
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automatic Configuration of Opaque Network Functions in CMS / Spinoso, Serena; Leogrande, Marco; Risso, FULVIO
GIOVANNI OTTAVIO; Singh, S.; Sisto, Riccardo. - STAMPA. - (2014), pp. 750-755. (Intervento presentato al convegno
1st International Workshop on Network Virtualization and Software-Defined Networks for Cloud Data Centres (NVSDN
2014) tenutosi a London, UK nel 8-11 December, 2014) [10.1109/UCC.2014.122].

Original

Automatic Configuration of Opaque Network Functions in CMS

Publisher:

Published
DOI:10.1109/UCC.2014.122

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2572147 since:

IEEE

Automatic Configuration of Opaque Network Functions in CMS

Serena Spinoso∗, Marco Leogrande†, Fulvio Risso∗, Sushil Singh† and Riccardo Sisto∗
∗Department of Control and Computer Engineering, Politecnico di Torino, Italy

†PLUMgrid, Sunnyvale, CA, USA

Abstract—Cloud Management Systems (CMS) such as Open-
Stack are commonly used to manage IT resources such as
computing and storage in large datacenters. Recently, CMS are
starting to offer customers also the possibility to customize their
network infrastructure, allowing each tenant to build his virtual
network made of elementary blocks such as traffic monitors,
switches, routers, firewalls, and more. However, tenants have to
choose those network services among the list of services made
available by the CMS and have no possibilities to customize
the applications they want.

This paper examines some of the modifications required in
CMS to support a tenant-centric network service model, in
which each tenant can install and configure their preferred
network functions, without being limited to use only the list
provided by the CMS. A prototype implementation validates
the proposed approach and demonstrates the extent of the
modifications in terms of languages and software components.

I. INTRODUCTION

The concepts of Software Defined Network (SDN) [1] and
Network Function Virtualization (NFV) [2] allow Network
Service Providers (NSPs) and companies to give more
freedom to their customers. Unfortunately today any changes
about location and settings of customers Virtual Machines
(VMs) in data center networks have to be managed by
the operator. In addition, tenants can use just the functions
provided by their NSP. For these reasons, network opera-
tors are looking at new possible scenarios where tenants
are offered the possibility to create Virtual Networks [3]
managed and configured by the tenants themselves without
requiring operators action. In this way a tenant could define
how his traffic should be processed using a set of network
functions chosen by himself. This could allow also a tenant
to decide how to connect his resources (VMs), without
having directly control of the physical network. In particular
if these functions are distributed in the operator network or
if they are all located in a data center, this service does not
change from a tenant point of view. Today NSPs, which offer
cloud-based solutions, leverage a Cloud Management Sys-
tem (CMS) to manage computing and storage in their data
center, and another component, called Network Operating
System (NOS), for network management. NOS and CMS
interact to guarantee a multi-tenant environment: the NOS
receives from the CMS a virtual network definition for each
tenant and configurations for each function of that network.
This interaction is limiting, because the tenant is allowed
to build his virtual network only by choosing from network

functions provided by his NSP. Hence if a tenant would like
to insert a different function, the operator has to modify his
system, taking care of the integration of the new function
in terms of configuration and communication with the other
components (like other network functions or the NOS).

In this paper, we propose a possible solution that enables
configuration of network functions that are opaque from the
operator point of view. In particular a network function is a
module that processes traffic in a specific manner and could
be implemented in software or deployed into a physical
network element (e.g., firewall, DPI, NAT, router, etc). In
our vision, NSPs could allow tenants to insert new functions,
written by any programmer, in their virtual network, but the
operator should not know how those functions work and
which type of functions they are. Thus operators would
handle these opaque network functions like black boxes,
assuring however their total integration in the operator’s
network. This means that tenants have to be able to configure
any functions in one of the ways supported by the functions
themselves: taking the example of a tenant that uses a
firewall, he has to be able to load a set of protection policies
on the firewall, similarly a traffic’s pattern in a DPI to check
possible attacks.

