also for the same Element DefiniƟon since a clearer perspecƟve
and a more structured representaƟon Is provided in this way. A specific engineering domain can upload
their opƟons groups separately from groups coming from other department, ensuring a more readable
representaƟon of the informaƟon. In this way opƟons groups can be organized and stored enhancing their
belonging to thermal or structural domain for example.
The alternaƟves and opƟons management approach does not consider the introducƟon of constraints at
this level. Object constraints are defined separately from the design variables introducƟon procedure. This
phase has themain role to define all the possible soluƟons and combinaƟons between the alternaƟves and
opƟons groups introduced. TheoreƟcally speaking all the data entered at this stage can represents a poten-
Ɵal system configuraƟon. The check about the correctness and feasibility of a specific variables arrange-
ment is made a posteriori evaluaƟng the constraints that are defined in another secƟon. The rules that
must be saƟsfied are evaluated through analyses and simulaƟons of the system (or components) configu-
raƟon under invesƟgaƟon. In this way the main purpose is to clearly separate the creaƟon and exploraƟon
of design space from the constraints and requirements. The implementaƟon of a priori determinaƟon of
which configuraƟons are feasible may bemore efficient but shows some integraƟon difficulƟes at the same
Ɵme.
The Design Variable class may confused with the conceptual definiƟon of another component property
since during the development process theoreƟcally all the features related to a certain object can be con-
sidered as design parameters. For example the mass related to certain component can be defined in the
Element DefiniƟon object and then modified as design proceeds. Then this property can be defined as
a design variable (in the same manner also all the other Element DefiniƟon properƟes can be viewed as
design parameters) and for this reason the Design Variable class seems to be not properly correct in the
context of the proposed framework, since it must be considered as a duplicaƟon of informaƟon. The De-
sign Variable class has beenmainly conceived to related themodeling frameworkwith themulƟdisciplinary
design environment. Such class allows in fact to beƩer formalize the characterisƟcs of the parameters that
in this way can be integrated in the context of a analysis environment. The creaƟon of component design
variable based on Design Variable class must be animated by the need to share such parameter with other
disciplines, paving the way for potenƟal surveys that have to be done to assess specific invesƟgaƟons. At
the same Ɵme nothing prevents the possibility to associate a design variable defined in this way to a com-
ponent property previously defined. It is theoreƟcally possible to subsƟtute for example an opƟmal value
(found through proper assessments) if this value is directly related to a certain component property. Such
proposed approach has been introduced to clearly idenƟfy those design variables that are shared with
other disciplines in the context of a mulƟdisciplinary environment.
From all the previous consideraƟons the elaborated concepts are summarized in the metamodel scheme

133

Figure 6.4: Metamodel associaƟon related to the Design Variable class.

and correlatedwith the other classes. In figure 6.4 is reported the secƟon of the overall metamodel directly
relatedwith theDesign Variable class. In the same figure 6.4 is also possible to see theDesignMethod class
that will be however introduced in the following secƟons. In parƟcular the associaƟon related to such class
is currently implemented in a slightly different manner, taking into account in fact the mapping between
the values available from the system model and the quanƟƟes of the design methods themselves.

6.3.4 Constraints and formulas management

A clear disƟncƟon between the concepts of verificaƟon methods and design methods must be done
before more detailed consideraƟons are introduced about constraints and formulas. VerificaƟon meth-
ods are generally used to control the correctness of design soluƟons, monitoring the current status of the
project with respect to system requirements and specificaƟons. Design methods are instead related to
the generaƟon or computaƟon of certain system properƟes or design soluƟons. Such methods are used
to support the design acƟviƟes, providing useful instruments during the development process. They are
applied to evaluate design data or also suggest specific choice among a range of possible ones. In parƟc-
ular an example of design method can be represented by a simple rule of thumb that can be used in the
preliminary phases of a project to roughly evaluate an indicaƟve behavior or value for a parƟcular element.
This concept will be strictly related to the definiƟon of formulas. The framework data model considers also
the definiƟon of the two important concepts represented by the constraints and formulas formalizaƟon.
SysML language provides useful diagram to manage both these elements (Parametric diagrams) which are
basically considered at the same level. The definiƟon of formulas or equaƟons with SysML language can
start by the definiƟon of Constraint block that allows binding some parameters in a certain manner. Some
model variables can be linked to such Constraint block once the related relaƟonship has been defined. In
this way a SysML tool solver (for example ParaMagic, Cameo SimulaƟon toolkit, ParaSolver, etc…) can try
to obtain the required values on the basis of the availability of inputs. In this case the solver itself tries
to correctly assign the causality of the involved variables, assuming that the formulated relaƟonships and
available quanƟƟes lead to a well posed problem. In this context Constraints and Formulas concepts are
not so different enƟƟes and can be managed substanƟally in the same way.
The proposed approach and the related framework face such definiƟons in different manner since these
two objects are managed differently during design process also if they seem to be slightly similar. Con-
straints can be defined in a way similar to formulas, using basically the same semanƟcs (number, operators,

134

etc…) for the definiƟon of the related expressions but their evaluaƟon has different purposes.
Constraints are generally evaluated a posteriori aŌer analyses have been done while formulas are mainly
used to evaluate something that is not known a priori. In parƟcular formulas may be used to compute
variables to assess constraints saƟsfacƟon. Both these object can however be implemented using a script-
ing code to model the related relaƟonships and expressions. The language used for this purposes can be
different as Modelica, MathML, etc… but the first one seems a well suited soluƟon.
Constraint and formula expression more generally can contain algorithms implemented also with condi-
Ɵonal operator but simpler relaƟonships can be considered without losing the capability to well represent
real problems. In this way the complexity level will depend on actual situaƟons and specific needs. One
implementaƟon difference is related to the fact that constraint element can contain operator like equality
or inequality sign while formula object is defined with equal sign. The evaluaƟon of constraint element
should return a response about saƟsfacƟon or not on the basis of the available values (a third response
type can be related to the casewhere something ismissing and the solver is not able to evaluate the related
expression, for example providing a warning).
Following such consideraƟons the related concepts are properly formalized within the data model. A con-
straint definiƟon element has been introduced with the related aƩributes and associaƟons. Constraints
definiƟon belongs to certain project and can be inserted and edited from an interface on the main page of
modeling environment. Future improvements will consider the possibility of a direct associaƟon of such
constraint element with the requirements. The single constraint is evaluated on user command and the
results from this check rise from the current available values for the properƟes linked with the expression
itself. In this manner the main idea is also to provide uƟliƟes to support the automated check of rouƟne
acƟviƟes. For example it will be implemented some capabiliƟes as the automaƟc verificaƟon of all the
constraint related to the current project at the same Ɵme instead the verificaƟon of only one element at a
Ɵme.
The definiƟon of Constraint class has been conceived with the main purpose to provide ediƟng capabiliƟes
for the code used to model the related expression/algorithm. The variables contained within the related
expression are then properly mapped to the properƟes values of Element DefiniƟon for example from
which maintain however an independent representaƟon. In this way when a constraint is evaluated the
related variables are subsƟtuted in the expression with the value currently present on the latest version
of system model. The methods defined within constraint class are then also used to check for the cor-
rectness of the relaƟonships, returning a feedback on the saƟsfacƟon or not on the basis of the available
data. EdiƟng acƟviƟes and updaƟng of already defined constraints can also be done to manage such kind
of informaƟon. Constraint objects are defined as element belonging to project and not directly included
within the components of the system since in this way different bond can be used on the same component
in different project.
The definiƟon of Formula concept is another important feature related to the design phase. Such concept
has been introduced mainly to manage the "rule of thumb" expressions that are oŌen used in the early
phases of development. In parƟcular this class has been introduced basically to model those expressions
that can be evaluated by an external solver in a short Ɵme. These objects will not be linked to a parƟcu-
lar project since they offers funcƟonaliƟes that can be reused on other design processes while constraint
element are instead bounded to a certain system development (strictly dependent on the current require-
ments and needs). Such uƟlity can also be implemented following the same definiƟon of Constraints class
as the use of Modelica code to evaluate the related expression. Analogous results can also be obtained
through the use of JavaScript language with the advantages to load the required expression on client side,
reducing the latency due to server response. This last approach can also be used since the possible com-
putaƟons are independent from the informaƟon collected from the server. They will be used mainly to
support simple design evaluaƟons, providing instruments useful for the idenƟficaƟon of values consistent
with the properƟes under development.
Formula concept must not be confused with a more generic capability that is naƟvely embedded within
the web based environment since there are standard simple computaƟons that are quite common across
different project (for example mass budget, power budget, etc…). The formulas that have been previously
introduced within a project are available to other ones since the idea is to collect such informaƟon in a

135

common repository. These two concepts must be considered separately since they are addressed to two
different purposes. While one is used to compute directly a specific system property (mass budget for
example is used to evaluate the current state of the project with respect to mass property) the other is
used to evaluate an output value physically consistent with the specified inputs (for example a simple solar
array formula can be used to obtain different power outputs values on the basis of various array surface
extensions).
The main characterisƟc of the formula definiƟon is represented by the fact that the expression implemen-
taƟon is not directly dependent on properƟes specific to a parƟcular project. The formulas are defined
starƟng from a generic expression and then the related variables and parameters can be managed in dif-
ferent ways. The main idea is to evaluate formula outputs on inputs provided in different manner:

• Inputs defined through mapping directly with system model properƟes.

• Inputs defined through user provided values.

• Inputs defined both with mapping of system model properƟes that through user defined values.

The correct interpretaƟon of the code content and then the idenƟficaƟon of algorithm/expression are
based on the right parsing of the script itself.
The constraint object is basically introduced to check the possible violaƟon of user defined relaƟonships
between numeric values associated to system components properƟes. The main idea is to return only a
Boolean response on the evaluaƟon of constraint code with respect to the values passed as arguments.
Such feature must be not confused with the results that can be provided by a simulaƟon since the con-
straint verificaƟon requires only the evaluaƟon of the correctness of the current values. A code similar to
that implementedwithin a constraint can also be used to provide the result of a specific simulaƟon itembut
in this case the final purpose is quite different. For example a Modelica code can be used to build a simple
rule of thumb for the evaluaƟon of some parƟcular property in the preliminary phases and the same code
structure can equivalently be used to define a certain constraint. The two concepts must remain separated
since even if a similar Modelica code is used for simulaƟons with low fidelity level in the first case, such
code is however related to a simulaƟon item.
Currently the constraint verificaƟon has been conceived to evaluate staƟc variables through their subsƟ-
tuƟon with the mapped parameters of related algorithm but more complex invesƟgaƟon can further be
added in the future (for example considering the evaluaƟon of constraints involving variables that comes
from dynamical simulaƟons). The required value for the evaluaƟon of constraint are ideally all available
from the system model but further development can include also the evaluaƟon of parameters that de-
pend on the run of external simulaƟons. Such situaƟon comes out when some of the required variables
are provided by the run of a simulaƟon item directly linked with the mapped property.
Design and dimensioning processes are oŌen supported by simple formulas and rules of thumb that are
used to rapidly give a preliminary idea and an indicaƟve value of a parƟcular quanƟty. This situaƟon has
been considered and the related concepts formalized at data structure level, providing another interesƟng
feature with the definiƟon of a specific class. In this manner simple funcƟons and formulas can be shared
among the people involved in a project and can be uploaded through a dedicated interface once a certain
expression is not found. A library of related formulas can then be populated as an increasing amount of
actors are involved in the process, reducing the Ɵme required to redefine expressions already uploaded
and improving also the knowledge and informaƟon infrastructure.
The objects formalized basically as formulas are not bounded a project with reference to the relaƟon-
ships defined within the data structure. In this way such elements can be managed independently across
projects providing useful capabiliƟes that can be shared avoiding also the Ɵme consuming process of re-
invent something that has been already defined. The same expression can be so used into another context
mapping another set of component properƟes. A formula evaluaƟon has been conceived to be mapped
both to values already defined within the system as also through user-provided quanƟƟes not directly re-
lated to the that contained within the project (for example with the final aim to invesƟgate the possible
results of certain input). The correct evaluaƟon of formulas code is obtained through a parsing of the con-
tained informaƟon, providing the filed for the set up of the available input.

136

Figure 6.5: Conceptual view of properƟes esƟmaƟon approaches.

An example about the main approaches that can be considered for the management of properƟes evalua-
Ɵon is reported in figure 6.5. In parƟcular an example referred to the esƟmaƟon of operaƟng Ɵme property
of satellite is reported highlighƟng the dependencies with respect to the properƟes of contained elements
(tank capacity and thruster specific impulse in this parƟcular case).

The concept of formula has been basically formalized in the class Design Method and all the previous
consideraƟons remain valid. The Design Method objects are used to model all such formulas and equa-
Ɵons (including also the funcƟons used to define the available "Rules of thumb") that are used to compute
some specific values or properƟes. A set of values can be linked to a design method through a mapping
between the related quanƟƟes (the corresponding ones available within the design method expression).
In this way the design method remains an object "independent" from the values loaded within the model
and it can be reused in other scenarios/components. The relaƟonships between the actual properƟes and
the corresponding "posiƟons" within the design method is stored through the mapping object. The design
methods have been conceived for the fact that they are used to run the computaƟon of a certain values as
output (it can be used to compute one or more output but it must be checked that the a certain value that
is output from a design method belongs only to one method at Ɵme to avoid potenƟal conflicts) and then
they can be directly loaded/stored within the system model or not, depending for example on the user
choice. During the development phases one or more input variables of a design method can change and
the updaƟng of the computed output values can be managed through different approaches. The update
can be automaƟc on the input variables change or more properly controlled by the user through a user in
the loop check. The final soluƟon depends on implementaƟon purposes but does not affect the main fea-
tures of the conceptual model considered. The core computaƟon associated to the Design Method can be
implemented following different alternaƟves. If the computaƟons are not so demanding they can be done
through a Modelica based code (for example implemented with the algorithm secƟon available) directly
storable within the object itself. There are however no limitaƟons on the fact that for complex computa-
Ɵons are done through executables or external codes directly linkable to the Design Method class with the
Resource object. In the same way also the Constraint class can be managed with complex codes through
external resources.
With respect to the object Constraint previously introduced, the mapping mechanism is the same as for
Design Method but their scope is quite different. In the case of Constraint object the mapped values are
connected with the final aim to verify the correctness of the constraint rule. In parƟcular the relate con-
straint rule is evaluated through the provided values and properƟes and it only checks if the expression is
saƟsfied with no aim to generate an output to load or subsƟtute with another one in the system model.

137

It basically collects the numerical values mapped with the quanƟƟes contained within the constraint and
evaluated the expression itself. The result of such invesƟgaƟon will be the saƟsfacƟon or not of the rule
considered.
It is generally possible that the evaluaƟon of the quanƟƟes that must be provided to the constraint rule de-
pends on design methods. Such event is foresees and happens for example when a certain quanƟty linked
with the constraint is in turn an output variable that must be computed through a design method. In this
case the computaƟon of the constraint must pass first across the evaluaƟon of all the quanƟƟes needed
before the final invesƟgaƟon of correctness of the rule.
The concepts of FuncƟon Model and Design Method (more details are available in the appendices) show
similar features that in certain cases can also overlap but they are basically conceived to model two differ-
ent situaƟons. In the case of FuncƟon Model the main aim is represented by the evaluaƟon of system (but
the same concepts applies also to subsystem or the individual components) behavior on the basis of the
available data from the systemmodel. In this case there no limitaƟons on the fact that some properƟes or
variables result from the related computaƟons/simulaƟons. The final scope is to simulate the response of
the system and not the direct computaƟon of quanƟƟes that can be usedwithin the design itself. The Func-
Ɵon Model wants only to show how a specific object (system, subsystem or component does not maƩer)
behaves with no primary aƩenƟon on the evaluaƟon of specific properƟes. On the other hand the Design
Method object has the main purpose to compute one or more design variables or properƟes. In this case
the aƩenƟon is not directly addressed towards the assessment of an object behavior but mainly on the
computaƟon of one or more specific elements. Such result can however be considered as a specific case
of the behavior of a certain element (system, subsystem or components does not maƩer), and from this
viewpoint similar to the scope of FuncƟon Model, but the conceptual reasons that animate the definiƟon
of such two concepts are considered different within the current work. TheDesignMethod class reflect the
need of dimensioning relaƟons and rules while the FuncƟon Model class show how an element behaves.
Some example can help to clarify such disƟncƟon.
The computaƟon for example of the thickness of a structural panel is provided by a rule of thumb based
on the height and width of the panel itself (taking into account preliminary dynamic consideraƟons of the
panel behavior). In this case such relaƟonship that links some properƟes of the panel can bemodel through
a Design Method. The evaluaƟon of the stresses and deformaƟons of a certain panel when loaded with
external forces can be pursued through a FuncƟon Model that shows how the system under evaluaƟon
behaves. Such computaƟon does not directly generate values or data that can be stored within the sys-
tem model but there is not limitaƟons on such possibility. The computaƟon of a satellite autonomy can
potenƟally be included within both the Design Method as well as the FuncƟon Model. In this example in
fact the autonomy can be evaluated as a property and then stored within the system model but at the
same Ɵme can be seen as something directly represenƟng the behavior of the system. In some cases both
definiƟons can overlap but it is however important to disƟnguish such objects since they refer to situaƟons
conceptually different. An example of Constraint class is less "overlapping" with the previous ones and a
simple case can be represented by a constraint on mass value for the allowable launch limit.
A design method can be seen as a parƟcular case of a constraint where the relaƟon is always true since
the related output are computed directly through the relaƟon itself on the basis of the available input. In
parƟcular the relaƟon can be implemented exploiƟng the capabiliƟes of Modelica language and with an
object oriented approach. In this case the output and input are not known before the computaƟon has
been executed and the causality of the involved quanƟƟes is explicitly resolved with the code run. Other
funcƟons or equaƟons can however be considered where the causality of the related quanƟƟes is already
known before the execuƟon of the code. In this case the input and output of the expression are clearly
defined when the relaƟon is created. In both cases the common feature is represented by the fact that the
relaƟon is used to obtain one or more quanƟƟes on the basis of available values, independently of the fact
that the causality of such quanƟƟes is known or not. Such aspect is mainly related to the actual implemen-
taƟon of the code and more generally it is also not ensured that the available data allow to compute the
desired quanƟƟes.
In the case of constraints instead the expression is not resolved to compute one or more input but only to
establish if the relaƟon is true or not. In this case the expression is not necessarily true as in the case of a

138

Figure 6.6: Conceptual overview of the meta-model main relaƟonships related to the Design OpƟon class.

design method.
The Design Method class must not be confused with the definiƟon of VerificaƟon Method class. The first
object is strictly related with the generaƟon of design soluƟons and provides values with respect to certain
properƟes/objects for example. In the second case instead the VerificaƟonMethod describes basically how
are defined the methods that check the correctness of the design choices.

6.3.5 OpƟons and alternaƟves management

The management of design variables (including with this definiƟon also the opƟons that can be consid-
ered during certain design phase and that for example are under evaluaƟon) can be approached in different
manners and some of the most current methods have been introduced previously on the state of the art
secƟon. In the present work opƟons and alternaƟves are handled differently with respect to the soluƟons
considered within similar analyses (briefly introduced in the secƟons above). In parƟcular new classes are
defined to exploit the model based approach for such aspect and the related concepts are presented in
the following. The proposed soluƟon for the management of the design variables is represented by the
definiƟon of the concepts of OpƟons Group. This object represents a set of opƟons that are related to the
definiƟon of certain design variable. Different opƟons groups are theoreƟcally conceived as independent
between each other. Two different opƟons groups are referred to two different and theoreƟcally indepen-
dent design variables. PotenƟal constraints between two different opƟons groups can be implemented
through the definiƟon of constraints class that can be derived from requirements objects. In this man-
ner it is possible to model and capture the design constraints between different design variables but such
constraint objects have to be theoreƟcally introduced. The OpƟons Group class strictly depends on the
definiƟon of another concepts that has been defined as the Design OpƟon object. Such element is used to
define the set of the specific opƟon/alternaƟve that can be associated to a parƟcular object. A conceptual
overview of the related associaƟons are reported in figure 6.6.

In the proposed infrastructure the individual Design OpƟon is contained at least within an Engineering
Data Item since more generally when an opƟon/alternaƟve is defined it always belongs to a father object.
At the same Ɵme the Engineering Data Item can contains zero or an undefined number of design opƟons.
A Design OpƟon collects one or more opƟonal items that can be represented by Engineering Data Items.
In the same associaƟon an opƟonal Engineering Data Item can be linked to zero or more than one Design
OpƟons since it can basically appears in more than one opƟon/alternaƟve. A specific Design OpƟon can
contains or not a set of baseline items, represented by Engineering Data Items, that represents the nom-
inal configuraƟon for the current baseline of the project. In the first case the class refers to the concept
of alternaƟve while in the second one it is addressed towards the representaƟon of the opƟonal items. In
fact when an individual Design OpƟon does not have an associated set of baseline items this means that
the related objects are not alternaƟve to another set of elements but they are more properly a collecƟon

139

Figure 6.7: Example instanƟaƟon of Engineering Data Item, OpƟons Group and Design OpƟon objects.

of opƟonal components. The disƟncƟon used in the current work between the "alternaƟve" definiƟon and
"opƟon" one is provided in the previous secƟon on taxonomy. The same associaƟon allows also to know
which Design OpƟons are associated to a certain Engineering Design Item (as can be seen in the other di-
recƟon of the associaƟon).
The OpƟons Group concepts introduced in the iniƟal part of this secƟon gains importance when an evalua-
Ɵon of different design soluƟonsmust be considered. In this case the invesƟgaƟon of system performances
is based on the correct understanding of which items are correlated and which not. It is possible in fact
that some baseline items are common between two different design opƟons and in this case they cannot
be considered separately. The presence of such kind of overlap between design elements does not allow
to manage independently these objects. It is important then to understand which objects can be managed
separately, allowing an effecƟve definiƟon of the overall design space. In parƟcular it is assumed that an
OpƟons Group represents a collecƟon where the individual elements can be considered as a design vari-
able. In this way when an analysis is performed each OpƟons Group contains a set of possible "values"
represented by various Design OpƟons. From this point of view it can be seen as a useful object to clearly
define the set of groups that must be properly processed during an analysis of system capabiliƟes. Other
strategies can however be considered for the management of the informaƟon available from the proposed
model-based infrastructure. The OpƟons Group class has been mainly conceived to take into account the
possibility to set-up automaƟc or parƟally automaƟc methodologies for the invesƟgaƟon of system per-
formances. Such aspect is however strictly related to the actual implementaƟon of the code and more
details will be provided in the following chapter. Summarizing it is possible to say that an OpƟons Group
idenƟfies a collecƟon of one or more Design OpƟons that point to the idenƟcal set of baseline items while
the same Engineering Data Item can contain a collecƟon of Design Groups. An example instanƟaƟon of
such structure is conceptually represented in figure 6.7.

In this way each OpƟon Group can be assimilated to a design variable that can assume the "values"
represented by the contained Design OpƟons (they "virtually" cover the range of the possible soluƟons
with respect to a specific baseline configuraƟon). In the same manner it is also possible to disƟnguish
between a group of alternaƟve (poinƟng to a baseline set) and groups of opƟons.
The developed definiƟon has been conceived to include not only the opƟonal or alternaƟve items from the
physical or topological perspecƟve. The introduced concepts are in fact defined from a more general point
of view. In this manner opƟonal or alternaƟve choices can also be considered for other items types, such
for example the acƟviƟes, scenarios or funcƟonal items. The main definiƟon is directly built in fact from
associaƟons with the basic Engineering Data Item (more details about the Engineering Data Item class are
provided in the appendices).
The conceptual definiƟons considered does not limit the creaƟon of opƟonal or alternaƟve elements that
contains on their own alternaƟve or opƟonal objects. Such situaƟon is foreseen in themetamodel since the

140

Figure 6.8: Conceptual representaƟon of a scenario represenƟng the definiƟon of opƟonal/alternaƟve ob-
jects of other opƟonal/alternaƟve elements.

Engineering Data Items that are defined as the opƟonal/alternaƟve elements for baseline ones can contain
DesignOpƟons since such possibility is not constrained, as can be seen from the conceptualmodel. In figure
6.8 a simple representaƟon of such situaƟon is reported for the sake of clarity.

Once the representaƟon of the system opƟons and alternaƟves is defined the management of such
informaƟon can be approached considering different strategies (their choice depends oŌen on the actual
soluƟon that will be implemented). In parƟcular such data are used to properly generate the possible
combinaƟons that can be associated with the product itself. Such operaƟon must also be evaluated in
two different contexts. In the first case the generaƟon of the combinaƟons can involve the same level of
detail for the object, providing the possible combinaƟon for the same hierarchical level. In the second one
the combinaƟons are instead generated considering also different hierarchical levels, paving the way for
the generaƟon of the alternaƟves tree of a specific product. The related analyses must take into account
the possibility that some baseline elements are common among differentOpƟons Group, highlighƟng some
overlapping of the involved objects. It is important to underline that the Design OpƟon class is defined con-
ceptually in the metamodel but the related objects can be directly captured from the informaƟon available
with Design OpƟons and associated Engineering Data Items. From this view point they are not necessarily
implemented within the plaƞorm but are however used to manage the analyses of alternaƟve configura-
Ɵons of the product.
In the case that two OpƟon Groups have no common elements in the set of baseline items then the num-
ber of the overall combinaƟons between such two groups is represented by the product of the number
of alternaƟve contained within each collecƟon. In the case instead the two OpƟon Groups have at least
one common element from the related baseline items then such two collecƟon are not independent and
the number of the overall combinaƟons is represented by the sum of the related alternaƟves. In the ac-
tual implementaƟon of the strategy for the management of product combinaƟons the possible soluƟons
are different. A possible choice is represented by the evaluaƟon of all OpƟon Groups assumed at first as
independent design variable and each combinaƟon will be invesƟgated to find overlapping objects. If one
combinaƟon show at least two set of baseline items (the two corresponding to the related OpƟon Groups
under evaluaƟon) that overlap (with at least only one object), then the overall combinaƟon can be high-
lighted with a warning.
The same representaƟon scheme of alternaƟves/opƟons can be used to properly generate the alterna-
Ɵve tree when there are more than one level of nested Design OpƟons. The available informaƟon can

141

Figure 6.9: Simplified example of the alternaƟves/opƟons representaƟon on different nested levels.

be used in fact to set up the overall possible soluƟon across the hierarchical decomposiƟon of a product.
For example if an Element Usage contained within an Element DefiniƟon represents one of the possible
alternaƟves of a Design Group for the Element DefiniƟon itself, and the same Element Usage points to its
Element DefiniƟon (which defines its type) which contains in turn other OpƟon Groups (and their related
Design OpƟons), then such informaƟon can be explicitly represented. StarƟng in fact from the root ele-
ment it is possible to iterate over the baseline elements and associated alternaƟve soluƟons to idenƟfy
the overall nested combinaƟons. Considering the previous example such process is driven by the fact that
accessing each Element Usage it is possible to clearly idenƟfy the contained Design OpƟons thanks to the
connecƟon with the corresponding Element DefiniƟon (figure 6.9 briefly represents a simplified example
of such connecƟon).

The Baseline class has been defined to conceptually store all the items that represent the current status
of the system under development. In parƟcular it contains the Engineering Data Items that define the sys-
tem, considering also the nominal items that are included within a Design OpƟon. Not all the Engineering
Data Items are defined to belong to a specific Baseline since there is the possibility that a set of objects are
contained within the Project class (which in turn contains the Baseline). In this manner some objects can

142

Figure 6.10: One of the reference cases considered for properƟes/opƟons management.

be defined within a Project class without necessarily belong to a specific Baseline. This approach allows to
create items that can be used as alternaƟves/opƟons for a specific Design OpƟonwithout directly affecƟng
the structure of the baseline itself.

6.3.6 Scenario types

The definiƟon of the approach for the management of design variables has been developed starƟng
from the analysis of a certain set of the possible design cases and actual examples that can be found during
the development phase of a project. The conceptual characterizaƟon of such methodology has been done
concurrently to the invesƟgaƟon of some examples cases with the final aim to assess the correctness of
the proposed paƩern. IteraƟng on the proposed soluƟon and example cases has allowed to idenƟfy and
correct the conceptual model. During this phase the main objecƟve is to assess how the concepts seem
to be well suited for capturing the actual design cases (once certain situaƟons have been badly managed
then the conceptual model has been modified to take into account such condiƟon). Some of these design
cases are reported in the following secƟon, supported by the definiƟon of examples to beƩer represent
the related situaƟon.

Figure 6.10 represents the case where an Element DefiniƟon A contains two Element Usage. In the
first configuraƟon the object B is an Element Usage that comes from an Element DefiniƟon that is different
from the Element DefiniƟon from which is defined the Element Usage D. Also the element C is an Element
Usage but it is not characterized by an alternaƟve soluƟon. In this case the object B and D is assumed to
belong to the same OpƟon Group because in this representaƟve case it is assumed that both represent a
design variable. Actual situaƟon can be represented by a motor-wheel assembly (the Element DefiniƟon)
that contain a wheel that is defined an it is not a design variable (the Element Usage C). On the other side
for this design level the configuraƟon has not been closed for the definiƟon of the element A but two pos-
sible soluƟons for the motor type have to be evaluated. The opƟons for the motor type are represented by
the motor B (i.e. the Element Usage B) or motor D (i.e. the Element Usage D), respecƟvely “instanƟated”
from an Element DefiniƟon for the motor of type B and Element DefiniƟon for the motor type D.
This example further enhances the fact that one OpƟon Group is uniquely related to one design variable,
i.e. one element that must to be evaluated (for example through analyses).
The Concurrent Design Variable might contain several different Element Usages as it is defined (to model
the fact that certain virtual element can be associated to different alternaƟve soluƟons). In this case the
Element Usages are not necessarily inherited from the same Element DefiniƟon (this depends on the fact
that the conceptual model allows for the management of the case where there is the need to model the
cardinality of some Element Usages coming from the same Element DefiniƟon) but they can be related to
different Element DefiniƟon theoreƟcally. Their belonging to the same Element DefiniƟon is a special cases
that can however be encountered within a design process.
An Element DefiniƟon characterized by a parƟcular Design Variable that is inherited on the related Ele-
ment Usages must allow to manage the associated parameters in a independent way. This means that two
or more Element Usages that are derived from the same Element DefiniƟon can manage the correspond-
ing Design Variable in a independent manner. The values related to this Design Variable can be different
between different Element Usages but belonging to the same Design Variable definiƟon (since they are
derived for the same Element DefiniƟon) they have the same range, mean, variance, etc. They are inde-
pendent but share the same characterisƟcs (belonging to the same Design Variable definiƟon from the
Element DefiniƟon).

143

Figure 6.11: One of the reference cases considered for properƟes/opƟons management.

Another possible case that can be found during the design phase is resumed in conceptual figure 6.11.

Figure 6.11 refers to the case where the Element DefiniƟon A contains a certain parameter that can
be sƟll defined. In parƟcular the object B can represents a certain design variable that is characterisƟc
for the Element DefiniƟon B. This object can represents for example an Engineering Data Item that can be
chosen and its value has not been sƟll definitely taken for this level of development and it is sƟll under
evaluaƟon. This Engineering Data Item (also idenƟfiable with the Concurrent Design Parameter from the
standard ECSS) is contained within an OpƟon Group element to specify that this object represents a design
variable. This assignment allows to manage this element for possible further mulƟdisciplinary analyses
since its belonging to trade space is formalized with the OpƟon Group definiƟon.
An actual example for this theoreƟcal case can be represented by the case of a wheel element (the Ele-
ment DefiniƟon A) that contain the design parameter B represenƟng the radius of the wheel itself. In this
case for example the range of variance of the wheel itself can be expressed as a conƟnuous range between
two ends but also a discrete range can be considered. This depends on the parƟcular design trade space
and all this informaƟon can be expressed for example within the OpƟon Group element where the Design
Parameter is included also if this one exist within the Element DefiniƟon itself. In parƟcular the proposed
methodology foresees the formal definiƟon of an OpƟon Group that link the design parameter within it but
the parameter itself exist before the definiƟon of an OpƟon Group since for example the radius parameter
exist for the wheel before also if an OpƟon Group is not defined for the wheel (since for example the wheel
itself has fixed radius). The definiƟon of OpƟon Group is something addiƟonal to the current definiƟon
of the element. The main idea of such an approach is related to the fact that the OpƟon Group tell me
that some of the available features of such an element can be changed or tuned. This approach has been
implemented since it makes easy the reuse of already defined similar element. The wheel similar to the
one defined with a variable radius (i.e. that defined in the example just discussed) can be obtained starƟng
from the just defined one but eliminaƟng the presence of the opƟon group element.
The same Element DefiniƟon can potenƟally have mulƟple Design Variable objects and not all the com-
binaƟons of the related alternaƟves (since all the Design Variables have been conceived as theoreƟcally
independent objects) may represent a feasible design configuraƟon or saƟsfy the requirements. The re-
quirements violaƟons or infeasible soluƟons can be verified a posteriori (aŌer the wrong combinaƟon as
been obtained/considered) through an automated process in the case of simple models or by the genera-
Ɵon of a more complex analyses model (created from the domain specialist engineers). Both this invesƟ-
gaƟons are however analyses that can be done to verify the correctness of the design soluƟon and must
be done a posteriori, also because it is more difficult to proceed in the inverse direcƟon. Generally the
design process first defines a possible design soluƟon and then verify through the analyses if that soluƟon
is feasible. The last invesƟgaƟon requires a direct involvement of a domain specialist to build the model
needed for the analyses. The first type of invesƟgaƟon instead is characterized by a parƟal generaƟon of
themodels (that are simplerwith respect to those generated in the second case) in automatedway through
funcƟons acƟng upon the available design data. Both cases can theoreƟcally be considered as equivalent
instruments of analyses to verify the design but in the first case they are supported and generated more
quickly (theoreƟcally without the direct presence of a domain specialist). Another case is expressed then
in figure 6.12.

An Element DefiniƟon A contains an Element Usage B that in turn contains a Current Design Parame-
ter C that can assume different values over a defined range. This actual case can be represented by the
motor-wheel assembly where the contained wheel can change its radius. This case however is a parƟcular
condiƟon that can be represented as special representaƟon of the previous ones. The Element Usage B

144

Figure 6.12: One of the reference cases considered for properƟes/opƟons management.

Figure 6.13: One of the reference cases considered for properƟes/opƟons management.

inherits the design parameter (the radius) since it is an instance of a certain Element DefiniƟon where the
radius has been defined as a design parameter. This example helps to enhance the fact that the OpƟon
Group is defined for an Element DefiniƟon and all the Element Usage that are defined from this one all in-
herit the design variable/variables that are defined in the Element DefiniƟon itself. It is necessary to create
a new Element DefiniƟon if the design variable is not needed for certain elements.

Figure 6.13 represents the case where an Element DefiniƟon A contains a certain cardinality of some
Element Usages (B, C and D) that belongs to the same Element DefiniƟon (they are all instances of the same
Element DefiniƟon). In this case it is not important the range types for the Element Usages themselves that
can be discrete from two ends (one of which can also be the infinite) or represented by an enumeraƟon.
An example of such case is a parƟcular design context that can be encountered during the development
process but however it can represent very rare situaƟon. An actual example can be represented by the
choice in the number of the motor-wheel assembly to be modeled within a certain design (for example
the locomoƟon system as our Element DefiniƟon A). In this case it is possible to choose three, four or six
motor-wheels assembly (the Element Usages denoted with the B, C and D notaƟon) and all have the same
Element DefiniƟon.
The design process oŌen is characterized by the fact that this choice on the number of the motor-wheels
assembly must be consistent with the number of power cables that have to be considered for the power
supply. In this case the consistency is not imposed on this implementaƟon level but can be checked through
the use of proper funcƟon that can be introduced within the system model and that can be implemented
as constraints and obtained starƟng from the requirements. This helps to underlines the fact that at this
level the definiƟon of element and their characterisƟcs are not subject to analysis that are addressed to
another level of invesƟgaƟon (the check through funcƟons that invesƟgate for the consistency of the pro-
posed soluƟons represents however an analyses also if they are simple ones because launched and verified
sƟll in automaƟc without the creaƟon of related models and simulaƟons).
The proposed conceptual definiƟon for the design variable allows to manage parƟcular cases where some
elements are strictly constrained about the cardinality of the involved element. This cases can be man-
aged without the definiƟon of constraints between the objects involved. For example the number of im-
plemented motor may represent a design variable and its definiƟon can be considered through the man-
agement of a group of Element Usages. This type of situaƟons can be characterized by the fact that each
motor implies a corresponding wheel. This constraint not necessarily can bemodeled with a proper defini-
Ɵon but may be implemented indirectly defining an intermediate layer that is represented by an Element
DefiniƟon that includes the motor and wheel Element Usages and that it is globally idenƟfied as motor-
wheel assembly. In this manner each Ɵme the motor-wheel assembly "instanƟate" a certain object then it
includes already the fact that one motor corresponds to one wheel.
The Design Variable object shall allow to define an empty element for the management for example of a
special case of cardinality where the absence of Element Usages can also be an opƟonal soluƟon. This case
is used to define design situaƟons where it also foreseen the possibility that no Element Usage is needed

145

Figure 6.14: One of the reference cases considered for properƟes/opƟons management.

Figure 6.15: One of the reference cases considered for properƟes/opƟons management.

from trade-off analyses. For example an exploraƟon rover can considers the definiƟon of the number of
baƩery element as design variable. In this case there is the possibility that the solar arrays are enough
to provide the required energy supply. Under these condiƟons the baƩery Element Usage can then be
represented by an empty object because they are not needed from the analyses. In this situaƟon might
be useful to have defined the possibility that the design variable can be represented by an empty element.
The reference cases that can be considered for the conceptual definiƟon can be represented also by the
figure 6.14.

In this case two Element Usages (inherited from two Element DefiniƟon) represent the opƟons to other
two Element Usages since they can be strictly related and cannot be placed within the Element DefiniƟon
A without the corresponding Element Usage. This case allows to model the situaƟon where two (or more)
Element Usages are correlated between each other. In parƟcular the Element Usage B can be associated
to the Element Usage C and equivalently the Element Usage D must be associated with the Element Us-
age E. An example can be represented (in the motor-wheel context) by the situaƟon where a motor of
type B can be associated only to a wheel of type C while a motor of type D can be related only to a mo-
tor of type E. This situaƟon can be approached differently. An approach can be represented by the fact
that the Element Usages are managed independently and so all the combinaƟons are allowed but exter-
nal constraint funcƟons (implemented in another context) are executed to evaluate the feasibility of the
invesƟgated configuraƟon. In this case all the Element Usages belong to an equivalent number of Design
Variables, each one independent from the other. The other approach can be expressed considering two in-
termediate Element Usages generated from Element DefiniƟons where the corresponding characterizaƟon
is represented by the containment of the two (or mulƟple) Element Usages that are interrelated. In this
manner it is possible to avoid the definiƟon of an external constraint to model the related condiƟon. With
this second soluƟon the constraint is in fact internally bounded with the Element DefiniƟon. A conceptual
representaƟon of this second soluƟon is represented in the figure 6.15. A special case of the considered
situaƟon is however captured with the considered modeling and it is represented by the fact that the two
couples are obtained from the same Element DefiniƟon.

A complex design situaƟon can be represented by the figure 6.16.

Figure 6.16: One of the reference cases considered for properƟes/opƟons management.

146

In this case the two Element Usages are defined starƟng from the same Element DefiniƟon but they are
evaluated considering two different values for the same Design Variables inherited from the Element Def-
iniƟon (from which all the considered Element Usages are defined). This design problem is also captured
within the defined conceptual model.
One important feature of the proposed modeling approach is represented by the capability to develop
both logical and physical models of the system. In this manner is possible to clearly define the difference
between the funcƟonality (defined through the definiƟon of logical models) and the hardware/physical ob-
jects that allocate such funcƟonaliƟes (defined through the definiƟon of the physical models). The correct
definiƟon for the available alternaƟve soluƟons can help to provide interesƟng support funcƟonaliƟes. The
formal characterizaƟon of design opƟons can be directly managed to obtain a clear representaƟon of the
system alternaƟve configuraƟons. The informaƟon gathered by the correct definiƟon of opƟon class can
be used for example to automaƟcally generate paƩern as the trade tree which is widely used to provide a
useful viewpoint during system development and design [58].

6.3.7 User conceptual model

Considering the specificaƟons available from [65] it is possible to idenƟfy the users that are directly
involved with the system modeling tool. They are briefly reported and described in the following list.

• Study Manager: is the team member that represents the study customer.

• Team Leader: is the team member that leads the concurrent design study team.

• System Engineer: is the team member that is responsible for system engineering and the overall
system aspects.

• Assistant System Engineer: is the team member that assists the System Engineer.

