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Abstract— The flexibility and reconfigurability requirements 
of factories and manufacturing plants of the future can be 
partially met by adopting technologies and solutions already 
available for testing and experimentation. Openness and 
adherence to international standards are becoming increasingly 
important in modern distributed production and automation 
systems, especially when they have to cope with ever-increasing 
product differentiations and short product lifecycles. However, 
the increased flexibility and openness should not come to 
detriment of the system real-time characteristics. This paper 
deals with a pilot mechatronic architecture for agile transport 
systems, which has been specifically developed to enable the 
study of the aforementioned aspects in the framework of the 
“Factory of the Future” Italian flagship project. In particular, 
the paper focuses on possible bottlenecks and pitfalls at the 
operating system and communication levels, and provides 
preliminary indications on how to address or mitigate them by 
means of solutions already available on the market. 

Keywords—reconfigurable manufacturing systems, factory of 
the future, real-time performance, operating systems. 

I.  INTRODUCTION 

To face new consumer-centered manufacturing paradigms, 
like mass customization and personalization, factories must be 
capable to adapt themselves in real time to continuously 
changing market demands. Therefore, modern automation 
systems shall be able to conjugate increasing complexity of 
controlled processes with agile reconfiguration and flexibility 
of manufacturing systems. Indeed, reliable and agile 
automation systems represent a crucial issue for 
competitiveness of modern manufacturing systems. 

In such a context, new paradigms based on the distribution of 
control solutions onto a network of embedded components 
have been widely considered, thus enhancing the rapid design, 
modification, integration and reconfiguration of the resulting 
systems. The IEC 61499 standard [1], which defines function 
blocks for industrial process measurement and control systems, 
provides considerable support for developing complex 
distributed control applications. In fact, the organization of the 
control functionalities into a network of interconnected 

function blocks at application and sub-application layers 
provides an effective high-level view of the distributed 
application, supporting quick integration, deployment and 
reconfiguration of the production system control architecture. 

Advanced factory data acquisition and aggregation 
represent the second major element to be considered, when 
addressing the increasing complexity of modern production 
systems as well as enhanced flexibility and re-configurability 
requirements. OPC Unified Architecture (OPC UA) [2] 
represents an important step ahead in combining specific needs 
of the automation industry with a standard interface for secure 
and more efficient information exchange of complex data. 
From this point of view, a major advance introduced in OPC 
UA is represented by the transition from the OPC original 
COM/DCOM technology to the cross-platform capable Web 
Service technology. These changes in OPC allow a brand new 
approach to information integration, namely the unification of 
several OPC data models (such as Data Access, Alarms & 
Events, or Historical Data Access, as a single set of services) 
and their extension to other domains such as manufacturing, 
production, maintenance and business applications. 

Due to such potentialities, IEC 61499 and OPC UA have 
been considered as backbone technologies in the development 
of the automation solution for mechatronic products, such as 
the De-manufacturing pilot plant described in [3]. Nonetheless, 
as the complexity of the system increases, the distributed 
system framework could explode into many levels, so that 
evaluating and guaranteeing real-time performance of the 
overall system are not usually immediate tasks. The subproject 
“Generic Evolutionary Control Knowledge-based module” 
(GECKO) of the three-year Italian flagship project “Factory of 
the Future” is aimed at investigating these aspects and a 
number of enabling technologies that can be of significant help 
in pursuing the above-mentioned goals of reconfigurability, 
flexibility and rapid adaptability to changing production 
requirements goals for a new generation of factories and 
automation systems. 

During the first year of the project, several different aspects 
of the GECKO architecture and capabilities have been 
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investigated, spanning from all-important security issues [4][5] 
to error handling characterization [6] and effect of jitter-
reduction techniques on the error detection capability of 
popular fieldbus-based industrial networks [7], up to analyzing 
the effects of internal components behavior on the performance 
of the systems/applications that use the components 
themselves. This paper, instead, focuses on the real-time 
performance of a mechatronic pilot plant revolving around an 
industrial Ethernet network and, in particular, on how the 
underlying operating systems hosted in the plant controllers 
affect actuation delays and jitters. Moreover, suggestions are 
also given about mitigating jitters by means of an appropriate 
choice and configuration of the operating system.  

