
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

System-Level Performance of an Automation Solution Based on Industry Standards / A., Ballarino; A., Brusaferri; M.,
Cereia; I. C., Bertolotti; Durante, Luca; Hu, Tingting; E., Leo; L., Nicolosi; L., Seno; S., Spinelli; F., Tramarin; Valenzano,
Adriano; S., Vitturi. - (2014), pp. 1-6. (Intervento presentato al convegno 19th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA) nel 2014).

Original

System-Level Performance of an Automation Solution Based on Industry Standards

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2572570 since:

IEEE Press

System-Level Performance of an Automation Solution
Based on Industry Standards

Andrea Ballarinoa, Alessandro Brusaferria, Marco Cereiab, Ivan Cibrario Bertolottib, Luca Duranteb, Tingting Hub,c,
Egidio Leoa, Leonardo Nicolosia, Lucia Senob, Stefano Spinellia, Federico Tramarind, Adriano Valenzanob,

Stefano Vitturid
a CNR – National Research Council, ITIA, Via Bassini 15, I-20133 Milano, Italy

b CNR – National Research Council, IEIIT, C.so Duca degli Abruzzi 24, I-10129 Torino, Italy
c Politecnico di Torino, DAUIN, C.so Duca degli Abruzzi 24, I-10129 Torino, Italy

d CNR – National Research Council, IEIIT, Via Gradenigo 6/b, I-35131 Padova, Italy
{andrea.ballarino, alessandro.brusaferri, egidio.leo, leonardo.nicolosi, stefano.spinelli}@itia.cnr.it, {marco.cereia, ivan.cibrario,

luca.durante, tingting.hu, lucia.seno, federico.tramarin, adriano.valenzano, stefano.vitturi}@ieiit.cnr.it

Abstract— The flexibility and reconfigurability requirements
of factories and manufacturing plants of the future can be
partially met by adopting technologies and solutions already
available for testing and experimentation. Openness and
adherence to international standards are becoming increasingly
important in modern distributed production and automation
systems, especially when they have to cope with ever-increasing
product differentiations and short product lifecycles. However,
the increased flexibility and openness should not come to
detriment of the system real-time characteristics. This paper
deals with a pilot mechatronic architecture for agile transport
systems, which has been specifically developed to enable the
study of the aforementioned aspects in the framework of the
“Factory of the Future” Italian flagship project. In particular,
the paper focuses on possible bottlenecks and pitfalls at the
operating system and communication levels, and provides
preliminary indications on how to address or mitigate them by
means of solutions already available on the market.

Keywords—reconfigurable manufacturing systems, factory of
the future, real-time performance, operating systems.

I. INTRODUCTION

To face new consumer-centered manufacturing paradigms,
like mass customization and personalization, factories must be
capable to adapt themselves in real time to continuously
changing market demands. Therefore, modern automation
systems shall be able to conjugate increasing complexity of
controlled processes with agile reconfiguration and flexibility
of manufacturing systems. Indeed, reliable and agile
automation systems represent a crucial issue for
competitiveness of modern manufacturing systems.

In such a context, new paradigms based on the distribution of
control solutions onto a network of embedded components
have been widely considered, thus enhancing the rapid design,
modification, integration and reconfiguration of the resulting
systems. The IEC 61499 standard [1], which defines function
blocks for industrial process measurement and control systems,
provides considerable support for developing complex
distributed control applications. In fact, the organization of the
control functionalities into a network of interconnected

function blocks at application and sub-application layers
provides an effective high-level view of the distributed
application, supporting quick integration, deployment and
reconfiguration of the production system control architecture.

Advanced factory data acquisition and aggregation
represent the second major element to be considered, when
addressing the increasing complexity of modern production
systems as well as enhanced flexibility and re-configurability
requirements. OPC Unified Architecture (OPC UA) [2]
represents an important step ahead in combining specific needs
of the automation industry with a standard interface for secure
and more efficient information exchange of complex data.
From this point of view, a major advance introduced in OPC
UA is represented by the transition from the OPC original
COM/DCOM technology to the cross-platform capable Web
Service technology. These changes in OPC allow a brand new
approach to information integration, namely the unification of
several OPC data models (such as Data Access, Alarms &
Events, or Historical Data Access, as a single set of services)
and their extension to other domains such as manufacturing,
production, maintenance and business applications.

