
27 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An improved fault mitigation strategy for CUDA Fermi GPUs / DI CARLO, Stefano; Gambardella, G.; Martella, I.; Prinetto,
Paolo Ernesto; Rolfo, D.; Trotta, P.. - ELETTRONICO. - (2014), pp. 1-6. (Intervento presentato al convegno Dependable
GPU Computing workshop 2014 tenutosi a Dresden, DE nel 28 March 2014).

Original

An improved fault mitigation strategy for CUDA Fermi GPUs

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2571949 since: 2016-10-07T16:21:32Z

An improved fault mitigation strategy for CUDA
Fermi GPUs

Stefano Di Carlo, Giulio Gambardella, Ippazio Martella, Paolo Prinetto,
Daniele Rolfo, Pascal Trotta

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, I-10129, Torino, Italy
Email: {FirstName.LastName}@polito.it

Abstract—High computation is a predominant requirement in
many applications. In this field, Graphic Processing Units (GPUs)
are more and more adopted. Low prices and high parallelism
let GPUs be attractive, even in safety critical applications.
Nonetheless, new methodologies must be studied and developed
to increase the dependability of GPUs. This paper presents
an improved fault mitigation strategy against permanent faults
for CUDA Fermi GPUs. The proposed approach exploits the
reverse engineering of the block scheduling policy in CUDA Fermi
GPUs in order to minimize the fault mitigation timing overhead.
The graceful performance degradation achieved by the proposed
technique outperforms multithreaded CPU implementations and
other fault mitigation strategies for CUDA GPU, even in presence
of multiple permanent faults.

I. INTRODUCTION

In the last years, the increased demand of computational
power in safety critical applications, like automotive [1], space
[2] and medical [3], results in the assignment of the extensive
data processing to highly parallel systems.
CUDA-based GPUs [4] are attractive for these applications,
since they are able to simultaneously execute the same opera-
tions on different data portions, exploiting the Single Instruc-
tion Multiple Data (SIMD) architecture.
However, their usage in safety critical systems still remains
an open issue since these devices are not natively protected
against faults.
The robustness of a safety critical system is commonly ensured
by fault-tolerance or fault mitigation techniques. Thus, the
development of fault mitigation techniques for CUDA-based
GPUs is a primary requirement.
Several fault tolerance and fault mitigation techniques targeting
SIMD processors have been published [5] [6] [7] [8] [9].
Unfortunately, these techniques are not applicable to modern
GPU architectures, since they rely on a deep knowledge of the
hardware internal architecture.
Other techniques completely independent from the processor
internal architecture have been proposed as well. However they
introduce high performance overhead [10], or they are able to
mitigate a limited number of faults [11], [12], [13].
This paper aims at defining a novel strategy to mitigate
multiple permanent faults in CUDA-based GPUs. A grace-
ful performance degradation is achieved by the proposed
fault mitigation technique, based on program instrumentation,
providing correct results even in presence of faults. Such
modifications let the GPU programmer to easily change the

original CUDA software, to increase the dependability of the
target system.
The proposed technique improves the approach we previously
propose in [14]. [14] presents two fault mitigation methodolo-
gies in order to increase the robustness of a CUDA Fermi
GPU-based system against permanent faults. Basically, by
periodically running the Software Based Self Test (SBST)
methodology presented in [15], it is possible to identify faulty
Streaming Multiprocessors (SMs) in the GPU under test.
This information is exploited in order to avoid the execution
on faulty SMs, and provide in output correct results even
in presence of multiple permanent faults. The execution on
faulty SMs is prevented through two proposed fault mitigation
strategies that do not introduce any performance penalty during
the GPU fault-free execution, and they guarantee error-free
results also in presence of a high number of faults.
The strategy proposed in this paper exploits the reverse en-
gineering of the block scheduling policy in CUDA Fermi
GPUs in order to minimize the timing overhead due to the
reduced number of SMs actually performing the computation
(i.e., faulty SMs cannot perform computation). The paper is
organized as follows: Section II briefly introduces the CUDA
Fermi architecture. Section III describes the basic approach
to apply the proposed strategy. The improved fault mitigation
technique is defined and explained in Section IV. Experimental
results are given in Section V. Finally, Section VI concludes
the paper.