The paper is organized as follows: Section II first describes 
the hardware and software architecture of the GECKO pilot 
plant, while Section III presents experimental results about the 
actuation jitter derived from the plant itself, which are further 
analyzed with the help of a simplified, laboratory test-bed. The 
analysis aims at both assessing the relative impact of different 
sources of jitter (namely, task activation and communication 
jitters) and understanding how they can be mitigated by a 
suitable configuration of the execution environment. Finally, 
Section IV contains some concluding remarks and ideas for 
future work. 

II. SYSTEM ARCHITECTURE 

The pilot plant considered in this paper is an integrated 
automation solution based on the adoption of IEC 61499 and 
OPC UA, which implements control and monitoring functions 
for an experimental mechatronic architecture aimed at  agile 
transport. 

A. Hardware Architecture 

The transport system has been designed by composing a 
number of modular, Plug-and-Play mechatronic elements.  
Each element, in its turn, integrates dedicated sensors and 
actuators as well as the related control system. Furthermore, 
advanced hardware and software solutions have been adopted 
to simplify the integration of mechatronic elements within the 
overall system. 

Actually, each transport module has been designed to 
support two main (straight) transfer services and possibly one 
cross-transfer service or more. Fig. 1 shows two possible 
example configurations for the transport module. Configuration 
1 provides forward (F) and backward (B) transfer capabilities 
as well as a specific position with left and right cross-transfer 
capabilities. Configuration 2 extends Configuration 1 by 
integrating one additional cross-transfer element. Transport 
system modules can then be connected back to back to form 
the desired conveyor layout. The controller cabinet of the 
transport modules has been designed to support comparative 
laboratory benchmark tests of alternative hardware 
architectures, either centralized or distributed, such as legacy 
(e.g. Siemens, Rockwell Automation) IEC 61131-compliant 
devices or open source PC-based control solutions. To such an 
aim, the input/output signals of each conveyor module have 
been connected to a dedicated Moxa ioLogik E1214 Ethernet 
remote I/O module, as shown in Fig. 2. In this way, the 

integration and testing of new controllers do not require signals 
re-cabling, waste of time and additional effort and costs. 
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Fig. 1. Transport module configuration examples. 

 

Fig. 2. Control module cabinet. 

In the  first pilot system set-up, in order to guarantee 
openness, interoperability, and international standard 
compliancy, embedded controllers from different brands have 
been considered for running the control applications and, in 
particular: 

 Moxa IA261-I-LX embedded computer [8]; 

 ICP DAS Programmable Automation Controller 
LinPAC 5000 [9]; 

 Tecnint Leonardo PC BOX embedded PC [10]. 

The communication framework between the controllers has 
been implemented by selecting a suitable industrial Ethernet-
based communication technology (Modbus TCP). Indeed, the 



adoption of such technological solution guarantees the 
resiliency and network security of traditional fieldbus 
solutions, as well as the improved bandwidth, open 
connectivity, and standardization that Ethernet provides. 

In order to properly optimize synchronous data access, 
Moxa EDS 405A Industrial Ethernet switches have been 
considered, which provide suitable support for multicast 
control (IGMP Snooping), Quality of Service (QoS), and 
virtual LANs (VLANs) configurations. Furthermore, in order 
to obtain a reasonable tradeoff between the robustness of the 
communication network and the easiness of cable connection, a 
ring topology has been implemented and one Moxa EDS 
switch included in each cabinet to simplify the integration of 
cross translators when reconfigurations of the transport system 
are needed. Such a solution also enables the definition of QoS 
policies, so that the real-time information exchange at the 
conveyor module layer (that is between components inside 
each conveyor module) occurs at the maximum priority, while 
the communication at the system level (that is between 
conveyor modules and/or between conveyor modules and plant 
machines) happens at a priority immediately lower than the 
highest one. 

The industrial Ethernet network also supports service-
oriented, OPC UA-based interoperable data exchanges between 
automation system components (up to the HMI, SCADA and 
MES layers) which are managed at a lower priority as defined 
by the QoS policies. 

