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Abstract—Evaluation of computing systems reliability must be 
accurate enough to provide hints for the required fault protection 
mechanisms that will guarantee correctness of operation at 
acceptance costs. To be useful, reliability evaluation must be 
performed early enough in the design cycle when, however, the 
available details of the system are largely unknown. This 
inherent contradiction in terms: early vs. accurate, requires a 
cross-layer approach for reliability evaluation. Different layers of 
abstraction contribute differently in the overall system 
reliability; if this contribution can be assessed independently, the 
reliability of the system can be evaluated at the early stages of the 
design. We review the state-of-the-art in the area and discuss 
corresponding challenges 
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I.  INTRODUCTION  
Information technologies are literally changing the way people 
live, work and learn. For the past 20 years, researchers have 
developed technologies that allow sensing, computing, and 
wireless communication to be embedded in complex systems 
as well as every day objects. However, while in the past the 
development of different computing segments such Embedded 
Systems (ES) or High Performance Computing (HPC) systems 
has been driven by separated communities and players 
exploiting different technologies, a radical paradigm shift is 
expected in the upcoming years leading to a true computing 
continuum [1] ranging from smartphones to mission-critical 
datacenter machines, and from desktops to automobiles (Figure 
1). The key characteristic of this computing continuum is that 
the same hardware and software technologies and industrial 
players will act across all computing segments introducing a 
radical change compared to past business and technical 
development models. On aggregate, this computing continuum 
represents a total addressable market approaching a billion 
processors a year, which is expected to explode to more than 
two billion per year before 2020 [1].  

In this exciting scenario, very critical technological 
challenges are creating serious threats for the successful 
development of next generation computing systems in all 
segments. Future device integration technology is expected to 
dramatically reduce the device quality, and therefore the 
operational reliability of circuits due to higher device 
variability, manufacturing defects, aging, and higher 

susceptibility to transient faults (soft errors) and permanent 
faults (device degradation, wear-out) [2]. One of the biggest 
challenges for future technologies is the implementation of 
“dependable” systems on top of significantly unreliable 
components, which will degrade and even fail during normal 
lifetime of the chip. 

 

 
Figure 1: The computing continuum 

Digital systems reliability is not a new issue for the 
scientific community. However, current practices to guarantee 
reliability of electronic systems are based on pessimistic (worst 
case) scenarios and expend significant development costs, 
energy and resources to tolerate the device unreliability by 
adding fault tolerance mechanisms at different levels 
(technology, architecture, software). The rising energy costs 
required to compensate for increasing unreliability are rapidly 
becoming unacceptable in today’s environment where power 
consumption is often the limiting factor on integrated circuit 
performance, and energy efficiency is a top concern. In this era, 
where low reliability threatens to seriously slow down or even 
to end the benefits of feature size reduction, a holistic approach 
to guarantee high reliability is required. Such an approach aims 
at ranging across different computing disciplines, across 
computing system layers and across computing market 
segments to have a unique reliability assessment methodology. 
Such a holistic approach in which several techniques can be 
applied at different levels in a complex system (e.g., 
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technology, architecture, software, etc.) cannot be successful if 
not complemented with methods and tools enabling the 
assessment of the actual reliability level of a system starting 
from the early stages of its design. Nowadays, system time-to-
market (TTM) is already pivotal for the market success of both 
HPC and ES designs. An increasing number of projects whose 
reliability was assessed at very late stages of the design cycle, 
miss their announced market entry dates due to major design 
changes that in many cases are not affordable. Therefore, early 
budgeting for reliability has the potential to save significant 
design effort and resources and has a profound impact on the 
TTM of a product. These considerations are supported by 
initiatives such as the CLERECO European Project [3] that 
investigate new methodologies to accurately assess system 
reliability through all stages of the design cycle for the future 
systems of the computing continuum.  

This paper reviews current approaches for reliability 
evaluation at different design levels and discusses motivations 
and requirements for the research of new methods for early and 
precise reliability evaluation at system level. 