II. CUDA OVERVIEW

Several GPUs produced by nVidia use CUDA R©[16].
CUDA supports a new software architecture that enables
CUDA-based GPUs to execute programs written in C, C++,
Fortran, OpenCL, DirectCompute, and other languages [4].
Programs executed by CUDA GPUs are called kernels. A
kernel is basically a set of parallel threads that ensures a high-
parallel computation. When a kernel is compiled, its threads
are grouped in blocks. The complete set of blocks composes
a grid.
A CUDA-based system is composed of a CPU (Host), that
executes a program (CUDA program) in order to both create
inputs for the kernel and start the kernel execution by providing
in input the grid to the GPU, and a CUDA GPU (Device), that
performs the execution of the kernel. At the end of a kernel
execution, the CPU can flush the content of the GPU memory
in order to acquire output data.

The software organization of a kernel is strictly related to
the GPU hardware architecture, since the thread hierarchy is
directly mapped into GPU internal components.
The basic building blocks of a CUDA GPU (Fig. 1) are: (i)
a Block dispatcher, that manages the scheduling of the input
grid by assigning each thread block to the internal logic; (ii)
a Global Memory, that stores intermediate and final results
of the executed kernel; (iii) a Shared Cache, that speeds
up read/write operations on the global memory; (iv) several
Streaming Multiprocessors (SMs). Each SM includes many
CUDA cores, that perform the computation for each thread.

Fig. 1. CUDA GPU internal architecture

When the CPU invokes a kernel grid, each block is numbered
(by assigning it a Block ID) and dispatched to a SM (i.e.,
during the execution each SM is numbered through a SM ID as
well) that guarantees enough available resources. Each thread
of a block is executed on a CUDA core. Considering the SIMD
architecture of the GPU, the same operation is performed
on different input data portions, addressed by the Block ID.
As blocks terminate, new blocks are dispatched to idle SMs.
The number of blocks that can be processed concurrently on
the multiprocessor (Blocks per SM) depends on the number
of registers, on the amount of shared memory available in
the SM, and on the resources required by the kernel to be
executed. The Blocks per SM value can be defined exploiting
a tool released by nVidia in the CUDA Toolkit, called CUDA
Occupancy Calculator. Anyway, the number of blocks that can
be assigned to a SM never exceeds 8 in Fermi architecture [4].

III. BASIC APPROACH

In order to apply the improved fault mitigation strategy,
a similar approach to the one presented in [14] has been
exploited (see Fig. 2). This approach defines a methodology
to instrument the CUDA program and the kernel, in order to
obtain correct results from a kernel running on a faulty GPU.
As shown in Fig. 2, the Instrumented CUDA Program (ICP),
running on the CPU, informs each kernel about the status
of each SM (i.e., fault-free or faulty) through the Faulty
Mask (FM), and runs the Instrumented Kernel (IK) on the
GPU. The status of each SM can be defined by periodically
running functional test procedures on the GPU, such as the
one proposed in [15].
The IK identifies blocks dispatched on faulty SMs (Faulty
Blocks (FBs)), stops their execution by applying the improved
fault mitigation strategy (see section IV), and transmits FBs to
the ICP.
Eventually, if no FB still remains, the kernel execution has

Fig. 2. Sequence Diagram of the basic approach

been completed correctly, otherwise the instrumented CUDA
program creates several replicas of each FB, defines a new grid
(faulty grid, FG) containing these replicas, and run the FG on
the GPU. This process is repeated until no FB is detected.
For more detailed information about the methodology to create
the ICP, the IK, and the FG the reader may refer to [14].