B. Software  Architecture 

All embedded controllers share the common feature of 
using the Linux operating system as a base to execute an IEC 
61499 control solution, which has been implemented by means 
of the ISaGRAF workbench [11]. This environment has been 
chosen for different reasons. By supporting IEC 61499, such an 
environment acts as a sort of backbone for the overall 
application development, spanning from the design to the 
implementation and validation phases. Furthermore, the 
distributed hardware architecture can be defined by the proper 
assignment of resources (virtual PLCs) to each network device. 
The overall control application (CA) can then be designed as a 
single program. Furthermore, CA can also be generated 
through hardware-independent C code, which can be executed 
by a virtual machine running on the target device (i.e. industrial 
PC, embedded controller and so on). Portability and scalability 
of the developed application are also guaranteed in this case. 

The transport configuration considered for the pilot plant 
implementation includes 15 conveyor modules configured as 
shown in Fig. 1. The control application has been designed and 
developed by foreseeing a composite IEC 61499 function block 
for each conveyor module, which encapsulates the structured 
control logic. Function blocks have then been downloaded to 
the dedicated hardware controllers in the distributed 
architecture. As mentioned before, the GECKO experimental 
plant includes a Modbus TCP real-time communication layer, 
and an OPC UA-based interoperability layer for flexible high-
level information exchange, which makes use of the software 
development kit (SDK) provided by Unified Automation [12]. 
Actually, each automation component (i.e. conveyor module) 
includes an embedded OPC UA server, which works in 

cooperation with the ISaGRAF soft PLC firmware to provide 
run-time data access. All servers together offer to the 
applications a general data abstraction layer, which is 
independent from the underlying control technology. A main 
advantage of this choice is that the automation technology 
(adopted for controlling the plant) can be dynamically 
reconfigured during the whole plant lifecycle. At the same time 
data classes, which are designed to structure raw data of the 
automation system, can be kept unchanged or quickly 
readapted to different installation scenarios in the worst case, 
independently from the underlying control technology adopted. 

In the experimental plant case, each automation component 
exposes one specific pallet transport service (that depends on 
the conveyor module configuration) and additional services 
devoted to the management and monitoring of task parameters 
that can be configured by either human-machine interfaces 
(HMIs) or the supervisory control and data acquisition 
(SCADA) system.  With such architecture, a node is 
dynamically added to the server address space for each data 
class instance included in the hardware component that exposes 
the service. The address space nodes are based on an object-
oriented approach thanks to the OPC UA dedicated support. 
Therefore, any change in a node class description is 
automatically reflected in each instance within the address 
space. 

III. ANALYSIS AND ARCHITECTURAL IMPROVEMENTS 

A. Performance Issues in the Pilot Plant 

As a first laboratory experimental scenario, standard Linux 
kernels have been installed on the configurable hardware 
controllers, so as to obtain a preliminary evaluation of the 
system performance, when no particular care is paid to the real-
time behavior of software components. To this purpose, a 
dedicated test program has been developed and integrated 
within the conveyor control software to better identify the jitter 
between the controller and the remote input/output signals 
implemented in the distributed hardware architecture.  In 
particular, a square wave with period equal to 40 milliseconds 
has been generated on a plant Moxa ioLogik E1214 free 
channel and measured by means of an oscilloscope during the 
conveyor system operation. 

The average value measured for the jitter was about 20 
milliseconds, thus motivating the use of a dedicated test-bench 
scenario for analyzing possible improvements, which can be 
obtained by introducing real-time extensions to the controller 
operating systems. From a general point of view, this kind of 
practical result confirms the validity of the all-important 
question on how much the Linux operating system is able to 
support the concurrent execution of tasks with very different 
characteristics. In particular, the ISaGRAF-based control 
application, the OPC UA server, and the operating system tasks 
must be hosted on the same physical machine and still meet 
their timing requirements. It is worth noting that, at least for the 
third class of tasks listed above, this aspect is made even more 
difficult to evaluate because the operating system’s processes 
are not under control of the application programmer and cannot 
be modified or removed at will. 



In order to better analyze the shortcomings identified directly 
on the pilot plant, further experiments have then been 
performed on a simplified laboratory test bench, based on 
commercial instead of industrial-grade equipment, as discussed 
in the next sections. 

B. Experimental Test Bench 

The contribution of the underlying operating system to the 
actuation jitters highlighted in the previous section was studied 
by considering the raw performance of Linux, for what 
concerns the activation jitter of a periodic real-time task, while 
the Modbus TCP network communication jitters were 
evaluated by means of synthetic test programs. To this purpose, 
a prototype Modbus TCP master/slave communication system 
has been developed, which is based on the following hardware 
and software components: 

 Two Intel-based PCs running at a CPU frequency of 
2.66GHz on the slave side and 3.10GHz on the master 
side. 