II. RELATED WORK 
The global research community has been very active in 
researching technological and architectural methods to improve 
reliability of specific components and systems. However, when 
focusing on the reliability evaluation, especially when moving 
at high abstraction levels, significant work still needs to be 
carried out. This section is an overview of how reliability is 
nowadays evaluated at different design stages. 

A. Reliability prediction at circuit and gate-level 
Circuit-level reliability estimation tries to estimate the 

probability of a given failure mode at the output of a logic gate 
due to intrinsic phenomena like aging, or external perturbations 
like heavy ions [4],[5]. Today, reliability device simulators 
have become an integral part of the design process. These 
simulators successfully model the most significant physical 
failure mechanisms in modern electronic devices. Moreover, 
some analysis pointed out that, the performance improvement 
of a full technological generation step can be lost due to 
process variations [6]. In response to the need to analyze 
designs under process variations, researchers have developed 
statistical timing analysis techniques to be applied for deep 
sub-micron chip designs [7]. 

Gate-level reliability estimation moves the focus to the 
nodes of a netlist [5]. Estimating the error susceptibility of a 
node requires computing the probability of sensitizing the node 
with an input vector able to propagate the erroneous value to 
one of the outputs of the circuit [6]. This however is a very 
computational intensive task and requires the simulation of 
several random vectors whose number significantly increases 
with the size of the circuit [4], [5], [8], [9], [10], [11]. 
Reliability prediction tools now model the failure probability of 
chips at the end of life by analyzing only the single dominant 
wear-out mechanisms. Modern prediction tools do not predict 
the random, post burn-in, failure rate that would be seen in the 
field. 

B. Reliability prediction at architectural level 
The research community has provided a lot of results in the 

area of Architectural Vulnerability Factor (AVF) calculation 
and AVF estimation. The AVF is the probability that a fault in 
a processor structure will result in a visible error in the final 
output of a program. Most attempts are offline analysis and 
AVF calculation with complex simulators [12], [13], [14], like 
ACE-analysis (Architectural Correct Execution). This offline 
estimation is a complex process, requiring many resources to 
track values and instructions as they travel through a processor. 
Normally, only a limited number of instructions can be 
analyzed in a reasonable amount of time. There have been 
some works on estimating the AVF in real time [15], [16]. 
Walcott et al. [16], apply statistical analysis using a detailed 
simulator to analyze the AVF behavior at large scale. Then 
they use linear regression to explore the relationship between 
and various microarchitecture level variables such as structure 
occupancy, number of instructions executed, etc. 

AVF prediction has been also based on the study of various 
microarchitecture level variables. Duan et al. [17] proposes the 
use of boosted regression trees as a predictive model for AVF. 
Later, Biswas et al. [18] extend this work by calculating and 
estimating AVF over short windows of time, providing better 
opportunities for hardware components error protection during 
design. Soundararajan et al. [15] propose a method to estimate 
AVF for the reorder buffer (ROB) in the processor. Fu et al. 
[19] explore program reliability/vulnerability phase behavior to 
predict AVF. They observe that a methodology based on the 
study of the software code structure is promising in classifying 
program reliability phase behavior. They also explore the use 
of performance counters similar to previous works [16]. 
However, they only explore the AVF estimation for the issue 
queue and the reorder buffer in an out-of-order processor. 

C. Reliability prediction of caches 

Memory structures reliability is hard to predict and deserve 
specific solutions for vulnerability evaluation [20]. Following 
Duan et al. [17] work on using boosted regression trees as a 
predictive model, Ma et al. [21] developed a model based on 
Bayesian additive regression trees for the cache memories. 
Cheng et al. [22] study the variability in AVF for different 
cache configurations. Li et al. [23] propose to use simple 
modifications to the processor to estimate AVF. 