The remainder of this paper is composed as follows:
in Section II, we describe the different works that have
completed our background; Section III presents an overview
of our architecture; in Section IV, a prototype of our solution
is described in detail; in Section V, we demonstrate the
validity of our implementation through two use cases; finally
Section VI concludes presenting possible future works.

II. RELATED WORK

The research world has presented different works some-
how related to ours. Among these works, we can find
possible architectures for managing Network Service Chains
(NSCs). One of these architectures was described in the
work made by Beliveau [4], while the NSC Architecture
(NSCA) is presented in [5] . However, such architectures
do not have any mechanism to extend the set of functions
allowed, and hence to introduce new functions neither to
configure them. In addition, the concept of chain is more
static than a virtual network: traffic can follow just one path
chosen based on tenants policies, rather than being able to
follow any arbitrary path in the network.

Another proposal related to virtual service chains is
being developed within the European project UNIFY. The
approach taken by this project is close enough to ours,
because, in UNIFY, NSPs can distribute network functions in
the whole network, locating management aspects in an auto-
mated orchestration engine [6] [7]. The UNIFY project has
also expressed the need to have a service abstraction model
for defining and programming service chains: however, at
the best of our knowledge, it seems that the configuration
of the single network functions that compose a service chain
is overlooked, leaving the configuration issue an open topic.

A service description is needed by the CMS to understand
the basic requirements of an opaque network function. H.
Song has noted in [8] the need of a standardization of the
information model, in order to represent the user’s functional
and resource requirements, and to map and apply these re-
quirements to the underlying infrastructure. Literature helps
us with different solutions, which address description at
service level and at resources level, from both the hardware
(physical and virtual) and software points of view. One of
these proposals is VXDL [9] that is defined as a language
for describing a virtual network topology, including storage,
computing and links, and a virtual timeline, to specify when
a certain resource is needed. Unfortunately this temporal
constraint is difficult to synchronize with the orchestration
engine. In this context, another example is the network-
centric cloud architecture proposed in [10], where a cen-
tralized control layer should manage the resources available
for all network services.

Finally there have been several approaches in literature
for configuring network functions like the NETCONF [11]
and SNMP [12] protocols. However from an operator point
of view, the use of such protocols is quite limiting because
tenants can use just those network functions which support
such configuration protocols, while we are envisioning an
architecture flexible as much as possible.

III. THE PROPOSED ARCHITECTURE

In our architecture, the main actors are: operator (or
Network Service Provider, NSP), tenant and programmer.

The main objective of our architecture is to give flexibility
to tenants, by allowing the set of functions available to
a tenant to be extended according to the tenants needs.
Reaching this goal by progressively increasing the overall
number of network functions offered by the NSP is not
trivial, because any requirement coming from a tenant might
imply a huge integration cost; also, different tenants might
request support for different network functions. This is why
our proposal focuses on giving the possibility for a tenant
to introduce any new network functions implemented by
third parties (we refer to them as programmers) in his vitual
network, and be able to configure them through a unified
API provided by his network operator.

We also would like to relieve the programmer from the
burden of integrating his own network functions, imple-
mented as Virtual Network Functions (VNFs)1, in every
specific NSP architecture. The VNFs should be readably
usable in any present and future architecture, without the
need of specific integration efforts.

Finally the network operator should be able to load into
his own network any third-party VNF without additional
complications. Furthermore, we would like to avoid the
insertion of any VNF-specific configuration plug-ins inside
the network operator’s CMS: this avoids the problem of sup-
porting arbitrary front-ends inside the unified view offered
by the CMS.

A. Challenges
There are challenges to be solved both when inserting

such VNFs inside a virtual network and when configuring
them. With respect to the insertion problem, there should be
a way to load a VNF into a virtual network and link it to the
other ones; furthermore, the spectrum of VNF configuration
methods is very wide and, even if we can categorize them
in common types, every function has its own quirks.