• Domain Expert: is the team member with parƟcular skills in and knowledge of a specific domain,
usually an engineering domain, and responsible for those aspects of a concurrent design study that
relate to that domain. How many domains experts parƟcipate in a concurrent design study team
depends on the specific needs of a parƟcular study.

• Study Coordinator (Central Authority): is generic role indicaƟng the common user aspects of the
team leader, system engineer and assistant system engineer.

• Administrator: is the user of OCDT that performs administraƟve tasks to create, adapt and configure
user accounts, study areas, IT infrastructure including backup, restore and archiving, etc.

• Observer: is a parƟcipant not acƟvely involved in the study also if this role is under study and must
be confirmed (at the Ɵme this work has been wriƩen).

The users access architecture has been implemented starƟng from these theoreƟcal classes and defi-
niƟons (defined equivalently within the data model). The provided credenƟals at login page are then used
to proper manage the informaƟon returned to the current user on the basis of his/her access level. In this
way it is possible to customize the data that the user can see, providing different restricƟon levels about
the capability to create, edit or only see certain properƟes. In the same manner it is also considered the
possibility to change the returned perspecƟve (page or framework layouts) on the basis of the discipline-
domain the user belong to. This feature has been directly related to the role that certain user covers within
a project, allowing for the same user to cover different roles in different project as also various roles for
the same project. This capability ensures a flexible management of the people involved in project, pro-
viding also the basis for a well-organized collaboraƟve environment. The details about such integraƟon
and implementaƟon are introduced in the following secƟons, where the results about the Ruby on Rails
implementaƟon are briefly presented.

147

The introduced user profiles have been used and slightly modified to develop the roles that are then actu-
ally implemented within the proposed framework. The implemented framework has been developed not
only on the basis of the previous conceptual model from the standard but also taking into account actual
design processes. The roles defined for the proposed approach are briefly introduced in the following list:

• Administrator: the users with such role monitor the whole web-based infrastructure and they are
mainly involved in the developing and coding acƟviƟes. Such user has access to all data contained in
the database and all funcƟons that can be provided by the applicaƟon itself. Examples of such role
are network or applicaƟon administrators.

• Analyst: this user defines generally a project member that is able to access data (on the basis of
the process configuraƟon), make comments and upload certain resources (e.g. in the case some
analysis results must be linked). Such user is basically not allowed to create, update or delete engi-
neering items since this capability is associated mainly with the designer role. Such profile has been
conceived to model all such project role that generally deal with analysis and simulaƟons but are not
directly involved in the actual design process (they can propose architecture or components changes
through comments but only the user with item ownership can modify it e.g. the designer). In parƟc-
ular there is no constraint on the fact that the same physical user (the individual person) can cover
different role within the same project (designer and analyst) at the same Ɵme. In this case on the
basis of access credenƟal the user can in fact change the design or edit items with the advantage
that the overall process is now formalized and monitored. Examples of such role are thermal analyst
or mechanical analyst.

• Designer: such user can access the data on the basis of the ownership that he/she possess. In par-
Ɵcular such profile can edit the data on which he/she exerts his/her ownership. Basically all the
engineering data items that such user defines inherit the ownership from him/her and remains un-
der these condiƟons unƟl a process owner user modify the ownership of the data that belong to a
designer. The acƟons and operaƟons that such profile can do depend also on the process configura-
Ɵon for a specific project (such operaƟonal domain is defined by the process owner). The available
data and visible informaƟon can also be filtered on the basis of the discipline the designer comes
from. Examples of such role are system manager, verificaƟon manager or program manager.

• External Service: such profile has been defined to model all the acƟons that can characterize the
interacƟon of the main applicaƟon with other web-based infrastructure. In this case data can be
provided following the paradigm of RESTful interfaces. In parƟcular not all data can be exchanged
but only the filtered ones or those designated on the basis of the process configuraƟon. Such profile
has been considered to basically exchange data not through rendered views (since the process in this
case does not involve another human user but generally a web-service) but directly through data
format as JSON or XML. Examples of such role are external tools (with web interfaces) or dedicated
web-services (in the case some distributed services are provided on the same network).

• Process Owner: such role defines the users that can orchestrate the overall design process of a spe-
cific project or program. From this viewpoint the process owner can be seen as the administrator
for a specific project. Process Owner can assign tasks, acƟviƟes and roles within a certain project.
She/he can also modify the ownership of a certain object, basically establishing the rules that regu-
late all the interacƟons among the various users. Examples of such role are team leader or system
manager.

• Reviewer: this role is quite similar to the viewer since such profile shows all the features that can be
found within it. In parƟcular this user has all the characterisƟcs of the viewer with also an addiƟonal
capability, represented by the ability to define comments to the related project. The customer can
also be included within a project with such role. Examples of such role are customer or internal
reviewer.

148

• Viewer: this user has been conceived to define such profiles that cannot create, update or delete
items but are only allowed to view some specified secƟons of data and informaƟon. This user has
mainly been introduced to manage all the guests that can be involved in a project. In certain cases
such profile will be also used to handle the accesses of customers for example.

6.3.8 QuanƟty, units and properƟes conceptual model

QUDT/QUDV introduce one of the main concepts that covers a fundamental role for the definiƟon of a
correct data exchange process. This terms includes all the relaƟonships that relate the classes for the cor-
rect management of the quanƟƟes, their units and the associated values. In parƟcular the development of
a shared data model about for example the concepts of units of measure, dimensional analysis and system
of units can potenƟally improve the communicaƟon between different engineering domains, reducing for
example the Ɵme required for the right conversions of quanƟƟes and values. InteresƟng iniƟaƟve regard-
ing the formalizaƟon of quanƟƟes, units, dimensions and types is represented by the NASA QUDT [59].
The objecƟve of such project is the creaƟon of a semanƟcally enhanced version of standard engineering
tables using ontology expressed in RDF/OWL language and terms. QUDT is also conceived to provide web
services to support conversions and also dimensional analysis, reducing the error-prone process for data
exchange. The main purpose is represented by the creaƟon of a consistent context of share meaning, en-
hancing the communicaƟon capabiliƟes across diverse fields, funcƟons and domains of experƟse. Such
target requires a standardizaƟon of data structures and specificaƟon of queries for informaƟon retrieval.
In this way it is possible to obtain clear improvements for the integraƟon of data and interoperability of
processes and tools across the product lifecycle. The main benefits potenƟally related to this project can
briefly be reported in the following list:

• Consistency of data exchanged

• CompaƟbility of analyses and communicaƟon across different fields and domains

• MiƟgaƟon of errors and their impact

• SaƟsfacƟon of lifecycle development and operaƟonal needs

• Structured and web-based access to addiƟonal model-based QUDT informaƟon, tools and services

The definiƟons that characterize the overall conceptual model can be briefly idenƟfied in the following
list. Some of the considered objects have their related element in our proposed framework.

• QuanƟty Kind (kinds of physical quanƟƟes)

– Base QuanƟty Kind

– Derived QuanƟty Kind

• System of QuanƟƟes

• Unit of Measure

• System of Units

– Base Units

– Derived Units

– Coherent Units

• Dimensions

– Base Dimension

149

• Dimensional Analysis

A model-driven traceability allows to monitor all the referenced links and their properƟes. QUDT
project has also been conceived considering the compliance with some of the current standards on units
and quanƟƟes

• CODATA (CommiƩee on Data for Science and Technology)

• BIPM (Bureau InternaƟonal des Poids et Mesures)

• NIST (NaƟonal InsƟtute of Standards and Technology)

• ISO (InternaƟonal OrganizaƟon for StandardizaƟon)

6.3.9 Product model concept

Another interesƟng concepts developed within the current conceptual infrastructure is represented by
Product Model. In parƟcular such concepts has been conceived to model the features that can be directly
associated with the models elaborated by the various analysts coming from different disciplines. Such
features has been considered inn the current infrastructure, foreseeing the connecƟon with the more ad-
vanced phases of a project. The final purpose is represented by the target capability to pave theway for the
connecƟon with complex models defined externally with respect to the expected framework. The connec-
Ɵon between the external models with the data structure available from the systemmodel is fundamental
to ensure a correspondence with the current baseline and informaƟon exchanged. In this way it is possi-
ble in fact to beƩer monitor the gradual grow of the system and related informaƟon. Such structure can
be used to create a one to one correspondence between a domain specific model and the system model
itself, providing the basis for a more consistent mechanism for the control of product structure. The main
idea is represented by the fact that the unique system model can be related to mulƟple product models
that can be potenƟally mapped to external systemmodels, coming for example from different engineering
domains. The domain specific models conƟnues to store the main informaƟon related to the related field
(since the data associated to them can be quite big), but the contained data can be properly elaborated
to populate the associated product model within the system model, filtering for example unnecessary or
redundant properƟes and data. From these explanaƟons it is possible to see how Product Models have
been basically conceived to provide the link between external complex product models and the system
model. Product Model is however stored within the system model infrastructure and at leat it includes all
the informaƟon needed tomap the external resources with the common systemmodel. In addiƟon to such
basic data (which are directly related to themain role of such concept) other useful data can also be stored,
for example when it is important to monitor the property coming from a specific discipline and when such
features can be inferred from the external model itself. The concepts expressed so far can also be extended
to specific parts or subset of the system since their meaning is not limited to the whole product. The main
purpose is represented by the fact that ideally each discipline will have its corresponding product model
to map with the system model (supposing that a certain discipline has its own product model).
The informaƟon gathered or loaded within the Product Model can be used to simulate system behavior
with respect to a specific scenarios for example. It is important to underline that such concepts has been
conceived to allow for the connecƟon between the models (above all the complex ones) elaborated within
the specific discipline and the system model. The data available from the system model are basically used
to drive and help the generaƟon of complex models as it has been considered for the main use of the pro-
posed infrastructure. There are however no restricƟons on the fact that the domain-specific models can
be parƟally generated from system model, in parƟcular when the design phases are not so detailed. In
this context such concept must not be confused with the FuncƟon Model (as well as the related FuncƟon
DefiniƟon, more details are available however from the appendices). FuncƟon Models are equally used
to simulate the response of the product on the basis of the available informaƟon mapped with the sys-
tem model. The main difference is represented by the fact that ideally the product models are produced

150

within a specific discipline and they already contain all the informaƟon needed to be simulated or inte-
grated within a more complex case. Such data can be compared with the data loaded in the systemmodel
as well as parƟally exchanged with it (depending on the main purpose of the integraƟon procedures with
system model, "what load which" and "data hierarchy"). On the other hand the generic FuncƟon Model
does not contain the informaƟon needed for a simulaƟon. Such element has been conceived to be poten-
Ɵally used with different kind of similar components, as it allows to achieve the response on the basis of
the available data. Such data are stored in the system model and are mapped to the funcƟon itself which
can be theoreƟcally used also in other project. In this case the funcƟon model does not contain all the
informaƟon needed to potenƟally run a simulaƟon but it must be linked with informaƟon available from
the model (in the other case the product model is instead linked with an external model which has all the
data required). The main idea is to include in the definiƟon of FuncƟon Model all the codes/simulaƟon
items that can be flexible reused on other cases and in other project. As defined the FuncƟon Model is in
fact not directly associable with the product representaƟon of the system as instead is introduced for the
Product Model. Such disƟncƟon allows to clearly separate the models that are generally developed in the
advanced phases (linked through the Product Model) from the capabiliƟes to simulate some behaviors in
the preliminary steps (using more "simple" and flexible models, managed through the FuncƟon Model). In
the same manner there are not limitaƟons on the fact that the FuncƟon Model can be represented by a
complex code sued in the advanced phases of a project. The related choice strictly depends on the avail-
able resources as well as the final purposes of the model for a specific case. The main difference remains
related to the fact that the FuncƟon Model does not naƟvely contains all the data needed for a simulaƟon
while the Product Model can rely on its own informaƟon to support a simulaƟon.
The FuncƟon Model and Product Model classes are not totally separated since they can be both used to
set up a complex simulaƟon from the informaƟon contained within them. In parƟcular the informaƟon
contained provided by such object can be used to obtain the final SimulaƟon Model.

6.4 Workflow for the proposed approach

The first phase of the present work has involved the conceptual analysis of the workflow and defini-
Ɵons that helped to build the proposed methodology. In parƟcular a clear descripƟon and evaluaƟon of
the possible alternaƟves in the context of the considered problem have been first invesƟgated. From these
ones a soluƟon that seems to show a beƩer behavior has been considered. This choice regards the con-
ceptual definiƟon of the processes, people and tools involved in the design methodology. Such decisions
have been supported by the representaƟon and construcƟon of propermeta-model architecture for a clear
organizaƟon of the work that have to be done, ensuring that all aspect will not be neglected.
Once the main concepts have been elaborated the following phases focuses on the actual implementa-
Ɵon of a prototype infrastructure to assess the approach itself. Different choices can be made among the
possible soluƟons for such step. In this case an approach similar the Agile Development Lifecycle as been
followed as much as possible for the realizaƟon of the target infrastructure, trying to put into pracƟse the
main guidelines of the related philosophy. In this way it was possible to beƩer evaluate themost promising
soluƟon for the development of the desired plaƞorm.

6.4.1 Agile development lifecycle

An interesƟng development lifecyclemodel is represented by the Agile soŌware approachwhich shows
some promising capabiliƟes. It is well widespread in the field of soŌware engineering and development
while the applicaƟon of the same infrastructure in system engineering domain is not formally invesƟgated
also if some advantages can be obtained. In parƟcular Agile soŌware development is a set of soŌware
development techniques based on iteraƟve and incremental process. The related methods have been
conceived to allow requirements and soluƟons evolve through collaboraƟon of cross funcƟonal skills and
capabiliƟes provided by different teams. The same methodology can potenƟally be applied to system en-
gineering discipline, enhancing the integraƟon among the current lifecycle technologies and innovaƟve

151

Figure 6.17: Example of Agile development lifecycle applied to soŌware design.

design approaches. Agile methods enhance the promoƟon of adapƟve planning and evoluƟonary devel-
opment, encouraging the rapid and flexible response to design changes (a conceptual example is reported
in figure 6.17).

Some of the methods define concepts that can be used to improve the current system development
process, reducing the possibility of unexpected errors and ensuring the consistence of the product fea-
tures. All the basic principles are included within the Agile manifesto and are mainly referred to soŌware
development process but some of the highlighted concepts can be extended to engineering disciplines.
Such shared concepts can be summarized for example in the following list:

• Customer saƟsfacƟon by rapid delivery of useful product

• Welcome changing requirements, even late in development

• Sustainable development, able to maintain a constant pace

• Close and daily cooperaƟon between business people and developers

• Projects are built around moƟvated individuals, who should be trusted

• ConƟnuous aƩenƟon to technical excellence and good design

• Simplicity is essenƟal

• Self-organizing team

• Regular adaptaƟon to changing circumstances

There are many specific agile development methods which most promote development, teamwork,
collaboraƟon and process adaptability throughout the lifecycle of the project. Some of the widespread ag-
ile techniques that show interesƟng features for the design of complex systems are Acceptance Test Driven
Development (ATDD), Agile Modeling, ConƟnuous IntegraƟon (CI), Feature-driven development (FDD) and
Test-driven development (TDD). For example the TDD method provides useful uƟliƟes for a clear formal-
izaƟon and definiƟon of the development process, reducing the possibility to neglect some requirements.
In this case the implemenƟng acƟviƟes of the system (the soŌware in parƟcular) starts first from the def-
iniƟon of a structured code lisƟngs that are used to check the correctness of the soŌware that have to be

152

Figure 6.18: AlternaƟve data exchange architectures.

sƟll developed. In this way the requirements and the capabiliƟes that the tool must provide are formalized
before the code itself has been developed, focusing on the tests that at the end must be fulfilled. The
code soŌware can then be tested once such test infrastructures have been defined, exploiƟng some auto-
maƟc or parƟally automaƟc execuƟon capabiliƟes. In this way the debugging operaƟons can be parƟally
automated, reducing the workload required to verify the correctness of the already developed code. The
same approach of soŌware implementaƟon can potenƟally be also extended to other engineering devel-
opment processes, providing some interesƟng capabiliƟes for the management of simple design acƟviƟes
and verificaƟon in the same way.

6.5 Data exchange

Data exchange between different CAD/CAE/CAM systems covers a key role for the right integraƟon of
mulƟple design environments when a collaboraƟve and distributed framework is developed. The main
problem is represented by the format consistency across different plaƞorms and different design systems
since oŌen the data structures are not shared and some restricƟons limit also the access to proprietary
database informaƟon. The two main exchange methods that can be used are conceptually reported in
figure 6.18.

The connecƟon between the various elements is realized through the implementaƟon of proper in-
terface for the exchange of files and data. In A the number of system adapters rapidly increase as the
number of involved environments grew up, making such approach difficult to apply when many domains
are working on the same project. This situaƟon requires also a well-organized maintenance acƟvity for
the management of all the different adapter typologies that are required for the correct working of the
whole architecture. In B the number of required adapters is smaller with respect to the previous case
since the connecƟon must be properly set only with a central neutral file standard. The efforts required
for the maintenance of to the paƩern A are not so demanding as in the previous schema since each sys-
tem has its own adapter with no knowledge about the connecƟon of the other elements. In this way the
standard neutral file can be used to exchange informaƟon through a straighƞorward process that reduces
consistency problems across different modeling and analysis environments. Standard neutral file is ob-
tained through pre-processing acƟvity starƟng from naƟve database, transforming than such data to other
naƟve database with a post-processing acƟon. Such acƟviƟes flow allows ideally exchanging informaƟon
from one system to another and vice versa. This soluƟon must be accomplished automaƟcally as possible,
reducing the efforts that the single user spends on data conversion. An example of such data exchange is
proposed in figure 6.19

The proposed concepts idenƟfy only the actors and resources involved within the related paƩern but
the same architecture can be actually implemented focusing on different hardware soluƟons and infras-
tructures. The main idea is to integrate the concepts related to the second considered approach within a
web based infrastructure, exploiƟng the benefits coming from data exchange on a distributed framework.
The most common standard neutral file formats are briefly reported in the following list:

• IGES: such format is fairly widespread for the communicaƟon between CAD/CAE/CAM systems and
it is supported by internaƟonal standard organizaƟon (ISO).

• DXF: format proposed by Autodesk and mainly used for the exchange of drawing informaƟon.

153

Figure 6.19: Data exchange mechanism.

• STEP: such format is used to store all the data involved in the definiƟon of product life-cycle data:
design, analysis, manufacturing, quality assurance, tesƟng andmaintenance. Such format is basically
knows in the past as Product Design Exchange SpecificaƟon (PDES).

Nowadays most of used CAD systems are currently moving towards STEP format also if they used to
manage IGES data structure in the past. The proposed framework must also consider STEP format as
strongly recommended soluƟon for the interface of data coming from other systems. The informaƟon
contained within the system database can be properly processed through specific adapter to generate the
required data. In the same way the system modeling framework can import the informaƟon provided as
STEP file, paving the way for a two way communicaƟon link with other external systems. Data exchange
among different domains is oŌen followed by a wide range of issues since an errorless communicaƟon
between tools, processes and plaƞorm is difficult to realize [60]. The idenƟficaƟon and introducƟon of
a neutral file format has been mainly animated by the industry requirements with the final aim to gain
compeƟƟve advantage over the tradiƟonal approach. One of the main feature that affect data exchange
within also the same company is represented by the consistency check of product lifeƟmes in informaƟon
technology. This element is also related to the barriers to communicaƟon that can be found during the
development of a complex system. Within the same industry a product can span even twenty years from
its design unƟl the end of its operaƟonal life. During this period the company will probably have replaced
its major applicaƟons several Ɵmes, have replaced its systems soŌware at least once and have replaced its
hardware several Ɵmes. Under this condiƟon themaintenance of data is not a negligible problem and data
legacy can be ensured through only some investment. The increasing amount of data available in a project
oŌen lead to more “meaningless” data as also more informaƟon. The management of a large volume of
data is characterized by various informaƟon costs that come out from different sources:

• DuplicaƟon costs or redundant efforts related to the recreaƟon of data

• Maintenance costs related to legacy systems

• Maintenance and acquisiƟon costs for the soŌware used to exchange data among different domains

• Data storage costs

• Costs related to the data access

• Costs due to transcripƟon and translaƟon errors that come out during data exchange

• Costs related to loss of quality

154

STEP format has been mainly conceived with the final aim to miƟgate the just introduced informaƟon
costs, paving the way for bridging the gaps between different computer systems. Actually the integraƟon
among different environments is achieved through different soluƟons such as manual re-input of data,
adopƟon or introducƟon of a standard systems and direct translaƟon for example. Neutral format transla-
Ɵon and shared databases are other two possible approaches for the management of systems informaƟon
across different domains and they seem to show the most interesƟng features.
The opportuniƟes created by STEP format are represented by the capability to freely exchange data be-
tweendifferent systems (availability of data), accessibility through standard interfaces, creaƟon/maintenance
of shared data environments (reusability of data) and enhancement of quality of data by the use of stan-
dard data models and interfaces.

6.5.1 Engineering design model of data exchange

The main part of the work related to the development of the conceptual model used in the analysed
methodology is based on the technical memorandum and standard documents provided by the European
CooperaƟon for Space StandardizaƟon (as previously introduced). In parƟcular the documents considered
are represented above all by Engineering design model data exchange [61] and Systemmodelling and sim-
ulaƟon [62]. These documents contain much of the informaƟon used to conceptual define the simulaƟon
and modelling processes. They are both technical memoranda documents that represent not a normaƟve
standards but they include useful guidelines for space systems engineering on a specific subject.
The Engineering design model data exchange introduces the main recommendaƟons for the definiƟon of
model based architecture regarding in parƟcular the data exchange process of the early phases of engineer-
ing design. The objecƟve is represented by the capability to share informaƟon related to the same space
systems but referring to different design disciplines. This feature becomes parƟcularly relevant when the
modelling of complex system involves oŌen different industrial environments and insƟtuƟonal organiza-
Ɵons. In this case becomes very important the definiƟon of a common data exchange process when the
collaboraƟon acƟviƟes are parƟcularly integrated. The final scope is to provide the starƟng point for the
definiƟon of a common environment for the early acƟviƟes of space system development without neglect-
ing the possibility to extend the same approach also on more advanced and detailed design phases. In this
way one of the most important benefits is represented by the availability of a common and shared set of
parameters covering all the project lifecycle. The three most relevant points directly related to previously
introduced objecƟve are represented by the creaƟon of concurrent design faciliƟes, the effecƟve data ex-
change across different models and finally the real-Ɵme collaboraƟon. The concurrent engineering design
processes and the taxonomy definiƟons used in the current work are mainly contained within the annex
available with the ECSS documents and represented in parƟcular by Space Engineering InformaƟon Model
(SEIM) and Space Engineering Reference Library (SERDL). These resources contain all the informaƟonwhich
are directly related to the definiƟon of data model. In parƟcular since these documents refer to a technical
memorandum they are intended to evolve into an ECSS standard in the near future. Before the contained
data model definiƟons become effecƟvely an industrial and insƟtuƟonal standards it is necessary that a
consensus form must be reached and the related maturity validated.
One of the most important concept related to the integraƟon of a concurrent approach in the design of
space system is linked to the Concurrent Design Facility (CDF). Concurrent Design Facility is a mulƟdisci-
plinary design centre using the concurrent engineering approach for the assessment of potenƟal future
ESA missions and it is located at ESA/ESTEC. Another important concept is that related to the Integrated
Design Model (IDM) which is implemented and developed within the CDF. The Integrated Design Model
represented the federaƟon of informaƟonmodel and engineering tools used to support the design of space
mission in the early phases through concurrent approach. Both the introduced elements sustain the in-
tegraƟon of concurrent engineering approach towards the deeper integraƟon of the available resources,
improving the capacity to saƟsfy customer needs within a co-operaƟng environment. The support of con-
current design is provided also by the implementaƟon of a database system that it is compliant with all the
informaƟon and soŌware applicaƟons that are linked with the concurrent approach (also named as Open
Concurrent Design Server OCDS).

155

Figure 6.20: Top level view of the SEIM (UML package diagram), [61].

The first developments that characterize the definiƟon of concurrent design approach and that were re-
alized with the CDF started in 1996. The main idea is represented by the need to develop a well shared
approach for the definiƟon of the early 0 and A phases of space system life cycle. This concept effecƟvely
born for the first Ɵme at NASA/JPL within the Team-X facility. Concurrent design approach starts to spread
over all the main important aerospace industries where each one has its own internal processes for the
definiƟon of space product, each one based on a specific InformaƟon and CommunicaƟon Technology (ICT)
support environment. Also if different design environments are involved in the definiƟon of space system,
an open neutral data exchange protocol it is fundamental for the successful exchange of data informaƟon.
One of the main important acƟviƟes in the definiƟon of the informaƟon model and reference data library
it is represented by the a clear understanding of which data need to be exchanged. The informaƟon ex-
changedmust show the same structure for each study and they come from an informaƟon analysis acƟvity
realized for the implementaƟon of IDM. There are also other informaƟon that characterize the study and
that can be described with a common standard approach. For example these items can be represented by
system element names and their composiƟon, properƟes of parts and materials, design input parameters,
analysis or simulaƟon result parameters, names of involved disciplines.
The data model structure is based basically on two main parts represented by the following ones:

• Core data model

• Reference data library

The core data model includes all the main definiƟon related to object aƩributes (defining the class)
and the relaƟonships between them. The reference data library represents instead a set of instanƟated
object that follow the rules, relaƟonships and features contained within the core data model. All these
informaƟon are needed for the implementaƟon of the proper data exchange and applicaƟons interfaces.
The informaƟon model main parƟƟoning is described with a UML package diagram. The top level view of
such SEIM infrastructure is represented in figure 6.20.

This top level view disƟnguish between:

• Space Engineering OrganizaƟon

• Space Engineering Process

• Space Engineering Product

156

• Concurrent Design Parameters

• Concurrent Design Infrastructure

In parƟcular the space engineering process is the element that involves an organizaƟon for the def-
iniƟon of the process itself and a product as the object to be designed. The disciplines that consƟtute
the space engineering organizaƟon are involved in the creaƟon of the design parameters. These are then
related to a specified phase of the process (as the related link represents) and describe a well-defined com-
ponent/part of the product. The design parameters are stored and handled within a design infrastructure
as the OCDS. Each package contains the concepts that allow to specify a parƟcular study and they are clas-
sifiedwith different classes. There is one object class types for each package. The concepts under the same
package refer to the same classifiers. In parƟcular:

• OrganizaƟon package refers to organizaƟon class

• Process package refers to process class

• Product package refers to object class

• Design parameters refers to data class

• Design infrastructure refers to facility class

System Engineering is currently characterized by one of the most challenging evoluƟon in design pro-
cesses of complex products. This discipline cover a fundamental posiƟon in the right design of system
project and the related performances are strongly influenced by the correct management of the involved
engineering domains. Briefly speaking the reported diagram define also the relaƟonships between the
considered classes. The engineering process involves the engineering organizaƟon and engineering prod-
uct. At the same Ɵme the engineering product and engineering process classify the design parameters.
These ones are created by the engineering organizaƟon. Finally the design parameters are part of the de-
sign infrastructure. The main concepts that characterize the object types classes can be summarized in the
following list, considering the various packages.
Engineering OrganizaƟon is characterized by:

• Concurrent design role

• ParƟcipant

• Discipline

• OrganizaƟon

Engineering Process is characterized by:

• Concurrent design acƟvity

• Concurrent design session

• Concurrent design acƟvity phase

• Life cycle phase

• IteraƟon

• Snapshot

Engineering Product

157

• OpƟon

• Mode

• System

• Element

• Mission phase

• Property

• Equipment

• Subsystem

• Instrument

• Sub-equipment

Design Parameters is characterized by:

• Concurrent design parameter

• Parameter group

• QuanƟty kind

• Parameter value

• Parameter unit

• Parameter reference

Design Infrastructure is characterized by:

• Study discipline workspace

• Study IDM

• IDM template

• Study report

• OCDS server

• DocumentaƟon and tools

All the objects definedwithin a parƟcular space system design can be classified following the previously
introduced object types. The object types just introduced can be associated through the use of a well-
defined relaƟonships as reported in figure 6.21.

The correct definiƟon and modeling of system need a well-established representaƟon of the main re-
laƟonships between the elements that characterize the system itself. In parƟcular it is important to clearly
represent the system decomposiƟon from a hierarchical point of view in order to highlight possible in-
consistencies between the objects that make up the overall product structure. Each element that define
a complex system must conceptually have its own role and related definiƟon, reducing the possibility to
model a system in the wrong manner.
System decomposiƟon can be represented in figure 6.22 where the relaƟonships between the element
involved in the hierarchical definiƟon of system characterisƟcs are introduced.

158

Figure 6.21: SEIM main informaƟon object types and relaƟonships (informal UML class diagram), [61].

Figure 6.22: SEIM system decomposiƟon and associated modes (UML class diagram), [61].

159

In parƟcular the reported representaƟon refers to the decomposiƟon of system structurewell suited for
an adequate descripƟon above all of the phases 0 and A. The considered classes are taxonomically defined
in the following and the current work mainly refers to these definiƟons for the research topics concerned
within this study.
OpƟon term represents a certain design opƟon considered in the study. In parƟcular there is the possibil-
ity to have more than one opƟon for the same system. The word System idenƟfies the top level system.
This object can be decomposed in a series of child systems (has enhanced by the hasSystem relaƟonship).
System contains Elements while the single Elementmay contain a certain number of Equipments. This sub-
division takes part moving to lower levels through the system hierarchical decomposiƟon. There is also the
possibility that at this level the Elements may contain a certain number of Instruments. This laƩer object
can also contain in turn a number of Equipments. The same Equipment instance object can be owned only
by a certain Element or Instrument. It does not belong to both these class of objects. The class Element
can also contain a certain number of Sub-systems. The word Sub-system idenƟfies the logical grouping of
Equipment while the Equipment and Instruments that refer to the Element class represent a physical de-
composiƟon. At the same Ɵme the term Sub-system can refer to a certain number of Equipments but this
relaƟonships is not a physical owning associaƟon, meaning that the Sub-system does not physically owns
this object (this relaƟonship refers to the logical viewpoint). The Equipment class may contain a group
of Sub-equipment. The relaƟonships that this structure introduces concerns mainly the definiƟon of the
space product package. The class Systems, Element and Sub-system may be related to different levels of
operaƟonal modes.
One of the main important features that characterize the evoluƟon of project design is represented by the
concurrent design parameters and the related informaƟon exchange between the different disciplines. The
term Parameter idenƟfies the class that bring the informaƟon related to a parƟcular design condiƟon or
baseline. The data related to the Parameters are fundamental for the characterizaƟon of the actual system
performances and structure. They are fundamental for the right representaƟon of conceptual design dur-
ing the different phases that define the project evoluƟon. In SEIM representaƟon the main role is covered
by the CDParameter where CD stands for concurrent design. Another important class is represented by
the ParameterGroupwhich allows to create a set of parameters that can be managed in a similar way. The
class QuanƟtyKind specifies what kind of quanƟty the parameter refer to. A quanƟty kind may be repre-
sented for example by length, mass, Ɵme, etc… QuanƟty kind is related to the Unit class which refer to the
measurement unit used for expression of design parameter (m, kg, sec for example). The characterisƟcs
of CDParameter may also be defined through the definiƟon of the ParameterValueType class. This class
allows to relate the considered parameter to the kind of computer data used to express its value. A CDPa-
rameter is also related to ParameterCode class which is a coded representaƟon for the referred parameter.
Parameter can also be associated to a constant value (in the case the related numerical value is assigned
without any parƟcular link with other processes or element) or to a computed object. In this case there is
for example a mathemaƟcal expression from which depend the value of the related parameter. A CDPa-
rameter is linked to a precise owner that is idenƟfied with a parƟcular Discipline that has a key-role in the
management of the considered parameter. The reference data library also known as System Engineering
Reference Data Library (SERDL) introduces a set of pre-defined instances on the basis of the object types
that come from the SEIM data model. This library includes elements that are common in the definiƟon of
concurrent design study and can be regularly extended and updated on the basis of the addiƟonal data
objects. This library includes for example instances that refer to the Structures, Thermal or Propulsion dis-
ciplines. Concurrent design roles as Team leader, System engineer or Domain engineer are also defined.
These objects are both obtained from the classes contained within the Engineering OrganizaƟon package.
The SERDL also includes the instances that are related to the classes definedwithin the Engineering Process
package. In this case instances of life cycle phase is used to describe the Phase A, Phase B, etc.. of space
system development. Concurrent acƟvity phase class is instead used to instanƟate process as Study, Study
Session or Study ReporƟng for example.
One of the main important feature is related to the definiƟon of the parameter code name related to a
precise element of system component during a parƟcular design phase. Naming convenƟon follows the
data structure hierarchy and generally it depends on the origin of the parameter or on the result that as-

160

sociated to a parƟcular computaƟon that involves the parameter itself. It is important at this level that the
source and the context of parameter value computaƟon are well defined and agreed for the right concur-
rently exchange of informaƟon. The parameter code used within the SERDL library follows the hierarchical
decomposiƟon on different level. The same order is traced in the definiƟon of parameter code conven-
Ɵon. The following list introduces the decomposiƟon level used for the definiƟon of parameter code name,
starƟng from the higher one the lower. Some level can enhances nested branch that depend on the nature
of the considered parameter and its related posiƟon within the system design concept and context.

• OpƟon

– System

* Mission Phase
· System Mode

System Mode can be further nested.

• System Mode

– Element

* Element Mode
* Element Property
* Subsystem

· Subsystem Mode
* Instrument

· Equipment
* Equipment

· Equipment Property
· Sub-Equipment

All the reported level can refer to a parƟcular concurrent design parameter and each element that is
used in the definiƟon of the related coded name is generally followed by an integer number that uniquely
idenƟfy the which of the available objects are under consideraƟon. For example the project may contains
two different opƟons at higher level and the disƟncƟon between which is under evaluaƟon the parame-
ter code is built starƟng from OPT1 or OPT2. In parƟcular the name convenƟon introduces the following
acronym list for readability reasons.

• OPT OpƟon

• SYS System

• MIP Mission Phase

• SYM System Mode

• ELE Element

• ELM Element Mode

• ELP Element Property

• SS Sub-System

• SSM Sub-System Mode

• INT Instrument

161

• EQT Equipment

• EQP Equipment Property

• SEQ Sub-Equipment

This acronyms are then concatenated with the integer values related to the specific alternaƟve under
evaluaƟon (as previously introduced) and finally ended with the Parameter Reference name (denoted with
the PR name acronym). The various level and their idenƟficaƟon number are joined using underscore
character. Unit names and their symbols are compliantwith the InternaƟonal SystemofUnits (SI) as defined
in the standard [ISO/IEC80000]. For compaƟbility reasons between different modeling framework and
soŌware applicaƟon the unit symbols are encoded in ASCII character strings (more details are available in
[63]).

6.6 CollaboraƟon mechanisms

A fundamental aspect that affect the applicaƟon of the proposed approach is represented by the ca-
pability that can be provided in the context of a collaboraƟve environment. The proposed infrastructure
must take into account all the features that directly influence the implementaƟon of an environment and
all such elements must be properly conceived to avoid unexpected situaƟons. The overall framework must
in fact also approach the design problem considering the interacƟon among different users with differ-
ent roles on the same project. The capability to edit elements properƟes must be based on specific rules
that prevent for example the possibility that two users modify the same object. Some of the conceptual
consideraƟons elaborated in this secƟon have been deeply considered during the implementaƟon of the
infrastructure since the such topic strictly depends on the actual implementaƟon. The approaches that
can be actually used are affected by the codes, languages and database funcƟons invesƟgated. For these
reasons the concepts briefly described in this secƟon are only defined on conceptual level but are however
introduced to underline the importance with respect to the overall methodology.
The ediƟng acƟviƟes of a certain object are based on the mechanism of ownership. In parƟcular an ele-
ment can be created by a specific user as Element DefiniƟon (more details about such object are provided
in the appendices) but the ownership of such object can then be associated to other users (directly on per-
mission/acƟon of the administrator or process owner). Only the users that possess the ownership of such
element can change the element itself but this do not imply that they can change the type of the contained
elements for example. They can change only the properƟes belonging the same level of the current object
they are working on. The type of the contained elements can in fact belong to other users who possess
the related ownerships. Two users cannot work on the same object at the same level of definiƟon (i.e.
they cannot modify the same Element DefiniƟon properƟes). If a user is working on a specific object and
he/she is trying to include some contained elements (i.e. introducing the Element Usages to define the ar-
chitecture) it is important to highlight the elements which type (i.e. the corresponding Element DefiniƟon)
is currently under ediƟng. In this way it is aware of which elements can potenƟally change during his/her
ediƟng acƟviƟes of the father element. Such interacƟons can however rise up only when the father and
child definiƟon are done at the same Ɵme. In the cases where the definiƟons involve more than two level
of hierarchy detail (i.e. when the child of the child is modified concurrently with the father) such high-
lighƟng is not necessarily required. More generally the concurrent modificaƟon of object related by one
level of hierarchy detail can also be done without problems if the ediƟng acƟviƟes that characterize the
child do not affect the its external interfaces. In this case the child objects can be seen as black boxes and
if the external interfaces remain the same (from the father point of view only such aspect maƩers since
are the interfaces that are directly involved in the definiƟon of the architecture of the contained elements)
than the user can however proceeds to the connecƟon of such contained objects. Such approach cannot
however be applied in the same manner to other design acƟviƟes that involve properƟes that are defined
in the child but are used in the father (for example a design method that computes father property on the
quanƟƟes contained in the children). In these cases a proper mechanism must show to the user which

162

elements are currently under modificaƟon.
The eliminaƟon of properƟes that affect other elements (for example properƟes that are used in the father
object to compute or define other quanƟƟes)must be taken into account to avoid dangerous consequences
on data losses. Such situaƟons can be approached considering proper developed alert funcƟons that show
the affected elements and consequences that follow from such deleƟon.

163

164

Chapter 7

Analysis, Design and ImplementaƟon

The current chapter focuses on the analysis and design of the proposed infrastructure. In parƟcular
the conceptual infrastructure built in the previous secƟons is used to lead the actual implementaƟon of
the framework. In this phase the analysis of the theoreƟcal structure is done to ensure the feasibility
of the developed concepts with respect to the available technologies. The main aim of such acƟvity is
addressed towards the idenƟficaƟon of the possible lacks regarding the proposed method as well as the
modificaƟons that must be considered to actually implement the overall architecture. The next step is
represented by the design of the framework secƟon regarding the integraƟon of the funcƟonaliƟes directly
related to the advanced phases of the project. In this case the main purpose is the definiƟon of the target
capabiliƟes that the tool will provide once implemented, ensuring the correct idenƟficaƟon of the needs
and requirements. The fulfillment of such objecƟves is pursued in the next phases of implementaƟonwhen
the actual integraƟon and implementaƟon of the code is realized.