D. Reliability prediction at system level 

When analyzing the lifetime reliability of processor-based 
systems, it is essential to investigate the impact at system level. 
Srinivasan et al. [24] describe a model for lifetime analysis for 
microprocessors and conducted dynamic reconfigurations 
based on the model. In this model, authors assume identical 
vulnerability of devices and uniform device density over the 
whole chip. Later, Shin et al. [25] develop a fine-grain model 
where different structures of the processor (e.g., register file, 
functional units) have different failure mechanisms. However, 
the model suffers from the same inaccuracies as AVF analysis 
methods based on architectural simulators. 

Other works predict lifetime reliability based on 
simulations [26]. Similar to previous work [24], [25], the 
failure mechanisms do not consider aging effects, which lead to 



inaccuracies in the simulation results. Huang and Xu [27] have 
proposed AgeSim, a simulation framework for evaluating the 
lifetime reliability of SoCs at system level. 

Recently, researchers have begun to explore the system-
level impact of variations on power, performance, and 
reliability. Humenay et al. [28] and Romanescu et al. [29] 
developed models of process variation on pipelined processors. 
They show that globally-asynchronous, locally synchronous 
(GALS) design techniques may offer ways to mitigate the 
impact of correlated within-die variations, but random 
variations, particularly within memory structures, cannot be 
easily addressed with these coarse-grained approaches. 

Reliability assessment is a critical topic, especially in large 
and heterogeneous systems. In fact, reliability evaluation, at 
system level, often relies on statistical models. Thus, model 
selection is crucial to obtain trustworthy results, depending on 
the application field. The research activity in this field is active 
even if not specifically related to the design flow of complex 
digital systems. Extreme value theory is often the theoretical 
foundation to build statistical models to evaluate both lifetime 
and reliability in several fields [30]. 

E. Reliability impact of software 

Scarce works have focused on systematically including the 
software into the reliability evaluation process. The work 
published in [31] analyzes various compiler optimization 
effects on the AVF of an embedded processor. Similar 
approaches at the compiler level have been also proposed in 
[32] and [33]. In [34] the authors proposed a first attempt of 
performing static analysis of a computer system including its 
software. Sridharan and Kaeli [35] propose to compute a 
Program Vulnerability Factor (PVF) for a set of benchmarks 
exploited to improve AVF computation for several 
microprocessors. However, neither the final software 
workload, nor the full stack is explicitly considered. Savino, et 
al. [36] propose a solution that considers the impact of the 
application software running on embedded microprocessors. 
However, it does not consider the operating system (OS) and 
multi-processing solutions in the overall evaluation. One of the 
few attempts to consider the full software stack including the 
operating system has been proposed in [37]. Nevertheless, only 
very preliminary results are shown and it is uncertain how it 
can be extended to modern systems employing massive 
parallelism. 

F. Impact of errors 

The issue and impact of soft errors is an important 
emerging concern in the design and implementation of future 
microprocessors. A considerable amount of research at the 
microarchitecture level has conducted fault injection studies 
using software-based methods [38] [39] [40] [41] [42] [43]. 
They focus on understanding how errors in low-level circuits 
or hardware structures manifest at the architecture level. Inside 
this large body of work about fault injections and soft errors, 
there are studies that characterize the fault tolerant behavior of 
the system. The susceptibility of commodity operating systems 
running on IA-32 and IA-64 microprocessors to soft errors was 
investigated in [44]. The results indicated that with improved 
microprocessor support like the Machine Check Architecture 

(MCA), and a little application knowledge, the system could 
reduce the need for reboots due to the detected soft errors. 
Additionally, previous work [38] noticed that not all faults at 
the low levels affect program correctness. 

Identifying the effects of faults in program behavior and 
which programs are more fault-resilient at higher levels has 
also been deeply studied. Some works [45], [46], [47] have 
analyzed certain aspects related to program output 
requirements, algorithm features, and cognitive resilience of 
various applications from the application’s standpoint. 