The insertion problem can be solved already by many
CMS. If a programmer can provide a disk image of his
VNF, a CMS can treat it like a regular Virtual Machine;
also, since many of their network plug-ins already support
stitching VMs inside a virtual network, a basic level of
insertion can be achieved today. Many of the outstanding
issues are related to the configuration phase instead; hence
we focused our attention on them.

We also believe that, by having a rich configuration
service, less complexity is needed in the insertion phase. As
an example, let us consider the case of a third-party router
deployed into a virtual network: in a traditional scenario,
a tenant is required to deploy the router into a virtual
network, then access its configuration interface through a
virtual console (or similar mechanism) to configure the
network interfaces of the router in terms of IP address,
routing protocols, etc. In our vision, there should be no need
to access this VNF-specific interface, and the tenant should
be able to configure the router through the same API that he
used to deploy the router in the network. In addition, having
a suitable configuration service, an automatic configuration
service could be enabled, for example, in the case of tenant’s
configuration errors. Considering the same router and a
third-party web cache connected to the same subnet, if the
tenant changes the subnet prefix and reconfigures just the
IP address of the router interface, the NOS could be able to
recognize such misconfiguration and hence should have the
means to fix this error configuring properly the web cache.

Inserting opaque functions might bear possible high risks
for NSPs: due to the lack of relationship between the pro-
grammer and the NSP that is installing an unknown function

1We use indifferently the terms “network function” and “VNF”.

Figure 1: Architecture overview and translator workflow.

into his network element, the NSP could take precautions
verifying that this function respects certain parameters. This
problem, however, is out of our scope and it was also taken
into consideration by other works, like [13], that addressed
the possibility to run software modules in network elements.

B. Architecture overview

Figure 1 shows a high-level view of the whole system
architecture. Each tenant can control his virtual network
through a global interface, that is an operator-defined API.
For each of the VNFs in the tenant’s network, the NOS
will receive configuration messages from the API and will
interact properly with the actual VNF. Since each VNF
could be ultimately configured through different configura-
tion methods (e.g., file, CLI, REST, etc), and with specific
details (formats, commands, etc), it is important to make able
the NOS to configure a VNF regardless of their respective
intrinsic details.

Having a unified description format helps all the actors
involved: the programmer can define the VNF configuration
format and supported methods in a way that is recognized
by any network operator, that, in turn, is able to insert
and use any VNF that adheres to the unified description
format. This format also simplifies the projection of the
configuration of the VNF through the tenant-visible API,
since it is independent from the actual configuration methods
used. The unified description format allows the transparent
use of a configuration method among a list of standard ones.
To be inserted opaquely, however, a VNF should support one
or more of those methods, and the operator should support
any of them on his system (according to any specific policies
that might arise).

C. Configuration translators

Each configuration method could require specific param-
eters: for example, for a configuration through CLI, it is
necessary to know which command enables administrative
authorization. For this reason the architecture includes, for
each configuration method, a specific configuration trans-
lator that is aware of all the particular techniques and

parameters needed for that method. As shown in Figure 1,
each translator configures the VNF directly. Having separate
translators also makes the system more extensible and man-
ageable, as it allows an easier insertion, replacement and
removal of configuration methods: when the operator wants
to support a new configuration method, the operator has just
to make available a new translator.

Configuration translators receive multiple inputs (Fig-
ure 1) : (i) the tenants configuration received from the
operator-defined API and saved into an object model to know
the actual values that should be set inside the VNF; (ii) the
VNF configuration rules, to know the format required to
deploy those configuration values into the VNF; (iii) a set
of VNF access parameters required to connect to the VNF
(e.g., IP address of the VNF, root password, etc...) and to
load the configuration into it.