Due to such potentialities, IEC 61499 and OPC UA have
been considered as backbone technologies in the development
of the automation solution for mechatronic products, such as
the De-manufacturing pilot plant described in [3]. Nonetheless,
as the complexity of the system increases, the distributed
system framework could explode into many levels, so that
evaluating and guaranteeing real-time performance of the
overall system are not usually immediate tasks. The subproject
“Generic Evolutionary Control Knowledge-based module”
(GECKO) of the three-year Italian flagship project “Factory of
the Future” is aimed at investigating these aspects and a
number of enabling technologies that can be of significant help
in pursuing the above-mentioned goals of reconfigurability,
flexibility and rapid adaptability to changing production
requirements goals for a new generation of factories and
automation systems.

During the first year of the project, several different aspects
of the GECKO architecture and capabilities have been

This work was partially supported by the National Research Council of
Italy (CNR) in the framework of the flagship project “Factory of the Future”,
subproject “Generic Evolutionary Control Knowledge-based mOdule”
(GECKO).

investigated, spanning from all-important security issues [4][5]
to error handling characterization [6] and effect of jitter-
reduction techniques on the error detection capability of
popular fieldbus-based industrial networks [7], up to analyzing
the effects of internal components behavior on the performance
of the systems/applications that use the components
themselves. This paper, instead, focuses on the real-time
performance of a mechatronic pilot plant revolving around an
industrial Ethernet network and, in particular, on how the
underlying operating systems hosted in the plant controllers
affect actuation delays and jitters. Moreover, suggestions are
also given about mitigating jitters by means of an appropriate
choice and configuration of the operating system.

The paper is organized as follows: Section II first describes
the hardware and software architecture of the GECKO pilot
plant, while Section III presents experimental results about the
actuation jitter derived from the plant itself, which are further
analyzed with the help of a simplified, laboratory test-bed. The
analysis aims at both assessing the relative impact of different
sources of jitter (namely, task activation and communication
jitters) and understanding how they can be mitigated by a
suitable configuration of the execution environment. Finally,
Section IV contains some concluding remarks and ideas for
future work.

II. SYSTEM ARCHITECTURE

The pilot plant considered in this paper is an integrated
automation solution based on the adoption of IEC 61499 and
OPC UA, which implements control and monitoring functions
for an experimental mechatronic architecture aimed at agile
transport.

A. Hardware Architecture

The transport system has been designed by composing a
number of modular, Plug-and-Play mechatronic elements.
Each element, in its turn, integrates dedicated sensors and
actuators as well as the related control system. Furthermore,
advanced hardware and software solutions have been adopted
to simplify the integration of mechatronic elements within the
overall system.

Actually, each transport module has been designed to
support two main (straight) transfer services and possibly one
cross-transfer service or more. Fig. 1 shows two possible
example configurations for the transport module. Configuration
1 provides forward (F) and backward (B) transfer capabilities
as well as a specific position with left and right cross-transfer
capabilities. Configuration 2 extends Configuration 1 by
integrating one additional cross-transfer element. Transport
system modules can then be connected back to back to form
the desired conveyor layout. The controller cabinet of the
transport modules has been designed to support comparative
laboratory benchmark tests of alternative hardware
architectures, either centralized or distributed, such as legacy
(e.g. Siemens, Rockwell Automation) IEC 61131-compliant
devices or open source PC-based control solutions. To such an
aim, the input/output signals of each conveyor module have
been connected to a dedicated Moxa ioLogik E1214 Ethernet
remote I/O module, as shown in Fig. 2. In this way, the

integration and testing of new controllers do not require signals
re-cabling, waste of time and additional effort and costs.

F

LC
1

R
C
1

B

F B

C
O

N
FI

G
U

R
A

TI
O

N
 2

C
O

N
FI

G
U

R
A

TI
O

N
 1

LC
1

R
C
1

LC
2

R
C
2

Fig. 1. Transport module configuration examples.

Fig. 2. Control module cabinet.

In the first pilot system set-up, in order to guarantee
openness, interoperability, and international standard
compliancy, embedded controllers from different brands have
been considered for running the control applications and, in
particular:

 Moxa IA261-I-LX embedded computer [8];

 ICP DAS Programmable Automation Controller
LinPAC 5000 [9];

 Tecnint Leonardo PC BOX embedded PC [10].