7.1 Methodology followed

Themain research objecƟve is to evaluate, further develop, and apply PSEs forMDA using exisƟng high-
fidelity soluƟons methods. In the first part of the acƟvity a deep and well-documented analysis of the cur-
rent research projects in such field will be done. Main features, benefits and drawbacks of the invesƟgated
methodologies will be listed. This study will be the starƟng point for the development of methodology
and theoreƟcal infrastructure that will be used for the definiƟon of the PSE framework. A clear under-
standing of the target capabiliƟes and funcƟonaliƟes that will be implemented plays a key-role for the right
development of the proposed problem solving environment. The data structure of the problem solving
framework will be defined also considering the current research iniƟaƟves and available standardizaƟon
guidelines. In parƟcular such references can be found in the formalizaƟon work that was developed both
from NASA and ESA research iniƟaƟves. Different system modeling methodologies has been developed
and tested in these contexts, addressing large efforts towards the evaluaƟon of model based approaches
in the design processes of complex systems. A model based approach has shown interesƟng advantages
in the management of a wide range of data and resources. The same methodology can also be used for
the definiƟon of a problem solving environment. Such an approach would reduce the consistency-problem
between the informaƟon exchanged, introducing at the same Ɵme a more effecƟve environment to face
engineering problem. A PSE tool can also reduce the Ɵme spent by scienƟsts or engineers on processes
as data exchanges or model transformaƟons with the possibility to devote more energy and resources on
acƟviƟes such as modeling and simulaƟon.
The correct set-up of engineering problems and the related solving methods becomes parƟcularly difficult
when different domain specific tools are integrated. The capability to drive the user through the definiƟon
of a mulƟdisciplinary problem is one of the most interesƟng and useful features that can be provided by a
PSE tool.
The main part of the current research acƟvity will be addressed towards the realizaƟon of a PSE frame-
work aŌer the preliminary phase of data structure and architecture definiƟon. Different implementaƟon
soluƟons can be considered on the basis of the chosen architecture. An interesƟng and parƟcularly chal-

165

lenging opƟon is represented by the development of a web-oriented infrastructure. Such alternaƟve will
be evaluated as the leading choice among all the potenƟal ones. A lot of European agencies and Aerospace
companies have started to developweb-oriented frameworks for the system-levelmodeling acƟviƟes. Such
environments are basically derived from model-based system engineering (MBSE) paradigm with the final
purpose to improve the collaboraƟon among various disciplines across all the design process, from the
early phases to the more detailed ones. The same philosophy can also be considered for the development
of a PSE tool. A web-oriented architecture has highlighted interesƟng benefits in a collaboraƟve environ-
ment as experienced by some research iniƟaƟves ([65]). The same approach can potenƟally be adopted
for the implementaƟon of mulƟdisciplinary environments where the main focus is the correct definiƟon
of engineering problems set-up. Such approach will be considered as the first choice and the following ac-
ƟviƟes will be based on this architecture unless an equally effecƟve soluƟon comes out from the previous
analysis.
The following phase will be the evaluaƟon of the current web-development plaƞorms to select the more
suited one for the desired objecƟve. Open-source projects offer some interesƟng alternaƟves that can be
chosen to support the development process as a wide range of scripƟng languages that can be used to in-
tegrate the required funcƟonaliƟes. Ruby on Rails project represents one of themost widespread soluƟons
for the creaƟon of web applicaƟons and tools. The same funcƟonaliƟes can be found in Django framework
which is based on Python languages. A similar approach can be idenƟfiedwith Node.js plaƞormwhich pro-
vides useful instruments for web services development. Another opƟon can be represented by the PHP:
Hypertext Language (PHP) which is an open-source scripƟng language widely used for web applicaƟons
programming. All these alternaƟves show benefits and drawbacks with respect to each other and a pre-
liminary evaluaƟon must be done on the basis of the target capabiliƟes that the PSE tool should provide.
Ruby on Rails plaƞorm shows useful uƟliƟes as also a wide range of already validated and supported li-
braries. The validaƟonmechanisms, the object-orientedphilosophy and thewell-defined relaƟonal database
infrastructures make this soluƟon one of the most suitable.
In this phase the conceptual data structure will be further discussed and developed with the main aim
to include the key elements of a distributed environment. The used definiƟons will follow some of those
developed in [66] with further changes to take into account the PSE integraƟon. A web-based tool will
be developed starƟng from this conceptual infrastructure with special aƩenƟon to the uƟliƟes that will be
used for themulƟdisciplinary problem definiƟon. The knowledge, skills and abiliƟes of the people involved
in such process are fundamental to make the right decisions and the proposed model philosophy will help
to reach this objecƟve.
TheMBSEmethodology that will be used in this work derives from the context of soŌware engineering and
it is based on the connecƟon of simulaƟonmodels with a central and shared systemmodel [67]. The appli-
caƟon of PSEs for MDA will be further invesƟgated considering also the current representaƟons of models
based on available formalizaƟon iniƟaƟves. An example of such research acƟviƟes can be idenƟfied with
the definiƟon of the conceptual data models (meta-models) derived from the current ECSS (European Co-
operaƟon for Space StandardizaƟon) data structure. A system engineering conceptual data model will be
further developed to ensure compaƟbility with current standardizaƟon efforts. This Model Driven Engi-
neering (MDE) approach will be pursued with an object-oriented view of reality, using the definiƟon of
classes and related relaƟonships as standardizaƟon mean in the interacƟon of different models [66]. The
main relaƟons that will be considered in this approach are represented by instanƟaƟon (an object is an
instance of a class) and inheritance (a class specializing another class). The construcƟon of meta-models
will require the introducƟon of a set of rules for the formal definiƟon of an object-oriented framework. The
model taxonomy of this work will potenƟally follow the definiƟons introduced by Eisenmann, Miro and De
Koning [11].
A web applicaƟon prototype will be first developed for conceptual data structure validaƟon and then fur-
ther implementaƟons are planned to assess the management capability of a mulƟdisciplinary problem.
All the classes belonging to the above menƟoned conceptual data structure will be used to implement a
model-view-controller paƩern, allowing the instanƟaƟon andmanagement of the related objects. Concep-
tual classes and related associaƟons (composiƟons, type relaƟonships, etc.) will be formalized and defined.
The meta-model will be organized in packages that reflect the user point of view and that will be used to

166

build the user interface. Each conceptual class will be transformed in a RoR model, and the model instan-
ƟaƟons (objects) will represent system items, whose persistence is guaranteed by a relaƟonal database
generated by dedicated code (migraƟon). This will allow the installaƟon of the web applicaƟon on the top
of any relaƟonal database whose adapter is available in RoR (almost all the most used nowadays). Also
typical CRUD (Create, Read, Update, and Delete) acƟons will be defined using basic RoR generators and
these features will also support the problem definiƟon, driving the choice to the well suited solving tech-
niques. The resources management will be implemented following the RepresentaƟonal State Transfer
(REST) style available with RoR plaƞorm. REST “philosophy” defines a series of constraints imposed upon
the interacƟon between system components. One of the benefits of REST is that it scales relaƟvely well for
big systems, like a wide network, encouraging the use of stable, long-lived idenƟfiers (URIs). The REST style
in Rails is represented by methods to define resources in the rouƟng system, designed to create a parƟc-
ular style, order and logic on your controllers and, at the end, on the way the applicaƟon interfaces with
external world. REST support enhances the advantages of a database-backed applicaƟon and closely used
with CRUD acƟons will widely improve the organizaƟon of the framework architecture and the exploiƟng
of the integrated resources within such environment.
The back-end and a skeleton for the Graphic User Interface (GUI) will be then generated exploiƟng the in-
frastructures provided by RoR. The hard-coded part will be mainly the user interface (views), based mainly
on web pages, with forms, tables, generated SVGs (Scalable Vector Graphics) and potenƟally also 3D mod-
els navigaƟon. Even this part will be built to be compliant with mulƟple meta-model classes and robust to
their changes.
Dedicated interfaces could also be developed for compaƟbility with external models (i.e. generic xml mod-
els, such as ECSS-E-TM-10-23 and ECSS-E-TM-10-25 draŌedmodels, CAD-derived properƟes files andMod-
elica code for example). This acƟvity will strictly depend on the target capabiliƟes that will be proposed in
the first part of the work since it will lead to a secondary objecƟve with respect to the main one. The use
of a web applicaƟon for the mulƟdiscipline problem definiƟon will allow the concurrent access of different
users, able to navigate according to defined filters and to access to simulaƟon services from remote. A
cross-plaƞorm web applicaƟon will help to coordinate the available compuƟng resources, making a beƩer
use of the high-fidelity methods and tools already developed.
The developed plaƞormwill have the advantage to provide synchronous funcƟonaliƟes, showing for exam-
ple live updates, reducing the error-prone process related to data and informaƟon consistency. The same
web service will also provide the possibility to eventually manage asynchronous processes. This need will
be further invesƟgated in the first part of the conceptual work and it will depend on the features that shall
be implemented. Whilst data consistency is guaranteed by validaƟon methods defined in the model ele-
ments (derived by themeta-model), the major issues will be related to generated data items and problems
seƫngs.
The generaƟon of standard formats referring to the informaƟon collected within the PSE will allow the
communicaƟon with external tools, exporƟng for example the data required for a specific simulaƟon. The
samemechanismwill be used to import informaƟon in the proposed framework, exchanging data between
different environments and improving the collaboraƟon among the engineering disciplines involved in a
project. The implemented frameworkwill provide for example exporƟng/imporƟng funcƟonaliƟes through
XML or JASON extension on a web based plaƞorm. ExisƟng libraries can be integrated to manage other
standard file formats with liƩle modificaƟon of the main applicaƟon code.
The Domain Specific Languages (DSLs) currently developed for space domain are conceived mainly to be
scalable, enhancing the capability to be used at different industrial levels by different disciplines in a col-
laboraƟvemanner [68]. This approach can also be used to properly define a library of categories enabling a
well-established semanƟcs of data items. Some research iniƟaƟves are addressed towards the evaluaƟon
of such methodologies. ESA OCDT for example is one of such acƟviƟes (as already introduced) and its main
applicaƟon area is represented by the preliminary development phases. Another interesƟng ESA study is
represented by MARVELS which has been defined to analyze the applicaƟon of such MBSE methodologies
within the verificaƟon process. In this case the main focus is represented by the invesƟgaƟon of scalability
issues with respect to customer-supplier relaƟonships through also different verificaƟon levels and stages.
Another challenging applicaƟon field is represented by the formalizaƟon about the validaƟon of require-

167

ments in various engineering domains, involving mechanical and thermal environments as also avionics
and funcƟonal ones.
In this work the framework has been developed paying parƟcular aƩenƟon on the capability tomonitor the
development process through a different layers of role-based, discipline-based and ownership-based rules
that regulated the relaƟonships between the involved resources. In this manner it is possible to clearly
define the acƟons the single user can do and data available, providing also a custom perspecƟve on the
basis of the role and domain associated with the user access credenƟals for example. Such infrastructure
can potenƟally be integrated with other tools, paving the way for the definiƟon of not a single and mulƟ-
domain applicaƟon but of a group of interoperable applicaƟons. Such objecƟve is pursued through the
definiƟon of common concepts and related interfaces.
Model persistence related to the current work has not been achieved through XMI standard as other sim-
ilar framework implement but other soluƟons have been considered. XMI standard is in fact not properly
suited for the proposed approach while web technology seems to be a promising soluƟon for the man-
agement complex models in a collaboraƟve way. A well-formalized development can also help to reduce
the efforts required for the maintenance and upgrading of the proposed infrastructure thanks also to large
communiƟes that work and conƟnuously enhance such technologies. Web applicaƟons can be generated
fromconceptualmodels through Ruby onRails and related generators, ensuring the persistence of informa-
Ɵon on databases where data structure is based on code migraƟon of conceptual classes. Object-oriented
scripƟng languages (as Ruby or Python) are also employed to interrogate databases and other resources
with the final aim to get the informaƟon needed.
Other research iniƟaƟves as EC/FP-7 Use-it-Wisely project are assessing the capability to use simulaƟons
(parƟally generated from system model) as an addiƟonal service to be provided to potenƟal customers,
to elicit and to validate the requirements in product-services infrastructure. One of the main important
target of all such research iniƟaƟves is also represented by the demonstraƟon of the cost-effecƟveness of
each one proposed MBSE methodology.
Moreover the current work is also interested in the definiƟon of some user-friendly methods (mainly web-
based) to map or transform concepts, libraries and formats, allowing non-specialist users (i.e. people with
low or no programming background) to have benefit from transformaƟons and interfacing for example.

7.2 Proposed framework

The development of features directly related to the advanced phases of a complex system and designed
in the context of a model-based philosophy has been conceived alongside a wider infrastructure. The eval-
uaƟon of amanagement strategy for opƟons and alternaƟves as well as the integraƟon ofMDO techniques
within a model-based architecture belong in fact to the broader context of DEVICE project.

7.2.1 IntroducƟon on DEVICE infrastructure

DEVICE stands for Distributed Environment for Virtual Integrated CollaboraƟve Engineering and the
main aim of this research acƟvity is represented by the invesƟgaƟon of model based methodologies sup-
ported by the development of web-based technologies. In parƟcular this project has been developed on
internal research acƟvity at Thales Alenia Space Italia (COSE Centre) and the present work reports the re-
sults related to the interfacing ofmulƟdisciplinary design opƟmizaƟon techniqueswithin such a framework.
DEVICE includes different research iniƟaƟves that are all addressed to the evaluaƟon of the benefits of a
model-based design and analysis process. One of the main interesƟng feature of such architecture is rep-
resented by the web-based tool for the management of system model. This study has been characterized
by different phases with the final objecƟve to invesƟgate the feasibility of integraƟon between web-based
services and MDO solving procedures. In parƟcular detailed descripƟons of the acƟviƟes that have done
during this survey are presented in the following secƟons.
DEVICE project includes different research topics as previously introduced but all are conceived to be in-
tegrated in a common framework where all the instruments communicate between each other. The main

168

work behind this acƟvity is represented by the development of ameta-model paƩern for the proper defini-
Ɵon of data structure. This allows to beƩer organize the data exchange process, ensuring that the formats
available are well established between the various applicaƟons. The main project considers also the defi-
niƟon of interface elements for the connecƟon with Virtual Reality environment with the target to include
such a technology in the design process. The advantages of such integraƟon is directly idenƟfiable both in
the prototyping process and in the decision making acƟviƟes. The support provided can strongly reduce
the Ɵme related to the evaluaƟon of design configuraƟons alternaƟves that are oŌen difficult to manage
and invesƟgate in the context of team working sessions.
DEVICE includes moreover other adapters and tools that have the main scope to improve the actual design
approach, introducing progressively model-based applicaƟons in the context of the tradiƟonal methodol-
ogy.
One of the current prototypes developed within DEVICE infrastructure is represented by the Web Editor.
The Web Editor is a web-based environment developed by COSE Centre in Thales Alenia Space. A com-
mon meta-model was used as reference for modelling acƟviƟes in the workpackage of different research
projects, taking into account the current state-of-the-art in internaƟonal standardizaƟon acƟviƟes (e.g.
ECSS-E-TM-10-23A), as well as Thales Alenia Space Italia and Politecnico di Torino current studies. Using a
conceptual meta-model gives the possibility to standardize how informaƟon is exchanged at System Engi-
neering level, enabling the actuaƟon of a MBSE architecture and providing a semanƟc definiƟon of data.
Data-exchange formats currently used (standards and proprietary) are not replaced, but it is given the pos-
sibility to organize them with a link to the specific element, behaviour or acƟvity related to the system
under definiƟon.
The Web Editor meta-model allows the generaƟon of different system model views for the end-user, and
also during the design and definiƟon process. These views are:

• Topological Design

• FuncƟonal Design

• OperaƟonal Design

• Requirement DefiniƟon

• VerificaƟon DefiniƟon

• AIT (Assembly IntegraƟon and Test acƟviƟes) and OperaƟonal AcƟviƟes DefiniƟon

• Other more specific (the Discipline-Analysis views)

7.3 Analysis

The analysis of the possible soluƟons related to the integraƟon of model-based methodologies in the
advanced phases of a project is fundamental to idenƟfy the most promising choice. In this case analysis
refers to the clear understanding of the features to be considered within the framework before the next
phases of design and implementaƟon proceed. In parƟcular it is important to rightly choice the soluƟon
that is beƩer suited for the final aim of support the engineering acƟviƟes in the advanced phases of a
project.

The framework under development is conceived also to test the possible support capability in the con-
text of collaboraƟve environment, considering the potenƟal benefits that can be introduced from a siz-
ing/design perspecƟve. The same environment can be defined with the objecƟve to final provide interest-
ing funcƟonality for the management of system alternaƟve configuraƟons or design variables. All these
elements can be modeled and properly integrated in the meta-model under development, paving the way
to a formal definiƟon for the design and sizing procedures/processes.

169

7.3.1 Scenarios definiƟon and funcƟonal analysis

Other iniƟaƟves related to the evaluaƟon ofMBSEmethodologywithin the design process can be found
in the literature. For example [64] provides interesƟng results about the analysis of different model-based
approaches for the management of the informaƟon in the early phases of product development, starƟng
from the requirements analysis to the funcƟonal decomposiƟon and allocaƟon. In parƟcular the main ob-
jecƟve of this study is represented by a survey on different approaches for the design phases related to
funcƟonal decomposiƟon and funcƟon allocaƟon.
Model-base design approach can be defined starƟng with different approaches that manage the informa-
Ɵon available from the customer needs. In parƟcular in the study [64] twomethods are analysed. They are
quite similar but enhance different ways to understand and decompose system requirements. The study
available shows both this ways and underline the characterisƟcs of the related features and capabiliƟes.
The two presented design approaches are conceptually adopted for a clear understanding of stakeholders
requirements and relaƟonships between them and the system funcƟonality. The first one is idenƟfied as
Usage-driven design approach while the second one is called Feature-driven design approach.
In the case of Usage-driven design approach the first phase is represented by the definiƟon of the scenarios
where the system of interest is used in an operaƟonal context. Secondly the following acƟon is represented
by the consolidaƟon of top-level funcƟons from scenarios and allocaƟon of them to the proper elements.
Then the top-level funcƟons are elaborated with internal scenarios that idenƟfy sub-funcƟons (proceeding
through a decomposiƟon acƟvity iteraƟng from the top-level elements). Finally the idenƟfied sub-funcƟons
are allocated to logical sub-systems.
The Feature-driven design approach starts instead from the specificaƟon of top-level funcƟons (idenƟfying
the features directly related to the funcƟons of system of interest) and the following allocaƟon to system of
interest. Once this operaƟon has ended the funcƟons are decomposed into sub-funcƟons for the system
of interest. Finally the sub-funcƟons classified are then allocated to logical sub-systems. The last phase is
common to both the approaches.
The final result is in both case the allocaƟon of sub-funcƟons to logical sub-systems but starƟng from differ-
ent iniƟal set of informaƟon. This conceptual workflow of acƟviƟes proceed iteraƟvely during the project
development, involving different levels of details.
Generally a usage-driven approach ensures that funcƟonal requirements are traced directly to the user’s
funcƟonal requirements, allowing for a beƩer consistency with the user’s needs. The feature-driven ap-
proach is the tradiƟonally used one and in this case the features, funcƟons and capabiliƟes are idenƟfied
for a system by domain specialist or/and engineers consulƟng the end-users. From this viewpoint the fea-
tures idenƟfy those funcƟons that the system have to perform while the usage can be considered as the
integraƟon of system features applied in a parƟcular context to saƟsfy the user’s requirements. This survey
shows as the analysed methodologies can help to clearly define the system funcƟonality within a model-
based context. StarƟng from the scenarios that describe the system desired behaviour (for different usage
condiƟons) the top-level funcƟons are consolidated and then the lower level sub-funcƟons are allocated
once the system of interest components of the higher level have been idenƟfied andmodelled. The usage-
driven methodology starts from the scenarios idenƟfied as black-box structures, associated in turn to a
parƟcular system components or subsystem that can however accomplish to other funcƟons. The internal
sub-funcƟons are then idenƟfied and the allocated sub-systems are then studied as white-box structures.
The same process is iteraƟvely applied to the design of . A conceptual image is reported in figure 7.1 and
is referred to [64].

The same study has also invesƟgated the applicaƟon of parametric diagrams for the evaluaƟon of Mea-
sure of EffecƟveness (MOE) and Measure of Performance (MOP) indexes. This concept provides useful
instrument to perform a well consistent definiƟon of the quanƟƟes involved in the evaluaƟon of system
performances, reducing the misunderstandings and error-prone process of data exchange since a unified
representaƟon of the informaƟon is implemented. The architectural design follows the definiƟon available
from the ISO-152288 standard. System complexity is managed through the definiƟon of three main level
of abstracƟon, starƟng from funcƟonal architecture (directly related to the customer requirements), then
passing through the logical architecture and finally considering the physical architecture. The last level

170

Figure 7.1: How scenarios define and process the system under evaluaƟon [64].

171

Figure 7.2: Example of conceptual allocaƟon between funcƟons and physical systems.

(physical layer) is closer to real-world level of details. The different levels of abstracƟon are introduced
to help the management of system complexity. As the development process proceeds system definiƟon
becomes less abstract and concurrently the volume of design data increase.
The disƟncƟon between these tree levels of abstracƟon is parƟcularly important. From the same funcƟon
different logical system can be conceived and each one can in turn be allocated to various physical system.
An example of this conceptual definiƟon is reported in figure 7.2.

7.3.2 AssumpƟons and development consideraƟons

The development process of a system can oŌen be characterized by assumpƟons related to certain
quanƟƟes as properƟes or operaƟonal condiƟons for example. This approach is parƟcularly highlighted
during the early design phases but also in the more detailed ones it is possible to introduce some assump-
Ɵonswhen for example parƟcular elements or enƟƟes are not exactly known. AssumpƟons can oŌen affect
design choices since they can also be related to customer needs and requirements. Poor design informaƟon
from customer require the introducƟon of some hypotheses about system alternaƟves and configuraƟon
soluƟons. This featuremust be properlymanaged also from conceptual point of view tomodel the possible
scenarios. In the developed data-model this concepts has been considered and Design Variable class al-
lows to manage also this situaƟon. This object allows to model for example a certain range of values (such
as conƟnuous range or an enumeraƟon) related to certain properƟes within the modeling environment.
In this manner it is possible to take into account for certain quanƟƟes not exactly known, providing useful
elements to formalize assumpƟons. This approach allows an enhanced tracing of the design hypotheses
made during the development, monitoring in a more consistent way the decision making process.
The Design Variable and the opƟons management concepts were proposed with the current model-based
methodology and their characterisƟcs havebeen assessed through the implementaƟonof addiƟonal frame-
work funcƟonaliƟes. The features directly related to these objects can be developed in different manners
considering various alternaƟve approaches. An example of the possible integraƟon is represented in figure
7.3.

In this case a specific object is directly related with two group of elements. The first one contains all the
opƟonal objects that can replace the linked element while the second one includes all the design variables
belonging to it. A series of opƟonal objects requires also the proper definiƟon of all the interfaces that
allow the connecƟon with the other elements that can be present in the same parent context (container
element). At this level it is important to understand howwide is the design freedom since different difficul-
Ɵes can arise from the chosen approach. For example new interfaces is the only addiƟonal elements that
must be defined if the alternaƟve objects have the same interface port as the nominal one (the element
they are linked with). In this case the various specific interfaces (basically the object connecƟng two ports)

172

Figure 7.3: OpƟons management and design variables integraƟon.

can be managed through the use of something like acƟve design layers that show which connecƟons are
used on the basis of selected nominal element. The management of alternaƟve objects that do not have
the same number of interface ports with respect to the nominal one can become dangerously complex to
handle. In this case the relaƟonships between the involved objects can be difficult to trace and properly
control. The opƟon object defined in the current work has been conceived to model design alternaƟves (in
parƟcular also black-box enƟƟes) referring to the same topological architecture for the element that con-
tains the nominal one (and all the objects related with it). The definiƟon of wrapping object can be used in
the case themain topological architecture (related to the parent element) is different from that associated
to the nominal one. Slight local variaƟons from the nominal architecture can bemanaged through another
level of definiƟon that in the end must ensure the same number and characterisƟcs of interface ports. A
simple example of these concepts is reported in figure 7.4. From this viewpoint a new Element DefiniƟon
must be defined from scratch when a specific alternaƟve object requires a complete change of the overall
architecture. The choice between these two alternaƟve approaches strictly depends on the design prob-
lem and its specific needs. Some features can help the creaƟon of the new Element DefiniƟon which is
required when the choice of some contained objects imply the introducƟon of a new architecture. In this
case some of the object properƟes can be duplicated from the previous defined element and then all the
changes can be done from a starƟng point which has already some instanƟated characterisƟcs. The same
consideraƟons can be done when the Element DefiniƟon requires the introducƟon or removing for exam-
ple of external interface ports due to the definiƟon of slightly similar internal architectures. Such situaƟon
coincides again with the redefiniƟon of a new Element DefiniƟon.
All the previous consideraƟons can also be valid in the case the management of alternaƟve soluƟons in-
volve the Interface Usage objects. In parƟcular the data structure foresees also the possibility to associate
a set of alternaƟve Element Usages to the nominal Interface Usage. This scenario has been conceived to
model the situaƟons where the same architecture and the same Element Usage objects can be connected
through different Interface Usages but valid anyway. The interface ports are the same since the Element
Usages are the same and in this situaƟon a set of different connecƟng interfaces with the compaƟble in-
terface ends could exist. The traceability between the various Element Usages which are alternaƟves to a

173

Figure 7.4: Management example of slight different topological architecture.

nominal one and the related Interface Usages (that are require for the connecƟon with the other elements
already present in the nominal architecture) is ensured by the fact that the single Interface Usage is bound
to a certain Element Usage. It will depend on the characterisƟcs of this laƩer (if nominal or not) if the
related Interface Usage belongs or not to the current design layout.

The main idea is to approach design problem with an object oriented methodology as much as pos-
sible. As previously introduced if an architecture is parƟcularly different from an alternaƟve one then a
new Element DefiniƟon must be defined, starƟng for example from quite similar object. In this way the
implementaƟon Ɵme required to build the new element is however reduced. When the architecture is
not so different also changing various alternaƟves for the contained elements then the same object and
related architecture can be modeled using alternaƟve Element Usages.
The management of opƟons is provided though the implementaƟon of a dedicated secƟon of Element
DefiniƟon workspace. The same secƟon is used for the definiƟon of both the alternaƟve groups and the
objects declared as design variables. As previously introduced such integraƟon allow to clearly separate the
modeling environment for the current design baseline from the variables that can be used to set mulƟdis-
ciplinary surveys. There are no limitaƟons on the possibility to map the object classified as design variables
with some components properƟes but it is important to keep both these concepts on two separate layers.
In this way it is however possible to realize mulƟdisciplinary analyses but without the risk to erroneously
merge the data available. The design acƟviƟes can run through the introducƟon of data and parameters
from users while mulƟ-domains surveys provide independent funcƟonaliƟes concurrently to the on-going
development process.
The alternaƟves to a contained Element Usage of a certain Element DefiniƟon are managed through the
conceptual infrastructure previously introduced. Such approach allows to theoreƟcally define a layered
representaƟon for the possible opƟons that must be evaluated at a parƟcular stage of the development
phase. The alternaƟve objects can be easily traced to their connecƟons with the other contained elements
for the same Element DefiniƟon. In the same way the interfaces belonging to the nominal configuraƟon
(through the nominal Element Usages) can be disƟnguished from those that are instead related to the
alternaƟve Element Usages. A conceptual example for idenƟcal architectures with different alternaƟve
soluƟons is reported in figure 7.5.

The interfaces that connect the alternaƟve Element Usage with the other objects contained within
the same Element DefiniƟon can be easily idenƟfied since they are directly mapped with the Element Us-
ages itself. The same approach allows also the management of mulƟple nominal Element Usages (with
their alternaƟves) under the same Element DefiniƟon. The connecƟons between the objects belonging
to the same architecture can be uniquely idenƟfied from the interfaced elements. Such an infrastructure
paves the way for a consistent monitoring of the alternaƟves configuraƟon tree, providing useful and well-
formalized informaƟon from which all the possible combinaƟons for the considered architecture can be
invesƟgated.
The elements belonging to the class CDVariables and referring to design variables are defined through a
user form that allows to clearly provide ranges, nominal values and numeric types, following the needs of
a parƟcular design specificaƟon for example. These informaƟon are stored and are then used in the case

174

Figure 7.5: Conceptual overview of the layered representaƟon for alternaƟve element Usages and their
connecƟons.

the set-up of a mulƟdisciplinary analysis requires such variables as input data. Such design variables are
then directly associated to an Element DefiniƟon as also the Element Usages that are linked to opƟonal
elements. These relaƟonships allows to idenƟfy the objects that can be used for a mulƟdisciplinary design
analysis on the basis of the selected Element DefiniƟon.
The previous approach can be considered in the case the alternaƟve object follows basically the same phys-
ical architecture. In parƟcular such situaƟon can be faced through the definiƟon of Element Usages with
the same structure of the nominal one but themanagement of other soluƟon with quite different architec-
ture become difficult to handle. In parƟcular a different conceptual approach will be considered and the
previous situaƟon can be equivalently represented as parƟcular case of such new strategy. The previous
consideraƟons conƟnue to be valid while the following ones are used at the implementaƟon level of the
framework. The main concept used to model such situaƟons is represented by Design OpƟon class. This
element is conceived to be associatedwith a set of items that represent the nominal ones, referring directly
to the baseline of the project. The set of items refers to a group of elements that cannot be considered
separately for the current modeling level and it can include interfaces, mulƟple different components or
other equivalent objects. At the same Ɵme the Design OpƟon class is also related to a collecƟon of items
that represent the alternaƟve to the nominal set. In this manner at each design opƟon is possible to link
both the nominal group of items and the alternaƟve one. It is however possible to idenƟfy the alternaƟves
that refer to the same nominal set since such informaƟon can be built from the Design OpƟon class. The
comparison among all Design OpƟon objects that belong to a certain item allows to clearly isolate differ-
ent groups of set of items that are linked to the same nominal elements. In this way the alternaƟve design
domains can be defined on the basis of such groups.
Design OpƟon class can also be used to equivalently map a group of items belonging to an opƟonal set (the
previous disƟncƟon between opƟonal item and alternaƟve item is sƟll valid).
This approach allows the definiƟon of a more generic structure for the representaƟon of system opƟons
and alternaƟves, enabling the capability to capture more complex situaƟons. It can however be used to
manage more simple scenarios where there is only a liƩle change in component typology but the architec-
ture remains the same.
A conceptual example of the possible design problems that can be managed with such strategy is reported
in the following figure 7.6. It shows how a set of nominal items (i.e. belonging to the current baseline of
the project) can be associated to a group of different design opƟons which singularly represent alternaƟve
soluƟons. Items belonging to the same level of detail can be represented without the introducƟon of a
dummy element that should have ideally included the related objects within it.

Complex scenarios can be considered and taken into account since the modeling approach is more
generic and enable the designer to monitor design status much more clearly. In this way it is possible to
check the consistency of the possible design opƟons that have been modeled, implemenƟng for example
specific rouƟnes tomonitor interfaces correctness. In parƟcular such approach allows ideally to keep under
control possible overlapping design opƟons sets since the current strategy do not limit the possibility to
consider parƟally overlapping design soluƟons. It is possible that some items that are related to the nom-
inal design are also parƟally linked with another design opƟon together with other objects. Such situaƟon

175

Figure 7.6: Conceptual example related to the management of alternaƟve design soluƟons.

Figure 7.7: Conceptual example related to the management of opƟonal design items.

can occur also when the parent object contains design opƟons sets that are quite separated between each
other but that contain a liƩle number of common items. Such method lays however the foundaƟon for the
generaƟon and management of alternaƟves tree. In figure 7.7 is instead represented a simple case where
the design opƟon object is used to handle a group of opƟonal set of items. They are basically independent
between each others as can be derived from the definiƟon previously introduced. In this manner they can
be present at the same topology level and the correctness of their simultaneous presencemust be checked
through other modeling uƟliƟes.

The figure above shows the relaƟonship between a parent object and the contained opƟonal set of
items. In parƟcular the design soluƟons that result from the possible combinaƟons are reported in figure
7.8 for the sake of clarity.

Another important aspect related to themanagement of design alternaƟves and opƟons is represented
by the capability to formalize the possible presence of nested structures. SomeopƟonal collecƟons of items
can in fact contain in turn alternaƟve elements that must be properly considered to avoid consistency
problems.

7.4 Design and implementaƟon

7.4.1 IntroducƟon

This secƟon provides more details about the actual design and implementaƟon of the proposed in-
frastructure. A brief overview of the considered languages as well as the development plaƞorms is first
introduced, describing the main features of some valid alternaƟves. AŌer this iniƟal invesƟgaƟon the ac-

176

Figure 7.8: CombinaƟon of the opƟonal design soluƟons that come out from the previous example.

177

tual implementaƟon is done through those assessed as themost suitable. In parƟcular the choice has been
moƟvated by different factors but other approach and technologies can also be considered. In the current
work the final aim is in fact mainly addressed towards the evaluaƟon and assessment about the validity
of the core meta-model. The enhancements of the developed infrastructure can however be pursued and
invesƟgated once the base concepts and their relaƟons are demonstrated.
The implementaƟon of the web-based applicaƟon has been done with Ruby on Rails environment. This
choice has been animated by the wide availability of libraries and funcƟonaliƟes that support the integra-
Ɵon and development of this kind of plaƞorm. The provided elements drive the definiƟon of the objects
required for the implementaƟon of the applicaƟon with liƩle effort with respect to other languages. In
this manner it is possible to develop a demonstrator for certain methodologies in less Ɵme with respect
to other choices. In parƟcular the provided instruments allow to create and clearly define the back-end
structures without a direct coding by the user since this process is managed separately by proper funcƟons.
In this way the developer does not necessarily have to know all the features of a web-based architecture
for a certain applicaƟon but can work mainly on other aspects as the correct definiƟon of the relaƟonships
between the models that are then integrated in the database schema. In the same manner more Ɵme is
leŌ for the creaƟon of visualizaƟon and interacƟon uƟliƟes with respect to the client-side interface.
Ruby on Rails offers also some interesƟng capabiliƟes for the management of database informaƟon during
the development phase. This feature allows to test different implementaƟon alternaƟves and choices with
minor code changes. In this way it is possible to quickly evaluate different soluƟons with the final aim to
idenƟfy the configuraƟon that show beƩer behavior. The implemented framework has been developed
mainly to assess the feasibility of such approach but some performances improvements can be obtained
with the implementaƟon of other languages on different plaƞorms.
In parƟcular the implementaƟon of Ruby on Rails web applicaƟon has also been developed following the
main features of AJAX philosophy. RoR environment allows in fact for a well-organized integraƟon of
JavaScript, CoffeeScript and jQuery funcƟonaliƟes, providing useful instruments for the server side com-
municaƟon. These elements are mainly introduced to improve the performances and navigability charac-
terisƟcs of the developed framework. In this way the server is interrogated only for the strictly required
Ɵmes, avoiding the reloading of page for the same objects that have already been loaded. Some of the
requests and responses between server and client has been based on JASON exchange format, exploiƟng
a lighter communicaƟon for the available resources. The same result can be accomplished through the use
of other exchange formats as for example XML files. The previously introduced languages in the context of
AJAX paradigm are briefly described in the following lines.
jQuery is mainly used to define well defined calling for the server, avoiding the need to refresh all the page.
JavaScript is instead used to run some executable funcƟonality on client side, avoiding the need to call the
server for something that can also be accomplished without its direct intervenƟon. In this way it is possible
to create a more dynamic page navigaƟon, reducing the Ɵme delays related to server interacƟon. Coffee-
Script has the same funcƟon of JavaScript but allows a beƩer code organizaƟon through a more syntheƟc
definiƟon. JavaScript has also been used to implement those funcƟonaliƟes related to the informaƟon ex-
port, like for example the generaƟon of images from the diagrams defined during the modeling acƟviƟes
(through the methods and event management provided by the previously introduced languages).

7.4.2 Conceptual overview

The definiƟon of the conceptual model usedwithin this work follows the current proposedmeta-model
for the management and formalizaƟon of the engineering data informaƟon. The conceptual classes in-
troduced have been considered concurrently with an analysis of the possible integraƟon with the design
development process. In this phase it is important not only to consider the potenƟal benefits of a certain
model-based approach for the interfacing of the design and analysis methodologies but also to evaluate an
effecƟve integraƟon with the actual modeling techniques. The main scope is represented not only by the
evaluaƟon of a model-based methodology for the management of the informaƟon related to the design
and development process but also by a clear understanding of the potenƟal improvements that can be
gained by all the people that are involved in the system design. The objecƟve is to evaluate the feasibility

178

Figure 7.9: Example storing strategy for the management of project data.

of such an approach through the implementaƟon and improvement of a currently under development col-
laboraƟve tool. This one may not be barely imposed to all the different engineering personaliƟes involved
within a project but the ideal soluƟon is represented by the development of an instrument that can be
accessed and used without parƟcular competencies, avoiding the need to train all the people involved.
On the basis of the previous consideraƟons the integraƟon and implementaƟon of such amethodology has
evolved concurrently with the study and analysis of the current paƩern for the storing andmanagement of
all the informaƟon related to a certain project. This phase is fundamental for the right understanding about
the actual technologies used to manage informaƟon on system model and how to integrate the proposed
methodology with this ones. The generaƟon of a theoreƟcally perfect tool that is not well suited with the
integraƟon of the considered technologies is not a good soluƟon. A study on the actual used technologies
and the conceptual definiƟon of the proposed methodology need to be considered concurrently.
A very simple representaƟon of the storing paƩern for the proposed approach is reported in figure 7.9.
This figure shows a preliminary and indicaƟve architecture, introducing the main environments that are
described with more details in the following lines.

The previous figure represents syntheƟcally how the model repositories are considered for the defini-
Ɵon of the proposed methodology. The system model is stored in a central common repository, following
the guidelines of the model-based paradigm. The presented architecture is only a conceptual representa-
Ɵon since the systemmodel repository may be physically represented for example by mulƟple repositories
for redundancy. In the same way the repositories that store the models referring to the domain specific
environments (for instance thermal domain, structural domain, etc…)may be physically idenƟfiable inmul-
Ɵple repository spread over different servers or workstaƟons. The actual architecture is also strictly related
to the people that have to manage the informaƟon and work on the available data. System engineers have
mainly to face with the system model while domain experts (domain specialists) have to work on domain-
specific environments with their related tools. System engineers generally follow a what can be defined
as a top-down process where the system requirements are managed to build the design of the product
while domain experts work oŌen on the definiƟon of simulaƟon and analysis models. The objecƟve of the
analysis and simulaƟon models is substanƟally the verificaƟon of requirements. In this case the definiƟon
process follows what can be defined as a sort of boƩom-up process where the actual models (generally the
most reliable models in the current development phase) are compared to the specificaƟons coming from
the system model to assess the actual development level. In this way it is possible to assess the maturity
of the system with respect to the target configuraƟon and also to discuss about the possible changes that
can be introduced to increase system performances. As the development process proceeds the ideal sit-
uaƟon is represented by the convergence between the target design and current implemented one (this

179

Figure 7.10: Example representaƟon of the possible soluƟon for the management of data among system
engineers and domain specialists.

laƩer one is represented by the increasing fidelity models and also the possible produced elements as the
system goes towards the acceptance phases). The disƟncƟon between the system engineers and domain
specialists (considering the processes and the people involved) is not always so clear and the considered
classes are oŌen merged. The previously consideraƟons must be taken as conceptual guidelines to under-
stand the meaning of the proposed methodology.
The intercommunicaƟons between the various domain-specific models with the central system model are
realized above all through the definiƟon of a standard communicaƟon protocol where the data exchanges
can be provided with ad hoc adapters, depending on the interface to be implemented. A simple and con-
ceptual visualizaƟon of the relaƟonships between the different data repositories is reported in figure 7.10
where also an indicaƟve representaƟon of the people involved are represented. Only one domain specific
environment is visualized for clearness reason but the same idenƟcal connecƟons can be idenƟfied in all
the possible domains involved.