The structure of the object model and the VNF configu-
ration rules are VNF-specific; they are both provided by the
programmerthrough a description file, written in the unified
description format. This allows the programmer to write the
description file only once, and use the same file even across
different NSPs. The VNF access parameters are, instead,
translator-specific and VNF-independent: the number and
type of these parameters is standardized for each translator,
but their actual run-time values are set by either the network
operator or the programmer, depending on the specific case.

D. Configuration translators inputs

An instance of the object model, specific for a VNF,
collects the configuration parameters of that VNF, provided
by the tenant. The object model instance is self-descriptive:
in other words, one can discover its structure from the
instance itself. This is important because when the con-
figuration translator receives the object model instance, it
can derive the structure of the model that was used by the
programmer in the description file; this is crucial to generate
the VNF configuration in the right format. Using an object
model also makes easier to change in a transparent way
the global API provided by the operator and avoids data-
structure formats specific for translator to collect the VNF
configuration chosen by the tenant.

The VNF configuration rules are a set of directives used
to drive the translator in generating the VNF configuration in
the right format (Figure 1). They express the way to translate
the structure and content of the object model instance into
the specific structure required by the VNF configuration
method. If a specific VNF supports multiple configuration
methods, the programmer can include VNF configuration
rules for all of them in the same description file.

The VNF access parameters are used to instruct the
configuration translator about how to connect to the VNF
and load the configuration provided by tenant. As explained
before, the programmer does not set all of these parameters,

because some of them might be tied to some management
aspect internal to the NOS, like VNF location.

All of these inputs will be used to generate the final VNF
configuration, following the workflow shown in Figure 1.
Taking the example of a firewall, a user would like to define
the network policy rules. In this case, the object model
instance contains the set of policy rules themselves; the
VNF configuration rules specify the format of policy rules
in the particular VNF architecture; VNF access parameters
describe how to program the policy rules inside the firewall
(e.g., the IP address, port and protocol required to connect
to the firewall to deploy the configuration).

IV. ARCHITECTURE IMPLEMENTATION

This section describes a prototype implementation of the
architecture presented. We have also validated its workflow
using two use cases described in the next section. We start
to present some details, which have been left out of the
description to keep the architecture more generic, about the
choice of the languages used for the description file and the
VNF access parameters. Then we describe our prototype and
its validation.

Listing 1: YANG language example.
module r o u t e r {

i m p o r t i e t f−i n e t−t y p e s { p r e f i x i n e t ; }
i m p o r t i e t f−yang−t y p e s { p r e f i x yang ; }
l i s t i n t e r f a c e s {

/ / a p i : f i l e : h e a d e r ” / / Beg inn ing of t h e Conf ig F i l e ” ;
/ / a p i : f i l e : l i s t f o r m a t ”%NAME {\n ” ;
/ / a p i : f i l e : s e p a r a t o r s ”\n}\n ” ;
/ / a p i : f i l e : f o o t e r ”}\n / / End of t h e Conf ig F i l e ” ;
key name ;
l e a f name { t y p e s t r i n g ; }
l i s t e t h e r n e t {

/ / a p i : f i l e : l i s t f o r m a t ”%NAME %VALUE {\n ” ;
/ / a p i : f i l e : s e p a r a t o r s ”\n ” ;
/ / a p i : f i l e : f o o t e r ”}\n ” ;
key name ;
l e a f name { t y p e s t r i n g ; }
l e a f a d d r e s s {

/ / a p i : f i l e : l e a f f o r m a t ”%NAME %VALUE\n ” ;
t y p e i n e t : ipv4−a d d r e s s ; }

l e a f hwid {
/ / a p i : f i l e : l e a f f o r m a t ”hw−i d %VALUE\n ” ;
t y p e yang : mac−a d d r e s s ;}

}
}
}

A. Languages Choices

The YANG language [14] has been chosen for the descrip-
tion file. YANG is a data modeling language developed by
IETF to model configuration and state data manipulated by
the NETCONF protocol. In particular YANG was chosen
for several reasons: it is orthogonal to network protocols
and it is implementation-independent and human-readable;
it is also a language developed with network configuration
in mind and extensible, as it allows creation of user-defined
statements.