The communication framework between the controllers has
been implemented by selecting a suitable industrial Ethernet-
based communication technology (Modbus TCP). Indeed, the

adoption of such technological solution guarantees the
resiliency and network security of traditional fieldbus
solutions, as well as the improved bandwidth, open
connectivity, and standardization that Ethernet provides.

In order to properly optimize synchronous data access,
Moxa EDS 405A Industrial Ethernet switches have been
considered, which provide suitable support for multicast
control (IGMP Snooping), Quality of Service (QoS), and
virtual LANs (VLANs) configurations. Furthermore, in order
to obtain a reasonable tradeoff between the robustness of the
communication network and the easiness of cable connection, a
ring topology has been implemented and one Moxa EDS
switch included in each cabinet to simplify the integration of
cross translators when reconfigurations of the transport system
are needed. Such a solution also enables the definition of QoS
policies, so that the real-time information exchange at the
conveyor module layer (that is between components inside
each conveyor module) occurs at the maximum priority, while
the communication at the system level (that is between
conveyor modules and/or between conveyor modules and plant
machines) happens at a priority immediately lower than the
highest one.

The industrial Ethernet network also supports service-
oriented, OPC UA-based interoperable data exchanges between
automation system components (up to the HMI, SCADA and
MES layers) which are managed at a lower priority as defined
by the QoS policies.

B. Software Architecture

All embedded controllers share the common feature of
using the Linux operating system as a base to execute an IEC
61499 control solution, which has been implemented by means
of the ISaGRAF workbench [11]. This environment has been
chosen for different reasons. By supporting IEC 61499, such an
environment acts as a sort of backbone for the overall
application development, spanning from the design to the
implementation and validation phases. Furthermore, the
distributed hardware architecture can be defined by the proper
assignment of resources (virtual PLCs) to each network device.
The overall control application (CA) can then be designed as a
single program. Furthermore, CA can also be generated
through hardware-independent C code, which can be executed
by a virtual machine running on the target device (i.e. industrial
PC, embedded controller and so on). Portability and scalability
of the developed application are also guaranteed in this case.

The transport configuration considered for the pilot plant
implementation includes 15 conveyor modules configured as
shown in Fig. 1. The control application has been designed and
developed by foreseeing a composite IEC 61499 function block
for each conveyor module, which encapsulates the structured
control logic. Function blocks have then been downloaded to
the dedicated hardware controllers in the distributed
architecture. As mentioned before, the GECKO experimental
plant includes a Modbus TCP real-time communication layer,
and an OPC UA-based interoperability layer for flexible high-
level information exchange, which makes use of the software
development kit (SDK) provided by Unified Automation [12].
Actually, each automation component (i.e. conveyor module)
includes an embedded OPC UA server, which works in

cooperation with the ISaGRAF soft PLC firmware to provide
run-time data access. All servers together offer to the
applications a general data abstraction layer, which is
independent from the underlying control technology. A main
advantage of this choice is that the automation technology
(adopted for controlling the plant) can be dynamically
reconfigured during the whole plant lifecycle. At the same time
data classes, which are designed to structure raw data of the
automation system, can be kept unchanged or quickly
readapted to different installation scenarios in the worst case,
independently from the underlying control technology adopted.

In the experimental plant case, each automation component
exposes one specific pallet transport service (that depends on
the conveyor module configuration) and additional services
devoted to the management and monitoring of task parameters
that can be configured by either human-machine interfaces
(HMIs) or the supervisory control and data acquisition
(SCADA) system. With such architecture, a node is
dynamically added to the server address space for each data
class instance included in the hardware component that exposes
the service. The address space nodes are based on an object-
oriented approach thanks to the OPC UA dedicated support.
Therefore, any change in a node class description is
automatically reflected in each instance within the address
space.

III. ANALYSIS AND ARCHITECTURAL IMPROVEMENTS

A. Performance Issues in the Pilot Plant

As a first laboratory experimental scenario, standard Linux
kernels have been installed on the configurable hardware
controllers, so as to obtain a preliminary evaluation of the
system performance, when no particular care is paid to the real-
time behavior of software components. To this purpose, a
dedicated test program has been developed and integrated
within the conveyor control software to better identify the jitter
between the controller and the remote input/output signals
implemented in the distributed hardware architecture. In
particular, a square wave with period equal to 40 milliseconds
has been generated on a plant Moxa ioLogik E1214 free
channel and measured by means of an oscilloscope during the
conveyor system operation.