The previous figure represents briefly a conceptual visualizaƟon for the intercommunicaƟon links show-
ing also the main features used for the exchange of informaƟon between all the involved roles. The system
modeling tool may be represented generally by different soluƟons. SysML tool is currently under invesƟga-
Ɵon to understand its capability to model all the possible characterisƟcs of a certain project from different
viewpoints depending on the involved design domains. Other soluƟon may be represented by the devel-
opment of other tools in other languages with similar capabiliƟes as also web-based services that can be
used to define the proposed methodology. In the case of the domain-specific tool the instrument can be
represented by the standard de facto tools used respecƟvely (for example Nastran Patran for the structural
environment).
In the proposed process paƩern for data exchange different communicaƟon rules may be adopted on the
basis of the specific needs for a certain design process. For example the communicaƟon between the do-
main specific repository and systemmodel one is only in one direcƟon and physically implemented through
the use of adapter element. In this case the informaƟon can be extracted from the domain-specific envi-
ronment and loaded within the model system repository without over-wriƟng the already contained data.
The data needed by the domain engineers are gathered from the system modeling tool and the actual
characterisƟcs of this link can be defined on the basis of different needs. For example this connecƟon can
foresee the possibility for the domain engineers to access the informaƟon of only a filtered area depend-
ing on the related credenƟals and also they cannot edit some resources except for instance some form of
annotaƟon (useful for the management of the historical informaƟon changes and consideraƟons).
The proposed modeling methodology theoreƟcally allows the generaƟon and definiƟon of design opƟons

180

(as the design parameters idenƟficaƟon) only for the system engineers only (considering also the domain
system specialists for each domains). This approach does not deny the possibility that the design opƟons
and variables can be proposed and idenƟfied also by the domain specialists. The invesƟgated approach al-
low however the access and modificaƟon of these feature only to the system engineers from a theoreƟcal
point of view. This consideraƟon is however a conceptual definiƟon for a formal characterizaƟon for the
modeling approach but similar and slightly equal process for themodeling prioriƟes can be considered and
assessed.
The main idea is however represented by the possibility to take account for such modificaƟons in order to
maintain a clear view of the overall system project. One of themain advantages of a model-basedmethod-
ology and from this viewpoint also the proposed one is represented by the capability to keep informaƟon
about the traceability of the modeled elements and components.
The data exchanged between domain-specific repository and the system model one can be represented
by file such as models or result files coming from simulaƟons. The main idea is also represented by the
possibility to load some preliminary models to directly allow early analyses on the basis of simple mod-
els that can run during collaboraƟve sessions. This capability can be obtained binding this domain-specific
modelswithin the systemmodel repository (for examplewithin a file systemdirectories on the same server-
machine or however on the same conceptual system model repository however). In this way may be pos-
sible to disƟnguish between the current data available (stored for example in a database file/files) and the
model (also if simple) related to the system model. These objects can be stored as resources for a certain
element loaded and defined within the database file. This technical approach is related to the files di-
mension since a parƟcularly big file can be difficult to store in the systemmodel repository with potenƟally
other big files coming from other disciplines. A right balance is represented by the possibility to store some
simple and light models within the same systemmodel repository to provide a useful support for early and
collaboraƟve sessions. This funcƟonality can be useful during the preliminary design phases where mul-
Ɵple design configuraƟons are analyzed to understand the feasibility of a parƟcular soluƟon. The models
generated for a parƟcular analysis can also be traced as resources through the definiƟon of the related file
system path to the related domain-specific repository. The same components as modeled within the sys-
tem model repository can be generally related to different discipline-specific environments, each of which
can be characterized by different models (always for the same component), each of which is related to a
parƟcular analysis to be realized or fidelity, depending on the development level and progresses during
the design development.
The idea is to conceptually relate the representaƟve model of some parƟcular object to mulƟple analysis
models, coming for example from different disciplines. In the case of the same discipline different models
can be built due to the different analyses that such a models have to be defined for. This concept is mainly
related and represented by the class of Element Occurrence that has been introduced with the concept
coming from ECSS standard. The idea is to relate the same element DefiniƟon to mulƟple analyses models
that refer to the same conceptual class.
One interesƟng feature for the previous consideraƟons is represented by the possibility to group the gener-
ated elements within a library repository for reusability purposes. In this way the elements that have been
created for other purpose can be reused within another context and project with reduced modificaƟons
on the already available elements.
The previous concepts may be extended on the basis of the actual implementaƟon, taking into account
the possible soluƟons with respect to the realizaƟon of a collaboraƟve environment. The concepts con-
sidered unƟl now for the implementaƟon of a collaboraƟve environment can in fact be actually integrated
through different quite similar soluƟons. In parƟcular various alternaƟves have been conceptually consid-
ered but the target of the current work is mainly addressed towards the invesƟgaƟon of the methodology
and the data structure. The proposed data structure is evaluated to understand if such approach allows the
management of the design and analysis scenarios that have been considered as reference cases. For this
reason only one alternaƟve of the possible architectures has been actually implemented. Other soluƟons
can however be approached on the basis of specific needs and available resources.
The considered infrastructures are conceptually reported in the following figures and they are the result
of our consideraƟons but are not necessarily the only possible opƟons. Each soluƟon has its own features,

181

Figure 7.11: Conceptual overview of the infrastructure for the collaboraƟve framework.

benefits and drawbacks with respect to each other.

The configuraƟon above (7.11) considers the presence of a web-based plaƞorm for the management
of system model informaƟon, directly accessed by the System Engineering team. Such applicaƟon is how-
ever conceived to provide informaƟon to all the involved domains, enhancing the collaboraƟon and design
coordinaƟon (workflow scheduling, data consistency and sharing, etc.). Other web-based plaƞorm can be
considered to support data and models coming directly from analysis tools for each domain (structural,
thermal, etc.).
These web-services are used to manage analysis models generated from disciplines-specific tools. The in-
formaƟon created and collected in this way from different environments can then be processed on server
side to be shared with a common system engineering plaƞorm. Each user belonging to specific domain
uses the tools already validated and available for the specific analysis environment. They store the infor-
maƟon and files on their local machines (where they also work for the current baseline data) while files and
informaƟon to be shared can be uploaded or edited through dedicated web tools. Each user can access
informaƟon coming from other domains or users on the basis of his/her role within a specific project. All
such data are mainly provided through HPPT protocol, suing JSON or XML format for example. The web
applicaƟon that is directly used to manage system engineering data is conceived to potenƟally communi-
cate with the other domain specific plaƞorm, reducing the Ɵme spent on data exchange in a collaboraƟve
environment. In this way it is also enhanced the capability to monitor the consistency of exchanged in-
formaƟon, with the possibility to parƟally automate the model transformaƟon process through proper
developed rouƟnes. The server machines reported in the graphical representaƟons are the physical lo-
caƟon of the web-based applicaƟons and the related database files. They can however be associated to
file-system resources to store all the informaƟon and more properly those files that cannot be directly up-

182

Figure 7.12: Conceptual overview of the infrastructure for the collaboraƟve framework.

loaded within database files (as for example images, text files, 3D models, etc.) but that cover a key-role
for overall web-services (a 3D model can be used in fact to provide some visualizaƟon capability through
browser interfaces, for example loading .wrl models). In this case such resources not necessarily must be
placed on the same physical machines that are hosƟng the web-services but can also be stored on a file-
system on an accessible network (in the case for example the required files are place physically on another
machine). These last observaƟons are valid also for the next architecture types.
The configuraƟon discussed first requires the definiƟon and implementaƟon of all the involved web-based
plaƞorms for the various domains. The management capabiliƟes required to process the files coming from
different sources (different analysis and modeling environments) are quite similar across each discipline.
The formats of the elaborated files will be different (depending on the related modeling and analysis tools)
but the processing acƟviƟes performed on them are the same. Considering such aspect the web-plaƞorms
that handle the files coming from the various disciplines can be ideally unified in one framework, maintain-
ing however a dedicated applicaƟon for the system engineering domain. From these observaƟons another
conceptual architecture can also be considered. The related representaƟon is reported in figure 7.12.

This configuraƟon shows an architecture type quite similar to the previous one. The concepts intro-
duced above are the same for this kind of infrastructure. The main difference is due to the fact that the
web-plaƞorm for the management of domain specific resources is the same for each discipline excluding
the System Engineering one. Dataflow among the various actors is however based on HTTP protocol and
XML or JSON formats. Other file extension as the STEP one is however used within a specific domain to ex-
change data with the web-based plaƞorm for example. Processing uƟliƟes can be properly set to manage
the files coming from different domains, exploiƟng the STEP file format to formalize the data contained
within a parƟcular model. Following this standard the elaboraƟon of the informaƟon available within a
certain file can be beƩer captured, processed and stored in a consistent and formal way.
As in the previous configuraƟon one of the main ideas of such web-services integraƟon is also represented
by the fact that some informaƟon can potenƟally be requested by the web-plaƞorm of System Engineering
domain, calling directly the web applicaƟon that manage the files of the various domains.

183

Figure 7.13: Conceptual overview of the infrastructure for the collaboraƟve framework.

The disƟncƟon between the web-service related to the System Engineering domain and the other that
manage the remaining disciplines is basically done to beƩer distribute the available resources. This solu-
Ɵon requires however the implementaƟon of two disƟnct web-based tool for the two different purposes.
From this viewpoint a simple implementaƟon can be achieved through the use of a unique web-based plat-
form, for the acƟviƟes directly related to the System Engineering domain as well as for the management of
files coming frommodeling and analysis domain-specific tools. In this way the capabiliƟes will be provided
by the same service while the resources that need to be stored on the file-system (images, text files, 3D
models, etc.) must be placed where the applicaƟon has access capabiliƟes (for example the same company
network). A conceptual outline for such architecture is represented in figure 7.13.

In this configuraƟon the overall plaƞorm is implemented on the samemachine, providing the funcƟon-
aliƟes of all the involved domains. The framework is basically conceived to support the acƟviƟes directly
related to System Engineering domain while the other domains are managed in a different manner. In par-
Ɵcular themain part of modeling and analysis acƟviƟes of these domains is managedwithin each discipline
environment through dedicated tools. Only a filtered set of data are instead processed to be shared, com-
pared and visualized as system model data. In this way data surplus is reduced, paving the way for a more
effecƟve management of the project informaƟon. The implementaƟon of a unique web-based plaƞorm
allows e beƩer maintenance of the infrastructure. The integraƟon with domain specific environments is
pursued through the generaƟon of dedicated adapters directly embedded within the applicaƟon and that
are used to process the uploaded data. The informaƟon loaded from a System Engineering perspecƟve
must be properly filtered and processed to avoid too much data shared across the project. At the same
Ɵme the informaƟon collected from the various domains must be properly shown to the other actors.

184

Figure 7.14: Example storing strategy for the proposed architecture.

7.4.3 Requirements management

The management of project requirements is another fundamental aspect for the correct design and
analysis of a complex aerospace system. The implemented framework has also been conceived to be in-
tegrated also with external tools already available on the market. A widespread commercial soluƟon in
aerospace industry is represented by IBM RaƟonal DOORS (IBM RaƟonal Dynamic Object Oriented Re-
quirements System). Such tool is a client server applicaƟon, with a Windows-only client and servers for
Linux, Windows, Solaris and is based on dedicated programming language called DOORS eXtension Lan-
guage (DXL). The interfacing with external environments can be achieved through ReqIF (RIF – Require-
ments Interchange Format) file which is basically an XML file that can be used to exchange informaƟon and
associated metadata with other requirements repositories. The same interface format can also be poten-
Ɵally used to integrate a dedicated adapter for the data exchange with the proposed infrastructure. Future
developments will consider such connecƟon, evaluaƟng the capability to easily share the requirements
with the partners working on the same project for example.

7.4.4 Baseline and database integraƟon

The proposed modeling framework has also been conceived to be well integrated with a demanding
need of data storing as the system details increase during the development process. This consideraƟons
has lead to an analysis of the current methodologies for the management of system informaƟon and the
related procedures within a consolidated design procedure. In parƟcular the meta-model data structure
has been conceived considering also the concepts related to baseline formal definiƟons and their roles dur-
ing the development process. Baseline data are properly stored consistently with the database resources,
providing at the same Ɵme the starƟng point for the development of the current working copy of system
design. An example storing strategy for the proposed architecture is conceptually reported in figure 7.14.

As the proposed framework has been conceived to trace all the changes operated on the system (au-
thor, Ɵme and value of changes) the data contained can rapidly increase. System informaƟon are saved
(changes tracing included) when a baseline configuraƟon has been established but the project develop-
ment in the following working phase starts from the data contained without all the informaƟon gathered
for the changes. In this way the database for the new working copy is not so heavy but the historical in-
formaƟon are however stored (in the case for example some review are needed on old modificaƟons). In
this manner the starƟng point for the project design can access all the required informaƟon, avoiding an
overflow of data. This working copy then store the changes related to its phase unƟl the following baseline.

185

7.4.5 Diagram generaƟon and management

The integraƟon of visual capabiliƟes within the framework has been developed starƟng from the de-
velopment of interface with external plug-ins. For example the VRML files are managed through the use
of Cortona3D (www.cortona3d.com), a plugin which provides a complete 3D navigaƟonal tool-set allowing
you to rotate 3d models and to walk within 3D polygon-based worlds. In this way it is possible to create
a dynamic navigaƟon of the object loaded within the environment, supporƟng the acƟviƟes related to
the analysis of system and subsystem configuraƟon. CAD files can then be extracted from the available
commercial tool, exporƟng for example the VRML data and then properly loaded in the same modeling
environment.
Other extensions are considered for the integraƟon with a web based applicaƟon like for example X3D. In
the future this format will be beƩer integrated within HTML5 protocol with the main aim to improve ob-
ject embedding with web applicaƟons. Currently some efforts are addressed towards a wide formalizaƟon
for the management of graphs, 3d objects and generally visual elements with canvas elements, rendering
directly the scenes and all the required data on the fly. The canvas element would soon become the place-
holder for the Internet’s next implementaƟon into 3D, represented in parƟcular by WebGL. This one is a
low level programming language, providing a very technical code and without a layer of helpful abstrac-
Ɵon to support the user in reading and learning the syntax. For this reason a good number of developers
have already begun producing tools and JavaScript libraries to support scene generaƟon, increasing the
accessibility of WebGL.

7.4.6 Tools, languages and development plaƞorms

In the next lines a brief introducƟon of the tools, languages and development plaƞorms that have been
considered is presented. The main features, benefits and drawbacks of various alternaƟves are described
through a liƩle overview. The main scope of such introducƟon is to assess and highlight the main reasons
for the selecƟon of the available opƟons. For example some languages offer advantages not available in
other ones but at the same Ɵme these last show benefits that cannot be find in the other. This situaƟon
underlines again how themain aim of the current work is addressed towards the demonstraƟon of the pro-
posed infrastructure. The final implementaƟon depends in fact on specific implementaƟon backgrounds
and resources availability.

7.4.7 DescripƟon on the benefits and advantages of open-source tools.

The number of projects and research teams involved in the development of open-source tools is con-
stantly increasing. Nowadays there are various iniƟaƟves that provide services and instruments to the
world community. They oŌen arise from university research teams or within a restricted groups of people
animated by common topics. The projects are usually self-sustained through the whole users community
aŌer the first version publicly released. Hence the soŌware improvements, de-bugging acƟviƟes and doc-
umentaƟon are ensured by the user contribuƟons. The main advantages is represented generally by the
absence of a commercial licenses required for the execuƟon of the tools and all the possible problems re-
lated for example to the network management or updaƟng of these ones.
Open-source tools can be instead quickly downloaded and installed without parƟcular problems. There
are also specific funcƟonaliƟes that allow to properly manage the updaƟng of the current version used,
highlighƟng the simple upgrade as an interesƟng feature.
Another aƩracƟve characterisƟc of these iniƟaƟves is represented by the accessibility to the code imple-
mentaƟon. In this way it may be possible to properly customize the soŌware for the specific needs and
company knowledge, without the constraints of commercial products.
Open-source iniƟaƟves and projects are oŌen characterized by not well developed interfaces and the inte-
graƟon with user provided codes requires consequently the implementaƟon of dedicated soluƟons. User
friendly interfaces are oŌen not available while communiƟes developed modules and libraries are not rig-
orously documented in certain cases. For this reason the learning curves related to open-source languages

186

and plaƞorms are oŌen lower than commercial soluƟons as the tools or languages are approached for the
first Ɵme. The main advantages of open-source infrastructures become evident as the users spent increas-
ing Ɵme with them, developing the capability to achieve an high level of customizaƟon. Another drawback
of open-source projects can be represented by the fact that some iniƟaƟves dismiss their maintenance and
developments, not more providing support to other projects based on the same infrastructure. Suchmain-
tenance and developments in other cases rely on small group of developers that generally work on other
different subjects and all the correcƟons or debugging acƟviƟes are done with no scheduled procedures.
Some research iniƟaƟves are currently addressing their efforts towards the development of Open-Source
framework for mulƟdisciplinary analysis and opƟmizaƟon. This aspect further underlines how the avail-
able tools and technologies started to provide interesƟng capabiliƟes with respect to system analysis and
design. From this viewpoint interesƟng results are available in [110].

Ruby on Rails

Ruby on Rails is an open-source web development framework that has been conceived to reduce the
workload that the programmer must do to implement the desired applicaƟons. In parƟcular it provides
some useful capabiliƟes that can help the programmer to set up the required infrastructures. Some code
secƟons are in fact automaƟcally build from simple command line instrucƟons that generate code porƟons
that include all the basic elements required the applicaƟon backbone. The related development environ-
ment favors convenƟon over configuraƟon paradigm. This definiƟon refers to the fact that following the
convenƟon supported by Ruby on Rails infrastructure it is possible to automaƟcally generate files, code por-
Ɵons and seƫngs that otherwise must be manually defined. Such elements are basically built on the basis
of convenƟon paƩerns that is also used to automaƟcally define the relaƟonships that properly connect all
the created elements. In this manner it is possible to quickly implement and evaluate a web applicaƟon
to assess its feasibility without spending too much efforts on applicaƟons basic scheme. This capability is
achieved through the convenƟon paradigm that ensures the reducƟon of consistency problems (among
code porƟons) and Ɵme required to update the applicaƟons aŌer some structural changes. This approach
allows to increase the producƟvity, enhancing also the debugging acƟvity during the development process
since the applicaƟons changes can be easily managed. Another interesƟng feature of RoR is represented by
the fact that such framework has been conceived to follows themain guidelines of AgileWeb Development
lifecycle methodology. This approach allows to improve the development, test and producƟon acƟviƟes
required for the release of a web applicaƟon as previously introduced (more details can be found in [84])
and [85]
All these features lead the choice of RoR development framework concurrently with the fact that a large
number of libraries, forums and well-documented funcƟons are available from internet. In this way it was
possible to mainly focus the efforts on the methodology and conceptual infrastructure while the web-
service has been implemented only to assess the developed approach and meta-model. The same result
achieved with RoR framework can in fact be pursued with other soluƟons but it is not the target of the
current work.

Python language

Python represents one of the most widespread scripƟng language used for communicaƟon and execu-
Ɵon purposes above all for its cross plaƞorm capability to run independently about the operaƟng system
used. Python language comes embedded with most of the current Linux distribuƟons and installers are
however available for other operaƟng system such asWindows orMac. The capability to run Python scripts
on operaƟng system different from the naƟve one (the one where the script has been implemented), or
however with minimal changes of the code, has made easy the spreading of such language within engi-
neering applicaƟons. This feature is directly related to the nature of interpreted language of Python. In
this case the code does not need to be compiled before the execuƟon and the code lines are elaborated to
machine level one aŌer the other. In this way the code is interpreted each Ɵme it is executed on the basis of
the current machine where it has been launched. On the other side the compiled languages are opƟmized

187

for the hardware machine where they are executed to create the executable. In this way the executable
generated is strictly bounded to this machine while the Python code is not directly related to the hardware
of the machine where it is launched. The advantages of compiled codes is that they are opƟmized in the
generaƟon of the machine level code and in this way the performance that are reached are higher than
those obtained with interpreted languages. In parƟcular compiled codes can reach different Ɵmes the exe-
cuƟon speed of that shown by interpreted ones. Code that required the execuƟon of long Ɵme simulaƟon
or however that have to be called different Ɵmes during the simulaƟon campaign are typically wriƩen with
compiled language (as for example C++ language). Different research iniƟaƟves can be found in literature
that exploit the advantages of Python for the management of simulaƟon codes (an interesƟng example is
represented in [108] where a Python based infrastructure is used to manage CFD computaƟons)
Python language shows a valid alternaƟve for the implementaƟon of simulaƟon interface funcƟonaliƟes
in the context of DAKOTA framework. This scripƟng language, as will be described with more details in
the following secƟons, is one of the supported code for the integraƟon of DAKOTA simulaƟon toolkit with
external solver/applicaƟons. This choice is related to the wide spreading of this type of language for au-
tomaƟng simulaƟons and manage data exchanges between different plaƞorms. Other scripƟng languages
can be considered for this kind of integraƟon but their use is not well documented and tested. For example
Perl or C-shell scripts can also be used with the same purpose of Python language.
In parƟcular Python has been chosen in this work has the scripƟng language for the management of the
models and simulaƟons in the back-end perspecƟve of the implemented framework. It has been used to
define the filters and drivers that allow to process the data available from DAKOTA environment, providing
the right formats for the specific external solvers/codes. In this case the scripts belong to the family of input
filters for the framework data flow but more details will be provided in the secƟons related to the effecƟve
code implementaƟon of the framework itself. In the same manner once the external solvers/codes ended
their execuƟons the results obtained need to be processed to provide the correct formats to pass again
to DAKOTA framework. This funcƟon is performed by Python scripts in a similar manner to the generaƟon
of input filters but in now they are called output filters to disƟnguish from them from the previous ones.
Their roles are however quite similar but the main scope of the elaboraƟng process are different from one
context to the other.
The Python scripts defined in this way are then properly integrated in the main driver that manage the
execuƟon of the single iteraƟon within the context of analysis cycle.

Django web development framework

One of the web development frameworks that are available for the definiƟon and tesƟng of web-based
applicaƟons is represented by theDjango iniƟaƟve. Django framework is based on the Python language and
it provides a series of funcƟons and API that facilitate and automate the development of the required appli-
caƟon characterisƟcs. In parƟcular the instruments available support the creaƟon of the web-applicaƟon
architecture. They are used to set and properly define the creaƟon of the link between for example the
URL page requirements and page controller for the rendering of the requested informaƟon.
Part of the current work has considered the use of such modeling environment for the development of
the user interfaces needed. The integraƟon of the DAKOTA funcƟonaliƟes through the implementaƟon
of web-service with Django seemed to be the proper choice, following directly from the fact that Python
is also the language used for the definiƟon of filter and driver for the simulaƟon codes. In this way the
Ɵme spent for the definiƟon of the required interface seemed to offer the advantages to develop with the
same language the required features. This approach has shown some implementaƟon difficulƟes related
to the definiƟon of the applicaƟon, regarding above all the management of the database correcƟon. Since
Django environment is an open-source environment some features are not well defined and are currently
themselves under development and also not so well documented funcƟons. In parƟcular the definiƟon
of model classes for the definiƟon of the elements that have to be introduced within the system model is
currently strictly related to the database populaƟon. This characterisƟcs mainly affect a try and error pro-
cess for the correct inserƟon of records within the database file. In parƟcular each Ɵme the model classes
have to be changed the database must be reset and repopulated again, ensuring that the table’s columns

188

are properly corrected (during the early development phases the model itself may regularly be changed
and the operaƟon of reset the database may be parƟcularly unproducƟve). This operaƟon may be done
several Ɵme during the development phase of the applicaƟon, driving to a not well effecƟve process. Dif-
ferent plug-ins or iniƟaƟves are trying to correct this aspect but they are not parƟcularly stables, affecƟng
the overall implementaƟon process. Other open-source development frameworks are not characterized
by this deficiency and they are more suited for the development of applicaƟons also during a conceptual
definiƟon phase. Ruby on Rails is for example one of the web-development framework that allow to face
this problems separaƟng the generaƟon of database file (and updaƟng the related schema file) from the
model classes codes (using the migraƟon files for the correct upgrading of the database characterisƟcs). In
the following implementaƟon phase for the definiƟon of the web-applicaƟon tool Ruby on Rails has been
evaluated as the most suited instrument for the definiƟon of the demonstrator for the current study.

Modelica language

Modelica language is the other interesƟng open-source resources that has been considered for the
implementaƟon of the modeling and simulaƟon features of the developed demonstrator of this work. In
parƟcular Modelica has been chosen as a well suited language for the modeling of some simulaƟon blocks.
One of its advantage is mainly related to the possibility to build models where input-output relaƟonships
are resolved just before the simulaƟon execuƟon (during the checking process). This capability allows to
model a parƟcular element without constraints on the direcƟons of input-output variables since these are
computed by the Modelica solver itself. This feature is not available in other simulaƟon environment as
code write in Matlab or within Simulink environment where the relaƟonships between the input and out-
put variables must be known before the modeling acƟviƟes. In this case the variables that are defined
as input and the ones that are instead the output must be known before the simulaƟon itself. Modelica
models are instead characterized by a more physical-based definiƟon of simulated objects. In this way
the same model can be simulated within a different scenario without not so extended changes. On the
other side models characterized by a well-defined relaƟonships between the input and output flow must
be deeply modified to saƟsfy the new defined scenario condiƟons. The reusability of such models are not
so advantageous as that related to the implementaƟon with Modelica language. Model modularity is one
of the other interesƟng characterisƟcs provided by Modelica with respect to other modeling languages
where the modularity is not obtained with the same level of depth.
From the previously consideraƟons it is possible to foreseen how networking applicaƟons show interesƟng
characterisƟcs in the context of a collaboraƟve architecture. In parƟcular such approach can considerably
improve the collaboraƟon between different people involved in the same project with the futurisƟc vision
to extend the advantages of a model based approach not only in the first phases of the development but
also in the following more detailed ones. This objecƟve can be reached with the introducƟon of the proper
instruments in the design process, considering also the need to parƟally modify the current development
procedures to account for such changes. The design process must be parƟally changed for the implemen-
taƟon of model based methodologies that can allow to improve the overall system performances thanks
above all to a beƩer organized architecture for the system definiƟon.
Networking is currently one of the most challenging feature that has start to play a key-role also in the sim-
ulaƟon environment as for example in the implementaƟon of ad hoc interfaces that manage the requests
rouƟng towards a common central model. Different simulaƟon soŌware houses in the last few years have
invested a lot of resources for the integraƟon of web-based services. SimulaƟon models are for example
stored in a central repository that is oŌen directly connected with mulƟ-processors/mulƟ-cores compuƟng
resources (generally strictly dedicated to the solving characterisƟcs of the models features) while the users
that need the results from such models exploit the informaƟon provided by a web services. In this manner
it is possible to decouple the compuƟng resources (parƟcularly cost demanding and oŌen used only for
a liƩle period during the development process) from the users’ needs (that for example interrogate the
same model for certain informaƟon only for a reduced Ɵme with respect to the development process).
This scenario is for example currently idenƟfiable with some structural solver suites that provide the com-
puƟng resources for a certain model that is interrogated through web applicaƟons but is not maintained

189

by the same user (in the same manner the costs related to the management of the compuƟng resources
are allocated to the compuƟng services that works for different industries and organizaƟon at the same
Ɵme).

MathML

MathML has been conceived as an applicaƟon of XML with themain purpose to describe mathemaƟcal
notaƟon, formalizing both the structure and content of a certain expression. This language is parƟcularly
suited for the exchange of mathemaƟcal data across web services. Its capabiliƟes are parƟcularly interest-
ing for the main purpose of the proposed approach but its direct applicaƟon has not been considered in
this work. The integraƟon of such language within the developed framework can potenƟally be considered
in the future.

COM Interfaces

COM interfaces represent one of the features that can be used to manage the informaƟon exchange
across different applicaƟons on the same or different plaƞorms. This soluƟon can be exploited to allow
the communicaƟon between different soŌware and environments, ensuring also the possibility to proper
elaborate the data gathered from various sources.
The model creaƟon from math is now one of the most interesƟng research topics. In parƟcular the infor-
maƟon gathered within the system data model may be used to properly define its virtual representaƟon.
The development of this relaƟon can be realized under different approach, depending on the required in-
formaƟon. Modelica represents a well suited language for the characterizaƟon of the system behavior. For
example the equaƟons related to a parƟcular element of the system could be used to set the physical laws
that are successively used to manage the virtual simulaƟon. Themain issue concerns about the translaƟon
of the involved equaƟons into useful codes that may be processed in the right way.

7.4.8 Design manager framework

The implementaƟon of design funcƟonaliƟes has been based on the definiƟon and concepts previously
introduced and contained within the datamodel infrastructure. In this case RoR has been used to integrate
the management of opƟons and alternaƟves directly within the modeling applicaƟon but similar tool can
also be conceived as external framework. Web based architecture has been defined with the final aim to
help and directly support the set-up of mulƟdisciplinary design environment, paving the way for the inte-
graƟon of simulaƟon capabiliƟes within the same modeling environment. In this way it is directly possible
to access the informaƟon gathered within the system model and to use such data for opƟmizaƟon cycle
or trade-off study. The same informaƟon can also be passed through the proper web call on independent
applicaƟon but such integraƟon would require more controls and checks for the consistency and synchro-
nizaƟon of the available data and resources.
The integraƟon of Python language within RoR applicaƟon can be managed in different manners on the
basis of the chosen approach. For example Python scripts can be called using Jython implementaƟon. This
one represents a Python implementaƟon totally wriƩen in Java and the related classes can be managed
consistently. In this way the standardmodules available in Python distribuƟon can be accessed in the same
way as normal Java funcƟons within the web framework.
Another way it is represented by the possibility to define a Python script with the required commands and
then call that script from Ruby on Rails framework standard call for external funcƟon. This seems to be
not the most effecƟve since it requires different calls only to access the right interpreter. It must be more
effecƟve if the requests are directly managed and implemented in the same environment with only one
interpreter language. For this reason the choice Ruby represents the most effecƟve choice since the web
applicaƟon environment is implemented with the same environment.
Another family of integraƟon soluƟons are represented by the possibility to exploit the web services capa-
bility that both this scripƟng language show.

190

7.4.9 Current implementaƟon

Abrief descripƟonof the current implementaƟonof the conceptual architecture for themanagement of
the same problems iniƟally defined is introduced within this secƟon. As other elements of the current data
model all the definiƟons used within this study refer to the concepts available from the standard ECSS-E-
TM-10-25. Some of the relaƟonships definedwithin this technicalmemorandumhas been slightlymodified
to take account for the integraƟon with a design manager interface. The engineering model overview has
been reported in figure 7.15.

The definiƟons of all the elements considered within this diagram refer the previously introduced tax-
onomy secƟon. The concept of iteraƟon has been slightly modified and in this work the evoluƟon of the
design project do not consider strictly the definiƟon of an iteraƟon object. The development project is
handled in a more conƟnuous way where milestone points idenƟfy periodically a common baseline that
represents a formal recognized design level.
IteraƟon concept idenƟfies in parƟcular a representaƟon of an iteraƟon in the process of developing an
Engineering Model. The iteraƟon concept refers to the establishment of a complete and coherent step
in the development of an Engineering Model. The idenƟficaƟon of a complete and coherent design level
depends too on the users viewpoints that can be different from case to case. This consideraƟon has lead
to the definiƟon of a slightly different conceptual view and the related modeling approach.
In a concurrent design study the engineering model for the system-of-interest is developed in a number of
iteraƟons, where in each iteraƟon the problem specificaƟon in the form of the Requirements SpecificaƟon
and a design soluƟon in the form of the OpƟons and Element DefiniƟons are elaborated and refined. With
an iteraƟon the study team strives to set onemore step in the direcƟon of achieving a converged definiƟon
that fulfills the objecƟves of their study.
Has can be seen from the engineering model diagram the opƟon object is connected with the Element
Occurrence. In parƟcular the Element Occurrence may belong to only one opƟon while an opƟon may
contains no or mulƟple Element Occurrence. The opƟon element belongs also to a certain iteraƟon object
and only one. At the same Ɵme instead the IteraƟon element can possess mulƟple opƟons. The iteraƟon
objects belong also to the overall Engineering Model element. This approach has been slightly modified to
take account for a different management of the opƟons evaluaƟons.
The OpƟon class definiƟon can be idenƟfied in the following specificaƟon (based on the standard meta-
model). OpƟon is a potenƟal design soluƟon for the system-of-interest being developed in an Engineering
Model. An opƟon in this context is a design alternaƟve that can be compared with one or more other
opƟons, for example to perform a trade analysis.
The Concurrent Design Parameter that has been developed for the first Ɵme in the CDF meta-model for
the first ECSS standard and that now has changed its definiƟon is an interesƟng approach for the manage-
ment of the project opƟons. The concept of Concurrent Design Parameter shows an interesƟng soluƟon
for the management of the design opƟons. The current definiƟon for the Parameter object is a character-
isƟc or property of an Element DefiniƟon. The concurrent design study centers around a mulƟdisciplinary
parametric design of the system of interest. Parameters (and their related values) assigned to Element
DefiniƟons, Element Usages and possibly Element Occurrence are the essenƟal mechanism by which each
Domain ExperƟse characterizes, quanƟfies, communicates and shares their part of the designwith all other
domains of experƟse (expressed in the meta-model with the reference to the class Domain Of ExperƟse).
The associated Parameter Type (through the parameter Type property) provides name, shortName and op-
Ɵonally alias, definiƟon and hyperlink for this Parameter. This concept is the element closer to the desired
element that can be considered in the proposed methodology for the management of the design acƟvi-
Ɵes. In the proposed conceptual framework a similar concept has been developed with slightly different
characterisƟcs and it is idenƟfied with CDVariables (Concurrent Design Variables) definiƟon (this concept
is strictly related to the concept of OpƟons Group that will be defined in the following part). This object
have theoreƟcally the aim to represent a feature that belong to the Element DefiniƟon and can be shared
among the various disciplines. The nature of this object shall have the capability to represent a property
for a certain virtual Element DefiniƟon (virtual in the sense that not all its property are defined because
the development phase is sƟll ongoing and the Element DefiniƟon represents something not real). For

191

Figure 7.15: Engineering model overview, [61].

192

example this design variables can be related to a radius in the case of a motor-wheel or to a material prop-
erty (considering the possibility to choose between aluminum or steel material soluƟon for the producƟon
of the wheel element). It is important for this variable to be shared among the various domain-specific
environments because its definiƟon can affect various analysis. SƟll starƟng on the previous example it is
possible to assert that the radius design variable can involve thermal, structural andmechanism disciplines.
All the disciplines shall have the possibility to manage or however observe that this parameter has been
defined as a design variable, since its modificaƟon can potenƟally involve their analyses. In other cases
there is other types of design variables with no need to be shared with the other disciplines but that can
be defined as design variables for a specific domain. In this case shall be possible to define this parameters
as design variables but not to be shared with the other disciplines. In this way it is possible to trace all the
possible design variables that characterize a certain project without sharing all the possible alternaƟves
but only those that involve mulƟple disciplines at the same Ɵme. In the motor-wheel example the wheel
element may be characterized by the definiƟon of a small corner radius for the internal side of the wheel.
This parameter may represents a design variable for the structural domain but not for the thermal one
that have other fidelity requirements for the analyses models with respect to this parameter. In this case
the Concurrent Design Variable is not shared with the other disciplines. This feature shall be implemented
with the definiƟon of a connecƟon with the design parameter that can be associated from one to mulƟple
Domain Of ExperƟse (or engineering domains). In this manner the single discipline can organize its design
process on the basis of the filtered parameters, considering directly only those that are linked with it.
From a user point of view shall be possible to define the design parameter once the element has been
created as Element DefiniƟon. In this way all the element Usage that depends on this definiƟon all inherit
coherently this Design Parameter but can alsomodify this values independently fromother ElementUsages
of the same Element DefiniƟon. This object has to maintain independence from the other defined usages
and potenƟal relaƟonships between two or more Element Usage with respect of the same design param-
eter have to be managed through the introducƟon of proper constraints between elements. For example
the six wheels of a motor-wheel assembly (locomoƟon system) where the wheel definiƟon leads to the
presence of six wheels with six design variables radius (since for example in the wheel element the radius
has been considered as design variable). Conceptually the proposed approach considered the indepen-
dence of the six design parameters to allow in the future for the management of more complex situaƟon
where there is the need to singularly opƟmize the design for the various objects. In the case of the example
instead there is however the need to impose the same radius for the feasibility of moƟon requirements.
This constraint shall be modeled starƟng from the project requirements and must be checked with proper
funcƟon or theoreƟcally with automaƟc evaluaƟon.
Another important feature that shall be implemented regards the definiƟon for example of different range
for the same design parameter of the same Element DefiniƟon. For example this case can be represented
by the situaƟon where the same Element DefiniƟon contains a certain design parameter (for example the
length of a same type of baƩery) that in one case can be varied between certain range (for example the
length can varies between 10 and 15) but in other part of the same system there is the need to insert an
Element Usage with the same Element DefiniƟon but with the design variable with a different range (the
baƩery length varying between 12 and 14). This situaƟon shall be modeled defining a new Element Defini-
Ɵon with equal properƟes but with different range for the Design Variables since it is beƩer to manage all
the possible changes from the Element DefiniƟon viewpoint. The Design Variable characterizaƟon (range,
nominal value, in the future themean and variance for aleatory variable, etc…) is managed in a more effec-
Ɵve way if it is bounded to the Element DefiniƟon. In this way if we need to change the properƟes of the
Design Variable we must generate another virtual Element DefiniƟon. This approach allows to beƩer con-
trol the design process and all the design variables includedwithin the project. If the Design Variable has to
be managed (its characterisƟcs as range, nominal value, etc) from the Element Usage perspecƟve then the
Element DefiniƟon can be only one but we have to access and modify all the range Element Usage for Ele-
ment Usage if we want to modify for instance the ranges of the design variables. This approach need less
work in the case all the Element Usage have the same range because we need to specify only one Element
DefiniƟon and related Design Variable but if it is required to change the range of design variable considering
different group of Element Usage then this require more work since all the Design Variables characterisƟcs

193

(range, nominal value, etc.) might vary from group to group and all are independent between each other.
If in this example the groups of Element Usage have been inherited from disƟnct Element DefiniƟon with
different characterisƟcs for the Design Variables then becomes more easy to change with less operaƟons
the design space properƟes.

7.4.10 Main features and realizaƟon aspects

The current design and modeling needs have been introduced in the previous lines while in the follow-
ing secƟon a more detailed descripƟon of the developed infrastructure will be provided.
A wide set of the most challenging engineering problems belong to the category of mulƟdiscipline. Com-
putaƟonal soŌware using high-fidelity methods are well developed and validated for single domain. At
the same Ɵme there is also a limited effort in the development and invesƟgaƟon of large-scale mulƟdis-
ciplinary analysis tools based on high-fidelity techniques. One of the most challenging acƟviƟes is rep-
resented by the integraƟon of hard formaƩed computaƟonal tools (coming from different disciplines for
example) within a mulƟdisciplinary environment. An effecƟve idenƟficaƟon of problems soluƟons is also
closely affected by the use of high-performance computers and by common plaƞorm for resources sharing.
Several high-performance compuƟng iniƟaƟves have led to the implementaƟon of very efficient but also
specific disciplines codes. A very promising innovaƟon is represented by the integraƟon of such codes into
a user friendly, robust mulƟdisciplinary problem-solving environment.
One of the most interesƟng concepts that will be invesƟgated through the current research acƟvity is rep-
resented by the applicaƟon of MBSEmethodologies for the definiƟon and development of a PSE tool. A lot
of research iniƟaƟves are currently addressed to the evaluaƟon of MBSE methodology as an advantageous
approach for the definiƟon of a modeling framework ([57]). Their main objecƟve is represented by the
creaƟon of a high-level system model framework with which all the disciplines are directly connected. In
this way all the informaƟon are centralized and shared through the same plaƞorm, reducing the problems
related to data consistency and enhancing the collaboraƟon between the people that are working on the
same project. InteresƟng results have been obtained from some European research iniƟaƟves which are
currently working on the definiƟon of data structure and development of system modeling environments,
basically following the model-based paradigm.
This MBSE methodology applied to modeling framework is actually implemented using various architec-
tures and languages (UML, System Modeling Language – SysML, Domain Specific Language – DSL, etc.).
Someof the developed frameworks are based on desktop applicaƟonwhich show interesƟng performances
on data processing but are not well suited for the integraƟon with other tools within a distributed and
collaboraƟve environment (e.g. based on corporate network). One of the most promising soluƟons is rep-
resented by the definiƟon of a web-based service that can be used to integrate different kind of resources
in the same environment. The integraƟon between modeling and analysis environments is a challenging
research topic that involves a wide range of engineering issues. Nowadays the advancements of web-
developing technologies allow implemenƟng modeling architecture that can be directly interfaced with
analysis resources. The benefits that can be obtained by such infrastructure concern mainly the capability
to reduce Ɵme and costs of system development, ensuring also the consistency of shared data among var-
ious engineering domains.
Currently there is not a well defined framework that integrates both a modeling environment and a PSE
workspace but in the last few years companies and organizaƟon have addressed a large amount of efforts
in this direcƟon. Commercial system modeling soluƟons provide different funcƟonaliƟes that enable the
integraƟon with networks and distributed environments, represented however by desktop applicaƟons
that are oŌen difficult to maintain and spread within system engineering domain. A web-plaƞorm shows
many more benefits than drawbacks at the moment.
The learning curve related to such collaboraƟve environment is in fact steeper than that associated to desk-
top applicaƟons since a web-based service is something with which everyone deals daily. The capability to
choose the correct opƟmizaƟon strategies and solving methodology will be further improved through the
connecƟon of a PBE framework with a systemmodeling workspace. A clearer definiƟon of the design vari-
ables and the integraƟon with a PSE on the same plaƞorm will especially enhance the achievable results,

194

Figure 7.16: Overview of the conceptual infrastructure and related actual implementaƟon.

allowing a beƩer evaluaƟon of system performances. The development of such plaƞorm can accelerate
the design process, giving a considerable advantage with respect to other possible compeƟtors. The re-
ducƟon of current development Ɵme due to less project iteraƟons is one of the main objecƟves of the
proposed framework. The parallel design of system and operaƟons is not yet fully implemented and used.
Such an approach shows an innovaƟve design methodology towards which some research iniƟaƟves are
addressing huge efforts. The proposed methodology and related demonstraƟon framework can be seen
as an evoluƟon of the current design procedures which are oŌen not suited enough to handle increasingly
complex systems.
This evoluƟon includes a reinvented product life-cycle able to easily manage changes during each phase
and also presenƟng social aspects to involve different actors in the project like designers, manufacturers,
users and customers, reducing the Ɵme disposiƟon for a problem soluƟon or a simple communicaƟon up
to real Ɵme, irrespecƟve of the physical distance between the actors. Parallel development, i.e. system
design performed concurrently with uƟlizaƟon definiƟon, is to avoid over design or under design of the
system that has to accomplish the assigned mission. In both cases this means both avoiding the introduc-
Ɵon of addiƟonal development costs and reduced system uƟlizaƟon capabiliƟes.
That lead also to a more comprehensive and effecƟve trade-off analysis, easing the sharing of up-to-date
controlled data and informaƟon. Another benefit of such infrastructure is represented by the cuƫng down
of distances between actors, being closer to the customer’s needs and expectaƟons. Such integrated PSE
will provide a beƩer sharing and exploitaƟon of the available resources, avoiding the slowdown due to an
inefficient organizaƟon of the design and analysis infrastructure. A small overview of the proposed infras-
tructure (from an high level perspecƟve) is provided in figure 7.16 where system modeling and analysis
needs are used to idenƟfy the conceptual infrastructure for the proposed methodology. The same con-
ceptual environment can then be implemented using different soluƟons to invesƟgate and validate the
proposed infrastructure. In the current work the developed meta-model and concepts have been evalu-
ated through a web-based plaƞorm through Ruby on Rails (RoR) framework but alternaƟve tools can also
be considered. More details about such development environment and the reasons that have lead to such
choice will be presented in the following.
The main focus of such research acƟvity is in fact to invesƟgate the model-based approach and related
conceptual infrastructure, basically using one of the possible implementaƟon soluƟons. The same result
may probably be demonstrated with other development frameworks since there is no parƟcular restraints
on the actual means that can be used to explore and assess such methodology.