IV. IMPROVED FAULT MITIGATION STRATEGY

The improved fault mitigation strategy, called Smart Wait,
exploits the reverse engineering of the block scheduling policy
in CUDA Fermi GPUs. Comparing with the fault mitigation
strategies presented in [14], Smart Wait leads to the following
benefits: (i) no grid re-execution is required to obtain correct
results, and (ii) the computational effort is reduced, since only
the strictly required FB replicas are executed (i.e., in the
Sleep and Wait strategy of [14] more FB replicas must be
generated to ensure correct results in output). The following
subsections deeply describe the reverse engineering of the
block scheduling, and the Smart Wait strategy.

A. Block Scheduling in CUDA Fermi GPUs

The block scheduling in CUDA Fermi GPUs is partially
static and partially dynamic. At the beginning of the kernel
execution, a number of blocks equals to Blocks per SM (see
Section II) are statically dispatched on every SM (Eq. 1 defines
the number of the statically scheduled blocks).

Static Blocks Allocation = #SM∗Blocks per SM (1)

(a) Static scheduling example with a grid composed by 16 blocks

(b) Static scheduling example with a grid composed by more than 16 blocks

Fig. 3. Static scheduling examples in a CUDA Fermi GPU equipped with 8 SMs and characterized by the Blocks per SM parameter equal to 2

where #SM is the number of SMs equipped on the GPU.

The remaining blocks will be dispatched dynamically
after the complete execution of the statically scheduled
blocks.
To understand how the blocks are actually scheduled, two
different kernels have been defined:

• Static Kernel: defines the static allocation policy. This
kernel has been compiled in a grid composed of a
number of blocks equal to Static Blocks Allocation.
In order to properly define on which SM each block
is scheduled, the kernel processes an input vector with
Total Blocks cells by storing the SM ID in the cell
pointed by the Block ID (see Section II).

• Dynamic Kernel: defines the dynamic allocation pol-
icy. This kernel exploits the same approach used
in the Static Kernel, but in addition it delays the
execution on one or more SMs in order to de-
fined the dynamically scheduling policy when the

Static Blocks Allocation execution is not synchro-
nized (i.e., the execution of statically scheduled blocks
ends in different times), also. Obviously, this kernel
must be compiled in a grid with a number of blocks
greater than Static Blocks Allocation.

A long sequence of tests on these kernels, modifying the
number of blocks composing the grid and the number of
delayed SMs, has been performed. Analysing the obtained
results, three possible scheduling sequences have been iden-
tified, two associated with the static scheduling, namely Order
and EvenOdd, and the Random one associated to the dynamic
scheduling. In every scheduling sequence, blocks are iteratively
scheduled on SMs, starting from the first block (i.e., Block ID
= 0) to the last one. These iterations continue until a number
of blocks equal to Blocks per SM have been scheduled to
each SM, or when all the blocks composing the grid have
been scheduled. The unique difference among the three defined
sequences concerns the selection of the SM on which each
block must be scheduled.

TABLE I. EXECUTION TIME AND PERFORMANCE GAIN ASSOCIATED WITH THE FAULT MITIGATION STRATEGY

Faulty
Matrix Transpose CUDA Separable Convolution Fast Walsh Transform

CPU MT Smart Wait PG CPU MT Smart Wait PG CPU MT Smart Wait PG
[ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms]

0 62 2 31.00 743 6 123.83 977 14 69.01
1 62 2 31.00 743 8 92.88 977 16 59.05
2 62 2 31.00 743 8 92.88 977 19 50.45
3 62 3 20.67 743 10 74.3 977 16 57.71
4 62 3 20.67 743 11 67.55 977 15 64.88
5 62 4 15.5 743 15 49.53 977 18 53.05
6 62 7 8.86 743 22 33.77 977 24 40.60
7 62 15 4.13 743 42 17.69 977 29 33.12

The Order sequence defines the SMs in an ordered way (i.e.,
from the first to the last), instead the EvenOdd first schedules
blocks to the SMs with an even SM ID and then to the one
with an odd SM ID. Eventually, in the Random sequence SMs
are randomly selected.
In the static scheduling, the selection between Order
or EvenOdd sequence is performed depending on the
Static Blocks Allocation (SBA) value and the grid dimension
(K). According to Eq. (2), if the dimension of the grid is
less than or equal to the Static Blocks Allocation parameter,(⌈

K
#SM

⌉
−1

)
scheduling iterations are performed following

the EvenOdd sequence, while the remaining according to
the Order one. Instead, if if the dimension of the grid is
greater than the Static Blocks Allocation, the complete static
scheduling is performed following the EvenOdd sequence.