 The open-source FreeMODBUS Modbus TCP 
protocol stack [13] on the slave side and its 
commercial counterpart [14] on the master side. 

Even if both CPUs offer dual-core support, only a single 
core has been enabled on the master side. This ensures that 
interfering loads are scheduled on the same CPU and are 
readily visible. On the slave side, the CPU has been left 
running to its maximum performance level, because the aim of 
this test is evaluating the performance of the master, and hence, 
any jitter due to the slave side should be maintained as 
negligible as possible. When the test software is considered, the 
master application cyclically sends a Write Single Register 
Modbus command, with a cycle time of 100 ms. At cycle i, as 
soon as the master task is activated, a timestamp ti,1 is taken, 
and the Modbus command is sent to the slave. The master 
waits for the slave reply and, as just as it is received, another 
timestamp ti,2 is taken. Using these timestamps two 
performance indexes can be computed: 

 The difference Ai = ti,1 – ti-1,1 is the time elapsed 
between two subsequent activations of the master task. 
Ideally, it should be equal to the cycle period, so it is 
representative of the jitter suffered by the master task 
due to scheduler and activation latencies. 

 The difference Di = ti,2 – ti,1 represents the end-to-end 
communication roundtrip delay between the 
transmission of the Modbus command and the 
reception of the corresponding answer returned by the 
Modbus TCP slave. 

In order to minimize measurement noise, the Modbus slave 
application has been kept as simple as possible: it only sends 
replies to master requests, without performing any other 
activity. 

C. Experiments on Standard Linux 

The first set of results was derived using the standard Linux 
kernel version 3.2. In order to determine the sensitivity of the 
operating system to interfering lower-priority tasks, the 

evaluation has been carried out in two different load 
conditions: 

 Without interfering loads: no tasks except those 
functional to the execution of the operating system are 
executed with the real-time test application.  

 With I/O load: an interfering I/O-bound task is 
executed together with the real-time test application. 

Experimental results are shown in Fig. 3 and Fig. 4, as well 
as in the upper half of Table 1. The figures plot Ai as a function 
of the cycle/sample number i, while the table contains 
summary statistics for the same data. Without interfering load, 
the activation jitter is within ±50 µs of the nominal time, thus 
confirming that the operating system behavior is acceptable in 
this case. All these results pertain to short-term experiments 
involving 10,000 samples and corresponding to about 15 
minutes of experiment time, but longer-term experiments 
confirmed the same behavior. However, the scenario is 
radically different when an interfering I/O load is added to the 
system. Namely, the results plotted in Fig. 4 clearly show that, 
albeit with low probability (several samples out of 216,000, 
corresponding to 6 hours of experiment time), the activation 
time achieved by the standard Linux scheduler may even 
exceed the cycle time of the communication task. Even more 
importantly, the experimental results show that the activation 
jitter under I/O load represents a significant part of the overall 
jitter measured in the pilot plant and discussed in Section III.A. 

TABLE I.  SUMMARY STATISTICS OF Ai 

Kernel 
Type 

Samples  Load 

[us] 

Mean 
Std. 
Dev. 

Min.  Max. 

Standard  10,000  None  99,999.6  15.0  99,952  100,053 

Standard  216,000  I/O  99,999.6  887.5  98  448,861 

RT patch  10,000  None  99,999.6  12.0  99,960  100,041 

RT patch  216,000  I/O  99,999.6  19.0  99,955  100,044 

 

  

Fig. 3. Ai on Linux, no interfering load. 



  

Fig. 4. Ai on Linux, with I/O load. 

As the upper part of Table 2 shows, the same is true also for 
the end-to-end communication roundtrip delay Di, which may 
also exceed the communication cycle time when an interfering 
I/O load is present. 

D. Use of a Real-Time Extension to Linux 

The large task activation and communication roundtrip 
jitters mentioned in the previous section are both due to 
shortcomings in the standard Linux operating system 
scheduler. In recent years, several solutions such as RTAI [15], 
Xenomai [16], and RT Patch [17][18] have appeared in the 
literature, proposing extensions to the Linux operating system 
to better support real-time applications.  RT Patch, in 
particular, has been considered in this paper for two main 
reasons. First of all, unlike the other approaches mentioned 
above, it is based on the single-kernel approach, which 
simplifies system configuration and software development. 
Secondly, it is likely that the features provided by RT Patch 
will be included in the standard Linux kernel in the near future. 
This will simplify system deployment because virtually all off-
the-shelf Linux software distributions will become capable of 
real-time execution in this way. 