Finally, another research vector has explored the possible 
anomalous symptoms or atypical events caused by faults, and 
used this information to perform error detection at different 
levels [48], [49], [50]. This class of research tries to 
characterize and catch selected events, symptoms, to diagnose 
the likely presence of a failure caused by soft errors. 

III. EARLY RELIABILITY ESTIMNATION: CHALLENGES 
Traditionally, reliability estimation performed at different 
stages of the design cycle can lead to worst-case decisions and 
over-designed systems. While the required system reliability 
can be guaranteed, the cost of the employed reliability 
mechanisms (in terms or area, energy/power, and performance) 
and the design time required for their integration and 
evaluation are both excessive. Moreover, standard reliability 
evaluation approaches strongly rely on massive and time-
consuming simulations and/or fault injection campaigns, which 
are becoming a bottleneck due the increasing complexity of 
computing systems. 

Early, fast, and accurate evaluation of computing systems 
reliability to support design decisions for hardware and 
software reliability enhancing mechanisms in the system is a 
key enabler for the continuation of technology scaling benefits 
harnessing for several decades. The benefits of an early and 
accurate reliability estimation methodology for the computing 
continuum are many. In particular, design time, energy 
efficiency and system performance are the main design 
dimensions that can benefit from this early analysis. 

A. Design time 
Early reliability evaluation supports the system design 

process and avoids under-estimations or over-estimations of 
the final system’s reliability that can adversely affect the 
system development cost and/or its TTM constraints. Early and 
accurate identification of reliability weaknesses of the 
computing systems leads to suitable decisions for the 
employment of hardware and software mechanisms against 
them. When the reliability weaknesses are identified late in the 
system design, major redesign costs may be imposed and TTM 
can be significantly affected. Moreover systems are often over-
designed to ensure the fulfillment of the reliability 
requirements. This is due to the lack of accurate and early 
estimation methods. Instead the system should be developed to 
fulfill its purpose at minimal design costs. 

B. Energy-efficient reliability 
Energy and power consumption is already the primary 

limitation in the design of computing systems in all domains. 
Typical reliability solutions based on worst-case scenarios and 



massive guard-banding at low abstraction layers add excessive 
energy overheads and performance delimiters in scaled 
technologies. For instance, fault tolerance solutions such as 
Double Modular Redundancy (DMR) or Triple Modular 
Redundancy (TMR) are typically used in high-reliability 
systems. This means 100%-200% more area and energy over- 
head compared to the unprotected system. Early reliability 
evaluation system will enable the employment of more fine 
grain reliability solutions (e.g., use DMR only in the very 
vulnerable parts of the system) with a positive impact on the 
power budget of the system. 

C. Reducing the performance impact of reliability 
Throughput of systems will also benefit from the capability 

of early reliability evaluation. Reliability mechanisms based on 
time redundancy, including error correcting codes or message 
duplication are computation hungry and they may cause up to 
40% of system computational power to be assigned to 
reliability related tasks. If the faults and their error propagation 
are known, it is possible to develop just the right mitigations to 
detect and handle errors in an efficient and accurate way. Again 
with the capability of performing early reliability evaluations 
and with the employment of more fine grain reliability 
solutions, designers will be able to obtain significant 
improvements in achieved performance. 

IV. EARLY RELIABILITY ESTIMATION: PROMISES 
The system reliability stack reported in Figure 2 summarizes 
the masking effect in a computer system. The system is split 
into three main layers: (1) technology, (2) hardware and (3) 
software. The low-level raw errors of the physical devices are 
masked in several different ways as their effect is propagated 
through the hardware layer and the software layer of the system 
stack towards the final program/application outputs.  

 
Figure 2: Masking effects in a computer system 

A key enabler of early reliability of such systems is the 
possibility to analyze these three layers in isolation, to later 
combine the outcome of this local analysis in order to infer 
reliability measures at the system level. Each layer defines an 
interface with the upper layer that in turns sets how the errors 
can be propagated from one layer to the next one. The most 
difficult challenge is the ability of splitting the hardware and 
the software layers, and to study the two layers independently. 
While the hardware layer is already deeply analyzed (as shown 
in Section III), no mature works do exist for the software layer. 