In our case, the configuration data for a VNF is modeled
in YANG by creating an object model specific for that VNF.
An example of a possible YANG description file for a router
is shown in Listing 1, where we define a structure to save
the state of Ethernet interfaces. The idea is to have a data
structure to enumerate all interfaces of a given router and,
for each of them, store all of the network and physical
addresses associated with that interface2. Accordingly, a top-
level interfaces list is defined to include the names for
all the interfaces to be configured; a nested ethernet list
contains all addresses specific for an Ethernet interface.

YANG provides by default a number of directives to
validate some proprieties of its statements. Examples of
directives provided by YANG are: type checking; a default
value for a leaf statement; definition of mandatory or
optional statements (like leaf, list, leaf-list and
others). Other simple validations are possible through the
definition of new YANG types. A more complex validation
system would require an extension of the YANG language3.

Since, in the proposed solution, the description file in-
cludes both the structure of the object model and the VNF
configuration rules, it means that those rules have to be
specified in the YANG language as well.

B. VNF configuration rules syntax

VNF configuration rules take the form of special com-
ments in the description file (Listing 1). These rules are
defined in a particular statement with the following structure:
//api:<Translator_N>:<Rule_N> <Rule_V>

where <Translator_N> specifies which configura-
tion translator the rule belongs to and <Rule_N> and
<Rule_V> represent the rule name and value. This allows
us to group all the rules for a specific translator under a spe-
cific prefix: we can consider them similar to a programming
language namespace, that allows us to reuse a rule name
across translators, if we need to. <Translator_N> can
assume values like “file”, “cli”, “rest”, etc that denote
the translators created in our system.

As an example, let us consider a translator to con-
figure VNFs using files: each rule for this translator is
preceded by the prefix “//api:file:”. We can see
some of them in Listing 1: separators, list_format,
leaf_format, header and footer. All rule values are
interpreted as strings. When generating the configuration
file, header and footer are printed respectively before
and after the current element (e.g., list or leaf), while
separators is used to separate child nodes of the current
element (of course it is not applicable to a leaf statement,
which does not have child nodes by definition). Furthermore

2Usually a network interface is assigned only one network and physical
address, but this is not true in the general case.

3In fact could be needed to have existence constraints: this is case when
a parameter could exist only if another one was set or if this one has a
particular value.

Figure 2: Prototype schema and test workflow.

list_format and leaf_format work like a printf
of the C language, in which %NAME and %VALUE are ex-
panded with values depending on the context. In particular,
%NAME and %VALUE represent respectively the name of
their YANG node (e.g., “ethernet” for the list ethernet
and “address” for the leaf address) and its actual value
(in the case of a list, it will be the value of its key). None
of the keywords is mandatory.

C. VNF access paramters syntax

The default features of the YANG language are enough
to define the VNF access parameters: what is needed is a
configuration-oriented language. To keep the system defi-
nition uniform, YANG has been used for the VNF access
parameters as well. In addition, it is interesting to note
that many parameters stored in the VNF access parameters
represent networking parameters (e.g., IPv4 or IPv6 address,
MAC address and others). Hence, in addition to the built-
in types, it is possible to leverage the YANG derived type
statements defined by IETF in [15].

D. Prototype Implementation

In our prototype, a C++ library, called Config_API, has
been designed to implement different configuration methods,
one per translator. In particular to validate the architecture,
we implemented a translator, called Config_File_API,
to configure a VNF using files, regardless of their format
(e.g., XML, text or more). This translator receives as inputs:
(1) the YANG object model instance of a VNF (that contains
the tenant’s configuration); (2) the VNF configuration rules
(specified in the YANG description file); (3) the VNF access
parameters (defined in a different file, as shown in Figure 1).

With respect to the VNF access parameters, the translator
expects the NOS to convert the configuration received from
the tenant through REST into another object model, which
is instead specific for the Config_File_API (dashed line
in Figure 2).