(⌈
K

#SM

⌉
− 1

)
∗ EvenOdd+Order, K ≤ SBA

(2)

EvenOdd ∗Blocks per SM, K > SBA

Instead, the dynamic scheduling is always performed following
the Random sequence.
For the sake of completeness, Fig. 3 shows an example for both
cases, where #SM = 8, and Blocks per SM = 2 (i.e., SBA =
16). In particular, Fig. 3(a) shows the static scheduling of a
grid composed by 16 blocks. Thus, according to the first row of
Eq. (2) , the scheduling is performed in two iterations, the first
following the EvenOdd sequence, while the second following
the Order one. In the case reported in Fig. 3(b), since K >
16, the scheduling task is performed in two iterations as well,
but in both cases the EvenOdd sequence is used (second row
of Eq. (2)).

B. Smart Wait

The Smart Wait fault mitigation strategy improves the Wait
strategy presented in [14]. The basic idea is to stop the blocks
executed on the faulty SM until all blocks dispatched on the
fault-free SMs are completely executed. Moreover, since only
statically scheduled blocks can be dispatched on a faulty SM,
FBs can be defined a priori exploiting the reverse engineering
of the scheduling policy (see Section IV-A). For this reason,
the FB replicas can generated and added to the normal blocks
composing the IK grid. In this way, it is possible to obtain the
correct results avoiding the FG execution. Thus, the Smart Wait

allows to speed up the computation w.r.t. the methodologies
presented in [14], that require one or more FGs to ensure a
fault-free execution.
Moreover, the proposed methodology reduces the computa-
tional effort required to ensure correct results from the kernel
execution on a faulty GPU. In fact, in the Smart Wait the
number of required replicas for each FB is equal to 1, only.
Instead, in the Wait strategy, since it is completely independent
from the scheduling policy, the number of required replicas is
higher and can be computed according to Eq. 2.

n replicas = #Faulty SM ∗Blocks per SM + 1 (2)

V. EXPERIMENTAL RESULTS

The effectiveness of the proposed mitigation strategy has
been proved with an extensive test campaign. The used testbed
is composed of a Gigabyte GeForce GTX 560Ti, equipped with
1 GB of dedicated RAM and 8 Streaming Multiprocessors
(SM), and an Intel Core i5-2500k CPU.
Since in the last year safety-critical embedded applications
(e.g., Assistance Drive, Unmanned Avionic Vehicle, and
Space) require more and more computational power, the usage
of a GPU device in this systems could became of primary
importance. For this reason, the proposed fault mitigation
strategy have been applied to a set of CUDA SDK applications
that can be exploited in this kind of embedded systems. In
particular, the selected applications are:

• Matrix Transpose: it computes in parallel the transpose
of a matrix. Matrix transpose is essential in the Syn-
thetic Aperture Radar (SAR) imaging algorithm, since
it is the bottleneck in this kind of signal processing
[17]. In the last year, SARs have became more and
more important for their application in many safety
critical applications like Unmanned Avionic Vehicle
(UAV) and satellite.

• CUDA Separable Convolution: it performs the gaus-
sian smoothing of an image with a 7x7 kernel. This
kind of filtering operation is widely used as a pre-
processing stage in computer vision algorithms in
order to enhance image structures at different scales,
and to reduce image noise [18].

• Fast Walsh Transform: it compute the Hadamard-
ordered Fast Walsh Transform of an image with
a 32x32 kernel. Walsh Hadamard Transform allows
to efficiently perform the pattern matching (i.e., it
searches and matches the kernel inside the input

image), that is a widely used operation in signal pro-
cessing, computer vision, image and video processing
[19].