For a complete analysis, the software layer must consider 
both the system software (i.e., the operating system) and the 
application software. Since the global system outcome is 
commonly represent by the outcome of the software executed 
in the system (both application and system software), analyzing 
the software impact on the system reliability implies analyzing 

the way the software reacts on faults that reach its interface 
with the hardware layer. In general, the Instruction Set 
Architecture (ISA) of the target hardware platform executing 
the software defines this interface. 

The ability of a software component to mask and/or 
intrinsically tolerate errors coming from the hardware is also 
referred in the literature as software resilience. To define the 
resilience of a software application, it is necessary to evaluate 
the probability of functional correctness of the software in the 
presence of errors in either the software data or software 
instructions.  

It is important to highlight here that the main interaction 
point between the hardware layer and the software layer is the 
ISA of the microprocessors and co-processors (e.g., 
accelerators such as GPUs or crypto devices) available in the 
system. A straightforward way to model the error propagation 
from the hardware layer to the software layer is therefore to 
map hardware errors into a set of faults model that affect the 
ISA instructions and their data. This somehow detaches the 
software analysis form the underlying hardware analysis and 
moves the work of combining the obtained results later on.  

Table 1 provides a potential taxonomy of software fault 
models defined at the ISA level that could be considered in a 
reliability estimation tool (either based on fault injection or 
static/dynamic analysis of the software). This is a first attempt 
to define a set of software fault models that can be directly 
linked to the effect of errors arising at the hardware level. All 
models are defined at the ISA level, they therefore apply both 
to system and application software.  

Table 1: Definition of Software Fault Models 

Software Fault Model Description 

Wrong Data in a Operand An operand of the ISA instruction 
changes its value  

Not-accessible Operand  An operand of the ISA instruction cannot 
change its value 

Source Operand Forced Switch An operand is used in place of another 

Instruction Replacement An instruction is used in place of another 

Faulty Instruction The instruction is executed incorrectly 

Control Flow Error The control flow is not respected 
(control-flow faults) 

External Peripheral 
Communication Error 

An input value (from a peripheral) is 
corrupted or not arriving 

Signaling Error An internal signaling (exception, 
interrupt, etc.) is wrongly raised or 
suppressed. 

Execution timing Error An error in the timing management (e.g. 
PLL) interferes with the correct 
execution timing. 

Synchronization Error 
An error in the scheduling processes 
causes an incoherent synchronization of 
processes/tasks. 

 

The promise for the early evaluation of the software stack is 
to identify a virtualization environment able to develop 
software using a Virtual Instruction Set Architecture (VISA), 

Software 

Hardware 

Technology 

System Reliability 

Raw error rates 

Hardware masking 

Software masking 



creating an additional layer between the software stack and the 
actual hardware architecture (see Figure 3). Both the Operating 
System and the Application Software shall be described 
according to this VISA. This additional level of abstraction will 
enable to investigate the error propagation properties of the 
software and to efficiently correlate them with errors arising in 
the actual hardware. 

 
Figure 3: Virtualization of the Instruction Set Architecture 

V. CONCLUSIONS 
Reliability is a key challenge for the next generation 

computing systems, and its precise evaluation in the early 
stages of the design process is pivotal for the design of high 
optimized and efficient future systems.  

From the analysis of the state-of-the-art in the area that has 
been presented in this paper, it is clear that current tools and 
models are still not mature to provide precise reliability 
evaluations for a large set of applications as the ones that will 
be expected in the upcoming computing continuum. By closing 
this gap, significant improvements in the products performance 
and quality will be expected. In particular, we expect that 
improvements in tools and methods for precise evaluation of 
the software impact on the hardware error propagation may 
strongly boost our ability of precisely assess the reliability of a 
full system and we expect to see resources and effort from 
several research groups driven toward this challenging research 
topic. 
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