The average value measured for the jitter was about 20
milliseconds, thus motivating the use of a dedicated test-bench
scenario for analyzing possible improvements, which can be
obtained by introducing real-time extensions to the controller
operating systems. From a general point of view, this kind of
practical result confirms the validity of the all-important
question on how much the Linux operating system is able to
support the concurrent execution of tasks with very different
characteristics. In particular, the ISaGRAF-based control
application, the OPC UA server, and the operating system tasks
must be hosted on the same physical machine and still meet
their timing requirements. It is worth noting that, at least for the
third class of tasks listed above, this aspect is made even more
difficult to evaluate because the operating system’s processes
are not under control of the application programmer and cannot
be modified or removed at will.

In order to better analyze the shortcomings identified directly
on the pilot plant, further experiments have then been
performed on a simplified laboratory test bench, based on
commercial instead of industrial-grade equipment, as discussed
in the next sections.

B. Experimental Test Bench

The contribution of the underlying operating system to the
actuation jitters highlighted in the previous section was studied
by considering the raw performance of Linux, for what
concerns the activation jitter of a periodic real-time task, while
the Modbus TCP network communication jitters were
evaluated by means of synthetic test programs. To this purpose,
a prototype Modbus TCP master/slave communication system
has been developed, which is based on the following hardware
and software components:

 Two Intel-based PCs running at a CPU frequency of
2.66GHz on the slave side and 3.10GHz on the master
side.

 The open-source FreeMODBUS Modbus TCP
protocol stack [13] on the slave side and its
commercial counterpart [14] on the master side.

Even if both CPUs offer dual-core support, only a single
core has been enabled on the master side. This ensures that
interfering loads are scheduled on the same CPU and are
readily visible. On the slave side, the CPU has been left
running to its maximum performance level, because the aim of
this test is evaluating the performance of the master, and hence,
any jitter due to the slave side should be maintained as
negligible as possible. When the test software is considered, the
master application cyclically sends a Write Single Register
Modbus command, with a cycle time of 100 ms. At cycle i, as
soon as the master task is activated, a timestamp ti,1 is taken,
and the Modbus command is sent to the slave. The master
waits for the slave reply and, as just as it is received, another
timestamp ti,2 is taken. Using these timestamps two
performance indexes can be computed:

 The difference Ai = ti,1 – ti-1,1 is the time elapsed
between two subsequent activations of the master task.
Ideally, it should be equal to the cycle period, so it is
representative of the jitter suffered by the master task
due to scheduler and activation latencies.

 The difference Di = ti,2 – ti,1 represents the end-to-end
communication roundtrip delay between the
transmission of the Modbus command and the
reception of the corresponding answer returned by the
Modbus TCP slave.

In order to minimize measurement noise, the Modbus slave
application has been kept as simple as possible: it only sends
replies to master requests, without performing any other
activity.

C. Experiments on Standard Linux

The first set of results was derived using the standard Linux
kernel version 3.2. In order to determine the sensitivity of the
operating system to interfering lower-priority tasks, the

evaluation has been carried out in two different load
conditions:

 Without interfering loads: no tasks except those
functional to the execution of the operating system are
executed with the real-time test application.

 With I/O load: an interfering I/O-bound task is
executed together with the real-time test application.

Experimental results are shown in Fig. 3 and Fig. 4, as well
as in the upper half of Table 1. The figures plot Ai as a function
of the cycle/sample number i, while the table contains
summary statistics for the same data. Without interfering load,
the activation jitter is within ±50 µs of the nominal time, thus
confirming that the operating system behavior is acceptable in
this case. All these results pertain to short-term experiments
involving 10,000 samples and corresponding to about 15
minutes of experiment time, but longer-term experiments
confirmed the same behavior. However, the scenario is
radically different when an interfering I/O load is added to the
system. Namely, the results plotted in Fig. 4 clearly show that,
albeit with low probability (several samples out of 216,000,
corresponding to 6 hours of experiment time), the activation
time achieved by the standard Linux scheduler may even
exceed the cycle time of the communication task. Even more
importantly, the experimental results show that the activation
jitter under I/O load represents a significant part of the overall
jitter measured in the pilot plant and discussed in Section III.A.

TABLE I. SUMMARY STATISTICS OF Ai

Kernel
Type

Samples Load

[us]

Mean
Std.
Dev.

Min. Max.