7.4.11 Proposed approach for the integraƟon of MDO techniques

The integraƟon of MulƟdisciplinary Design OpƟmizaƟon methodologies has been conceived mainly
thinking about the possible uses and improvements in the context of system design. In parƟcular the final
purpose of such approach is idenƟfied with a clear understanding of how such an instrument can provide
useful support and real benefits with respect to the tradiƟonal processes. A first analysis of the design

195

procedures, tools and people involved has represented the starƟng point for the definiƟon of data model
architecture. Such concept has been taken into account through all the development process to ensure
that the objecƟves of the present work would be fulfilled.
Considering the integraƟon of a mulƟdisciplinary capabiliƟes within a collaboraƟve environment has laid
the pathway to a conceptual definiƟon for the relaƟonships of the enƟƟes involved. First of all some con-
sideraƟons have been done on the final target and results that the framework is supposed to deliver. The
possible soluƟons related to the integraƟon of MDO techniques is strictly affected by way the interacƟon
between users and framework capabiliƟes works. The overall process has been conceived with emphasis
on the final purpose, proposing an approach that is mainly tailored for a collaboraƟve environment.
Different strategies have been considered to face the problem on the basis of the target services that are
provided. The main scope is the definiƟon of an architecture that allows the exchange and integraƟon of
models coming from different domains, paving the way for the set-up of mulƟdisciplinary analyses. Mul-
Ɵdisciplinary analyses more generally involve models coming from different modeling environments and
tools. The invesƟgaƟon of overall performances is driven by the integraƟon of such models among each
other. In parƟcular such situaƟons are generally characterized by very non-linear problems where oŌen
the design variables domain lead to a complex response range for the generic output evaluated. The solv-
ing techniques used to manage such kind of problems are not the gradient-based ones since in these cases
the risk to remain bound to a local minimum is quite high, reducing the possibility to idenƟfy an opƟmal
soluƟon. These types of problems are generally handled with non-gradient basedmethods (as for example
heurisƟc geneƟc algorithms). This approach requires however a great number of funcƟon evaluaƟons to
properly explore the design variables space. Such amounts of simulaƟons cannot be done in a short Ɵme if
complex models are used but in this case the primary purpose would not be saƟsfied. The same approach
is not limited a priori to simple models since the same architecture can also be used for more complex
ones. The laƩer situaƟon requires more Ɵme to obtain the desired results but it is not prevented and the
choice between the two conceptual alternaƟves depends on the specific need. The modeling framework
is basically implemented to support collaboraƟve interacƟons between various users and models are di-
rectly managed through server. In the case the simulaƟon complexiƟes increase the models are generally
referenced by the file-system of the related repositories and not directly stored on server side. Short Ɵme
simulaƟons are quite important in the context of a collaboraƟve process where an iteraƟve elaboraƟon
of the available resources allows users to draw their consideraƟons or make their dimensioning computa-
Ɵons.
Proper procedures to manage the available models are required to wrap the simulaƟon funcƟonaliƟes and
ensure the capabiliƟes to parƟally automate their execuƟon. This feature is directly related to the def-
iniƟon of a mulƟdisciplinary analysis and the elaboraƟon of the produced results. A simple conceptual
representaƟon about the considered architecture is reported in figure 7.17.

The implementaƟon of the objects directly related to the analysis environment has been done following
the conceptual data structure defined and assessed with the present work. The meta-model definiƟon
related to this aspect is mainly based on the formalizaƟon of three classes idenƟfied with the following
names: “Analysis Item”, “SimulaƟon Item” and “Analysis File”. In parƟcular the relaƟonships among these
classes have been used to build the infrastructure with the final aim to pave the way to mulƟdisciplinary
evaluaƟons. Ruby on Rails development plaƞorm and REST architecture philosophy have been used to
code all the related associaƟons as in the other secƟons of the modeling workspace. The links between
such elements are conceptually represented in the figure 7.18.

The “SimulaƟon Item” class has mainly been introduced to support a clear separaƟon between the
mulƟdisciplinary analysis environment and the modeling one. In this way the design approach can pro-
ceeds in a more independent way with respect to the possible definiƟon of system survey, avoiding the
problems that can appear if these two environments refer to the same elements. The components proper-
Ɵes can then be defined on the basis of the values provided directly by the user while the data computed
through “SimulaƟon Item” objects are available as support funcƟonality. Such class in parƟcular has been
conceived to support the definiƟon of the iteraƟon cycles related to DAKOTA environment. ComputaƟonal
blocks can be created following the related aƩributes and associaƟons that are available within the de-
veloped meta-model. The integraƟon of simulaƟon elements must be compliant with the exchange data

196

Figure 7.17: Conceptual representaƟon about the considered architecture.

Figure 7.18: Example architecture for the considered approach.

197

Figure 7.19: Example implementaƟon of python wrapper.

formats formulated for the current version of the developed framework. The convenƟon refers mainly to
the creaƟon of the correct formats of the text files used to exchange the variables from one simulaƟon to
the other. The encapsulaƟon of solving codes and simulaƟons is implemented through Python wrappers
that are customized on the basis of the contained elements. The so defined wrappers depend strictly on
their contained simulaƟon objects and if quite huge changes are introduced in the related solving code
they must be properly updated before overall iteraƟon take place (figure 7.19).

The correct integraƟon of a "SimulaƟon Item" element from a user viewpoint follow basically the fol-
lowing brief list of operaƟons:

1. The simulaƟon code is validated and proper working.

2. Input and output variables are idenƟfied.

3. A Python wrapper is properly is defined on the basis of the convenƟon on input/output files.

4. The execuƟon command of the wrapper, the files required for the simulaƟon, the wrapper itself are
upload and registered through the framework.

5. The related simulaƟon capability is now ready for use.

The analysis secƟon provides both a single run capability as also mulƟple ones once a simulaƟon item
is available. The single run execuƟon allows to see the results related to a specific simulaƟon item, pro-
viding a support for a parƟcular evaluaƟon. The results can also be analyzed through the post-processing
capabiliƟes provided by JavaScript codes available in the workspace. The mulƟple run execuƟon refers to
the surveys that can be created within the same environment and that generally involve other simulaƟon
items to build more complex mulƟdisciplinary evaluaƟons.
Surveys set up can be done through the funcƟonaliƟes provided by a separate secƟon of the system mod-
eling workspace where all the informaƟon defined in the current project can be used to drive the definiƟon
of the required analyses. In parƟcular the developed user interface allows to define input and output of a
specific analysis, loading also the simulaƟon item currently available within the same project or provided
by a resources library. The same secƟon allows the definiƟon of the relaƟonships between the imported
simulaƟon blocks, generaƟng the driver file required for themanagement of the single iteraƟon by DAKOTA
mulƟdisciplinary analysis plaƞorm. The overall iteraƟons cycle seƫngs are managed in the same way, pro-
viding a set of different opƟons and alternaƟves that lead the correct generaƟon of the program main file.
In this case the user interface has been conceived to drive the user to the creaƟon of such file without
the need to directly interface with the command line instrucƟons, reducing the possibility to erroneously
introduce wrong parameters. Such approach allows to beƩer exploit the capability offered by DAKOTA,
providing also a beƩer understanding of the available solving techniques the choice of which widely affect
the idenƟficaƟon of the opƟmal soluƟon. The results generated from the iteraƟons cycle can be post-
processed in the same environment through the available set of JavaScript codes for the management of
such informaƟon. In this way the responses provided by the mulƟdisciplinary plaƞorm can be properly
elaborated by the user and taken into account to rightly guide the following phase. They provide only the

198

instruments that support the design and analysis processes but the final choice about the acƟons thatmust
be done depends on the single user or a team of persons. The main purpose is in fact to clearly provide all
the possible informaƟon with respect to the considered simulaƟon scenario and system data. The poten-
Ɵal change of system architecture or components properƟes depends however on the people involved in
the project.
Data structure has been conceived also to foresee the potenƟal integraƟon with external computaƟonal
resources, provided for example through servermachines assigned to such a role for a specificmodel simu-
laƟons. In this case the concept of simulaƟon item is sƟll valid and such observaƟon shows the effecƟveness
of the conceptual architecture of the developed meta-model.
The integraƟon with DAKOTA plaƞorm is not the only possible soluƟon since this configuraƟon has been
chosen only to demonstrate the benefits of such model-based methodology while the aƩenƟon is mainly
focused on the validaƟon of the developed meta-model (expressed through the related data structure),
idenƟficaƟon of the actual issues and invesƟgaƟon of the possible improvements. Other mulƟdisciplinary
design analysis plaƞorm can in fact potenƟally be considered as OpenMDAO framework for example.

7.4.12 Web applicaƟon and networking

One of themost challenging research topics of the last few years are represented by the increasing inte-
graƟon of web-based technologies within the engineering design field. In parƟcular a web-based applica-
Ɵon provides services that are quite difficult to obtain with the tradiƟon approach. The development of a
such an applicaƟon hasmany advantages with respect to a desktop installed soŌware also if this one covers
a fundamental role. The industry knowledge is strictly influenced by the historical background bounded
to the desktop applicaƟon that have been used for several years in the design of system model. From the
same point of view applicaƟon installed on a certain plaƞorm (or more generally referring to a server ma-
chine that is however directly related to a desktop terminal) shows performances that are not so close to
the ones obtainable with a web-based architecture. This last soluƟon enhances however some other in-
creasing benefits from the collaboraƟve perspecƟve. The share of informaƟon and data exchange is beƩer
managed through the implementaƟon of an applicaƟon referred to a server machine for the providing of
the services. All the plaƞorm connected to the central repository can exploit this advantages of a common
shared source of informaƟon without the need to install something to access such data. Networking is in
this sense one of the most promising alternaƟve for the management of systemmodel data above all from
a collaboraƟve viewpoint.
The considered integraƟon can also be seen in the context of Service-oriented Architecture (SOA) [89].
Generally such architecture represents a design paƩern for the collecƟon of different soŌwaremodules. In
parƟcular themain target is represented by the generaƟon of a single and large soŌware applicaƟon based
on the funcƟonaliƟes offered by various services (other soŌware). This architecture is mainly conceived
to ease the cooperaƟon between different computers connected over the same network, improving the
capabiliƟes offered by the overall system. The orchestraƟon of such services is one of the most important
features for the correct funcƟoning as also a well-defined communicaƟon protocols. The benefits of SOA
can be mainly idenƟfied in the simultaneous use and in the easy mutual data exchange between programs
of different vendors oŌen running on different plaƞorm (Windows, Unix, Solaris, etc…). All these capa-
biliƟes are provided without addiƟonal programming and with a more consistent informaƟon exchange.
The federaƟon of resources is one of the most challenging aspects of the current research topics since it
potenƟal offers some interesƟng feature above all in the context of a collaboraƟve environment. This ap-
proach requires however a well-established data flow to a federated database system. Another aƩracƟve
element related to SOA concept is represented by the fact that it is principally based on object oriented
design since each service can be seen as a discrete piece of code, providing characterisƟc funcƟons and
methods. Such feature underlines also the reusability of the code itself by changing only the manner the
individual service interoperate with the other ones within a certain main applicaƟon. The clients access to
the services provided by the complete applicaƟon is managed exploiƟng the well-defined interfaces such
for example XML. Although such format is quite widespread for the interfacing of SOA services, JSON is
increasing its presence over such architecture.

199

Standards compliance, service idenƟficaƟon, reusability and modularity are some of the most important
elements that ensure a correct behavior for the funcƟonaliƟes provided.
Web services can be implemented following the main feature related to the previously introduced con-
cepts. In this case two main roles can be idenƟfied and are represented by Service provider and Service
consumer (for example the client). In parƟcular such implementaƟons can be defined generally as Web-
oriented architecture (WOA) and they basically extend service-oriented architecture to web-based appli-
caƟons. Generally they are also considered as a sort of light-weight version of SOA and aremainly aimed to
increasing the interacƟons between browser (client) and server by REST or POX technologies for example.
The implementaƟon of SOA oŌen follows the already defined web standards (for example SOAP) that have
gained a quite broad acceptance over industry but such architecture can also be defined using any other
service-based technology. In the following list are reported some of the possible alternaƟves:

• SOAP, RPC

• REST

• DCOM

• CORBA

• Web services

• DDS

• Java RMI

• WCF

• Apache ThriŌ

7.4.13 Web applicaƟon integraƟon alternaƟves

The management of informaƟon through web applicaƟon can be realized through proper developed
scripƟng language interfaces. For example Python language offers a series of modules and funcƟons that
can be used to access and exchange data over the network. For example XML-RPC is a remote procedure
calling using HTTP as the transport and XML as the encoding. XML-RPC is designed to be as simple as pos-
sible, while allowing complex data structures to be transmiƩed, processed and returned.
Other similar web services can be provided using other modules like JSON-RPC, which is quiƩer similar to
the previous one but has been based on the communicaƟon through JSON file extension.
Another way to integrate a web service for the management of Python funcƟonaliƟes is represented by
the generaƟon of a proper Django framework. In this way the front end can be managed through Ruby on
Rails while some of the scienƟfic libraries already available in Python can be accessed across the network.
In parƟcular this support applicaƟon can be considered only for the exploitaƟon of certain scienƟfic com-
putaƟon but not for themanagement of the other web feature as user access, data storage, etc…which are
instead provided directly with RoR applicaƟon. Django framework can be used in this way to build the over-
all Python applicaƟon since it provides some interesƟng features ready to use while the other considered
alternaƟves require a lower implementaƟon level. This characterisƟc lead to a more syntheƟc implemen-
taƟon of the required applicaƟon but at the same Ɵme is not so easily managed from a development point
of view. As previously introduced many different web development frameworks can be chosen for the
integraƟon of the Python libraries (like for example Zope2, web32py or TurboGears) but Django shows a
well-documented and supported set of resources.
The integraƟon of RoRweb applicaƟonwith a Django service allows to exploit the scienƟfic libraries already
defined and validated in Python. In this manner a more dynamic interface can be used to integrate some
of the uƟliƟes available within Python environment without the need call Python script from Ruby. This
approach is based mainly on XML and JSON data exchange between the web services, using in parƟcular

200

the advantages of AJAX paradigm to interface the elements of the proposed framework. Data can be sent
to a Python web applicaƟon to be properly processed and then returned to the calling funcƟon through
JSON format. The same method can also be used to render XML data over HTTP requests.
This approach allows also for a beƩer management of updates and maintenance acƟviƟes since the appli-
caƟon runs on the same machine. The data requested are instead distributed to different clients using the
web browser on various plaƞorms. For the same reason the Python applicaƟon not necessarily musty be
hosted on the samemachine of the RoR applicaƟon. It can be placed in fact on a different locaƟon available
on the network.

7.5 Expected results, their significance and applicaƟon

A web-oriented architecture can widely improve the collaboraƟve process when the project involves
a large number of engineering domains. A web service soluƟon can be developed to support mulƟdisci-
plinary analyses, providing all the elements required for the management of the available computaƟonal
resources. A set of useful uƟliƟes will be accessed by the single user directly through the web browser,
paving the way to a more effecƟve management of the shared resources. The same web interface will also
be used to adapt PSE to InformaƟon Power Grid (IPG) environment for MDA applicaƟons.
Themain focus of the proposed research acƟvity will be addressed to the assessment of amodel-based ap-
proach for the management of both modeling infrastructure and computaƟonal resources. It is expected
that the developed framework will help the definiƟon of mulƟdisciplinary analyses through the use of a
web-based interface directly linked with a system modeling environment. In this way it will be possible to
reduce the problems related to the exchange of inconsistent informaƟon, allowing also building a more
structured evaluaƟon of system performances. The framework delivered with this acƟvity will allow ac-
celeraƟng product design and manufacturing process, to supporƟng mulƟ-domain systems engineering,
simulaƟon-based engineering, and knowledge management, besides the current design approach. The
evaluaƟon of the proposed approach on a reference case will be used to validate the applicability and us-
ability of the developed framework. The comparison between the results obtained on the same case but
with both the tradiƟonal approach and the proposed one will be used to idenƟfy actual benefits and draw-
backs.
The developed framework will show how the model-based infrastructure can widely reduce the Ɵme and
costs of product design. A beƩer management of the available resources concurrently with a proper con-
necƟon with a modeling environment can help to overcome those inconsistencies that oŌen slow down
a smooth design process. The developed framework will provide a set of funcƟonaliƟes that will be di-
vided basically in two workspaces. A modeling workspace will be mainly used to define all the features
and properƟes that will drive system development. These capabiliƟes will be used by system engineers to
define product architecture with also the possibility to detail design and components as the project pro-
ceeds to more advanced phases. In this way system informaƟon can also represent a reference baseline
for all the involved engineering domains, paving the base for the correct integraƟon of simulaƟon models.
The other workspace will be mainly used to support all the acƟviƟes directly related to the management
of computaƟonal resources and mulƟdisciplinary environments. The synergeƟc integraƟon of both these
workspaces in the same PSE will widely improve design process since all the data will be available in the
same distributed environments among all the actors.
The methodology will impact the Ɵme needed for the interfacing with customer and supplier, easing the
requirements elicitaƟon phase and potenƟal changes and discussions due to misunderstandings. The Ɵme
related to the passage from design to operaƟons phase (typically managed by different teams) will also be
posiƟvely affected. Another acƟvity that will be improved from a Ɵme saving viewpoint is represented by
the reconfiguraƟon of items during operaƟons and feedback on new design (i.e. easier definiƟon of new
requirements for improved space applicaƟon).
The proposed methodology is basically not limited to large-scale aerospace problems but can also be ap-
plied to other complex applicaƟons such as bio-engineering, shipbuilding, civil-engineering or automoƟve
ones. Different engineering fields can basically be approached in the same way, providing the basis for a

201

common design methodology. In this way the use of different development plaƞorm that oŌen limits the
data exchange between disciplines can be reduced, enhancing the creaƟvity and innovaƟon. The appli-
caƟon of the proposed MBSE methodology and related infrastructure can also be applied seamlessly the
design of other complex aerospace systems as Unmanned Aerial Vehicle (UAV) for example.
The same environment can provide useful uƟliƟes to properly support the decision making process, avoid-
ing the problems and misunderstandings that oŌen arise from informaƟon inconsistency.
A seamless integraƟonbetweendesign and analysis can be improved starƟng from the implemented frame-
work, paving the way for future developments addressed to the improvement of product data exchange.
System realizaƟon process can also be understood in a more effecƟve manner with the main purpose to
avoid differences between the designed system and the produced one. Such a model-based framework
can also be implemented to store and re-use design history from previous projects, improving the overall
effecƟveness of resources uƟlizaƟon. The developed environment can be used to support the determina-
Ɵon of the impact of decisionswith respect not only to aerospace applicaƟons but also to other engineering
domains. In fact the proposed approach and related framework can also be easily applied to the design
processes of other fields. The formalizaƟon of the developed infrastructure can also promote a conƟnuous
learning, enhancing the capability to design and manage complex systems once a common modeling and
analysis approach has been defined. In this way the informaƟon infrastructure can be improved, reduc-
ing or ideally eliminaƟng the possibility that incorrect data are exchanged across the actors involved in a
project.
The integraƟon between different analysis tools is another interesƟng feature that can be widely improved
through the definiƟon of a common plaƞorm that works as a reference point for all the disciplines involved
in a project. The idenƟficaƟon of globally opƟmized designs can then be pursued also with the support of
uƟliƟes dedicated to the management of complexity and risk in the same environment. Another benefit is
represented by the creaƟon of a common plaƞorm for the definiƟon of performances evaluaƟon methods
shared in the same collaboraƟve framework.
The developed web-based applicaƟon can also be used to improve the communicaƟon of design specifica-
Ɵons to remote sites and companies not necessarily limited to aerospace field.
The formalized integraƟon of large-scale systems allows harmonizing all the involved domains, with the
possibility to parƟally automate the conversion of exchanged data through the definiƟon of appropriate
interfaces (thanks to the formal definiƟon of data structure). This capability is mainly due to the agreed
data structure that is shared among the involved disciplines and allows also reducing the error-prone and
oŌen Ɵme-consuming process of informaƟon conversion.
The formalizaƟon of the concepts related to simulaƟon codes and design methods can help to trace and
store important informaƟon generated internally by a specific company or organizaƟon. In this way it is
possible to improve the return of knowledge from a certain project, enhancing the reusability and modu-
larity of already implemented features and resources. It is not uncommon that some working codes and
scripts implemented by an individual user is not shared with other persons since it is generally stored on
local machine and it is customized for specific purposes. The same funcƟonality is not uncommon that
is re-implemented from scratch in another project from another person, consuming resources (Ɵme and
efforts) on something that can be potenƟally avoided with a shared infrastructure for the exchange of such
informaƟon. In this way people can use already developed equaƟons/funcƟons or codes addressing their
work on another acƟviƟes, improving the overall design process. In the opposite case all the achieved ca-
pabiliƟes are easily lost and the design process proceeds as always in a not proper effecƟve manner.
The applicaƟon of the same developed environment can be easily customizedwith the final purpose to sup-
port not only aerospace industry but also other engineering fields. A beƩer tracking of design changes and
related costs will reduce the lead Ɵme in product modificaƟon, needed for example to meet new business
demands. The improvement of system compliance with respect to customer needs is in fact a common
concern to various industrial domains.

202

Chapter 8

Reference Case

In the following secƟons the results achieved through the implemented infrastructure will be provided
and described. In parƟcular a reference case has been considered to evaluated the proposed framework
with respect to the integraƟon of mulƟdisciplinary design and analysis techniques. The problem is intro-
duced in the first part, reporƟng the main features and issues that characterize such kind of analyses. In
this secƟon the formalizaƟon of the problem is specified, detailing the considered design variables, objec-
Ɵve funcƟons and project constraints. The mulƟ-objecƟve reference case is then resolved exploiƟng the
techniques provided by DAKOTA plaƞorm and integrated in the same modeling infrastructure. The pro-
posed approach has been implemented following the principles of model-based philosophy, trying to set
up the target capabiliƟes with an object-oriented structure as much as possible. The main idea is to assess
the feasibility to clearly separate the problem formulaƟon from the actual solving methods and rouƟnes,
enhancing the management of complex systems. All informaƟon needed to set up a mulƟdisciplinary de-
sign analysis are defined within the system modeling infrastructure and are used to implement specific
surveys. In this way the same approach can be used for a wide range of engineering problems, improving
the reusability of such an infrastructure and avoiding the implementaƟon of a soluƟon that can be used
only for specific situaƟons. In these case in fact the maintainability of such tools/models becomes difficult
to ensure since they are oŌen linked to a restricted group of people. The results generated from the solving
algorithms are then reported in the final part of this chapter.
It is important to underline that the surveys considered for the analyzed reference case have been done
to show the feasibility to connect system models and analysis environments within the proposed infras-
tructure. The assessment of the actual solving techniques as well as the implementaƟon of alternaƟve
opƟmizaƟon techniques is in fact not the primary objecƟve of the current work. The development of solv-
ing methods can however be pursued within the same plaƞorm in future works. The code accessibility
provided by an open-source plaƞorm ensures inn fact the possibility to directly implement opƟmizaƟon
algorithms to manage complex non-linear problems as in the case of aerospace products.

8.1 IntroducƟon

The considered reference case has been selected from a range of possible design and analysis alterna-
Ɵves among different space applicaƟons. In parƟcular a space mission scenario involving different engi-
neering domains has been chosen to show how the proposed infrastructure can be applied for the man-
agement of mulƟdisciplinary surveys. The space system under evaluaƟon is represented by a human rated
vehicle designed to reach as support spacecraŌ of another human outpost, located in the Lagrangian point
L2 of the system Earth-Moon. The vehicle has been conceived to supply the system already present in the
target posiƟon with support units or expendables materials for example. The Lagrangian point L2 repre-
sents an interesƟng posiƟon for space applicaƟons since it offers some advantages for the achievement of
specific objecƟves. Orbits around Lagrangian points offer in fact unique advantages that have made them
a good soluƟon for performing specific spacecraŌ missions. Earth–Moon L2 is a good posiƟon for the loca-
Ɵon of a communicaƟons satellite covering the Moon's far side. At the same Ɵme an Earth–Moon L2 point
would be also a good locaƟon for a propellant depot as part of the proposed depot-based space trans-

203

Figure 8.1: Conceptual representaƟon of the project ExploraƟon Gateway Plaƞorm [97].

portaƟon infrastructure. Missions like ARTEMIS (which is a mission extension of THEMIS [95]) have been
developed across the years to invesƟgate and potenƟally exploit the benefits coming from the posiƟoning
of spacecraŌ in the Lagrangian points, considering both the Sun-Earth system as well as the Earth-Moon
one. Currently different missions involving the Lagrangian points have been proposed for the next future
and various surveys have been done for the preliminary phases of design.
An interesƟng mission is represented for example by the ExploraƟon Gateway Plaƞorm [96]. This project
has been proposed by Boeing in December 2011 to reduce the cost of Moon, Near Earth Asteroids (NEAs),
or Mars missions by using components already designed to construct a refueling landmark and servicing
staƟon located at one of the Earth–Moon Lagrange points, L1 or L2. Cost savings can be achieved through
already developed and deployed elements that can be reused for mulƟple missions such as a launch plat-
form for deep space exploraƟon, roboƟc relay staƟon for moon rovers, telescope servicing and a deep
space pracƟce plaƞorm located outside the Earth's protecƟve radiaƟon belts. In this case the overall plat-
form or related spacecraŌs would be constructed at InternaƟonal Space StaƟon (ISS) for tesƟng before
being placed to L1 or L2 via electric or chemical propulsion rockets. A conceptual representaƟon of the
considered plaƞorm is provided in figure 8.1.

8.2 Problem descripƟon

This reference case have been selected since it shows some of the main issues related to the defini-
Ɵon andmanagement of mulƟdisciplinary analyses. The design of space mission requires oŌen the correct
understanding of all the variables that are shared among the different disciplines and actors. The pro-
posed infrastructure has been conceived to manage such kind of informaƟon from the preliminary phases
to themore advanced ones. The actual soluƟon of the involved design parameters with respect to the final
objecƟves strictly depends on the available resources and related needs for the specific project. For this
reason the implemented infrastructure provides common capabiliƟes that can be used among different
programs since they are not bounded to a specific system model. According to such consideraƟons the
system engineers can use such infrastructure to support the decision making process in the preliminary
phases as well as the more advanced ones. In the first case simplified models of different disciplines can
be connected together to implement system model simulaƟons, paving the way for a more effecƟve way
of design space exploraƟon for example. In this case simulaƟon results of mulƟdisciplinary analyses can
be achieved in a relaƟvely short Ɵme (since the performances are directly affected by the available com-

204

putaƟonal resources). Similar analyses can be executed in the second case on more detailed models and
scenarios. The same approach and related plaƞorm can in fact be used also in this situaƟon but the surveys
will be addressed towards more specific analyses with a reduced range for the design variables.

8.2.1 Main issues

The main issues directly related to the problem under consideraƟon are represented by the effecƟve
set-up of different simulaƟon environments and codes. The same issues can also be found in other similar
design problems and for this reason they are discussed in this secƟon. Such issues are approached through
the concepts of FuncƟon and FuncƟon Model within the proposed approach since these objects allow the
connecƟon with the informaƟon contained in the topological elements. In parƟcular the links with exter-
nally implemented solving codes must be properly managed to avoid unpleasant situaƟons where codes
not completely known run on servermachine. This situaƟonmust be properly taken into account to ensure
the persistence and correctness of the stored data and avoid uncontrolled process on server side (this sit-
uaƟon can potenƟally represent in fact a dangerous threat). The possible soluƟon for the management of
such kind of simulaƟon rouƟnes is represented by the definiƟon of a properly monitored registraƟon pro-
cess for the related resources. Also in this way the overall process cannot be directly controlled since the
main problems regards the possibility that the users can have to upload externally developed codes on their
own (such parametrical models can be used to define the core capabiliƟes of the funcƟons themselves).
In this case it is necessary to monitor the overall process when such codes are uploaded and properly
integrated within the infrastructure. They are directly stored in the server machine and are available to
other users of the web-plaƞorm once the "registraƟon" process ends. This kind of problems will always
be present each Ɵme we try to let users to upload and define the codes that will be integrated within the
FuncƟon Model.
The other possible soluƟon is represented by the fact that the simulaƟon codes are directly defined within
the system modeling environments, choosing a common modeling language as Modelica for example. In
thismanner the codes are stored as text in the FuncƟonModel but in this case they can always be processed
to idenƟfy possible dangerous commands for the server machine. The uploaded code can in fact be parsed
to idenƟfy possible threats and rise a warning of the code itself. Modeling languages like Modelica can be
used in this way to implement simulaƟons belonging to different domains (thanks to the mulƟ-domain
capability of Modelica itself). With respect to the previous considered alternaƟve the codes can always
be directly controlled and accessed to verify that they are not dangerous when executed on the server
machine. The disadvantages of such soluƟon is mainly related to the fact that this modeling language (in
analogous way another language thatmust be learned) requires a training period if the user does not know
it. In this case already developed codes must be converted and re-validated to ensure the correctness of
the generated results with respect to the already available ones. The codes themselves can be exchanged,
updated and maintained with minor efforts with respect to codes previously developed once the same
capabiliƟes have been developed and deployed.

8.2.2 Analysis of the problem

Themain aim of the survey supported with the proposed infrastructure is represented by the invesƟga-
Ɵon and evaluaƟon of the performances about the possible mission soluƟons. In parƟcular a set of design
variables is defined on the basis of the data available from the topological design. In parƟcular the design
variables considered for the current problem regard for example the choice of the launcher, the geomet-
rical properƟes of the spacecraŌ, electrical power system alternaƟves, etc. A more detailed descripƟon
of the design variables is provided in the secƟon related to the explicit formulaƟon of the problem. A set
of constraints is then considered to bound the feasibility of the soluƟons selected, avoiding the possibility
to idenƟfy configuraƟons not actually possible. Such constraints mainly deal with the structural feasibility
of the primary structure of the system, the minimum temperature experienced within the spacecraŌ as
provided by the thermal simulaƟon, etc. More details about constraints definiƟon are however provided
in the next secƟon. The main objecƟve of the considered mission can be summarized with the maximiza-

205

Ɵon of the available mass in the final orbit posiƟon but at the same Ɵme other factors must also be taken
into account. The cost of the whole mission represents for example a limiƟng parameter that affects the
final choice of the spacecraŌ configuraƟon (other objecƟves are also taken into account and are widely
described in the following secƟon). The considered case shows the characterisƟcs of a mulƟ-objecƟve
design problem and the available informaƟon must be properly managed to idenƟfy the most suited sys-
tem. A strong non-linearity is basically highlighted by the characterisƟcs of the simulaƟons involved and
the presence of a discrete space for some of the design variables make the problems not so easy to ap-
proach. The idenƟficaƟon of the opƟmal soluƟons is difficult to achieve in a straighƞorward way in this
kind of problems. Different non-gradient based algorithms and rouƟnes can help to pursue such search
and a properly defined system model infrastructure provides the basis for a consistent representaƟon of
the required data.

8.2.3 DescripƟon of the involved disciplines

The performances evaluaƟon of the whole system requires the execuƟon of different domain-specific
codes that allow the computaƟon of the desired quanƟƟes. The values needed to get an evaluaƟon of
the system capabiliƟes are in fact widespread over different engineering domains and the output from
one simulaƟon may be required for example as the input for another one. The data exchange between
the simulaƟon blocks (conceptually idenƟfied with the FuncƟon Models) is defined through the correct
implementaƟonof the data-flow. This process canbe supported through a graphical user interface available
within the framework itself.
The main disciplines involved in this preliminary design are represented by the mission analysis domain,
structural domain, thermal domain and electrical domain. The computaƟons related to themission analysis
domain aremainly related to the evaluaƟon of the trajectory characterisƟcs, delta-V and payload capability
(directly related to the choice of the launcher). The structural domain is instead involved in the computaƟon
of the main stresses experienced by the structure on the basis of the launch loads (also related to the main
characterisƟcs of the launcher) or pressurizaƟon loads (due to the fact that the mission is constrained to
a human rated mission) for example, taking into account the main geometrical properƟes that have been
considered in the set of the design variables. In this case such informaƟon are used to understand if the
primary structure is able to withstand the external loads on the basis of the specific material properƟes.
The evaluaƟon of the thermal response of the spacecraŌ with respect to the external environment and
on the basis of the geometrical quanƟƟes is aƩributable to the thermal domain. In this case the obtained
informaƟon can be used for example to assess if the internal temperatures have dropped below the limit
values for the survival or comfort of the crew (taking always under consideraƟon the development of a
human rated mission). In the end the electrical domain involves all the computaƟons needed for example
to evaluate the required solar arrays extension aswell as the esƟmaƟonof themass allocated for the energy
storage system. In this case the informaƟon gathered within the system model (represented for example
by the main characterisƟcs of the components that can be used to assemble the final configuraƟon) is
used to generate the required output. Different solar cells technologies and baƩery types can in fact be
considered and part of system performances are directly affected by these choices as well as for the other
design variables that involve the other domains.

8.3 Problem formalizaƟon

The problem approached in the current secƟon can be explicitly formulated to show the main features
of the whole analysis. In parƟcular the various simulaƟon models (directly connected with the FuncƟon
Models) are used to generate the required data and the informaƟon are exchanged among each models to
evaluate the performances of the system. The implemented framework currently allows the management
of the Individual Discipline Feasible (IDF) architectures and the considered reference case consistently fol-
lows such structure. The approached problem reflects in fact the main features of an IDF paƩern and it
has been considered to assess the capability to manage such type of analysis.

206

8.3.1 SimulaƟon models

The overall simulaƟon of the system is based on different simulaƟon models that belong to different
domains. Each simulaƟon model has its own input and the generated output are available for the other
ones, the data flow among the involved simulaƟon modules must be defined during survey set-up.
The main features of the mission trajectory are computed taking into account a simplified transfer orbit
from the iniƟal circular orbit (around the Earth) to the final orbit near the Moon. The transfer orbit is an
Hohmann transfer trajectory, assuming that such esƟmaƟon is quite suited for the purpose of the survey.
The input of suchmodule are represented by the launcher type (parameter that directly affects the payload
capability for the starƟng orbit), the target alƟtude of the iniƟal circular orbit and specific impulse for the
kick-offmotors. In this case it has been assumed that the kick-offmotors used to enter the transfer orbit to
the Moon are provided as external service to the designed spacecraŌ. The same propulsive subsystem is
also used tomanage the posiƟoning in the final locaƟon, assuming that themost part of such servicing does
not belong to the main spacecraŌ. For this reason a specific impulse is associated to such block. The same
module takes into consideraƟon the variability associated to a set of possible launch sites, also if this input
does not directly affect the main performances of the whole system, excluding the Ɵme to launch with
respect to an iniƟal relaƟve posiƟon between the Earth and the Moon. The main output are represented
by the final mass in the target posiƟon, the Ɵme of flight and the cost associate to the launcher (derived
from the configuraƟon selected for the simulaƟon). Payload capabiliƟes, expressed as the payload mass
funcƟon of the target alƟtude, are obtained from the data sheets of the launchers (interpolated from the
experimental data).
The computaƟons related to the structural module allow to esƟmate the main stresses that characterize
the primary structure. In parƟcular the pressurizaƟon loads and maximum acceleraƟons in the axial di-
recƟon are used to compute both the hoop pressure stresses as well as the ulƟmate compressive ones.
The structure response is calculated on the basis of the geometrical characterisƟcs of the structure itself
(external radius, thickness and length of the primary structure). The simulaƟon block take into consider-
aƟon the density and the elasƟc module of the possible materials used to implement the structure (a set
of aluminum-alloys are considered as input variables). A set of safety and weight factors is also introduced
and it is assumed as a project data. Such informaƟon are used to esƟmate the response of the structure
considering the proper margins. structural stability. The mass of the primary structure and the available
volume within the spacecraŌ are generated from this simulaƟon block.
The esƟmaƟon of the thermal response is obtained by the parametrical model associated with the thermal
funcƟon. In parƟcular the corresponding model is defined to assess the system behavior with respect to
the mission scenario. In parƟcular the thermal simulaƟon allows to esƟmate the product response during
the transfer orbit from the Earth to the Moon (the simulaƟon Ɵme is computed according to the transfer
orbit available from the mission analysis). In this case some of the material properƟes, like aluminum-alloy
density or thermal conducƟvity, are used to set-up the thermal network used to solve the problem. In this
case the geometrical data related to the whole system (external radius, length and thickness) allow to de-
fine the thermal capacitances of the thermal nodes contained in the network (Matlab©script). The overall
network is solved taking into account the thermal resistances among nodes and compuƟng the thermal
fluxes between the involved elements. In this way the Ɵme evoluƟon of the temperatures is obtained
through numerical esƟmaƟon. This informaƟon is then processed to assess the minimum temperatures
within the module during the transfer orbit. The thermal control is ensured through the assumpƟon of
the presence of heaters components within the spacecraŌ. It is also assumed an ON-OFF thermal control
law that is acƟvated or not on the basis of the current temperature of a node assumed as a reference
sensor. The temperature evoluƟon is esƟmated on the overall simulaƟon of the transfer orbit (computed
in the mission analysis block) and taking into account also the maximum power available for the heaters
(provided as an input parameters). AŌer the simulaƟon the minimum temperature registered within the
spacecraŌ and the total energy consumpƟon are returned as output.
The main features related to the Electrical Power Subsystem (EPS) are computed in relaƟon to the avail-
able informaƟon from the project data. The power requirement takes into account the baseline demand,
considering also the peak power levels and introducing also a margin for the related computaƟons. It is

207

assumed that the primary source power is represented by the solar energy. The cells physical character-
isƟcs and properƟes are used to esƟmate both the mass and surface extension of the solar arrays. A set
of possible alternaƟves for the baƩery types is also considered and the related informaƟon is used for the
dimensioning of the primary storage system. Other data as the Depth Of Discharge (DOD), baƩery spe-
cific energy and density are taken into account. The Ɵme during which the baƩeries are able to supply
the required power is constrained as a project data as well as the Ɵme allocated for the re-charging of
baƩery-pack.

8.3.2 Design variables

The design variables considered for the current case are briefly discussed in this secƟon and are used
as input variables for the simulaƟon models described above.
A design variable is represented by the launcher type. Three main classes have been taken into account,
considering also the associated configuraƟons. In this case 33 possible soluƟons have been included in the
analysis and the related variables has been expressed as an integer number. The three reference classes
of launchers are: Atlas 5, Delta 4M and Ariane 5ES (EvoluƟon Storable).
The target alƟtude of the circular orbit for the iniƟal posiƟoning of the spacecraŌ and propulsion-service
module is another design variable. In this case a range between 400 and 1400 Km has been chosen as the
possible starƟng orbit for the following transfer to the Moon. In this case the design variable belongs to
the conƟnuous domain. The evaluaƟon of payload capability is based on the data-sheets available from
launchers catalogue (as well as from the literature) as the one visible in figure 8.2.

The longitude of the launch site is provided as a design variable but does not have parƟcular influence
on the overall system performances for the analysis under consideraƟon (their presence is needed for the
computaƟons related to the mission analysis and are introduced to verify their influence through sensiƟv-
ity analysis; their actual importance with respect to the other variables is lower since not all the launchers
can be freely associated to a launch site and in the current case such possibiliƟes are not managed through
constraints; they are mainly introduced to invesƟgate the capability to manage such kind of data). The
longitudes of the launch sites are provided as a set of discrete real values.
The main geometrical characterisƟcs of the spacecraŌ are managed as design variables and can be sum-
marized with external diameter, overall length and thickness of the external wall (in this case averaging the
thickness of the primary and secondary structure as well as the thermal protecƟon cover for example). The
spacecraŌ shape is assumed to be cylindrical. The external diameter is formulated as a conƟnuous design
variable in the range from 4.2 to 4.6 meters. The overall length is also modeled as a conƟnuous design
variable in the range from 5.5 to 6 meters. In the end the wall overall thickness is modeled as a conƟnuous
design variable in the range between 0.1 and 0.15 meters.