For the sake of simplicity, in our implementation we have
set all the VNF access parameters as configurable by the
tenant. In a real world scenario, however, some of these
parameters (e.g., the IP address where the VNF is located)
should be managed just by the operator.

Finally we can note that our solution supports func-
tions that require multiple configuration files. The
Config_File_API library can be instructed to write
different portions of the same YANG file into different
configuration files, so that VNFs that require it can dump
different parts of their data into different locations. This can
be done because of the object model abstraction: for the
purpose of the Config_File_API library, a YANG list at
topmost level of the YANG file is no different from another
list nested under it.

Listing 2: An excerpt of the Bind9 YANG description file.
module b ind9 {

l i s t zone {
/ / a p i : f i l e : l i s t f o r m a t ”%NAME \”%VALUE\” {\n ” ;
/ / a p i : f i l e : s e p a r a t o r s ” ;\ n ” ;
/ / a p i : f i l e : f o o t e r ”} ;\ n ” ;
key name ;
l e a f name { t y p e s t r i n g ; }
l e a f t y p e {

/ / a p i : f i l e : l e a f f o r m a t ”%NAME %VALUE\n ” ;
t y p e s t r i n g ; }

l e a f f i l e {
/ / a p i : f i l e : l e a f f o r m a t ”%NAME \” %VALUE\”\n ” ;
t y p e s t r i n g ; }

l e a f m a s t e r {
/ / a p i : f i l e : l e a f f o r m a t ”%NAME { %VALUE; } ;\ n ” ;
t y p e s t r i n g ; }

}
}

V. TESTING

Our prototype was validated using two network functions:
Bind9 and Vyatta Core. Bind9 is an implementation of a
DNS server and we have defined a YANG description file for
this VNF collecting all the information needed to guarantee
its correct behavior regardless of the role it is configured
to act as: an excerpt of this description file is shown in
Listing 2.

For our test, we have started manually, in our prototype,
an instance of Bind9 and we have configured it to act as
Secondary Master (which gets the zone data from another
Name-server that is the Primary Master for that zone) by
editing its object model through the REST interface. To
better understand the test, we show an excerpt of the final
configuration file, automatically generated by our system,
where we have defined a zone in Bind9 syntax (Listing 4).
In particular our test first uses a bash script to send HTTP
messages to the NOS through the REST interface. After
that, the Bind9 instance is interrogated directly to validate
that the expected configuration was created and was loaded
correctly. The workflow of our test is shown in Figure 2, as
well as the structure of our prototype: first of all, we have
sent two messages to set the VNF access parameters and
the configuration parameters for Bind9; the Config File API
has read its three inputs already explained,to generate and
load the configuration file into the VNF; we have interro-

gated directly the Bind9 VNF to verify that all the process
worked fine.

We have done a similar test for the second use case,
Vyatta Core, which is a software router. Listing 1 shows an
excerpt of YANG description file for this router. For our test,
we configured an Ethernet interface, defining its IP address
and the other main parameters, as shown in Listing 3. As
in the previous case, we have validated our configuration
with another bash script. This test, as in the previous case,
has created an instance of an ethernet list in the
YANG object model and has set its parameters. Then we
have validated the Level 3 configuration of the Vyatta Core
instance by testing its reachability through an ICMP request.

Listing 3: Vyatta con-
figuration file.
i n t e r f a c e s {

e t h e r n e t e t h 0 {
a d d r e s s dhcp
du p l ex a u t o
hw−i d 00 :0 c : 2 9 : 6 4 : 6 6 : 1 c
mtu 1500
s m p a f f i n i t y a u t o
speed a u t o
}
}

Listing 4: BIND9 configura-
tion file.
zone ” example . com” {

t y p e s l a v e ;
f i l e ” db . example . com ” ;
m a s t e r s { 1 9 2 . 1 6 8 . 1 . 1 0 ; } ;
}

VI. CONCLUSION AND FUTURE WORK

This paper focuses on opaque network function configu-
ration inside NSP’s networks. After illustrating the type of
services that NSPs provide to their customers, the need of
the tenant-centric model was motivated and it was illustrates
how to extend the typical CMS architecture to integrate
third-party VNFs. To do this, we leverage the use of a
VNF description file that allows the NOS to know the main
aspects of an external VNF.