All applications have been executed on the CPU (i.e., exploit-
ing Multi-Thread (MT) implementations) and on the CUDA
GPU. The performance of the two platforms have been com-
pared and the correctness of the results evaluated.
CUDA programs and kernels have been instrumented accord-
ing to the methodology presented in Section III.
Each application has been tested in 8 different conditions, with
different number of faulty SMs, in order to characterize the
execution times related to the CPU and GPU implementation.
Table I lists the execution times for the exploited test algo-
rithms. The comparison is made between the execution times
of the CPU (CPU MT) and GPU (Smart Wait) algorithms by
reporting the Performance Gain (PG). From the presented data
it is clear that the usage of a GPU, also in presence of faults,
with both proposed fault mitigation strategies ensures better
performance w.r.t. a mutlithread execution on CPU. Clearly,
the execution time on the GPU increases with the number of
faulty SMs.
Moreover, the exploited test algorithms have been run applying
the Wait strategy [14], also. The performance of the proposed
fault mitigation strategy and of the Wait one have been eval-
uated comparing the associated execution time. Fig. 4 reports
the Absolute Performance Gain (APB) provided by the Smart
Wait.

Fig. 4. Absolute performance gain of the Smart Wait strategy w.r.t. the Wait
one

Clearly, when no Faulty SM are present the performance gain
is equal to 0, since both strategies do not require any compu-
tation overhead (i.e., FBs to be re-executed) to ensure correct
results. Instead, as shown in Fig. 4, increasing the number of
the Faulty SMs the benefit provided by the proposed strategy
increases. The provided performance gain is especially due to
two main aspects. The former concerns the communication
overhead between CPU and GPU due to the launch of the FG
execution (see Section IV-B) that is not introduced by proposed
strategy. However, this is not valuable in the proposed test
algorithms since the dimension of the grid is limited, and the
associated transfer time is negligible. This contribute could
be more valuable if the executed program is more complex,
leading to a big grid dimension.
Instead, the latter concerns the reduction of the CPU com-
putation required by the Smart Wait in order to create the
replicas of each FB. In fact, in the proposed approach the

extra CPU computation concerns the creation of one replica
of each FB before the launch of the IK, only. Instead, the
Wait strategy requires a higher number of replicas for each FB
(see Eq. 2). As shown in Fig. 4, this benefit is lower in the
Separable Convolution and in the Matrix Transpose than in
the Walsh Transform, since the first two applications require
one kernel execution only to perform the computation (i.e., FB
replicas must be created once, only). Instead, Since the Walsh
Transform to provide final results requires three kernels to be
re-executed four times each, the FB replicas must be created
twelve times to achieve correct results (i.e., one for each kernel
execution), leading to a higher performance gain.

VI. CONCLUSION

The paper presents a methodology to allow the use of
a CUDA-based GPU, even in presence of faulty streaming
multiprocessors. While the other already presented method-
ologies are algorithm dependent or introduce performance, the
presented fault mitigation technique is completely algorithm
independent and, exploiting the reverse engineering of the
block scheduling policy in CUDA Fermi GPUs, allows to reach
the maximum performance during CUDA fault-free execution.
Moreover, a validation campaign has been performed to high-
light the benefits of the proposed technique w.r.t. to the current
state-of-the-art fault mitigation strategies.

ACKNOWLEDGMENT

This research has been partly supported by the 7th
Framework Program of the European Union through the the
CLERECO Project, under Grant Agreement 611404.

REFERENCES

[1] K. Haklin and H. Ho-sang, “Integrated Fault Tolerant System for
Automotive Bus Networks,” in 2nd International Computer Engineering
and Applications Conference, 2010, pp. 486–490.

[2] Q. Hu, B. Xiao, and M. Friswell, “Robust fault-tolerant control for
spacecraft attitude stabilisation subject to input saturation,” Control
Theory Applications, vol. 5, no. 2, pp. 271–282, 2011.