The specific impulse of the kick-motors for the transfer-orbit inserƟon and final posiƟoning is modeled
as a conƟnuous design variable in the range between 200 and 300 seconds.
The overall maximum power allocated to the heaƟng elements within the spacecraŌ is expressed as a con-
Ɵnuous design variable that can take the values from 500 to 2000 waƩ.
The aluminum-alloy that can be selected for the primary structure is managed as a design variable ex-
pressed as an integer number. In the current survey three different types have been considered: Aluminum
2219-T851 1'' plate, Aluminum 6061-T6 sheet and Aluminum 7075-T73 sheet.

The solar arrays can be basically implemented using different types of cells technologies and the related
variable has been defined with an integer number. In this analysis four typologies of solar cells have been
considered: Silicon, GaAs dual-juncƟon, GaInP dual-juncƟon and thin films.
The last design variable considered in the current study is represented by the baƩery type used for the
primary storage system and it has been modeled as an integer number. In parƟcular the different baƩery
soluƟon considered are: Nichel Cadmio, Nichel IPV (Individual Pressure Vessel), Nichel CPV (Common Pres-
sure Vessel), Nichel Metal-Hydrate and Ion Lithium.
The previous design variables, once defined in the modeling environment, can be directly connected with
the simulaƟon models through the survey set-up, during which the overall data-flow is defined. Such in-
formaƟon are then used to compute the output quanƟƟes through which both the objecƟve funcƟons and

208

Figure 8.2: Example of payload capability expressing the mass as funcƟon of the alƟtude.

Figure 8.3: Simplified representaƟon of the primary structure considered in the reference case.

209

Figure 8.4: Simplified representaƟon of the thermal model considered in the reference case.

constraints are defined.

8.3.3 ObjecƟve funcƟons

The objecƟve funcƟons evaluated in the current survey are basically represented by: an esƟmaƟon of
the cost relate to the launcher, the mass in the final orbit (excluding the mass of the primary structure and
EPS), the available internal volume of the spacecraŌ (excluding the volume occupied by the energy storage
system) and the total energy consumpƟon related to the thermal control system. In parƟcular the purpose
of the survey is the minimizaƟon of the cost, the maximizaƟon of the available mass in the final orbit, the
maximizaƟon of the available volume and the minimizaƟon of the consumed energy.
The mapping of such variables with the quanƟƟes to be opƟmized within the current analysis is defined
during the survey set-up. The related quanƟƟes are connected with the simulaƟon items and are used
from the external solving plaƞorm to drive the selecƟon for the updated design variables.

8.3.4 Constraints

AŌer the definiƟon of the design variables and objecƟve funcƟons the following phase regards the
formalizaƟon of the problem constraints. In this case there are both variables constrained by the project
data (not directly involved in the opƟmizaƟon process) as well as other quanƟƟes that must be properly
constrained to avoid unfeasible configuraƟons. In parƟcular the mass of the primary structure and EPS
must be lower than the overall mass available in the final orbit. Such condiƟon must be formalized since
the related masses are computed by different simulaƟon models and the feasibility of the selected design
variables is not directly ensured. The minimum temperature registered within the spacecraŌ (during the
transfer orbit to the Moon) must be consistent with the human-rated characterisƟcs of the mission. Other
constraints have been introduced to take into account for thematerial resistance with respect to the actual
stresses of the structure as well as the limit associated to the elasƟc buckling load.

8.3.5 Solving methods

The mulƟdisciplinary opƟmizaƟon plaƞorm used to invesƟgate system performances is Dakota and the
associated capabiliƟes have been integrated within the modeling environment. The reference case ap-
proached with the proposed infrastructure is then characterized by 11 design variables, 4 objecƟve func-
Ɵons and 4 inequality constraints. The reference case considered is basically a mulƟ-objecƟve opƟmizaƟon
problem. There are three possible alternaƟves formulƟ-objecƟve opƟmizaƟon inDakota. The first isMOGA
(MulƟ ObjecƟve GeneƟc Algorithm), the second is the Pareto-set strategy while the third is a weighƟng fac-
tor approach for mulƟ-objecƟve reducƟon, in which a composite objecƟve funcƟon is built from a set of
single objecƟve funcƟons using a user-specified set of weighƟng factors. The laƩer two soluƟons work

210

with all of the individual algorithm based based on single objecƟve opƟmizaƟon. In these cases in fact the
mulƟ-objecƟve opƟmizaƟon is approached through the "transformaƟon" of a mulƟ-objecƟve problem to
a single objecƟve one (in this manner than it is possible to use all the methods planned for the solving
of single objecƟve opƟmizaƟon). In the future Dakota will consider also the integraƟon of mulƟ-objecƟve
response data transformaƟons for goal programming, normal boundary intersecƟon, etc.
The non-linearity of the system response with respect to the input design variables led to the choice of
derivaƟve-free global methods. They can in fact be applied to problems were gradient computaƟons are
too expensive or unreliable. In these cases the gradient-free methods are oŌen go-to methods when the
problems may be nonsmooth, mulƟmodal, or poorly behaved. It is important to take into account, how-
ever, that they showmuch slower convergence rates for finding an opƟmal point, and for this reason, tend
to be much more computaƟonally demanding with respect to gradient-based methods.
MOGA belongs to the EvoluƟonary Algorithms (EA) class, available in Dakota (the other EA methods are
SOGA and coliny EA) and it is basically defined following the Darwin’s theory of survival of the fiƩest as
the other EA algorithms. They generally start with a randomly chosen populaƟon of design points (from
the ranges defined for each parameter space), and the values of the design variables are used to form a
"geneƟc string". Such string does the same job of DNA in a biological system, uniquely idenƟfying each
design point in the populaƟon (a set of design variables is uniquely associated to a specific sequence). The
EA manage a sequence of generaƟons, where the best design soluƟons among the populaƟon are consid-
ered to be the most suited and are allowed to survive and reproduce for the following generaƟon. The
EA basically implements the evoluƟonary process through the mathemaƟcal analogs of processes such as
natural selecƟon, breeding, and mutaƟon. In this way the EA try to find a design point (or a class of design
points) that minimizes the objecƟve funcƟon. Amore detailed descripƟon of such opƟmizaƟon techniques
are available from different resources as [99] or [100] for example.
MOGA is based on the idea that as the populaƟon evolves in aGA, design points that are non-dominated are
selected to remain in the populaƟon. In parƟcular it has separate fitness assessment and selecƟon opera-
tors called the "dominaƟon count" fitness assessor and "below limit" selector respecƟvely. This approach
of selecƟon works especially well on mulƟ-objecƟve problems because it has been specifically designed to
avoid problems with aggregaƟng and scaling objecƟve funcƟon values and transforming them into a single
objecƟve. The fitness assessor works by ranking populaƟon members such that their resulƟng fitness is
a funcƟon of the number of other point that dominate them. The below limit selector then select design
soluƟons by considering the related fitness. If the fitness of a design is above a certain level, which in this
case corresponds to a design being dominated by more than a specific number of other configuraƟons,
then it is discarded. Otherwise it is kept and idenƟfied to go to the next generaƟon. The one feature is that
this selector will require that a minimum number of selecƟons must be done. The shrinkage percentage
is correlated instead to the minimum number of selecƟons that will take place if enough design points are
available. It is defined as a percentage of the populaƟon size that must proceed to the next generaƟon. To
allow such approach, the below limit selector makes all the selecƟons it would make anyway and if that is
not enough, it relaxes its boundaries and makes selecƟons from the remaining points. It conƟnues to do
this unƟl it has selected enough designs. The MOGA method has however many other important features
and a more detailed descripƟon of the involved parameters is available in [101].

8.3.6 Explicit formulaƟon

On the basis of the previous descripƟons regarding the design variables, objecƟve funcƟons and con-
straints the problem can be explicitly formulated as in the following lines.

211

minimize: f0(x⃗, y⃗(x⃗))

with respect to: x⃗

subject to: ci(x⃗, y⃗(x⃗)) ≥ 0 for i = 1, . . . , 4

with the following notaƟon:

f0(x⃗, y⃗(x⃗)) =
4∑

i=1

αi · fi(x⃗, y⃗(x⃗))

x⃗ = (x1, x2, x3, . . . , x10, x11)

Design parameters:

• AlƟtude of the iniƟal orbit: x1, conƟnuous design variable, 400 ≤ x1 ≤ 1400 Km.

• Specific impulse: x2, conƟnuous design variable, 200 ≤ x2 ≤ 300 seconds.

• External diameter of the spacecraŌ: x3, conƟnuous design variable, 4.2 ≤ x3 ≤ 4.6meters.

• Overall length of the spacecraŌ: x4, conƟnuous design variable, 5.5 ≤ x4 ≤ 6meters.

• Average thickness of the spacecraŌ wall: x5, conƟnuous design variable, 0.1 ≤ x5 ≤ 0.15meters.

• Maximum power available for thermal control: x6, conƟnuous design variable, 500 ≤ x6 ≤ 2000
waƩ.

• Launcher type: x7, integer design variable, 0 ≤ x7 ≤ 33.

• Aluminum type: x8, integer design variable, 0 ≤ x8 ≤ 2.

• Cells type: x9, integer design variable, 0 ≤ x9 ≤ 3.

• BaƩery type: x10, integer design variable, 0 ≤ x10 ≤ 5.

• Longitude of the launch site: x11, set of real values (enumeraƟon), x11 ∈ (−1.412,−2.105,−0.915)
radians. The launch site corresponds approximately to Kourou Guiana Space Center (-0.915 radians),
Vandenberg Air Force Base (-2.105 radians) and Cape Canaveral Air Force StaƟon (-1.412 radians).

ObjecƟve funcƟons:

• Launch cost: f1, millions $.

• Final available mass (excluding primary structure and EPS mass): f2, kg.

• TheoreƟcal available volume: f3,m3.

• Energy consumpƟon related to the thermal control system: f4, joule.

Constraints:

• Mass constraint: c1.

• Minimum temperature constraint: c2.

• Hoop tensile stress constraint: c3.

• Buckling limit stress constraint: c4.

212

This informaƟon are then used to define the survey main objecƟves. In parƟcular the data contained
within the modeling framework have been used to set-up the whole analysis. The Design Variable class
introduced within the modeling infrastructure allows in fact to define the ranges within which the associ-
ated variable must be contained as well as the related nominal value (the value that is considered as the
current chosen for the baseline and that is used as the iniƟal design point for the survey). These data are
then used to create the proper input file that manages the execuƟon of Dakota mulƟdisciplinary plaƞorm.
In this case an opƟmizaƟon study has been considered and the algorithm parameters for the solving strat-
egy can be selected from the same analysis framework. Such informaƟon are then used to consistently
generate the input file for the overall opƟmizaƟon cycle. The results obtained from such analysis are re-
ported in the following secƟon and can be directly accessible from the same infrastructure once the whole
analysis ends its runs. It is important to underline that the contents of the results themselves are not the
primary objecƟve of the current work. Once it has been established that the results are reliable, verifying
the correctness of the contained informaƟon to avoid wrong links in the data exchange process, the at-
tenƟon is mainly addressed towards the connecƟon with the modeling environment. The main aim of the
current work focuses in fact on the feasibility of the integraƟon between a model-based infrastructure and
analysis frameworks.

8.4 Results

The previous explicit formulaƟon is then used by the solving plaƞorm to lead the exploraƟon of the
design space with the final objecƟve to idenƟfy the opƟmal soluƟons. As introduced in the previous sec-
Ɵon the opƟmizaƟon process is based on MOGA algorithm and the summary results are provided in the
following figures and reports of the iteraƟons cycle. The five reported subcases come from the soluƟon
of the same proposed problem but with different seƫngs for the solving method. In parƟcular some of
the parameters required to set up the overall process have been changed from one subcase to the other
one. The values related to such quanƟƟes can be defined within the same environment once the data flow
has been provided. Such informaƟon is represented for example by the maximum number of iteraƟons,
the populaƟon size, the mutaƟon type or crossover rate (considering in parƟcular the case of a GeneƟc
Algorithm). All these data are then used to generate the right file required by Dakota to run the whole
iteraƟons cycle.
The main purpose of this secƟon is not focused only on the results themselves since they are primarily
reported to demonstrate the connecƟon with the model-based environment. The scope is to show how
the informaƟon gathered within the modeling infrastructure can be used to drive the set up of a mulƟdis-
ciplinary analysis, addressing the efforts to invesƟgate the feasibility of the proposed approach.

8.4.1 Subcase 1

OpƟmizaƟon parameters

The opƟmizaƟon parameters used for the current subcase are reported in table 8.1

213

Figure 8.5: ObjecƟve funcƟons.

Table 8.1: Parameters of the MOGA method used for the iteraƟons cycle of subcase 1.

Parameter Value

iniƟalizaƟon type unique random
crossover type shuffle random
crossover rate 0.8
mutaƟon type replace uniform
mutaƟon rate 0.2
fitness type dominaƟon count
replacement type below limit
shrinkage percentage 0.9
percent change (convergence) 0.05

IteraƟons history

The results related to the objecƟve funcƟons and constraints are reported in the figures 8.5 and 8.6.
In parƟcular the quanƟƟes are reported with respect to the iteraƟon number and a fiƫng curve is also
introduced to give an approximaƟon of the overall evoluƟon during the iteraƟons cycle.

214

Figure 8.6: Constraints.

215

Figure 8.7: Pareto front corresponding to 65 M$ launch cost.

Pareto fronts

The Pareto fronts related to the non-dominated design points are also reported in figures 8.7, 8.8,8.9,
8.10 and 8.11. In parƟcular since four objecƟve funcƟons are available it is difficult to plot them in a read-
ableway. For this reason three of themare reported in the 3d plots (mass, volume and energy) with respect
to a specific launch cost. The launch costs corresponding to the non-dominated soluƟons idenƟfied by the
algorithm can in fact be used as a parameter in such representaƟon (the discrete range of launch cost helps
to pursue such data representaƟon). In this way each cost has its corresponding Pareto front reported in
three dimensions.

OpƟmal design points summary

Some of the non-dominated soluƟons idenƟfied by the solving algorithm are reported in tables 8.2 and
8.3.

8.4.2 Subcase 2

OpƟmizaƟon parameters

The opƟmizaƟon parameters used for the current subcase are reported in table 8.4

216

Figure 8.8: Pareto front corresponding to 75 M$ launch cost.

Figure 8.9: Pareto front corresponding to 85 M$ launch cost.

217

Figure 8.10: Pareto front corresponding to 90 M$ launch cost.

Figure 8.11: Pareto front corresponding to 120 M$ launch cost.

218

Ta
bl
e
8.
2:

So
m
e
of

th
e
no

n-
do

m
in
at
ed

de
si
gn

po
in
ts
:d

es
ig
n
va
ri
ab

le
s
(s
ub

ca
se

1)
.

ID
.

H
(K
m
)

Sp
(s
ec
)

D
(m

)
L
(m

)
Th

k
(m

)
P
(W

)
La

A
l

C
B

1
57

5.
15

29
7.
8

4.
39

5.
9

0.
10

6
18

86
.3

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

60
61

T6
Th

in
fil
m
s

N
aS

2
57

5.
15

29
4.
3

4.
48

5.
9

0.
10

6
18

86
.3

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

60
61

T6
Th

in
fil
m
s

N
aS

3
77

6.
14

29
7.
8

4.
47

5.
96

0.
10

6
19

20
.8

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

60
61

T6
Th

in
fil
m
s

N
iH
2
CP

V
4

64
7.
32

29
4.
3

4.
39

5.
93

0.
11

15
80

.6
D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

22
19

T8
51

Th
in
fil
m
s

N
aS

5
72

9.
72

29
4.
3

4.
48

5.
8

0.
11

5
19

50
.5

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

60
61

T6
Th

in
fil
m
s

N
aS

6
72

9.
72

29
4.
3

4.
49

5.
94

0.
10

6
18

86
.3

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

60
61

T6
Th

in
fil
m
s

N
iH
2
IP
V

7
10

13
.8
2

29
4.
3

4.
48

5.
8

0.
11

19
15

.2
D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

22
19

T8
51

Th
in
fil
m
s

N
aS

8
93

2.
18

29
4.
3

4.
39

5.
99

0.
10

9
16

26
.5

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

70
75

T7
3

Th
in
fil
m
s

N
iM

H
9

92
2.
08

29
7.
8

4.
47

5.
93

0.
10

9
18

39
.8

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

22
19

T8
51

Th
in
fil
m
s

N
iM

H
10

12
94

.9
9

29
7.
8

4.
49

5.
91

0.
10

9
19

20
.8

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

60
61

T6
G
aA

s
du

al
ju
nc
Ɵo

n
N
iH
2
IP
V

81
69

5.
97

29
4.
3

4.
39

5.
54

0.
10

9
18

86
.3

At
la
s5

V-
55

2
Ci
rc
ul
ar

D
ou

bl
e
Bu

rn
A
lu
m
in
um

60
61

T6
Th

in
fil
m
s

N
aS

82
69

5.
97

29
4.
3

4.
48

5.
54

0.
10

9
18

86
.3

At
la
s5

V-
55

2
Ci
rc
ul
ar

D
ou

bl
e
Bu

rn
A
lu
m
in
um

60
61

T6
Th

in
fil
m
s

N
aS

83
57

5.
15

29
7.
8

4.
39

5.
9

0.
11

5
15

00
.7

At
la
s5

V-
55

2
Ci
rc
ul
ar

D
ou

bl
e
Bu

rn
A
lu
m
in
um

22
19

T8
51

Th
in
fil
m
s

N
aS

84
57

5.
15

29
7.
8

4.
39

5.
96

0.
11

15
00

.7
At
la
s5

V-
55

2
Ci
rc
ul
ar

D
ou

bl
e
Bu

rn
A
lu
m
in
um

70
75

T7
3

Th
in
fil
m
s

N
iH
2
IP
V

85
77

6.
14

29
4.
6

4.
49

5.
94

0.
11

5
17

42
.3

At
la
s5

V-
55

2
Ci
rc
ul
ar

D
ou

bl
e
Bu

rn
A
lu
m
in
um

22
19

T8
51

Si
lic
on

N
aS

86
72

9.
72

29
7.
8

4.
49

5.
94

0.
11

5
16

54
.5

At
la
s5

V-
55

2
Ci
rc
ul
ar

D
ou

bl
e
Bu

rn
A
lu
m
in
um

22
19

T8
51

G
aA

s
du

al
ju
nc
Ɵo

n
N
iH
2
IP
V

87
77

6.
14

29
4.
6

4.
54

5.
99

0.
11

5
19

50
.5

At
la
s5

V-
55

2
Ci
rc
ul
ar

D
ou

bl
e
Bu

rn
A
lu
m
in
um

22
19

T8
51

Th
in
fil
m
s

N
iH
2
IP
V

88
72

9.
72

29
7.
8

4.
39

5.
93

0.
14

8
16

26
.5

At
la
s5

V-
55

2
Ci
rc
ul
ar

D
ou

bl
e
Bu

rn
A
lu
m
in
um

70
75

T7
3

G
aA

s
du

al
ju
nc
Ɵo

n
N
iH
2
IP
V

89
10

13
.8
2

26
4.
2

4.
57

5.
91

0.
11

5
16

54
.5

At
la
s5

V-
55

2
Ci
rc
ul
ar

D
ou

bl
e
Bu

rn
A
lu
m
in
um

22
19

T8
51

Si
lic
on

N
aS

90
10

13
.8
2

27
5.
5

4.
49

5.
94

0.
13

3
15

80
.6

At
la
s5

V-
55

2
Ci
rc
ul
ar

D
ou

bl
e
Bu

rn
A
lu
m
in
um

22
19

T8
51

Si
lic
on

N
iH
2
CP

V
91

10
13

.8
2

24
0.
3

4.
54

5.
99

0.
11

5
19

50
.5

At
la
s5

V-
55

2
Ci
rc
ul
ar

D
ou

bl
e
Bu

rn
A
lu
m
in
um

22
19

T8
51

Si
lic
on

N
aS

92
57

5.
15

29
7.
8

4.
27

5.
65

0.
10

6
15

80
.6

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

22
19

T8
51

Th
in
fil
m
s

N
aS

93
57

5.
15

29
7.
8

4.
47

5.
54

0.
10

9
19

15
.3

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

60
61

T6
G
aA

s
du

al
ju
nc
Ɵo

n
N
iH
2
CP

V
94

77
6.
14

29
7.
8

4.
46

5.
65

0.
10

9
18

39
.8

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

22
19

T8
51

Th
in
fil
m
s

N
aS

95
64

8.
05

29
4.
3

4.
48

5.
99

0.
10

6
15

80
.6

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

22
19

T8
51

Th
in
fil
m
s

N
iH
2
CP

V
96

57
5.
15

29
7.
8

4.
46

5.
9

0.
11

5
15

00
.7

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

22
19

T8
51

Si
lic
on

N
aS

97
10

13
.8
2

29
7.
8

4.
49

5.
94

0.
10

9
19

15
.3

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

22
19

T8
51

Si
lic
on

N
aS

98
65

9.
07

29
7.
8

4.
39

5.
94

0.
12

4
15

00
.7

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

22
19

T8
51

Th
in
fil
m
s

N
aS

99
92

2.
08

29
4.
3

4.
49

5.
94

0.
11

5
18

39
.8

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

70
75

T7
3

Th
in
fil
m
s

N
aS

10
0

57
5.
15

29
1.
0

4.
49

5.
94

0.
11

15
80

.6
A
ri
an

e5
ES

LE
O
i6
0

A
lu
m
in
um

22
19

T8
51

G
aI
nP

du
al
ju
nc
Ɵo

n
N
aS

10
1

77
6.
14

29
4.
6

4.
44

5.
99

0.
11

5
15

00
.7

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

22
19

T8
51

Si
lic
on

N
aS

219

Table 8.3: Some of the non-dominated design points: objecƟve funcƟons and constraints (subcase 1).

ID. Cost (M$) Mass (kg) Volume (m3) Energy (KWh) con. 1 con. 2 con. 3 con. 4

1 65 582.53 88.66 40.32 -0.39 -1.15 -0.59 -0.1
2 65 487.29 92.22 39.07 -0.32 -1.15 -0.58 -0.04
3 65 391.72 92.8 38.52 -0.26 -1.15 -0.58 -0.05
4 65 346.65 89.18 36.9 -0.23 -1.15 -0.98 -0.25
5 65 331.98 90.67 37.6 -0.22 -1.15 -0.6 -0.25
6 65 306.52 93.13 38.45 -0.2 -1.15 -0.58 -0.04
7 65 278.59 90.7 37.34 -0.19 -1.15 -0.97 -0.2
8 65 235.25 90.08 37.03 -0.16 -1.15 -1.09 -0.22
9 65 206.76 92.44 36.09 -0.14 -1.15 -0.97 -0.19
10 65 152.16 92.64 37.88 -0.1 -1.15 -0.59 -0.12
81 90 2618.73 83.25 43.32 -1.75 -1.15 -0.59 -0.16
82 90 2568.14 86.6 42.01 -1.71 -1.15 -0.59 -0.11
83 90 2477.91 88.61 35.76 -1.65 -1.15 -0.99 -0.35
84 90 2453.28 89.28 37.12 -1.64 -1.15 -1.09 -0.21
85 90 2122.54 93.46 34.15 -1.42 -1.16 -0.98 -0.29
86 90 2089.94 93.08 34.09 -1.39 -1.16 -0.98 -0.29
87 90 2005.31 95.72 33.2 -1.34 -1.16 -0.98 -0.27
88 90 1551.47 88.59 28.09 -1.03 -1.17 -1.16 -1.06
89 90 1248.5 96.38 33.37 -0.83 -1.16 -0.98 -0.24
90 90 1073.89 93.15 29.51 -0.72 -1.16 -1.02 -0.71
91 90 705.4 96.1 33.24 -0.47 -1.16 -0.98 -0.27
92 120 2814.76 80.35 42.78 -1.88 -1.14 -0.97 -0.22
93 120 2604.97 86.14 42.09 -1.74 -1.15 -0.59 -0.11
94 120 2568.0 87.84 39.09 -1.71 -1.15 -0.97 -0.18
95 120 2398.39 93.57 36.13 -1.6 -1.15 -0.96 -0.09
96 120 2397.26 91.56 34.77 -1.6 -1.15 -0.98 -0.31
97 120 2303.71 93.49 35.79 -1.54 -1.15 -0.97 -0.17
98 120 2282.47 89.21 32.72 -1.52 -1.16 -1.01 -0.58
99 120 2273.62 93.46 34.83 -1.52 -1.16 -1.1 -0.27
100 120 2256.45 93.49 35.42 -1.5 -1.15 -0.97 -0.17
101 120 2245.34 92.21 34.12 -1.5 -1.16 -0.98 -0.32

220

Figure 8.12: ObjecƟve funcƟons.

Table 8.4: Parameters of the MOGA method used for the iteraƟons cycle of subcase 2.

Parameter Value

iniƟalizaƟon type simple random
crossover type mulƟ point binary
crossover rate 0.7
mutaƟon type bit random
mutaƟon rate 0.3
fitness type layer rank
replacement type eliƟst
shrinkage percentage 0.9
percent change (convergence) 0.05

IteraƟons history

The results related to the objecƟve funcƟons and constraints are reported in the figures 8.12 and 8.13.
In parƟcular the quanƟƟes are reported with respect to the iteraƟon number and a fiƫng curve is also
introduced to give an approximaƟon of the overall evoluƟon during the iteraƟons cycle.

Pareto fronts

ThePareto fronts related to the non-dominateddesign points are also reported in figures 8.14, 8.15,8.16
and 8.17. In parƟcular since four objecƟve funcƟons are available it is difficult to plot them in a readable
way. For this reason three of them are reported in the 3d plots (mass, volume and energy) with respect

221

Figure 8.13: Constraints.

to a specific launch cost. The launch costs corresponding to the non-dominated soluƟons idenƟfied by the
algorithm can in fact be used as a parameter in such representaƟon (the discrete range of launch cost helps
to pursue such data representaƟon). In this way each cost has its corresponding Pareto front reported in
three dimensions.

OpƟmal design points summary

Some of the non-dominated soluƟons idenƟfied by the solving algorithm are reported in tables 8.5 and
8.6.

8.4.3 Subcase 3

OpƟmizaƟon parameters

The opƟmizaƟon parameters used for the current subcase are reported in table 8.7

222

Figure 8.14: Pareto front corresponding to 75 M$ launch cost.

Figure 8.15: Pareto front corresponding to 85 M$ launch cost.

223

Figure 8.16: Pareto front corresponding to 90 M$ launch cost.

Figure 8.17: Pareto front corresponding to 120 M$ launch cost.

224

Ta
bl
e
8.
5:

So
m
e
of

th
e
no

n-
do

m
in
at
ed

de
si
gn

po
in
ts
:d

es
ig
n
va
ri
ab

le
s
(s
ub

ca
se

2)
.

ID
.

H
(K
m
)

Sp
(s
ec
)

D
(m

)
L
(m

)
Th

k
(m

)
P
(W

)
La

A
l

C
B

1
45

3.
77

29
0.
2

4.
35

5.
88

0.
10

3
84

9.
4

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

70
75

T7
3

G
aI
nP

du
al
ju
nc
Ɵo

n
N
aS

2
45

3.
77

29
0.
2

4.
58

5.
99

0.
11

1
84

9.
4

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

70
75

T7
3

Th
in
fil
m
s

N
aS

3
45

3.
77

28
6.
2

4.
58

5.
76

0.
11

1
57

5.
9

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

60
61

T6
Si
lic
on

N
iM

H
4

64
8.
91

29
6.
2

4.
58

5.
95

0.
11

1
87

4.
2

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

70
75

T7
3

Th
in
fil
m
s

N
aS

5
55

5.
55

29
6.
2

4.
58

5.
95

0.
11

1
87

4.
2

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

70
75

T7
3

Si
lic
on

N
aS

6
45

3.
77

29
6.
2

4.
29

5.
97

0.
10

3
84

9.
4

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

60
61

T6
Si
lic
on

N
aS

7
45

3.
77

29
9.
2

4.
29

5.
97

0.
10

3
65

9.
3

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

22
19

T8
51

Si
lic
on

N
aS

8
45

3.
77

29
6.
2

4.
45

5.
83

0.
10

3
73

5.
1

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

70
75

T7
3

G
aA

s
du

al
ju
nc
Ɵo

n
N
aS

9
43

4.
36

29
0.
2

4.
31

5.
87

0.
10

3
65

9.
3

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

70
75

T7
3

G
aA

s
du

al
ju
nc
Ɵo

n
N
aS

10
10

59
.9
3

29
6.
2

4.
31

5.
87

0.
10

3
57

5.
9

D
el
ta
4M

4M
+
4.
2
Ci
rc
ul
ar

O
rb
it
CC

A
S

A
lu
m
in
um

22
19

T8
51

G
aA

s
du

al
ju
nc
Ɵo

n
N
aS

72
45

3.
77

29
9.
2

4.
35

5.
74

0.
11

1
65

9.
3

At
la
s5

V-
55

2
Ci
rc
ul
ar

Si
ng

le
Bu

rn
A
lu
m
in
um

60
61

T6
Th

in
fil
m
s

N
aS

73
10

06
.1
6

29
9.
2

4.
35

5.
74

0.
10

7
65

9.
3

At
la
s5

V-
55

2
Ci
rc
ul
ar

Si
ng

le
Bu

rn
A
lu
m
in
um

60
61

T6
G
aI
nP

du
al
ju
nc
Ɵo

n
N
aS

74
45

3.
77

29
9.
2

4.
35

5.
74

0.
11

1
57

5.
9

At
la
s5

V-
55

2
Ci
rc
ul
ar

Si
ng

le
Bu

rn
A
lu
m
in
um

70
75

T7
3

Si
lic
on

N
aS

75
45

3.
77

29
9.
2

4.
45

5.
76

0.
11

2
73

5.
1

At
la
s5

V-
55

2
Ci
rc
ul
ar

Si
ng

le
Bu

rn
A
lu
m
in
um

60
61

T6
Si
lic
on

N
aS

76
43

4.
36

29
9.
2

4.
31

5.
91

0.
11

2
57

5.
9

At
la
s5

V-
55

2
Ci
rc
ul
ar

Si
ng

le
Bu

rn
A
lu
m
in
um

22
19

T8
51

G
aI
nP

du
al
ju
nc
Ɵo

n
Li
Io
n

77
45

3.
77

29
9.
2

4.
45

5.
95

0.
10

7
84

9.
4

At
la
s5

V-
55

2
Ci
rc
ul
ar

Si
ng

le
Bu

rn
A
lu
m
in
um

70
75

T7
3

Si
lic
on

N
aS

78
64

8.
91

29
6.
2

4.
32

5.
97

0.
11

1
57

5.
9

At
la
s5

V-
55

2
Ci
rc
ul
ar

Si
ng

le
Bu

rn
A
lu
m
in
um

60
61

T6
G
aA

s
du

al
ju
nc
Ɵo

n
N
aS

79
49

5.
71

29
6.
2

4.
58

5.
63

0.
11

2
83

1.
7

At
la
s5

V-
55

2
Ci
rc
ul
ar

Si
ng

le
Bu

rn
A
lu
m
in
um

60
61

T6
Th

in
fil
m
s

N
aS

80
43

4.
36

29
9.
2

4.
58

5.
91

0.
11

2
57

5.
9

At
la
s5

V-
55

2
Ci
rc
ul
ar

Si
ng

le
Bu

rn
A
lu
m
in
um

60
61

T6
G
aA

s
du

al
ju
nc
Ɵo

n
N
aS

81
45

3.
77

29
9.
2

4.
58

5.
97

0.
11

1
57

5.
9

At
la
s5

V-
55

2
Ci
rc
ul
ar

Si
ng

le
Bu

rn
A
lu
m
in
um

60
61

T6
Si
lic
on

N
aS

12
5

43
4.
36

29
9.
2

4.
31

5.
97

0.
10

7
65

9.
3

A
ri
an

e5
ES

LE
O
i6
0

A
lu
m
in
um

60
61

T6
G
aA

s
du

al
ju
nc
Ɵo

n
N
aS

12
6

45
3.
77

29
9.
2

4.
41

5.
97

0.
10

7
65

9.
3

A
ri
an

e5
ES

LE
O
i6
0

A
lu
m
in
um

60
61

T6
Th

in
fil
m
s

N
aS

12
7

45
3.
77

29
9.
2

4.
31

5.
84

0.
11

1
65

9.
3

A
ri
an

e5
ES

LE
O
i6
0

A
lu
m
in
um

60
61

T6
G
aA

s
du

al
ju
nc
Ɵo

n
Li
Io
n

12
8

49
5.
71

29
6.
2

4.
32

5.
88

0.
11

1
59

4.
8

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

60
61

T6
G
aI
nP

du
al
ju
nc
Ɵo

n
Li
Io
n

12
9

49
5.
71

29
6.
2

4.
45

5.
88

0.
11

2
65

9.
3

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

60
61

T6
Th

in
fil
m
s

Li
Io
n

13
0

45
3.
77

29
9.
2

4.
45

5.
97

0.
10

7
65

9.
3

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

70
75

T7
3

Si
lic
on

N
aS

13
1

45
3.
77

29
9.
2

4.
58

5.
8

0.
11

1
57

5.
9

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

60
61

T6
G
aA

s
du

al
ju
nc
Ɵo

n
N
aS

13
2

45
3.
77

29
9.
2

4.
58

5.
97

0.
10

7
65

9.
3

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

70
75

T7
3

Si
lic
on

N
aS

13
3

46
4.
67

29
9.
2

4.
58

5.
99

0.
11

1
87

4.
2

A
ri
an

e5
ES

LE
O
i4
8

A
lu
m
in
um

60
61

T6
G
aA

s
du

al
ju
nc
Ɵo

n
Li
Io
n

13
4

43
4.
36

29
9.
2

4.
45

5.
88

0.
11

9
56

7.
3

A
ri
an

e5
ES

LE
O
i6
0

A
lu
m
in
um

60
61

T6
Th

in
fil
m
s

N
aS

225

Table 8.6: Some of the non-dominated design points: objecƟve funcƟons and constraints (subcase 2).

ID. Cost (M$) Mass (kg) Volume (m3) Energy (KWh) con. 1 con. 2 con. 3 con. 4

1 65 482.54 86.62 55.26 -0.32 -0.81 -1.08 -0.07
2 65 165.32 97.89 55.12 -0.11 -0.94 -1.09 -0.15
3 65 54.26 94.04 39.34 -0.04 -0.59 -0.59 -0.11
4 70 385.06 97.29 56.46 -0.26 -1.0 -1.09 -0.15
5 70 324.74 97.29 56.45 -0.22 -1.0 -1.09 -0.15
6 75 836.58 85.63 55.35 -0.56 -0.69 -0.58 -0.06
7 75 780.52 85.63 44.48 -0.52 -0.4 -0.96 -0.12
8 75 725.33 89.81 48.84 -0.48 -0.68 -1.07 -0.0
9 75 707.51 85.16 44.46 -0.47 -0.46 -1.08 -0.08
10 75 675.55 84.99 39.49 -0.45 -0.33 -0.96 -0.11
72 85 2581.84 84.51 44.38 -1.72 -0.65 -0.6 -0.23
73 85 2518.54 84.53 44.48 -1.68 -0.6 -0.59 -0.14
74 85 2443.69 84.51 39.35 -1.63 -0.53 -1.1 -0.27
75 85 2438.71 88.61 48.75 -1.63 -0.82 -0.6 -0.18
76 85 2424.97 85.69 39.37 -1.62 -0.43 -0.98 -0.33
77 85 2402.57 91.62 55.2 -1.6 -0.87 -1.08 -0.11
78 85 2388.91 86.78 39.44 -1.59 -0.33 -0.6 -0.25
79 85 2383.96 92.02 53.98 -1.59 -1.13 -0.59 -0.1
80 85 2328.96 96.65 39.37 -1.55 -0.49 -0.59 -0.1
81 85 2308.28 97.63 39.39 -1.54 -0.45 -0.59 -0.09
125 120 2727.89 86.63 44.48 -1.82 -0.43 -0.59 -0.15
126 120 2723.74 90.35 44.46 -1.82 -0.47 -0.59 -0.1
127 120 2681.87 84.36 44.42 -1.79 -0.56 -0.6 -0.26
128 120 2673.44 85.46 40.56 -1.78 -0.42 -0.6 -0.25
129 120 2611.19 90.57 44.41 -1.74 -0.6 -0.6 -0.18
130 120 2608.79 92.16 44.43 -1.74 -0.52 -1.08 -0.11
131 120 2576.05 94.87 39.35 -1.72 -0.56 -0.59 -0.09
132 120 2528.28 97.66 44.41 -1.69 -0.58 -1.08 -0.04
133 120 2523.62 97.89 56.5 -1.68 -0.95 -0.59 -0.09
134 120 2508.42 90.53 38.81 -1.67 -0.53 -0.61 -0.37

226

Figure 8.18: ObjecƟve funcƟons.

Table 8.7: Parameters of the MOGA method used for the iteraƟons cycle of subcase 3.

Parameter Value

iniƟalizaƟon type unique random
crossover type mulƟ point real
crossover rate 0.85
mutaƟon type offset normal
mutaƟon rate 0.35
fitness type dominaƟon count
replacement type rouleƩe wheel
shrinkage percentage 0.9
percent change (convergence) 0.04

IteraƟons history

The results related to the objecƟve funcƟons and constraints are reported in the figures 8.18 and 8.19.
In parƟcular the quanƟƟes are reported with respect to the iteraƟon number and a fiƫng curve is also
introduced to give an approximaƟon of the overall evoluƟon during the iteraƟons cycle.

Pareto fronts

ThePareto fronts related to the non-dominateddesign points are also reported in figures 8.20, 8.21,8.22
and 8.23. In parƟcular since four objecƟve funcƟons are available it is difficult to plot them in a readable
way. For this reason three of them are reported in the 3d plots (mass, volume and energy) with respect
to a specific launch cost. The launch costs corresponding to the non-dominated soluƟons idenƟfied by the

227

Figure 8.19: Constraints.

algorithm can in fact be used as a parameter in such representaƟon (the discrete range of launch cost helps
to pursue such data representaƟon). In this way each cost has its corresponding Pareto front reported in
three dimensions.

OpƟmal design points summary

Some of the non-dominated soluƟons idenƟfied by the solving algorithm are reported in tables 8.8 and
8.9.

8.4.4 Subcase 4

OpƟmizaƟon parameters

The opƟmizaƟon parameters used for the current subcase are reported in table 8.10

228

Figure 8.20: Pareto front corresponding to 75 M$ launch cost.

Figure 8.21: Pareto front corresponding to 85 M$ launch cost.

229

Table
8.8:Som

e
ofthe

non-dom
inated

design
points:design

variables
(subcase

3).

ID
.