Standard 10,000 None 99,999.6 15.0 99,952 100,053

Standard 216,000 I/O 99,999.6 887.5 98 448,861

RT patch 10,000 None 99,999.6 12.0 99,960 100,041

RT patch 216,000 I/O 99,999.6 19.0 99,955 100,044

Fig. 3. Ai on Linux, no interfering load.

Fig. 4. Ai on Linux, with I/O load.

As the upper part of Table 2 shows, the same is true also for
the end-to-end communication roundtrip delay Di, which may
also exceed the communication cycle time when an interfering
I/O load is present.

D. Use of a Real-Time Extension to Linux

The large task activation and communication roundtrip
jitters mentioned in the previous section are both due to
shortcomings in the standard Linux operating system
scheduler. In recent years, several solutions such as RTAI [15],
Xenomai [16], and RT Patch [17][18] have appeared in the
literature, proposing extensions to the Linux operating system
to better support real-time applications. RT Patch, in
particular, has been considered in this paper for two main
reasons. First of all, unlike the other approaches mentioned
above, it is based on the single-kernel approach, which
simplifies system configuration and software development.
Secondly, it is likely that the features provided by RT Patch
will be included in the standard Linux kernel in the near future.
This will simplify system deployment because virtually all off-
the-shelf Linux software distributions will become capable of
real-time execution in this way.

A new set of experiments was performed using the same
test software discussed in the previous section but running, this
time, on a Linux system extended with RT Patch. The
summary statistics of the experimental results pertaining to Ai
and Di are shown in the lower half of Table 1 and Table 2,
respectively. Results concerning the activation time Ai, clearly
show that its jitter has become independent of the interfering
I/O load, and its magnitude is now limited to about ±50 μs in
all cases. This is further confirmed by the time traces of the
activation time, plotted in Fig. 5 and Fig. 6. Very similar results
have been obtained concerning the communication round-trip
delay Di. As also shown in the time trace plotted in Fig. 7 (with
a significant I/O load), the observed worst-case jitter of Di is
limited to less than 500 μs, even in a long-term experiment
which collected a total of 216,000 samples. The combination of
those results shows that, at least in the test environment, the
adoption of the RT Patch at the operating system level is quite
effective to remove two significant sources of jitter that
emerged in the pilot plant.

TABLE II. SUMMARY STATISTICS OF Di

Kernel
Type

Samples Load

[us]

Mean
Std.
Dev.

Min. Max.

Standard 10,000 None 149.4 4.7 112 171

Standard 216,000 I/O 141.0 1,048.0 89 448,847

RT patch 10,000 None 139.8 6.3 124 184

RT patch 216,000 I/O 132.46 14.6 78 458

Fig. 5. Ai on RT Patch, no interfering load.

Fig. 6. Ai on RT Patch, with I/O load.

IV. CONCLUDING REMARKS

As modern automation systems are becoming more and
more complex, in order to be able to conjugate high
sophistication of controlled processes with agile
reconfiguration and flexibility requirements, keeping the real-
time performance of the overall system under control is of
utmost importance in perspective. Unfortunately, this is not a
straightforward task.

Fig. 7. Di on RT Patch, with I/O load.

On the one hand, at the system design level, the adoption of
the IEC 61499 standard [1] provides useful support for
developing complex distributed control applications. On the
other hand, OPC Unified Architecture (OPC UA) [2] enables
secure and efficient information exchange of complex data
through a standard, vendor-independent interface. However,
once those facilities are deployed on the system embedded
controllers, the issue of the coexistence of very different
software tasks on the same hardware (namely, the IEC 61499
runtime, the OPC UA server, as well as other application and
operating system tasks) becomes of concern. This is especially
true if the embedded controllers run an open-source operating
system such as Linux, which has not been originally
specifically designed for real-time execution.

In this paper, the impact on the overall system performance
brought by shortcomings in the operating system real-time
scheduling mechanisms (namely, task activation and
communication jitter) has been analyzed, and found to
represent a significant part of the overall actuation jitter that
affects an experimental pilot plant. Afterwards, a significant
performance improvement has been verified to be achievable
by means of relatively straightforward techniques applied at the
operating system level. In particular, the adoption of the RT
Patch extension of the Linux kernel was proven to be quite
effective in limiting the worst-case amount of activation and
communication jitter in a laboratory test-bed. Even more
importantly, the same property holds true even if the operating
system is subject to interfering loads representative of other
software tasks running concurrently with the control
application, thus paving the way towards an orderly
coexistence of disparate tasks on the same embedded
controller.