A new set of experiments was performed using the same 
test software discussed in the previous section but running, this 
time, on a Linux system extended with RT Patch. The 
summary statistics of the experimental results pertaining to Ai 
and Di are shown in the lower half of Table 1 and Table 2, 
respectively. Results concerning the activation time Ai, clearly 
show that its jitter has become independent of the interfering 
I/O load, and its magnitude is now limited to about ±50 μs in 
all cases. This is further confirmed by the time traces of the 
activation time, plotted in Fig. 5 and Fig. 6. Very similar results 
have been obtained concerning the communication round-trip 
delay Di. As also shown in the time trace plotted in Fig. 7 (with 
a significant I/O load), the observed worst-case jitter of Di is 
limited to less than 500 μs, even in a long-term experiment 
which collected a total of 216,000 samples. The combination of 
those results shows that, at least in the test environment, the 
adoption of the RT Patch at the operating system level is quite 
effective to remove two significant sources of jitter that 
emerged in the pilot plant. 

TABLE II.  SUMMARY STATISTICS OF Di 

Kernel 
Type 

Samples  Load 

[us] 

Mean 
Std. 
Dev. 

Min.  Max. 

Standard  10,000  None  149.4  4.7  112  171 

Standard  216,000  I/O  141.0  1,048.0  89  448,847 

RT patch  10,000  None  139.8  6.3  124  184 

RT patch  216,000  I/O  132.46  14.6  78  458 

 

  

Fig. 5. Ai on RT Patch, no interfering load. 

 

  

Fig. 6. Ai on RT Patch, with I/O load. 

IV. CONCLUDING REMARKS 

As modern automation systems are becoming more and 
more complex, in order to be able to conjugate high 
sophistication of controlled processes with agile 
reconfiguration and flexibility requirements, keeping the real-
time performance of the overall system under control is of 
utmost importance in perspective. Unfortunately, this is not a 
straightforward task. 



 

Fig. 7. Di on RT Patch, with I/O load. 

On the one hand, at the system design level, the adoption of 
the IEC 61499 standard [1] provides useful support for 
developing complex distributed control applications. On the 
other hand, OPC Unified Architecture (OPC UA) [2] enables 
secure and efficient information exchange of complex data 
through a standard, vendor-independent interface. However, 
once those facilities are deployed on the system embedded 
controllers, the issue of the coexistence of very different 
software tasks on the same hardware (namely, the IEC 61499 
runtime, the OPC UA server, as well as other application and 
operating system tasks) becomes of concern. This is especially 
true if the embedded controllers run an open-source operating 
system such as Linux, which has not been originally 
specifically designed for real-time execution. 

In this paper, the impact on the overall system performance 
brought by shortcomings in the operating system real-time 
scheduling mechanisms (namely, task activation and 
communication jitter) has been analyzed, and found to 
represent a significant part of the overall actuation jitter that 
affects an experimental pilot plant. Afterwards, a significant 
performance improvement has been verified to be achievable 
by means of relatively straightforward techniques applied at the 
operating system level. In particular, the adoption of the RT 
Patch extension of the Linux kernel was proven to be quite 
effective in limiting the worst-case amount of activation and 
communication jitter in a laboratory test-bed. Even more 
importantly, the same property holds true even if the operating 
system is subject to interfering loads representative of other 
software tasks running concurrently with the control 
application, thus paving the way towards an orderly 
coexistence of disparate tasks on the same embedded 
controller. 

As a future work, the system-level optimization techniques 
just described, which have been implemented on a laboratory 
test-bed at present, will be evaluated in the context of the 
experimental pilot plant as well. It is worth mentioning that the 
careful characterization of network components represents a 
further, important issue that has to be addressed. Indeed, it is 

well known that the internal behavior of the components may 
heavily influence the whole system performance, leading to the 
introduction of both communication delays and jitter [19]. 
Although some preliminary activities have been already carried 
out in this context, more work has to be scheduled in the future, 
mainly based on practical measurements on the components 
that will be actually employed. 
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