H
(Km

)
Sp

(sec)
D
(m

)
L
(m

)
Thk

(m
)

P
(W

)
La

A
l

C
B

1
913.2

298.4
4.31

5.57
0.105

1854.2
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
6061

T6
Thin

film
s

N
aS

2
1016.35

295.6
4.31

5.52
0.105

1854.2
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
6061

T6
Thin

film
s

LiIon
3

1119.02
298.4

4.29
5.54

0.106
565.1

D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
6061

T6
Thin

film
s

LiIon
4

1119.02
298.4

4.31
5.57

0.106
565.1

D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
6061

T6
Thin

film
s

LiIon
5

1119.02
298.4

4.31
5.57

0.106
565.1

D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
6061

T6
Thin

film
s

LiIon
6

913.2
295.6

4.26
5.86

0.106
565.1

D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
6061

T6
Thin

film
s

LiIon
7

913.2
295.6

4.31
5.9

0.105
1854.2

D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
6061

T6
Thin

film
s

N
aS

8
1016.35

298.4
4.45

5.52
0.105

1854.2
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
7075

T73
Thin

film
s

LiIon
9

627.12
295.6

4.28
5.86

0.105
950.3

D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
2219

T851
Thin

film
s

LiIon
10

1067.29
295.6

4.26
5.54

0.106
565.1

D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
2219

T851
Thin

film
s

LiIon
52

609.42
298.4

4.29
5.54

0.125
565.1

D
elta4M

4M
+
5.4

Circular
O
rbitCCA

S
A
lum

inum
7075

T73
Thin

film
s

N
iH
2
CPV

53
694.93

298.4
4.34

5.9
0.105

1010.8
Atlas5

V-552
Circular

Single
Burn

A
lum

inum
6061

T6
Thin

film
s

LiIon
54

1016.35
298.4

4.26
5.9

0.105
565.1

Atlas5
V-552

Circular
Single

Burn
A
lum

inum
6061

T6
Thin

film
s

LiIon
55

609.42
295.6

4.26
5.9

0.106
565.1

Atlas5
V-552

Circular
Single

Burn
A
lum

inum
6061

T6
Thin

film
s

N
aS

56
609.42

295.6
4.26

5.54
0.106

565.1
Atlas5

V-552
Circular

Single
Burn

A
lum

inum
6061

T6
Thin

film
s

N
iH
2
CPV

107
609.42

298.4
4.6

5.9
0.108

565.1
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
7075

T73
G
aA

s
dualjuncƟon

N
iH
2
CPV

108
609.42

295.6
4.26

5.54
0.125

565.1
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
7075

T73
Thin

film
s

N
iH
2
CPV

109
609.42

298.4
4.48

5.85
0.125

565.1
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
7075

T73
Thin

film
s

N
iH
2
CPV

110
609.42

295.6
4.48

5.65
0.127

565.1
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
7075

T73
Thin

film
s

N
iH
2
IPV

111
609.42

298.4
4.6

5.9
0.127

565.1
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
7075

T73
G
aA

s
dualjuncƟon

N
iH
2
CPV

113
406.96

298.4
4.26

5.9
0.105

1854.2
A
riane5ES

LEO
i48

A
lum

inum
6061

T6
Thin

film
s

LiIon
114

609.42
295.6

4.26
5.54

0.105
565.1

A
riane5ES

LEO
i48

A
lum

inum
6061

T6
Thin

film
s

N
aS

115
681.44

298.4
4.26

5.9
0.105

565.1
A
riane5ES

LEO
i48

A
lum

inum
6061

T6
Thin

film
s

LiIon
116

609.42
295.6

4.26
5.9

0.105
1854.2

A
riane5ES

LEO
i48

A
lum

inum
6061

T6
Thin

film
s

N
aS

117
609.42

295.6
4.26

5.99
0.105

853.4
A
riane5ES

LEO
i48

A
lum

inum
6061

T6
Thin

film
s

LiIon
118

921.53
298.4

4.31
5.68

0.106
565.1

A
riane5ES

LEO
i48

A
lum

inum
6061

T6
Thin

film
s

LiIon
119

913.2
298.4

4.31
5.9

0.105
1854.2

A
riane5ES

LEO
i48

A
lum

inum
6061

T6
Thin

film
s

LiIon
120

558.27
295.6

4.26
5.54

0.106
565.1

A
riane5ES

LEO
i60

A
lum

inum
7075

T73
Thin

film
s

N
aS

121
694.93

298.4
4.34

5.9
0.105

1010.8
A
riane5ES

LEO
i60

A
lum

inum
6061

T6
Thin

film
s

LiIon
122

609.42
298.4

4.48
5.86

0.106
565.1

A
riane5ES

LEO
i48

A
lum

inum
7075

T73
Thin

film
s

LiIon

230

Table 8.9: Some of the non-dominated design points: objecƟve funcƟons and constraints (subcase 3).

ID. Cost (M$) Mass (kg) Volume (m3) Energy (KWh) con. 1 con. 2 con. 3 con. 4

1 75 922.07 80.62 97.03 -0.61 -1.23 -0.59 -0.1
2 75 881.84 79.81 96.99 -0.59 -1.23 -0.59 -0.1
3 75 877.88 79.53 38.78 -0.59 -0.53 -0.59 -0.16
4 75 860.97 80.61 38.78 -0.57 -0.52 -0.59 -0.15
5 75 860.97 80.61 38.78 -0.57 -0.52 -0.59 -0.15
6 75 810.91 82.92 38.82 -0.54 -0.29 -0.59 -0.18
7 75 806.61 85.3 97.41 -0.54 -1.23 -0.59 -0.1
8 75 777.41 85.22 96.84 -0.52 -1.23 -1.08 -0.06
9 75 771.76 83.67 60.57 -0.51 -1.02 -0.97 -0.18
10 75 769.81 78.4 38.74 -0.51 -0.56 -0.98 -0.24
52 80 739.09 79.18 38.57 -0.49 -0.77 -1.13 -0.64
53 85 2624.06 86.54 63.74 -1.75 -1.07 -0.58 -0.07
54 85 2583.81 83.46 38.85 -1.72 -0.24 -0.59 -0.12
55 85 2583.19 83.45 38.79 -1.72 -0.27 -0.59 -0.16
56 85 2543.62 78.14 38.73 -1.7 -0.52 -0.59 -0.16
107 90 2293.51 96.93 38.72 -1.53 -0.48 -1.08 -0.04
108 90 2292.93 78.05 38.58 -1.53 -0.76 -1.13 -0.65
109 90 2114.56 91.12 38.63 -1.41 -0.64 -1.12 -0.51
110 90 2005.59 87.8 38.55 -1.34 -0.79 -1.12 -0.58
111 90 1895.14 96.82 38.6 -1.26 -0.69 -1.12 -0.5
113 120 2920.84 83.46 97.3 -1.95 -1.23 -0.59 -0.11
114 120 2885.38 78.41 38.74 -1.92 -0.5 -0.59 -0.12
115 120 2842.2 83.46 38.81 -1.89 -0.24 -0.59 -0.12
116 120 2801.16 83.46 97.36 -1.87 -1.23 -0.59 -0.12
117 120 2779.36 84.75 55.58 -1.85 -0.7 -0.59 -0.12
118 120 2745.18 82.15 38.78 -1.83 -0.44 -0.59 -0.13
119 120 2727.23 85.29 97.41 -1.82 -1.23 -0.59 -0.09
120 120 2716.72 78.4 38.7 -1.81 -0.55 -1.09 -0.2
121 120 2652.96 86.54 63.74 -1.77 -1.07 -0.58 -0.07
122 120 2650.89 91.58 38.74 -1.77 -0.43 -1.08 -0.07

231

Figure 8.22: Pareto front corresponding to 90 M$ launch cost.

Table 8.10: Parameters of the MOGA method used for the iteraƟons cycle of subcase 4.

Parameter Value

iniƟalizaƟon type unique random
crossover type mulƟ point binary
crossover rate 0.65
mutaƟon type replace uniform
mutaƟon rate 0.25
fitness type dominaƟon count
replacement type unique rouleƩe wheel
shrinkage percentage 0.8
percent change (convergence) 0.05

IteraƟons history

The results related to the objecƟve funcƟons and constraints are reported in the figures 8.24 and 8.25.
In parƟcular the quanƟƟes are reported with respect to the iteraƟon number and a fiƫng curve is also
introduced to give an approximaƟon of the overall evoluƟon during the iteraƟons cycle.

Pareto fronts

ThePareto fronts related to the non-dominateddesign points are also reported in figures 8.26, 8.27,8.28
and 8.29. In parƟcular since four objecƟve funcƟons are available it is difficult to plot them in a readable
way. For this reason three of them are reported in the 3d plots (mass, volume and energy) with respect
to a specific launch cost. The launch costs corresponding to the non-dominated soluƟons idenƟfied by the

232

Figure 8.23: Pareto front corresponding to 120 M$ launch cost.

algorithm can in fact be used as a parameter in such representaƟon (the discrete range of launch cost helps
to pursue such data representaƟon). In this way each cost has its corresponding Pareto front reported in
three dimensions.

OpƟmal design points summary

Some of the non-dominated soluƟons idenƟfied by the solving algorithm are reported in tables 8.11
and 8.12.

8.4.5 Subcase 5

OpƟmizaƟon parameters

The opƟmizaƟon parameters used for the current subcase are reported in table 8.13

233

Table
8.11:Som

e
ofthe

non-dom
inated

design
points:design

variables
(subcase

4).

ID
.

H
(Km

)
Sp

(sec)
D
(m

)
L
(m

)
Thk

(m
)

P
(W

)
La

A
l

C
B

1
453.77

290.2
4.35

5.88
0.103

849.4
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
7075

T73
G
aInP

dualjuncƟon
N
aS

2
453.77

290.2
4.58

5.99
0.111

849.4
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
7075

T73
Thin

film
s

N
aS

3
453.77

286.2
4.58

5.76
0.111

575.9
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
6061

T6
Silicon

N
iM

H
4

648.91
296.2

4.58
5.95

0.111
874.2

D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
7075

T73
Thin

film
s

N
aS

5
555.55

296.2
4.58

5.95
0.111

874.2
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
7075

T73
Silicon

N
aS

6
453.77

296.2
4.29

5.97
0.103

849.4
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
6061

T6
Silicon

N
aS

7
453.77

299.2
4.29

5.97
0.103

659.3
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
2219

T851
Silicon

N
aS

8
453.77

296.2
4.45

5.83
0.103

735.1
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
7075

T73
G
aA

s
dualjuncƟon

N
aS

9
434.36

290.2
4.31

5.87
0.103

659.3
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
7075

T73
G
aA

s
dualjuncƟon

N
aS

10
1059.93

296.2
4.31

5.87
0.103

575.9
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
2219

T851
G
aA

s
dualjuncƟon

N
aS

86
495.71

299.2
4.31

5.74
0.107

659.3
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
6061

T6
Thin

film
s

N
aS

87
495.71

296.2
4.32

5.74
0.107

659.3
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
6061

T6
G
aInP

dualjuncƟon
LiIon

88
495.71

299.2
4.31

5.74
0.107

642.2
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
2219

T851
Thin

film
s

N
aS

89
453.77

299.2
4.45

5.97
0.107

1110.5
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
6061

T6
Thin

film
s

N
aS

90
453.77

296.2
4.43

5.74
0.107

575.9
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
6061

T6
G
aInP

dualjuncƟon
LiIon

91
453.77

296.2
4.21

5.63
0.111

575.9
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
2219

T851
G
aInP

dualjuncƟon
LiIon

92
495.71

299.2
4.45

5.74
0.112

735.1
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
6061

T6
G
aInP

dualjuncƟon
N
aS

93
453.77

296.2
4.45

5.97
0.107

659.3
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
6061

T6
Thin

film
s

N
aS

94
453.77

296.2
4.31

5.74
0.112

575.9
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
6061

T6
Silicon

LiIon
95

495.71
299.2

4.58
5.74

0.111
659.3

Atlas5
V-552

Circular
D
ouble

Burn
A
lum

inum
6061

T6
Thin

film
s

N
aS

125
434.36

299.2
4.31

5.97
0.107

659.3
A
riane5ES

LEO
i60

A
lum

inum
6061

T6
G
aA

s
dualjuncƟon

N
aS

126
453.77

299.2
4.41

5.97
0.107

659.3
A
riane5ES

LEO
i60

A
lum

inum
6061

T6
Thin

film
s

N
aS

127
453.77

299.2
4.31

5.84
0.111

659.3
A
riane5ES

LEO
i60

A
lum

inum
6061

T6
G
aA

s
dualjuncƟon

LiIon
128

495.71
296.2

4.32
5.88

0.111
594.8

A
riane5ES

LEO
i48

A
lum

inum
6061

T6
G
aInP

dualjuncƟon
LiIon

129
495.71

296.2
4.45

5.88
0.112

659.3
A
riane5ES

LEO
i48

A
lum

inum
6061

T6
Thin

film
s

LiIon
130

453.77
299.2

4.45
5.97

0.107
659.3

A
riane5ES

LEO
i48

A
lum

inum
7075

T73
Silicon

N
aS

131
453.77

299.2
4.58

5.8
0.111

575.9
A
riane5ES

LEO
i48

A
lum

inum
6061

T6
G
aA

s
dualjuncƟon

N
aS

132
453.77

299.2
4.58

5.97
0.107

659.3
A
riane5ES

LEO
i48

A
lum

inum
7075

T73
Silicon

N
aS

133
464.67

299.2
4.58

5.99
0.111

874.2
A
riane5ES

LEO
i48

A
lum

inum
6061

T6
G
aA

s
dualjuncƟon

LiIon
134

434.36
299.2

4.45
5.88

0.119
567.3

A
riane5ES

LEO
i60

A
lum

inum
6061

T6
Thin

film
s

N
aS

234

Table 8.12: Some of the non-dominated design points: objecƟve funcƟons and constraints (subcase 4).

ID. Cost (M$) Mass (kg) Volume (m3) Energy (KWh) con. 1 con. 2 con. 3 con. 4

1 65 482.54 86.62 55.26 -0.32 -0.81 -1.08 -0.07
2 65 165.32 97.89 55.12 -0.11 -0.94 -1.09 -0.15
3 65 54.26 94.04 39.34 -0.04 -0.59 -0.59 -0.11
4 70 385.06 97.29 56.46 -0.26 -1.0 -1.09 -0.15
5 70 324.74 97.29 56.45 -0.22 -1.0 -1.09 -0.15
6 75 836.58 85.63 55.35 -0.56 -0.69 -0.58 -0.06
7 75 780.52 85.63 44.48 -0.52 -0.4 -0.96 -0.12
8 75 725.33 89.81 48.84 -0.48 -0.68 -1.07 -0.0
9 75 707.51 85.16 44.46 -0.47 -0.46 -1.08 -0.08
10 75 675.55 84.99 39.49 -0.45 -0.33 -0.96 -0.11
86 90 2824.39 82.95 44.43 -1.88 -0.58 -0.59 -0.16
87 90 2724.45 83.45 44.42 -1.82 -0.59 -0.59 -0.15
88 90 2724.3 82.95 43.37 -1.82 -0.6 -0.98 -0.22
89 90 2676.18 91.95 68.48 -1.78 -1.22 -0.59 -0.07
90 90 2651.17 87.75 39.38 -1.77 -0.49 -0.59 -0.08
91 90 2638.8 77.68 39.33 -1.76 -0.56 -0.99 -0.38
92 90 2637.52 88.41 48.75 -1.76 -0.83 -0.6 -0.18
93 90 2605.31 92.16 44.46 -1.74 -0.49 -0.58 -0.07
94 90 2592.92 83.26 39.37 -1.73 -0.49 -0.6 -0.26
95 90 2589.96 93.91 44.34 -1.73 -0.75 -0.59 -0.09
125 120 2727.89 86.63 44.48 -1.82 -0.43 -0.59 -0.15
126 120 2723.74 90.35 44.46 -1.82 -0.47 -0.59 -0.1
127 120 2681.87 84.36 44.42 -1.79 -0.56 -0.6 -0.26
128 120 2673.44 85.46 40.56 -1.78 -0.42 -0.6 -0.25
129 120 2611.19 90.57 44.41 -1.74 -0.6 -0.6 -0.18
130 120 2608.79 92.16 44.43 -1.74 -0.52 -1.08 -0.11
131 120 2576.05 94.87 39.35 -1.72 -0.56 -0.59 -0.09
132 120 2528.28 97.66 44.41 -1.69 -0.58 -1.08 -0.04
133 120 2523.62 97.89 56.5 -1.68 -0.95 -0.59 -0.09
134 120 2508.42 90.53 38.81 -1.67 -0.53 -0.61 -0.37

235

Figure 8.24: ObjecƟve funcƟons.

Table 8.13: Parameters of the MOGA method used for the iteraƟons cycle of subcase 5.

Parameter Value

iniƟalizaƟon type unique random
crossover type mulƟ point binary
crossover rate 0.7
mutaƟon type offset normal
mutaƟon rate 0.2
fitness type layer rank
replacement type below limit
shrinkage percentage 0.85
percent change (convergence) 0.05

IteraƟons history

The results related to the objecƟve funcƟons and constraints are reported in the figures 8.30 and 8.31.
In parƟcular the quanƟƟes are reported with respect to the iteraƟon number and a fiƫng curve is also
introduced to give an approximaƟon of the overall evoluƟon during the iteraƟons cycle.

Pareto fronts

The Pareto fronts related to the non-dominated design points are also reported in figures 8.32, 8.33,
8.34,8.35 and 8.36. In parƟcular since four objecƟve funcƟons are available it is difficult to plot them in a
readable way. For this reason three of them are reported in the 3d plots (mass, volume and energy) with

236

Figure 8.25: Constraints.

respect to a specific launch cost. The launch costs corresponding to the non-dominated soluƟons idenƟfied
by the algorithm can in fact be used as a parameter in such representaƟon (the discrete range of launch
cost helps to pursue such data representaƟon). In this way each cost has its corresponding Pareto front
reported in three dimensions.

OpƟmal design points summary

Some of the non-dominated soluƟons idenƟfied by the solving algorithm are reported in tables 8.14
and 8.15.

8.5 ConsideraƟons about the results

The results reported in the previous secƟons are directly obtained through the support of the developed
framework, exploiƟng the capabiliƟes provided by DAKOTA. For the sake of clarity the graphical represen-
taƟons of the data (in parƟcular the iteraƟon histories and pareto fronts) have been realized within Matlab
environment but the same capabiliƟes can potenƟally be implemented within the same plaƞorm (such
feature is currently under evaluaƟon within the development roadmap). These results showed how and in
which manner a model based approach can further enhance the trade-off analyses or opƟmizaƟon cycles.
The reference case has been used to assess the capability to give more consistency to the overall design
process, ensuring a more seamless connecƟon between the modeling and analysis environments.
The ranges of the considered design variables aswell as the quanƟƟes considered as the objecƟve funcƟons
have been directly extracted from the informaƟon available from the web-based infrastructure. These re-
sults showed how a consistent way of data exchange can help to formalize the management of complex
system, reducing the error-prone process of model transformaƟon for example.

237

Figure 8.26: Pareto front corresponding to 75 M$ launch cost.

Figure 8.27: Pareto front corresponding to 85 M$ launch cost.

238

Figure 8.28: Pareto front corresponding to 90 M$ launch cost.

Figure 8.29: Pareto front corresponding to 120 M$ launch cost.

239

Figure 8.30: ObjecƟve funcƟons.

240

Figure 8.31: Constraints.

Figure 8.32: Pareto front corresponding to 75 M$ launch cost.

241

Figure 8.33: Pareto front corresponding to 80 M$ launch cost.

Figure 8.34: Pareto front corresponding to 85 M$ launch cost.

242

Figure 8.35: Pareto front corresponding to 90 M$ launch cost.

Figure 8.36: Pareto front corresponding to 120 M$ launch cost.

243

Table
8.14:Som

e
ofthe

non-dom
inated

design
points:design

variables
(subcase

5).

ID
.

H
(Km

)
Sp

(sec)
D
(m

)
L
(m

)
Thk

(m
)

P
(W

)
La

A
l

C
B

1
453.77

290.2
4.35

5.88
0.103

849.4
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
7075

T73
G
aInP

dualjuncƟon
N
aS

2
453.77

290.2
4.58

5.99
0.111

849.4
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
7075

T73
Thin

film
s

N
aS

3
453.77

286.2
4.58

5.76
0.111

575.9
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
6061

T6
Silicon

N
iM

H
4

648.91
296.2

4.58
5.95

0.111
874.2

D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
7075

T73
Thin

film
s

N
aS

5
555.55

296.2
4.58

5.95
0.111

874.2
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
7075

T73
Silicon

N
aS

6
453.77

296.2
4.29

5.97
0.103

849.4
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
6061

T6
Silicon

N
aS

7
453.77

299.2
4.29

5.97
0.103

659.3
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
2219

T851
Silicon

N
aS

8
453.77

296.2
4.45

5.83
0.103

735.1
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
7075

T73
G
aA

s
dualjuncƟon

N
aS

9
434.36

290.2
4.31

5.87
0.103

659.3
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
7075

T73
G
aA

s
dualjuncƟon

N
aS

10
1059.93

296.2
4.31

5.87
0.103

575.9
D
elta4M

4M
+
4.2

Circular
O
rbitCCA

S
A
lum

inum
2219

T851
G
aA

s
dualjuncƟon

N
aS

72
453.77

299.2
4.35

5.74
0.111

659.3
Atlas5

V-552
Circular

Single
Burn

A
lum

inum
6061

T6
Thin

film
s

N
aS

73
1006.16

299.2
4.35

5.74
0.107

659.3
Atlas5

V-552
Circular

Single
Burn

A
lum

inum
6061

T6
G
aInP

dualjuncƟon
N
aS

74
453.77

299.2
4.35

5.74
0.111

575.9
Atlas5

V-552
Circular

Single
Burn

A
lum

inum
7075

T73
Silicon

N
aS

75
453.77

299.2
4.45

5.76
0.112

735.1
Atlas5

V-552
Circular

Single
Burn

A
lum

inum
6061

T6
Silicon

N
aS

76
434.36

299.2
4.31

5.91
0.112

575.9
Atlas5

V-552
Circular

Single
Burn

A
lum

inum
2219

T851
G
aInP

dualjuncƟon
LiIon

86
495.71

299.2
4.31

5.74
0.107

659.3
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
6061

T6
Thin

film
s

N
aS

87
495.71

296.2
4.32

5.74
0.107

659.3
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
6061

T6
G
aInP

dualjuncƟon
LiIon

88
495.71

299.2
4.31

5.74
0.107

642.2
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
2219

T851
Thin

film
s

N
aS

89
453.77

299.2
4.45

5.97
0.107

1110.5
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
6061

T6
Thin

film
s

N
aS

90
453.77

296.2
4.43

5.74
0.107

575.9
Atlas5

V-552
Circular

D
ouble

Burn
A
lum

inum
6061

T6
G
aInP

dualjuncƟon
LiIon

125
434.36

299.2
4.31

5.97
0.107

659.3
A
riane5ES

LEO
i60

A
lum

inum
6061

T6
G
aA

s
dualjuncƟon

N
aS

126
453.77

299.2
4.41

5.97
0.107

659.3
A
riane5ES

LEO
i60

A
lum

inum
6061

T6
Thin

film
s

N
aS

127
453.77

299.2
4.31

5.84
0.111

659.3
A
riane5ES

LEO
i60

A
lum

inum
6061

T6
G
aA

s
dualjuncƟon

LiIon
128

495.71
296.2

4.32
5.88

0.111
594.8

A
riane5ES

LEO
i48

A
lum

inum
6061

T6
G
aInP

dualjuncƟon
LiIon

129
495.71

296.2
4.45

5.88
0.112

659.3
A
riane5ES

LEO
i48

A
lum

inum
6061

T6
Thin

film
s

LiIon
130

453.77
299.2

4.45
5.97

0.107
659.3

A
riane5ES

LEO
i48

A
lum

inum
7075

T73
Silicon

N
aS

131
453.77

299.2
4.58

5.8
0.111

575.9
A
riane5ES

LEO
i48

A
lum

inum
6061

T6
G
aA

s
dualjuncƟon

N
aS

132
453.77

299.2
4.58

5.97
0.107

659.3
A
riane5ES

LEO
i48

A
lum

inum
7075

T73
Silicon

N
aS

133
464.67

299.2
4.58

5.99
0.111

874.2
A
riane5ES

LEO
i48

A
lum

inum
6061

T6
G
aA

s
dualjuncƟon

LiIon
134

434.36
299.2

4.45
5.88

0.119
567.3

A
riane5ES

LEO
i60

A
lum

inum
6061

T6
Thin

film
s

N
aS

244

Table 8.15: Some of the non-dominated design points: objecƟve funcƟons and constraints (subcase 5).

ID. Cost (M$) Mass (kg) Volume (m3) Energy (KWh) con. 1 con. 2 con. 3 con. 4

1 65 482.54 86.62 55.26 -0.32 -0.81 -1.08 -0.07
2 65 165.32 97.89 55.12 -0.11 -0.94 -1.09 -0.15
3 65 54.26 94.04 39.34 -0.04 -0.59 -0.59 -0.11
4 70 385.06 97.29 56.46 -0.26 -1.0 -1.09 -0.15
5 70 324.74 97.29 56.45 -0.22 -1.0 -1.09 -0.15
6 75 836.58 85.63 55.35 -0.56 -0.69 -0.58 -0.06
7 75 780.52 85.63 44.48 -0.52 -0.4 -0.96 -0.12
8 75 725.33 89.81 48.84 -0.48 -0.68 -1.07 -0.0
9 75 707.51 85.16 44.46 -0.47 -0.46 -1.08 -0.08
10 75 675.55 84.99 39.49 -0.45 -0.33 -0.96 -0.11
72 85 2581.84 84.51 44.38 -1.72 -0.65 -0.6 -0.23
73 85 2518.54 84.53 44.48 -1.68 -0.6 -0.59 -0.14
74 85 2443.69 84.51 39.35 -1.63 -0.53 -1.1 -0.27
75 85 2438.71 88.61 48.75 -1.63 -0.82 -0.6 -0.18
76 85 2424.97 85.69 39.37 -1.62 -0.43 -0.98 -0.33
86 90 2824.39 82.95 44.43 -1.88 -0.58 -0.59 -0.16
87 90 2724.45 83.45 44.42 -1.82 -0.59 -0.59 -0.15
88 90 2724.3 82.95 43.37 -1.82 -0.6 -0.98 -0.22
89 90 2676.18 91.95 68.48 -1.78 -1.22 -0.59 -0.07
90 90 2651.17 87.75 39.38 -1.77 -0.49 -0.59 -0.08
125 120 2727.89 86.63 44.48 -1.82 -0.43 -0.59 -0.15
126 120 2723.74 90.35 44.46 -1.82 -0.47 -0.59 -0.1
127 120 2681.87 84.36 44.42 -1.79 -0.56 -0.6 -0.26
128 120 2673.44 85.46 40.56 -1.78 -0.42 -0.6 -0.25
129 120 2611.19 90.57 44.41 -1.74 -0.6 -0.6 -0.18
130 120 2608.79 92.16 44.43 -1.74 -0.52 -1.08 -0.11
131 120 2576.05 94.87 39.35 -1.72 -0.56 -0.59 -0.09
132 120 2528.28 97.66 44.41 -1.69 -0.58 -1.08 -0.04
133 120 2523.62 97.89 56.5 -1.68 -0.95 -0.59 -0.09
134 120 2508.42 90.53 38.81 -1.67 -0.53 -0.61 -0.37

245

With respect to the reference case, the opƟmizaƟon capabiliƟes of DAKOTA allowed to invesƟgate a wide
set of possible mission soluƟons and design choices, idenƟfying groups of non-dominated configuraƟons.
In parƟcular different Pareto fronts have been generated from the simulaƟon scenarios considered in the
reference scenario and such informaƟon is directly correlated with the data available from the system
model. Such results can represent a useful instrument to iterate over the design process, taking into ac-
count soluƟons that have not been considered and improving the overall performances of the system. Such
Pareto fronts have been obtained varying some of the parameters used for the opƟmizaƟon cycle, directly
exploiƟng the capabiliƟes available from the mulƟdisciplinary tool. Analogous surveys can also be defined
from the available simulaƟon blocks, considering for example the applicaƟon of the same methodology to
other engineering issues that can occur during the development phases of a complex system.
These results showed how and with which advantages a model based infrastructure can be linked with
analysis environments, allowing also to beƩer understand which aspects can be beƩer defined and formal-
ized. The main aim of the reference case was mainly represented by the feasibility of such an approach,
paving the way for other possible improvements. In this case specific implementaƟon choices have been
taken on the basis of the final purposes but other direcƟons can also be considered. The same conceptual
infrastructure can in fact be actually implemented considering other possible soluƟons.

246

Chapter 9

CriƟcal Assessment, Further Work and Summary
Conclusions

9.1 CriƟcal assessment

The proposedmethodology has beenmainly developed taking into account some of themost challeng-
ing problems that characterize the design and analysis of complex systems. In parƟcular a model-based
approach has been considered and evaluated through the definiƟon and implementaƟon of a prototype
framework. The main assumpƟons for the proposed infrastructure are based on the fact that the overall
process can rely on already validated analysis models and tools that are the de facto standard for a specific
discipline. The model-based approach available from the current work basically reflects the need for a sys-
tem engineering infrastructure that is able to consistently manage mulƟple sources of informaƟon across
different domains. AcƟviƟes of opƟmizaƟon processes or trade-off surveys can be improved through a
more structured organizaƟon. The available soluƟons are not well defined and mature enough to manage
all the possible situaƟons that can be faced during the development of a complex system. The already de-
veloped tools for System Engineering provides oŌen useful capabiliƟes that are, however, strictly related
to the specific features of the tools themselves.
The proposed approach highlighted interesƟng results with respect to the actualmethodology for theman-
agement of system informaƟon. A model-based methodology for opƟons/alternaƟves management has
been formulated but such soluƟon is not the only one. Other alternaƟves can also be evaluated starƟng
from the definiƟon of different conceptual infrastructure and including for example some other aspects
that have been neglected or not properly considered. The high-level concepts have been developed keep-
ing in mind the main processes and procedures that characterize the design and verificaƟon of aerospace
systems. Slightly different meta-models can arise considering the main features of other industry domains
also if someof the considered formalizaƟons are common to other fields. The connecƟonbetween analyses
and modeling environments, with parƟcular emphasis from the system level perspecƟve, represents a first
aƩempt for the development and implementaƟon of a model-basedmethodology for the enhancement of
system performances. The infrastructure showed the capability to improve the current design phases but
some aspects can be further enhanced through a beƩer definiƟon and detailing of the already developed
objects and classes. Some of the features that are directly related to the connecƟon with the modeling
framework must be beƩer detailed, ensuring a consistent representaƟon of system data and avoiding for
example data duplicaƟon when not necessary. The developed infrastructure has been implemented con-
sidering also a deeper integraƟon with domain-specific tools, allowing for example the direct connecƟon
with the models developed in other environments. At the current status such possibility has not yet been
evaluated also because such integraƟonmust take into account the development of the correct web-based
services for the data sharing among the models.

247

9.1.1 ContribuƟons and benefits

The current work demonstrated the benefits that can be achieved through a model-based approach
for the management of system data. In parƟcular the connecƟon with simulaƟon environments as well
as the formalizaƟon of design opƟons highlighted some interesƟng results. The correct definiƟon of the
quanƟƟes and the objects related to system development allows to speed up the design process. The ref-
erence case has been managed through the main features of the proposed architecture and such example
showed how trade-off analyses can be formally defined and beƩer exploited. In this case the conceptual
relaƟonships among system alternaƟves/opƟons as well as the creaƟon of design variables has paved the
way for the correct set up of opƟmizaƟon and sensiƟvity surveys. In this way they can be represented in
a more effecƟve manner, avoiding all the problems that generally arise from informaƟon sharing and en-
hancing the error-prone process of data exchange.
The implementaƟon of the proposed infrastructure on web-based plaƞorm represents one of the most
promising soluƟon for the actual realizaƟon of collaboraƟve environments. This aspect is especially im-
portant when the modeled systems involve a large amount of resources and persons with different back-
grounds and oŌen working with different tools. The use of a web-based plaƞorms can clearly speed up the
training process of the users thanks to the wide spread of such technology among people. In this context
the costs related to the training acƟviƟes are basically lower with respect the introducƟon of dedicated
desktop applicaƟons.
The advantages that can be seen from the reference case are mainly related to the straighƞorward capa-
bility to manage system level trade-off within a collaboraƟve environment, allowing the people working on
the same project to access a common base for data exchange. The benefits that can be achieved through
such an effecƟve way of informaƟon management are parƟcularly evident if compared with tradiƟonal
approaches for trade-off analyses, that are oŌen strictly affected by company know-how or users' expe-
riences. A formalized way of data processing basically results in a reducƟon of Ɵme and costs, ensuring
also a beƩer knowledge sharing and resource exploitaƟon. The opƟons management at system level can
be organized in a more structured way that allows to beƩer trace the whole informaƟon along the overall
design process of the product and across mulƟple domains.
The applicaƟon of the proposed environment to the reference case has given us the opportunity to beƩer
understand the concepts that need to be introduced or modified to model scenarios mistakenly not taken
into account. In parƟcular the current work has highlighted how some aspects, related to the integraƟon
with analysis environments, can be improved. The development of opƟmizaƟon capabiliƟeswithin the con-
text of a model-based framework represents one of the targets directly visible from the MBSE roadmap.
The issues encountered during the implementaƟon phases as well as the soluƟons taken during this survey
can help to figure out what processes and features can be improved, paving the way for future enhance-
ment of MBSE methodology.
Another important benefits highlighted by the proposed infrastructure is represented by the possibility to
extend the same approach also to other fields in addiƟon to the one directly linked to space applicaƟons
(mainly considered in this study). The same concepts elaborated in the meta-model can in fact be applied
to the other domains thanks to the high level representaƟon of a complex system. Unmanned Aerial Ve-
hicles as well as Biomedical applicaƟons/systems can in fact be approached in the same way, exploiƟng all
the capabiliƟes available within the plaƞorm itself.

9.1.2 Drawbacks

The proposed infrastructure has been conceived to manage project informaƟon (above all from system
level perspecƟve) through the implementaƟon of a web-based plaƞorm. This approach must be carefully
managed to avoid leak of informaƟon and problems related to users access.
Data access and informaƟon sharing must in fact be properly regulated to avoid the exchange of sensiƟve
informaƟon. In the current work the management of such aspect is not fully considered since the purpose
of the proposed approach is not mainly addressed towards this problem. The implemented framework
basically exploits the control funcƟonaliƟes available from the naƟve libraries for management of data

248

accesses. Other soluƟons with respect to such features can also be considered but is not the primary field
of invesƟgaƟon of the current work.
IniƟaƟves working on the same topics are currently evaluaƟng the use of model-based framework through
already developed tools and languages (as SysML for example) and a large amount of efforts is needed to
proper integrate analysis environments. The correct formalizaƟon of the involved concepts covers a key-
role for the definiƟon and implementaƟon of model-based infrastructures and this phases oŌen requires
the allocaƟon of a wide set of resources. This process may seem not so important while it is fundamental
to clearly pursue a well structured meta-model to avoid issues and misunderstandings when the overall
framework is used operaƟvely. This acƟvity is generally not reflected with the same characterisƟcs in the
tradiƟonal approaches where the processes, the tools and the people are basically linked on the basis of
specific knowledge and experiences (which are oŌen the result of the soluƟons to similar problems gained
during the years for a parƟcular company). In these cases the main aƩenƟon focuses on the operaƟve
capability to face problems as soon as possible, neglecƟng the fact that a structured organizaƟon of the
data provides benefits on long-term projects. For this reason the evaluated approach needs a certain re-
thinking of the actual processes of design, requiring in parƟcular addiƟonal Ɵme to spent on such new
methodologies with respect to already well-founded methods and pracƟces. From this perspecƟve such
phase can be iniƟally seen as a drawback on the way of applicaƟon of such innovaƟve philosophy.
Some of the developed concepts are also not completely validated since some of the related funcƟons
need to be widely assessed to verify their correctness and such phase requires an extensive use of the
proposed approach on actual scenarios. For this reason the proposed infrastructure can be affected by
further elaboraƟons that can allow to beƩer manage a more complete set of possible situaƟons. This
process can be done through a deeper invesƟgaƟon of the concepts available from the main meta-model
and with a set of trials on the developed plaƞorm. Only in this way it is possible to figure out what can
already be modeled and what is not yet expected.

9.2 Further work

The present work has highlighted how some interesƟng topics can be further analyzed and studied to
improve the features related to the proposed approach and framework. StarƟng from the developed web
services some uƟliƟes can be added, increasing the design capabiliƟes offered. The conceptual data model
used results both from current ESA standard and company experƟse about collaboraƟve engineering. The
main aim of the present work has been also represented by the invesƟgaƟon of MBSE methodologies
within the context of an aerospace modeling and analysis process. Further developments can be obtained
from the integraƟon of the current considered data model and other experience for similar projects. The
idenƟficaƟon and formalizaƟon of a common data format and a shared data structure for the exchanged
informaƟon play a key role for the spreading of such MBSE methodologies in the near future.

9.2.1 Ongoing features

One of the on-going features that is now under evaluaƟon for possible future development regards
mainly the definiƟon of a series of other web-based services for the management of analysis resources.
Currently the simulaƟon items rely on computaƟonal resources directly bounded to the main applicaƟon
server machine. The values required by the single simulaƟon item could be provided in fact not by a di-
rectly integrated simulaƟon but by properly developed web-based services. In parƟcular a web service
can be properly developed for a specific class of analysis models through which the related resources are
also managed and made operaƟve. The main system modeling framework, where the survey features are
defined, can communicate with such web services when some simulaƟon results or other informaƟon are
required. This approach could contribute to increase the robustness of the overall network infrastructure,
since all the informaƟon are not necessarily stored in the same place, paving the way also to the spreading
of a more collaboraƟve and distributed workspace.
One of the concepts that is already under refinement for the integraƟon within the overall data structure

249

concerns the modeling of iniƟal state and condiƟons with respect to a parƟcular simulaƟon case. Such
definiƟons are directly related with the concepts of SimulaƟon Case through the Scenario. The current
formulaƟon considers the disƟncƟon between the concept of IniƟal State that idenƟfy the overall set of
iniƟal values for a specific Scenario and the IniƟal CondiƟon that instead is associated with the individual
VpValue. A specific Scenario can be associated to zero or only one IniƟal State since if a Scenario needs to
define new IniƟal State that more properly means that a new Scenariomust be implemented. As defined
the IniƟal State collects more generally a set of iniƟal values (one or more) that can be idenƟfied with the
term IniƟal CondiƟon. This last class can also be named IniƟal Value that maybe beƩer reflects the fact that
it is associated to only one value of a certain property. What it is important is however the basic meaning
that has been introduced with such object. The IniƟal CondiƟon object can not only be conceived to be
associated with the individual VpValue but also with the Element Aspect Occurrence class. Such associa-
Ɵon is currently under evaluaƟon within the metamodel and it has been conceived to ensure the future
possibility to model a set of equal iniƟal condiƟons for a "group" of physical enƟƟes. The main idea is rep-
resented by the capability to extend the applicaƟon of iniƟal condiƟons not only to individual properƟes
(related for example to lumped parameter models) but also to a set of elements (related for example to
finite element models where a set of iniƟal temperatures can deal with a large group of nodes). In this way
the final purpose is to includewithin themetamodel the capability to capture alsomore complex situaƟons
when a simulaƟon case will be defined.

9.2.2 Future developments

The large part of effortswill be addressed in the future towards twomain direcƟons. In the first one new
concepts will be introduced while the current ones will be refined and enhanced to take into account for
unexpected situaƟons. The present work allowed in fact to show some situaƟons that can bemanaged in a
more effecƟve way through the introducƟon of other objects and conceptual classes (from a meta-model
perspecƟve). Currently the conceptual infrastructure contains for example some preliminary classes for
the modeling of the acƟviƟes that are related to the system. These classes can be deeper formalized to
proper support the definiƟon of design acƟviƟes, assembly-integraƟon and test (AIT) acƟviƟes, verificaƟon
acƟviƟes, operaƟonal acƟviƟes, dismissal acƟviƟes, etc. for example. These objects can in fact be used
to organize and enhance the workflows of resources that characterize a parƟcular product. The second
research field is instead addressed to the improvements that can be achieved with a deeper integraƟon
with external solving and modeling environments.

9.2.3 Conceptual infrastructure improvements

Some of themost interesƟng enhancements can be pursued through a deeper invesƟgaƟon of the con-
cepts related to the simulaƟon and analysis aspects. In this case the main problem regard the capability to
develop an high level structure that is able to include the large part of all the possible analysis scenarios.
The large amount of possible condiƟons and situaƟons that characterize external solving environments is
difficult to formalize. Part of the main efforts in the current work has been used in fact to conceptualize
a first paƩern for such aspect but a deeper analysis can also be developed in future acƟviƟes. The for-
malizaƟon of these concepts is not so easy to achieve since the analysis and simulaƟon approaches used
by different domains have few elements in common. Each engineering domain has its own processes,
templates and analysis environments that change not only from a company/organizaƟon to another com-
pany/organizaƟon but they are oŌen different within the same working group. The company experƟse
(related to the knowledge gained across the years) as well as the background of the individual user affect
the development of common infrastructure. For this reason the development of new concepts and the
refinement of the exisƟng ones can help to beƩer formalize the proposed soluƟon.
For example in the future the Design Variable class may be conceptually modified to take account for the
presence of nested design variables but the related formalizaƟon is currently under development to un-
derstand the actual benefits (if any) can be obtained. This situaƟon can be useful to manage some special
design situaƟons and the related conceptual relaƟonship can be modeled with a self-containing link for

250

the Design Variable class. This situaƟon can be represented by the presence of Design Variables that are
related to another Design Variable. That implies the possibility that the Design Variable can contains other
Design Variables (as the self-containing relaƟonship has highlighted). This formalizaƟon seems to be use-
ful in the case some parƟcular Design Variable depends on the definiƟon of another Design Variable in the
same Element DefiniƟon element. In this case both the Design Variable are not on the same design level
but a different definiƟon can be implemented to model it.
One of the interesƟng features under evaluaƟon regards the creaƟon of a new baseline starƟng from the
data available on a previous one. In this way it is possible to import all that informaƟon and start from these
ones to develop the new configuraƟon and baseline. The elements can then be detailed starƟng from the
informaƟon available as the development process proceeds. This approach shall allow to instanƟate the
new elements that must be disƟnct from the previous ones (defining new unique idenƟfiers), avoiding the
possibility that some elements may be deleted on the previous closed baseline. The elements for the new
baseline must be recreated copying all the elements defined in the previous one but they must be dis-
Ɵnguished (all the elements must be independent over all the nested levels that the system project can
idenƟfy).
Some improvements can be done in the context of meta-model definiƟons about a deeper integraƟon be-
tween the operaƟvemodes and scenarios with respect to the analyses and simulaƟons conceptual classes.
Future meta-model enhancements are related to a beƩer and more compact formulaƟon for the design
variables class. For example the disƟncƟon between a discrete/conƟnuous design variable and a group of
alternaƟves is not so different. Both these objects have a nominal values since they are not able to rep-
resents more than one value at Ɵme. Once a belonging range has been defined (a conƟnuous range or
enumeraƟon in the case of individual design variable and a group of alternaƟves) the choice among the
available soluƟons is mutually exclusive in both cases. Also a configuraƟon/soluƟon that have to be cho-
sen among a set of available ones is basically an element that can be represented as an individual design
variable.