Finally we presented a prototype of our solution. This
prototype was validated by implementing VNF configura-
tion through configuration files, using a solution that is
independent from the specific format used by the VNF for
its configuration files (e.g., XML, text file or proprietary).
Our tests produced a sucessful validation and it consisted
of a specific translator to create configuration files, which
interacted with two different network functions: Bind9 (a
DNS server) and Vyatta Core (a software router).

Possible future extensions could be the addition of more
intensive validation mechanisms, since currently we leverage
only the validation instruments provided by YANG. In
particular this type of work could regard both the valida-
tion of configuration output (e.g., more complex constrains
checking) and validation of the correct integration in the
system (e.g., guarantee that all requirements defined by a
final user are respected or guarantee the expected behavior
of the virtual network). Also our solution could be tested
with other types of VNFs to validate different configuration
file formats.

ACKNOWLEDGMENT

The authors would like to thank PLUMgrid, Inc, a startup
based in California, USA, which has supported this work.

REFERENCES

[1] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn:
An intellectual history of programmable networks,” SIGCOMM
Comput. Commun. Rev., vol. 44, pp. 87–98, Apr. 2014.

[2] “Network function virtualization.” White Paper, Oct. 2012.

[3] N. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization,” Comput. Netw., vol. 54, pp. 862–876, Apr.
2010.

[4] A. Beliveau, “draft-beliveau-sfc-architecture-00.” IETF Draft,
2013.

[5] P. Quinn and A.Beliveau, “draft-quinn-sfc-arch-04.” IETF
Draft, 2014.

[6] A. Császár, W. John, M. Kind, C. Meirosu, G. Pongrácz,
D. Staessens, A. Takács, and J. Westphal, “Unifying cloud and
carrier network,” Proceedings of. DCC, Dresden, Germany, to
appear Dec, 2013.

[7] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind,
A. Manzalini, F. Risso, D. Staessens, R. Steinert, and
C. Meirosu, “Research directions in network service chaining,”
CoRR, vol. abs/1312.5080, 2013.

[8] H. Song, “draft-song-opsawg-virtual-network-function-config-
00.” IETF Draft, 2013.

[9] G. P. Koslovski, P. V.-B. Primet, and A. S. Charão, “VXDL:
Virtual resources and interconnection networks description
language,” in GridNets (P. V.-B. Primet, T. Kudoh, and J. Mam-
bretti, eds.), vol. 2 of Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications
Engineering, pp. 138–154, Springer, 2008.

[10] F. Pamieri and S. Pardi, “Enhanced network support for
scalable computing clouds,” in Cloud Computing, pp. 127–144,
Springer, 2010.

[11] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. B. Ed.,
“Network Configuration Protocol (NETCONF),” RFC 6241,
RFC Editor, June 2011.

[12] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A Simple
Network Management Protocol (SNMP),” RFC 6241, RFC
Editor, May 1990.

[13] J. W. Lee, R. Francescangeli, J. Janak, S. Srinivasan, S. A.
Baset, H. Schulzrinne, Z. Despotovic, and W. Kellerer, “Net-
serv: active networking 2.0,” in Communications Workshops
(ICC), 2011 IEEE International Conference on, pp. 1–6, IEEE,
2011.

[14] M. Bjorklund, “YANG - A data modeling language for the
Network Configuration Protocol (NETCONF),” RFC 6020,
RFC Editor, October 2010.

[15] J. Schoenwaelder, “Common YANG Data Type,” RFC 6991,
RFC Editor, July 2013.