As a future work, the system-level optimization techniques
just described, which have been implemented on a laboratory
test-bed at present, will be evaluated in the context of the
experimental pilot plant as well. It is worth mentioning that the
careful characterization of network components represents a
further, important issue that has to be addressed. Indeed, it is

well known that the internal behavior of the components may
heavily influence the whole system performance, leading to the
introduction of both communication delays and jitter [19].
Although some preliminary activities have been already carried
out in this context, more work has to be scheduled in the future,
mainly based on practical measurements on the components
that will be actually employed.

REFERENCES
[1] International Electro-technical Commission, (IEC), International

Standard IEC 61499, Function Blocks, part 1-4, edition 1.0, Jan. 2005.

[2] W. Mahnke, S-H. Leitner, M. Damm, "OPC Unified Architecture",
Springer, 2009.

[3] G. Copani, A. Brusaferri A, M. Colledani, N. Pedrocchi, M. Sacco, T.
Tolio, “Integrated De-Manufacturing Systems as New Approach To
End-Of-Life Management Of Mechatronic Devices”, Proc. 10th Global
Conference on Sustainable Manufacturing — Towards Implementing
Sustainable Manufacturing, pp. 332–339, Oct. 2012.

[4] I. Cibrario Bertolotti, L. Durante, T. Hu, and A. Valenzano, “A model
for the analysis of security policies in industrial networks,” in Proc. 1st
International Symposium for ICS & SCADA Cyber Security Research,
pp. 66–77, BCS Learning and Development Ltd., Sept. 2013.

[5] M. Cheminod, L. Durante, L. Seno, A. Valenzano, “On the Description
of Access Control Policies in Networked Industrial Systems”, Proc. 10th
IEEE International Workshop on Factory Communication Systems
(WFCS), pp. 1–10, May 2014.

[6] G. Cena, I. Cibrario Bertolotti, T. Hu, and A. Valenzano, “Software-
based assessment of the synchronization and error handling behavior of
a real CAN controller,” Proc. 18th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1–9, 2013.

[7] G. Cena, I. Cibrario Bertolotti, T. Hu, A. Valenzano, “Effect of Jitter-
Reducing Encoders on CAN Error Detection Mechanisms”, Proc. 10th
IEEE International Workshop on Factory Communication Systems
(WFCS), pp. 1–10, May 2014.

[8] Moxa co., “IA261-I/IA262-I RISC-based fanless computers”. Available
online, at http://www.moxa.com/.

[9] ICP DAS co., “LinPAC-5000 Linux-based Programmable Automation
Controller”. Available online, at http://www.icpdas.com/.

[10] Tecnint HTE, “Leonardo PC BOX”. Available online, at
http://www.tecnint.it/.

[11] ISaGRAF inc., “ISaGRAF control software environment”. Available
online, at http://www.isagraf.com/.

[12] Unified Automation GmbH, “OPC UA Software Development Kit”.
Available online, at http://www.unified-automation.com/.

[13] C. Walter, “FreeMODBUS – Modbus ASCII/RTU and TCP
implementation”. Available online, at http://freemodbus.berlios.de/.

[14] Embedded Solutions, “Modbus Master”. Available online, at
http://www.embedded-solutions.at/.

[15] P. Mantegazza, E. Bianchi, L. Dozio, S. Papacharalambous, S. Hughes,
and D. Beal, “RTAI: Real-time application interface”, Linux Journal,
no. 72, pp. 142–148, Apr. 2000.

[16] P. Gerum, “Xenomai—Implementing a RTOS emulation framework on
GNU/Linux, 2004. Available online, at http://www.xenomai.org/.

[17] S. Rostedt, D. V. Hart, “Internals of the RT Patch”, Proc. of the Ottawa
Linux Symposium, vol. 2, pp. 161–172, June 2007.

[18] A. Garg, “Real-time Linux kernel scheduler”, Linux Journal, no. 184,
pp. 54–60, Aug. 2009.

[19] L. Seno, F. Tramarin, S. Vitturi, “Performance of Industrial
Communication Systems: Real Application Contexts," IEEE Industrial
Electronics Magazine, vol. 6, no. 2, pp. 27–37, June 2012.