[3] N. Z., “Investigation of Fault-Tolerant Adaptive Filtering for Noisy ECG
Signals,” in IEEE Symposium on Computational Intelligence in Image
and Signal Processing, 2007, pp. 177–182.

[4] nVidia, nVidia’s Next Generation CUDA Computer Architecture: Fermi,
Internet, 2006.

[5] A. Sengupta and C. Raghavendra, “All-to-all broadcast and matrix
multiplication in faulty SIMD hypercubes,” IEEE Transactions on
Parallel and Distributed Systems, vol. 9, no. 6, pp. 550–560, 1998.

[6] J.-H. Kim, F. Lombardi, and N. Vaidya, “An improved approach to fault
tolerant rank order filtering on a simd mesh processor,” in Proceedings
IEEE Int. Workshop on Defect and Fault Tolerance in VLSI Systems,
1995, pp. 137 –145.

[7] A. Strano, D. Bertozzi, A. Grasset, and S. Yehia, “Exploiting structural
redundancy of SIMD accelerators for their built-in self-testing/diagnosis
and reconfiguration,” in IEEE International Conference on Application-
Specific Systems, Architectures and Processors, 2011, pp. 141–148.

[8] J.-H. Kim, S. Kim, and F. Lombardi, “Fault-tolerant rank order filtering
for image enhancement,” IEEE Transactions on Consumer Electronics,
vol. 45, no. 2, pp. 436–442, 1999.

[9] C. Raghavendra and M. Sridhar, “Global commutative and associative
reduction operations in faulty simd hypercubes,” IEEE Transactions on
Computers, vol. 45, no. 4, pp. 495 –498, 1996.

[10] X. Xu, Y. Lin, T. Tang, and Y. Lin, “HiAL-Ckpt: A hierarchical
application-level checkpointing for CPU-GPU hybrid systems,” in Pro-
ceedings IEEE Int. Conf. on Computer Science and Education (ICCSE),
2010, pp. 1895–1899.

[11] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transaction on Computers, vol. 33, no. 6,
pp. 518–528, 1984. [Online]. Available: http://dx.doi.org/10.1109/TC.
1984.1676475

[12] C. Braun and H.-J. Wunderlich, “Algorithmen-basierte fehlertoleranz fr
many-core-architekturen (algorithm-based fault-tolerance on many-core
architectures).” it - Information Technology, vol. 52, no. 4, pp.
209–215, 2010. [Online]. Available: http://dblp.uni-trier.de/db/journals/
it/it52.html#BraunW10

[13] C. Ding, C. Karlsson, H. Liu, T. Davies, and Z. Chen, “Matrix multi-
plication on GPUs with on-line fault tolerance,” in 9th Int’l Symposium
on Parallel and Distributed Processing with Applications (ISPA), 2011,
pp. 311–317.

[14] S. Di Carlo, G. Gambardella, I. Martella, D. Rolfo, P. Prinetto, and
P. Trotta, “Fault mitigation strategies for CUDA GPUs,” in International
Test Conference (ITC), 2013.

[15] S. Di Carlo, G. Gambardella, M. Indaco, I. Martella, D. Rolfo,
P. Prinetto, and P. Trotta, “A Software-Based Self Test of CUDA Fermi
GPUs,” in 18th European Test Symposium (ETS), 2013.

[16] nVidia, NVIDIA CUDA Architecture - Introduction & Overview, Inter-
net, 2009.

[17] M. Bian, F. Bi, and F. Liu, “Matrix transpose methods for sar imaging
system,” in Signal Processing (ICSP), 2010 IEEE 10th International
Conference on, 2010, pp. 2176–2179.

[18] R. González and R. Woods, Digital Image Processing. Pearson/Prentice
Hall, 2008.

[19] W. Ouyang and W.-K. Cham, “Fast algorithm for walsh hadamard
transform on sliding windows,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 32, no. 1, pp. 165–171, 2010.