9.2.4 External environment integraƟon

Further improvements can be achieved through the implementaƟon of specific adapters for the def-
iniƟon of exchange capabiliƟes with respect to some widespread formats. Standard exchange formats
as STEP can potenƟally be managed through proper integrated import/export uƟliƟes within the already
developed infrastructure. In parƟcular the packages provided by some open-source iniƟaƟves can be eval-
uated to exploit already implemented tools to manage such kind of files.
An example of well-documented iniƟaƟve is represented by the Open CASCADE project [94]. CASCADE
acronym stands for Computer Aided SoŌware for Computer Aided Design and Engineering while the over-
all infrastructure is oŌen idenƟfied with the acronym OCCT that stands instead for Open CASCADE Tech-
nology. OCCT is a powerful soŌware plaƞorm for development of CAD, CAM and CAE applicaƟons. It
features 3D modeling kernel consisƟng of reusable C++ object libraries, and a set of development tools, all
available in Open Source. It includes C++ elements for 3D surface and solid modeling, visualizaƟon, data
exchange and rapid applicaƟon development. The typical resources built with the support of OCCT are pre-
and post-processors for finite element analysis soŌware, CNC/CMMpath generators, numerical simulaƟon
programs, etc. Open CASCADE is based on a modular structure which is conceptually represented in figure
9.1.

Data exchange is a key element in using OCCT (as well as the applicaƟons based on it) concurrently
with other soŌware such as CAD systems (PLM plaƞorms, etc.). The standardized data exchange ensures
the openness of the Open CASCADE Technology in a mulƟ-soŌware infrastructure, allowing it to process
external data and providing a well structured level of integraƟon at the same Ɵme. Exchanges are realized
through standards which can be used between various soŌware packages for CAD, PDM, etc. and are
basically focusedon IGES and STEP formats. Other connector types canwork insteadonproprietary formats
or call run-Ɵme libraries to process external data, providing in this way the capability to interface various
environments.
The reading and wriƟng funcƟons of 3D data as IGES format (5.3) and STEP format (AP203, AP214 and

251

Figure 9.1: Modular structure of Open CASCADE plaƞorm [94].

AP209) are mainly used for the management of the following informaƟon:

• 3D geometry and topology.

• with Extended Data Exchange (XDE) module:

– Colors and Names.

– Assembly structures

– Layers

– ValidaƟon ProperƟes

Specificmodules are available for data analysis, adaptaƟon, quality upgrading aswell as the "customiza-
Ɵon" of shapes, regarding mathemaƟcal definiƟons of geometry and topology.
The main modules concerning the modeling data acƟvity are represented by the libraries:

• 2D Geometry

• 3D Geometry

• Geometry UƟliƟes

• Topology

Each one includes useful funcƟonaliƟes that can be used for different purposes: objects parametriza-
Ɵon, data conversion, interpolaƟon of a set of points, approximaƟon of curves and surfaces from points,
direct construcƟon of algorithms, etc. The topology library is used for example to build pure topological
data structures, defining the relaƟonships between simple geometric enƟƟes.
The capability to parse and process STEP format is one of the most interesƟng one for the integraƟon with
the proposed infrastructure of the current work. Other already implemented soluƟons can also be con-
sidered with respect to such features. The offered funcƟonaliƟes can be hard coded within the developed
plaƞorm and directly linked to the already defined system components and properƟes, allowing a clearer

252

handling of the informaƟon gathered and shared. In this way product data coming from different industry
partners or suppliersworking on the sameproject can be shared through STEP andmanaged independently
on the basis of specific company plaƞorms, tools and procedures. Such funcƟonaliƟes can then be used to
convert the models elaborated within domain specific environments and exported through STEP format.
Such files can in fact be mapped to the data structure available for the system model and the informaƟon
can be collected within the Product Model object, providing useful instruments for the comparison with
the current status of the design baseline. Data stored in the STEP file can in fact be processed to be trans-
lated in the corresponding objects of the Product Model tree, saving values and all the informaƟon needed
exploiƟng the concept of Product Element Occurrence.

9.3 Summary conclusions

The main aim of the present work has been addressed towards the invesƟgaƟon of the current open
issues and actual benefits that characterize the applicaƟon of Model Based System Engineering method-
ologies in the advanced phases of a design process. In parƟcular the opƟons and alternaƟves management
process has been studied through the use of a model based approach, proposing one of the possible so-
luƟons for such aspect. The integraƟon of MulƟdisciplinary Analysis techniques has also been considered
in the same context, highlighƟng the advantages that can be achieved. The applicaƟon of a model based
infrastructure show how the data exchange, collaboraƟon and informaƟon consistency can be improved,
paving the way for an effecƟve support of design acƟviƟes. The proposed infrastructure as well as the
integraƟon of the mulƟdisciplinary design methods have mainly been used to assess the actual status, the
current implementaƟons and future improvements of a promising model based methodology. Such field
is currently one of the most challenging research topic since it directly involves a wide set of possible im-
provements in the context of complex systems design and analysis. The actual implementaƟon has been
used only for the sake of clarity with respect to the invesƟgated approach with respect to simulaƟons and
mulƟdisciplinary analyses for example. The same infrastructure can in fact be actually implemented with
other soluƟons or technologies but the main focus of the current study is represented by the correctness
of the developed concepts.
One interesƟng feature related to the implementaƟon of a web-based modeling tool is represented by the
possibility to manage also simulaƟon execuƟon and results. The system modeling tool does not directly
manage all the simulaƟon models but support the system characterisƟcs definiƟon. The developed infras-
tructure from this point of view has been conceived in fact to properly set up simulaƟons and analyses
while solving capabiliƟes are allocated on external analysis environments. In parƟcular such frameworks
provide also the modeling capabiliƟes needed to define product features and its behavior.

253

254

Bibliography

[1] "A pracƟcal guide to SysML, the System modeling language", Sanford Friedenthal, Alan Moore, Rick
Steiner, The MK/OMG Press.

[2] "Managing the Development of Large SoŌware Systems", Royce, Winston W., Proceedings of IEEE
WESCON 26, pp. 1-9, Aug. 1970.

[3] "A Spiral Model of SoŌware Development and Enhancement", Boehm, Barry W., Computer, pp. 61-72,
May 1988.

[4] "The RelaƟonship of Systems Engineering to the Project Cycle", Forsberg, Kevin and Harold Mooz, En-
gineering Management Journal, 4, No. 3, pp. 36-43, 1992.

[5] "SimulaƟon Modeling and Analysis", Fourth EdiƟon, Averill M. Law, McGraw Hill.

[6] "Model Building in MathemaƟcal Programming", H. Paul Williams, Fourth ediƟon, Wiley.

[7] "NASA System Engineering Handbook", SP-2007-6105 Rev 1 Final 31 Dec 2007.

[8] "Survey of Model-Based Systems Engineering (MBSE) Methodologies", Jeff A. Estefan, Jet Propulsion
Laboratory, INCOSE MBSE Focus Group.

[9] hƩp://www.ecss.nl

[10] "InternaƟonal Council on Systems Engineering (INCOSE), System Engineering Vision 2020", Version
2.03, TP-2004004-02, September 2007.

[11] "MBSE for European Space-Systems Development", H. Eisenmann, J. Miro, H. P. De Koning, INCOSE
Insight, December 2009.

[12] "Systems Engineering Guidebook: A Process for Developing Systems and Products", MarƟn, James N.,
CRC Press, Inc.: Boca Raton, FL, 1996.

[13] "Service Orient or Be Doomed!", Bloomberg, Jason and Ronald Schmelzer, John Wiley & Sons: Hobo-
ken, New Jersey, 2006.

[14] "INCOSE MBSE IniƟaƟve Summary", Sanford Friedenthal, NDIA M&S CommiƩee, June 15, 2010.

[15] "Space Mission Analysis and Design, 3rd ediƟon", Wiley J. Larson, James R. Wertz, Space Technology
Library, Vol. 8.

[16] "SemanƟcally-Rigourous System Engineering Using SysML and OWL", Steven Jenkins, Nicolas Rou-
queƩe. Jet Propulsion Laboratory. SECESA 2012.

[17] "NAFEMS - INCOSE CollaboraƟon Kick Off", InternaƟonal Workshop 26-29 January 2013 Jacksonville,
FL, USA.

[18] hƩp://www.esa.int/SPECIALS/CDF.html

255

[19] "ESA Open Concurrent Design Server", M. Bandecchi, A. MaƩhyssen, 2nd Concurrent Engineering for
Space ApplicaƟons Workshop 2006, ESA ESTEC, Noordwijk, The Netherlands, 19 – 20 October 2006.

[20] "Responsive Space System Engineering: methodologies and tools prototype", Luca Simonini. SECESA
2012 - Alameda Campus of IST / Technical University of Lisbon, Lisbon, Portugal.

[21] hƩp://www.vsd-project.org.

[22] "ESA Virtual SpacecraŌ Design, DemonstraƟon of Feasibility of MBSE Approach for European Space
Programs", Harald Eisenmann, Joachim Fuchs, Don deWilde, Valter Basso, 5th InternaƟonalWorkshop
on Systems & Concurrent Engineering for Space ApplicaƟons, SECESA 2012, Lisboa, October 2012.

[23] "MulƟ-disciplinary Approach for Industrial Phases in Space Projects, EvoluƟon of Classic SE into
MBSE", Harald Eisenmann, Joachim Fuchs, INCOSE IW 2012, MBSE Workshop, 21-22 January 2012.

[24] "Concurrent engineering approach to design mission feasibility studies at CNES", JL. Le Gal, Collabo-
raƟon and Interoperability Congress, Colorado Springs, May 21-23, 2013.

[25] "Concurrent Engineering Meta Data-Model &MulƟ-Domain RepresentaƟon", SECESA 2012, Alameda
Campus of IST/Technical University of Lisbon, Lisbon, Portugal, 17-19 October.

[26] "Applying CollaboraƟve System Engineering in Thales Alenia Space: lessons learned and best prac-
Ɵces", Fabio Di Giorgio, ValenƟna Paparo, Valter Basso, Xavier Roser, 5th InternaƟonal Workshop on
Systems&Concurrent Engineering for Space ApplicaƟons SECESA 2012, 17-19 October 2012, Lisbon,
Portugal.

[27] "Dynamic Gate Product and ArƟfact GeneraƟon from System Models", Maddalena Jackson, Cristo-
pher Delp, Duane Bindschadler, Marc Sarrel, Ryan Wollaeger, Doris Lam. Jet Propulsion Laboratory.
Pasadena.

[28] "Computer as Thinker/Doer: Problem-Solving Environments for ComputaƟonal Science", StraƟs Gal-
lopoulos, Elias HousƟs and John Rice, IEEE ComputaƟonal Science and Engineering.

[29] "A web-disctributed problem-solving environment for engineering applicaƟons", Hsien-Chie Cheng,
Chiu-Shia Fen, Advances in Engineering SoŌware 37, Elsevier.

[30] "A Problem Solving Environment Portal for MulƟdisciplinary Design OpƟmizaƟon", Ju-Hwan Kim, Ho-
Jun Lee, Sang-Ho Kim, Jeong-Oog Lee, Advances in Engineering SoŌware 40, Elsevier.

[31] "Problem solving environments in aerospace design", A. J. Keane, P. B. Nair, Advances in Engineering
SoŌware 32, Elsevier.

[32] "Approaches to MulƟdisciplinary Design OpƟmizaƟon", Timothy W. Simpson, Acknowledge support
from the Office of Naval Research under ASSERT Grant N00014-98-1-0525.

[33] "A Unied DescripƟon of MDO Architectures". Andrew B. Lambe and Joaquim R. R. A. MarƟns Univer-
sity of Toronto, Toronto, Canada, lambe@uƟas.utoronto.ca. University of Michigan, Ann Arbor, Michi-
gan, USA, jrram@umich.edu. 9thWorld Congress on Structural andMulƟdisciplinary OpƟmizaƟon June
13 - 17, 2011, Shizuoka, Japan.

[34] "Reconfigurability in MDO problems synthesis", part 1 and part 2. N. M. Alexandrov, R. M. Lewis. In
Proceedings of the 10th AIAA/ISSMOMulƟdisciplinary Analysis and OpƟmizaƟon Conference 2004.

[35] "MulƟdisciplinary design opƟmizaƟon: A Survey of architectures" J. R. R. A. MarƟns and A. B. Lambe,
AIAA Journal, 2013.

[36] "Design Structure Matrix Methods and ApplicaƟon", Steven D. Eppinger, Tyson R. Browning. Engi-
neering System MIT Press.

256

[37] "Design Structure Matrix Methods and ApplicaƟons", Steven D. Eppinger and Tyson R. Browning, En-
gineering Systems, MIT Press.

[38] "Network Design Using Hierarchical Performance Models and MulƟ-Criteria OpƟmizaƟon", Mingyan
Liu, John S. Barasand, Center for Satellite andHybrid CommunicaƟonNetworks, University ofMaryland,
hƩp://www.isr.umd.edu.

[39] www.vrand.com/VisualDOC.html.

[40] hƩp://www.esteco.com/modefronƟer.

[41] hƩp://ichrome.eu/nexus/overview.

[42] "A distributed compuƟng environment for mulƟdisciplinary design", Weston RP, Towsend JC, Eid-
son TM, Gates RL, 5th AIAA/NASA/ISS MO Symposium on MulƟdisicplinary Analysis and OpƟmizaƟon,
AIAA-94-4372-CP; September 1994, p.1091-7.

[43] "IMAGE: tutorial, Version 1.17", Aerospace system design lab., Georgia InsƟtute of Technology; 1999.

[44] "The Development of an Open-Source Framework forMulƟdisciplinary Analysis and OpƟmizaƟon", K.
T. Moore, B. A. Naylor, and J. S. Gray, in 10th AIAA/ISSMO MulƟdisciplinary Analysis and OpƟmizaƟon
Conference, Victoria, Canada, 2008.

[45] hƩp://openmdao.org.

[46] "AMPL: AModeling Language forMathemaƟcal Programming, 2nd ed", R. Fourer, D. M. Gay, and B.W.
Kernighan. Duxbury Press/Brooks/Cole Publishing Co., PacificGrove, CA, 2003. For small examples, e.g.,
at most 300 variables, a student version of AMPL suffices; see hƩp://www.ampl.com/DOWNLOADS.

[47] "Python in a Nutshell", A. Martelli. O’Reilly and Associates, Cambridge, MA.

[48] "Automated SensiƟvity Analysis in Early SpaceMissionDesign", Volker Schaus. SECESA2012 - Alameda
Campus of IST / Technical University of Lisbon, Lisbon, Portugal.

[49] "Analyses Made to Order: Using TransformaƟon to Rapidly Configure a MulƟdisciplinary Environ-
ment", Cole B., IEEE Aerospace Conference; 5-12 March 2011; Big Sky, MT; United States.

[50] "Early FormulaƟon of Model-Centric Engineering on NASA's Europa Mission Concept Study", Todd
Bayer, Seung Chung, Bjorn Cole, Brian Cooke, Frank Dekens, Chris Delp, I. GonƟjo, Kai Lewis, Mehrdad
Moshir, Robert Rasmussen, DavidWagner, Jet Propulsion Laboratory, California InsƟtute of Technology.

[51] IEEE1471-2000(ISO/IEC 42010).

[52] "Model Based Systems Engineering (MBSE) Applied to Radio Aurora Explorer (RAX) Cubesat Mission
OperaƟonal Scenarios", Sara C. Spangelo, James Cutler, Louise Anderson, Bjorn Cole et al., University
of Michigan, California InsƟtute of Technology, Jet Propulsion Laboratory, InterCAX, Exton, Phoenix
IntegraƟon. IEEEAC paper2170, 2013.

[53] "MulƟdisciplinary Design OpƟmizaƟon for Concurrent Engineering of Space Systems", Jian Guo, Luca
Guadagni. SECESA 2012, Lisbon, 17-19 Oct 2012.

[54] "The General Mission Analysis Tool (GMAT): A New Resource for SupporƟng Debris Orbit Determi-
naƟon, Tracking and Analysis", Moriba Jah, Steven Hughes, MaƩhew Wilkins, Tom Kelecy, AFRL PA
377ABW-2009-0295.

[55] "DARTS Lab, SpacecraŌ Modeling and SimulaƟon", Abhinandan Jain, Jet Propulsion Laboratory.

[56] "ECSS System Glossary of terms", ECSS-S-ST-00-01C, 1 October 2012, www.ecss.nl.

257

[57] "ESA Virtual SpacecraŌ Design, DemonstraƟon of Feasibility of MBSE Approach for European Space
Programs", Harald Eisenmann, Joachim Fuchs, Don deWilde, Valter Basso, 5th InternaƟonalWorkshop
on Systems & Concurrent Engineering for Space ApplicaƟons, SECESA 2012, Lisboa, October 2012.

[58] "Human Spaceflight Mission Analysis and Design", Wiley J. Larson, Linda K. Pranke, John Connolly,
Robert Giffen. Space Technologies Series, Mc Graw Hill.

[59] "NASA QUDT Handbook, Ontology-based SpecificaƟon of QuanƟƟes, Units, Dimensions and Types",
Ralph hodgson, Jack Spivak, The 15th NASA-ESA Workshop on Product Data Exchange, Colorado
Springs, USA, 21-23 May 2013.

[60] "STEP for Data Management, Exchange and Sharing", Julian Fowler, BriƟsh Library.

[61] ECSS-E-TM-10-25A 20 October 2010.

[62] ECSS-E-TM-10-21A 16 April 2010.

[63] ECSS-E-ST-7032.

[64] "ISO-15288, OOSEM and Model-based submarine Design", Paul Pearce, MaƩhew Hause, SETE AP-
COSE 2012.

[65] "OCDT SoŌware Design Document", OCDT-003-SDD. H.P. de Koning, P. Pinto. 2012-10-15.

[66] "Object Oriented Systems Engineering", S. Friedenthal Process IntegraƟon for 2000 and Beyond: Sys-
tems Engineering and SoŌware Symposium, New Orleans, LA, Lockheed MarƟn CorporaƟon, 1998.

[67] "Model Driven Engineering and Ontology Development, 2nd ed.", D. Gasevic, D. Djuric, V. Devedzic ,
Springer-Verlag.

[68] "A Research Roadmap towards Achieving Scalability in Model Driven Engineering", D. S. Kolosos, L.
M. Rose, N. Matragkas, R. F. Paige et al., BigMDE 2013, Juine 2013 Budapest, Hungary.

[69] "Applying Model Based Systems Engineering (MBSE) to a Standard CubeSat", Sara Spangelo, David
Kaslow, Chris Delp, Elyse Fosse, BreƩ Sam Gilbert, Leo Hartman, Theodore Kahn, James Cutler, 978-1-
4577-0557-1/12 © 2012 IEEE.

[70] "JPL community View on Challenges and Rewards of MBSE", Bjorn Cole , Jet Propulsion Laboratory.
InternaƟonal Workshop 26-29 Jan 2013 Jacksonville, FL, USA.

[71] "GeneƟc algorithms for navigaƟng expensive and complex design spaces", D. C. Zimmerman., Septem-
ber 1996. Final Report for Sandia NaƟonal Laboratories contract AO-7736 CA 02. 151, 158.

[72] "rSPQ++: An Object-Oriented Framework for Successive QuadraƟc Programming", Roscoe A. BartleƩ,
Lorenz T. Biegler. Department of Chemical Engineering, Carnegie Mellon University.

[73] "An ExploraƟon of AlternaƟve Approaches to the RepresentaƟon of Uncertainty in Model Predic-
Ɵons", Helton, J.C., Johnson, J.D. and W.L. Oberkampf. Reliability Engineering and System Safety Vol.
85, pp. 39-71, 2004.

[74] "A sampling-based computaƟonal strategy for the representaƟon of epistemic uncertainty in model
predicƟons with evidence theory", Helton, J.C., Johnson, J.D., Oberkampf, W.L. and C.B. Storlie. Sandia
NaƟonal Laboratories Technical Report SAND2006-5557.

[75] "Epistemic Uncertainty QuanƟficaƟon Tutorial", Laura P. Swiler, Thomas L. Paez, Randall L. Mayes,
Sandia NaƟonal Laboratories, New Mexico.

258

[76] "MulƟfidelity Modeling for Uncertainty QuanƟficaƟon and OpƟmizaƟon in Design of Complex Sys-
tems", Karen Willcox, Doug Allaire, Andrew March, Leo Ng. 7th Research ConsorƟum for MulƟdisci-
plinary System Design Workshop Purdue University July 19, 2012.

[77] "DAKOTA, A MulƟlevel Parallel Object-Oriented Framework for Design OpƟmizaƟon, Parameter EsƟ-
maƟon, Uncertainty QuanƟficaƟon, and SensiƟvity Analysis: Version 5.0 User's Manual" Sandia Tech-
nical Report SAND2010-2183, December 2009. Adams, B.M., Bohnhoff, W.J., Dalbey, K.R., Eddy, J.P.,
Eldred, M.S., Gay, D.M., Haskell, K., Hough, P.D., and Swiler, L.P. Updated December 2010 (Version 5.1)
Updated November 2011 (Version 5.2).

[78] "OpenMDAO Development and Usage, What's New in OpenMDAO", Kenneth T. Moore July 19th,
2012.

[79] "OpenMDAO: Framework for Flexible MulƟdisciplinary Design, Analysis and OpƟmizaƟon Methods",
ChristopherM. Heath and JusƟn S. Gray, NASA Glenn Research Center, Cleveland, OH, 44135. American
InsƟtute of AeronauƟcs and AstronauƟcs.

[80] "Geometric Programming for Conceptual AircraŌ Design OpƟmizaƟon", Woody Hoburg and Pieter
Abbeel Electrical Engineering and Computer Science Department University of California, Berkeley
Joint work with Laurent El Ghaoui, Alex Bayen, and Andrew Packard. 7th Research ConsorƟum forMul-
Ɵdisciplinary System Design Workshop. July 20, 2012.

[81] "OpenMDAO: An Open Source Framework for MulƟdisciplinary Analysis and OpƟmizaƟon", JusƟn
GrayMDAOBranch, NASAGlennResearch Center, Cleveland, OHKenneth T.Moorey andBret A. Naylorz
DB ConsulƟng Group, Inc., Cleveland, OH. American InsƟtute of AeronauƟcs and AstronauƟcs.

[82] "Extensions to the Design Structure Matrix for the DescripƟon of MulƟdisciplinary Design, Analysis,
and OpƟmizaƟon Processes", Andrew B. Lambe Joaquim R. R. A. MarƟns.

[83] "Model Based Systems Engineering (MBSE) Process Using SysML for Architecture Design, SimulaƟon
and VisualizaƟon", Gundars Osvalds, Northrop Grumman , October 20, 2011.

[84] "Ruby on Rails Tutorial: Learn web Development With Rails, Second EdiƟon", Michael Hartl, Addison-
Wesley Professional Ruby Series.

[85] "THE RAILS 3 WAY", Obie Fernandez, Durran Jordan, Jon Larkowski, Xavier Noria, Tim Pope. Addison-
Wesley Professional Ruby Series.

[86] "Design of a Model ExecuƟon Framework: RepeƟƟve Object-Oriented SimulaƟon Environment
(ROSE)", JusƟn S. Gray Jeffery L Briggs. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Ex-
hibit 21 - 23 July 2008, Harƞord, CT.

[87] "OMG SysML version 1.1., OMG, November 2008".

[88] "Advancing the PracƟse of Systems Engineering at JPL", P. A. "Trisha" Jansma and Ross M. Jones,
Systems Engineering Advancement (SEA) Project, Jet Propulsion Laboratory (JPL), IEEEAC paper 1031,
Version 6, January 13,2006.

[89] "Service-oriented Architecture: Concepts, Technology, and Design", Thomas Erl. Pearson EducaƟon,
2005.

[90] "Study of Thermal Analysis and Design Process in MBSE Environment", D. RiposaƟ", Politecnico di
Torino, Master Degree, Luglio 2009.

[91] "ECSS Secretariat, Requirements & Standard Division", ECSS-E-TM-10-21A, Space Engineering System
Modelling and SimulaƟon. Noordwijk, The Nederlands: ESA-ESTEC, 2010.

[92] DraŌ ECSS-E-00A - Space Engineering - Policy and Principle.

259

[93] "Integrated Approach To OpƟmizing Small SpacecraŌ Vehicles And OperaƟons", Sara C. Spangelo,
James W. Cutler, University of Michigan, IAC-11-D9.2.8.

[94] www.opencascade.org

[95] "First ARTEMIS SpacecraŌ Successfully Enters Lunar Orbit", Fox, Karen C. , The Sun-Earth ConnecƟon:
Heliophysics. NASA.

[96] "ExploraƟon Gateway Plaƞorm hosƟng Reusable Lunar Lander proposed", Bergin, Chris (December
2011). NASA Spaceflight.com. Retrieved 2011-12-05.

[97] hƩp://www.nasaspaceflight.com/2011/12/exploraƟon-gateway-plaƞorm-hosƟng-reusable-lunar-
lander-proposed/

[98] "Dakota, AMulƟlevel Parallel Object-Oriented Framework for DesignOpƟmizaƟon, Parameter EsƟma-
Ɵon, Uncertainty QuanƟficaƟon, and SensiƟvity Analysis", Version 5.4 User’s Manual, SAND2010-2183
Unlimited Release.

[99] "Elements of Structural OpƟmizaƟon", R. T. HaŌka and Z. Gurdal. Kluwer, Boston, 1992.

[100] "GeneƟc Algorithms in Search, OpƟmizaƟon, and Machine Learning", D. E. Goldberg. Addison-
Wessley Publishing Co., Inc., Reading, MA, 1989.

[101] "Dakota, a mulƟlevel parallel objectoriented framework for design opƟmizaƟon, parameter esƟma-
Ɵon, uncertainty quanƟficaƟon, and sensiƟvity analysis: Version 5.4 reference manual", B. M. Adams,
L. E. Bauman, W. J. Bohnhoff, K. R. Dalbey, J. P. Eddy, M. S. Ebeida, M. S. Eldred, P. D. Hough, K. T. Hu,
J. D. Jakeman, L. P. Swiler, and D. M. Vigil. Technical Report SAND2010-2184, Sandia NaƟonal Labora-
tories, Albuquerque, NM, Updated Jan. 2013.

[102] hƩp://www.omgsysml.org.

[103] "SIM: CollaboraƟve Model-Based System Engineering Workspace for Next-GeneraƟon Complex Sys-
tems", M. Bajaj, D. Zwemer, R. Peak, A. Phung,. A. ScoƩ, M. Wilson, 2011 IEEE Aerospace Conference
Proceedings.

[104] "FUSED: A Tool IntegraƟon Framework for CollaboraƟve System Engineering", Mark Boddy, Mar-
Ɵn Michalowski, August Schwerdfeger, Hazel Shackleton, and Steve Vestal. 2nd Workshop on AnalyƟc
Virtual IntegraƟon of Cyber-Physical Systems (AVICPS-11).

[105] "FUSED Framework for SystemEngineeringHands-on Tutorial", SAEAADL 19April 2012, Steve Vestal,
AdvenƟum Labs.

[106] "COMPASS: Component-based Architectures for Systems Synthesis", John S. Baras, InsƟtute for Sys-
tems Research, Department of Electrical and Computer Engineering, Fischell Department of Bioengi-
neering Applied MathemaƟcs, StaƟsƟcs and ScienƟfic ComputaƟon Program, University of Maryland
College Park. 2012 MODPROD, February 8, 2012. Linkoping University, Sweden.

[107] "Complexity Management of Space Systems through Model Based System Engineering approach",
Mauro Pasquinelli, Ph.D. Thesis, March 2010.

[108] "AMulƟ-Code Python-Based Infrastructure for Overset CFD with AdapƟve Cartesian Grids", Andrew
M. Wissink, Jayanarayanan Sitaraman, Venkateswaran Sankaran, Dimitri J. Mavriplis, Thomas H. Pul-
liam. American InsƟtute of AeronauƟcs and AstronauƟcs.

[109] "Technical Challenges to Systems Analysis and MDAO for Advanced Subsonic Transport AircraŌ",
William Haller and Mark Guynn, Technical Leads for Systems Analysis and IntegraƟon Subsonic Fixed
Wing Project. AIAA Aerospace Sciences MeeƟng January 9-12, 2012.

260

[110] "The Development of an Open Source Framework for MulƟdisciplinary Analysis & OpƟmizaƟon".
Kenneth T. Moore and Bret A. Naylor Wyle InformaƟon Systems, Cleveland, Ohio and JusƟn S. Gray
NASA Glenn Research Center, Cleveland, Ohio. American InsƟtute of AeronauƟcs and AstronauƟcs.

[111] "GeoMACH: Geometry-Centric MDAO of AircraŌ ConfiguraƟons with High Fidelity", John T. Hwang
and Joaquim R. R. A. MarƟns University of Michigan, Ann Arbor, Michigan, 48109, United States. Amer-
ican InsƟtute of AeronauƟcs and AstronauƟcs.

[112] "A MulƟdisciplinary OpƟmizaƟon Framework for Control-ConfiguraƟon IntegraƟon in AircraŌ Con-
ceptual Design", Ruben E. Perez and Hugh H. T. Liu University of Toronto, Toronto, ON, M3H 5T6,
Canada Kamran Behdinan Ryerson University, Toronto, ON, M5B 2K3, Canada.

[113] "MulƟdisciplinary Design OpƟmizaƟon for Complex Engineered Systems: Report from a NaƟonal
Science FoundaƟonWorkshop", TimothyW. Simpson The Pennsylvania StateUniversity University Park,
PA USA. Joaquim R. R. A. MarƟns University of Michigan Ann Arbor, MI USA.

[114] "A Pareto FronƟer IntersecƟon-Based Approach for EfficientMulƟobjecƟve OpƟmizaƟon of Compet-
ing Concept AlternaƟves". A Thesis Presented to The Academic Faculty by Damon A. Rousis. In ParƟal
Fulllment of the Requirements for the Degree Doctor of Philosophy in the School of Aerospace Engi-
neering Georgia InsƟtute of Technology. August 2011.

[115] "Review and UnificaƟon of Methods for CompuƟng DerivaƟves of MulƟdisciplinary Systems",
Joaquim R. R. A. MarƟns - John T. Hwang MulƟdisciplinary Design OpƟmizaƟon Laboratory.

[116] "A New Approach to MulƟdisciplinary Design OpƟmizaƟon via Internal DecomposiƟon", Andrew
B. Lambe, University of Toronto InsƟtute for Aerospace Studies, Toronto, ON, Canada Joaquim R.
R. A. MarƟnsy Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI. 13th
AIAA/ISSMO MulƟdisciplinary Analysis and OpƟmizaƟon Conference 13-15 September, 2010, Fort
Worth, Texas, United States.

[117] "CalculaƟon of SensiƟvity DerivaƟves in an MDAO Framework", Kenneth T. Moore. NASA Glenn Re-
search Center, Cleveland, OH. American InsƟtute of AeronauƟcs and AstronauƟcs.

[118] "Approaches for Engineering Design as Mixed Discrete Non-Linear Programming Problems", Bill
Crossley. Includes content from previous and current graduate students Nithin Kolencherry and Sa-
tadru Roy. Research ConsorƟum for MulƟdisciplinary System Design Workshop – 20 July 2012.

[119] "Virtual ConstrucƟon of Space Habitats: ConnecƟng Building InformaƟonModels (BIM) and SysML",
Raul Polit-Casillas, A. ScoƩ Howe, Jet Propulsion Laboratory, California InsƟtute of Technology. AIAA
SPACE 2013 Conference and ExposiƟon September 10-12, 2013, San Diego, CA.

[120] "Second-Order Reliability FormulaƟons in DAKOTA/UQ", M. S. Eldred, B.J. Bichon, 47th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, andMaterials Conference 1 - 4May 2006,
Newport, Rhode Island.

[121] "MulƟmodal Reliability Assessment for Complex Engineering ApplicaƟons using Efficient Global
OpƟmizaƟon", B. J. Bichon, M. S. Eldred, L. P. Swiler, S. Mahadevan, and J. M. McFarland, 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 23 - 26 April
2007, Honolulu, Hawaii.

[122] "SoluƟon-Verified Reliability Analysis and Design of BistableMEMSUsing Error EsƟmaƟon and Adap-
Ɵvity", Brian M. Adams, Barron J. Bichon, Brian Carnes, et al., SANDIA REPORT, SAND2006-6286, Un-
limited Release Printed October 2006.

[123] "FormulaƟons for Surrogate-Based OpƟmizaƟon with Data Fit, MulƟfidelity, and Reduced-Order
Models", M. S. Eldred and D.M. Dunlavy, 11th AIAA/ISSMOMulƟdisciplinary Analysis and OpƟmizaƟon
Conference 6 - 8 September 2006, Portsmouth, Virginia.

261

[124] "MulƟ-point Extended Reduced Order Modeling For Design OpƟmizaƟon and Uncertainty Analysis",
G. Weickum, M.S. Eldred, and K. Maute, 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference, 1 - 4 May 2006, Newport, Rhode Island.

[125] "Model CalibraƟon under Uncertainty: Matching DistribuƟon InformaƟon", Laura P. Swiler, Brian M.
Adams , and Michael S. Eldred, SAND Report 2008-0632A, AIAA Paper AIAA-2008-5944.

[126] "FORMULATIONS FOR SURROGATE-BASEDOPTIMIZATIONUNDER UNCERTAINTY", M. S. Eldred, A. A.
Giunta†, S. F. Wojtkiewicz, Jr., and T. G. Trucano, AIAA-2002-5585.

[127] "Design Under Uncertainty Employing StochasƟc Expansion Methods", M. S. Eldred, C. G. Webster,
P. G. ConstanƟne, American InsƟtute of AeronauƟcs and AstronauƟcs Paper 2008–6001.

[128] "MULTILEVEL PARALLELISM FOR OPTIMIZATION ON MP COMPUTERS: THEORY AND EXPERIMENT",
M. S. Eldred,W. E. Hart†, B. D. Schimel, and B. G. van BloemenWaanders, Sandia NaƟonal Laboratories,
AIAA-2000-4818.

[129] "ComputaƟonal Analysis and OpƟmizaƟon of a Chemical Vapor DeposiƟon Reactor with Large-Scale
CompuƟng", Andrew G. Salinger, Roger P. Pawlowski, John N. Shadid, and Bart van BloemenWaanders
Sandia NaƟonal Laboratoriesy, February 9, 2004.

[130] "AircraŌ conceptual design for opƟmal environmental performance", R. P. Henderson, J. R. R. A.
MarƟns, R. E. Perez. THE AERONAUTICAL JOURNAL JANUARY 2012 VOLUME 116 NO 1175.

[131] "A CAD-Free Approach to High-Fidelity Aerostructural OpƟmizaƟon", Gaetan K.W. Kenway, Graeme
J. Kennedy, Joaquim R. R. A. MarƟnsz, 13th AIAA/ISSMO MulƟdisciplinary Analysis OpƟmizaƟon Con-
ference September 13-15, 2010, Fort Worth, Texas, United States.

[132] "A Standard Plaƞorm for TesƟng and Comparison of MDAO Architectures", JusƟn Gray, Kenneth T.
Moore, Tristan A. Hearn, Bret A. Naylorx, NASA Glenn Research Center, Cleveland, OH. American InsƟ-
tute of AeronauƟcs and AstronauƟcs.

[133] "On Unifying Geometric RepresentaƟons in an MDAO Environment with ApplicaƟon to AircraŌ De-
sign", John F. Dannenhoer, Robert Haimes, 7th Research ConsorƟum for MulƟdisciplinary Systems De-
sign Workshop Purdue University.

[134] "An InformaƟon-TheoreƟc Metric of System Complexity with ApplicaƟon to Engineering System De-
sign", Douglas Allaire, Chelsea He, John Deyst, and Karen Willcox. Department of AeronauƟcs and As-
tronauƟcs. MassachuseƩs InsƟtute of Technology. 7th Research ConsorƟum for MulƟdisciplinary Sys-
tem Design. July 20, 2012. Purdue University, West LafayeƩe, IN.

262

	Abstract
	Acknowledgments
	Acronyms
	Introduction
	Definition of the problem statement
	Motivation of the choice
	Purpose of the proposed analysis
	Background
	Engineering Design Process
	Engineering Analysis Process

	Problem Solving Environments (PSE)

	System Engineering
	Lifecycle management
	System Analysis concepts, methodologies and activities
	Uses cases and Scenarios
	Requirements Analysis
	Functional Analysis
	Operational Analysis
	Cost Analysis and Estimation

	Simulation Model - Mathematical Model
	Space System Engineering
	European Cooperation for Space Standardization - ECSS

	Model Based System Engineering Methodology
	Introduction
	INCOSE initiative
	System modeling language - SysML
	Taxonomy and definitions
	SysML tools
	Semantically-Rigorous System Engineering using SysML and OWL
	Systems Modeling & Simulation Working Group (SMSWG)

	Collaborative environments
	Examples of MBSE initiatives and Collaborative Engineering environments
	Responsive Engineering
	ESA-ESTEC initiative
	Centre National d’Etudes Spatiales – CNES
	Thales Alenia Space

	Benefits of MBSE
	Drawbacks and main needs of MBSE

	Multidisciplinary Analysis
	Introduction
	Current needs of MDO techniques
	MDO architectures

	Available tools for MDO problems
	Drawbacks of the current PIDO tools

	OpenMDAO Framework
	Mission
	Elements and their functions
	Browser GUI (Web Based)

	DAKOTA
	Sensitivity Analysis capabilities
	Parameter Study capabilities
	Design of Experiments capabilities
	Uncertainty Quantification capabilities
	Optimization capabilities
	Optimization usage
	Models - DAKOTA
	Variables - DAKOTA
	Interfaces - DAKOTA
	Responses - DAKOTA
	Outputs from DAKOTA
	Examples applications of DAKOTA framework

	State of the Art
	Main problems and characteristics
	Management of complex system
	Communication between domain-specific disciplines

	Possible solutions
	Examples of research initiatives
	Jet Propulsion Laboratory - JPL
	TU Delft
	University of Michigan

	Conceptual Infrastructure
	Introduction
	Current issues

	Taxonomy
	Topological definitions

	Conceptual framework philosophy
	Conceptual meta-model of the proposed methodology
	Analysis and simulation meta-model concepts
	Design Variables main conceptual definition
	Constraints and formulas management
	Options and alternatives management
	Scenario types
	User conceptual model
	Quantity, units and properties conceptual model
	Product model concept

	Workflow for the proposed approach
	Agile development lifecycle

	Data exchange
	Engineering design model of data exchange

	Collaboration mechanisms

	Analysis, Design and Implementation
	Methodology followed
	Proposed framework
	Introduction on DEVICE infrastructure

	Analysis
	Scenarios definition and functional analysis
	Assumptions and development considerations

	Design and implementation
	Introduction
	Conceptual overview
	Requirements management
	Baseline and database integration
	Diagram generation and management
	Tools, languages and development platforms
	Description on the benefits and advantages of open-source tools.
	Design manager framework
	Current implementation
	Main features and realization aspects
	Proposed approach for the integration of MDO techniques
	Web application and networking
	Web application integration alternatives

	Expected results, their significance and application

	Reference Case
	Introduction
	Problem description
	Main issues
	Analysis of the problem
	Description of the involved disciplines

	Problem formalization
	Simulation models
	Design variables
	Objective functions
	Constraints
	Solving methods
	Explicit formulation

	Results
	Subcase 1
	Subcase 2
	Subcase 3
	Subcase 4
	Subcase 5

	Considerations about the results

	Critical Assessment, Further Work and Summary Conclusions
	Critical assessment
	Contributions and benefits
	Drawbacks

	Further work
	Ongoing features
	Future developments
	Conceptual infrastructure improvements
	External environment integration

	Summary conclusions

