
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Cross-layer early reliability evaluation: Challenges and promises / DI CARLO, Stefano; Vallero, Alessandro; Gizopoulos,
D.; Di Natale, G.; Gonzalez, A.; Canal, R.; Mariani, R.; Pipponzi, M.; Grasset, A.; Bonnot, F.; Reichenbach, F.; Rafiq, G.;
Loekstad, T.. - STAMPA. - (2014), pp. 228-233. (Intervento presentato al convegno IEEE 20th International On-Line
Testing Symposium (IOLTS) tenutosi a Platja d'Aro, Girona (ES) nel 7-9 July 2014) [10.1109/IOLTS.2014.6873704].

Original

Cross-layer early reliability evaluation: Challenges and promises

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/IOLTS.2014.6873704

Terms of use:

Publisher copyright

©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2571942 since: 2016-10-07T17:44:14Z

IEEE Computer Society

Cross-Layer Early Reliability Evaluation:
Challenges and Promises

S.Di Carlo, A.Vallero
Politecnico di Torino

Italy

D.Gizopoulos
University of Athens

Greece

G.Di Natale
LIRMM
France

A.Gonzalez, R.Canal
UPC
Spain

R.Mariani, M.Pipponzi

YOGITECH
Italy

Arnaud Grasset, Philippe Bonnot
Thales
France

Frank Reichenbach, G.Rafiq, T.Loekstad
ABB

Norway

Abstract—Evaluation of computing systems reliability must be
accurate enough to provide hints for the required fault protection
mechanisms that will guarantee correctness of operation at
acceptance costs. To be useful, reliability evaluation must be
performed early enough in the design cycle when, however, the
available details of the system are largely unknown. This
inherent contradiction in terms: early vs. accurate, requires a
cross-layer approach for reliability evaluation. Different layers of
abstraction contribute differently in the overall system
reliability; if this contribution can be assessed independently, the
reliability of the system can be evaluated at the early stages of the
design. We review the state-of-the-art in the area and discuss
corresponding challenges

Keywords—reliability evalution, computing systems

I. INTRODUCTION
Information technologies are literally changing the way people
live, work and learn. For the past 20 years, researchers have
developed technologies that allow sensing, computing, and
wireless communication to be embedded in complex systems
as well as every day objects. However, while in the past the
development of different computing segments such Embedded
Systems (ES) or High Performance Computing (HPC) systems
has been driven by separated communities and players
exploiting different technologies, a radical paradigm shift is
expected in the upcoming years leading to a true computing
continuum [1] ranging from smartphones to mission-critical
datacenter machines, and from desktops to automobiles (Figure
1). The key characteristic of this computing continuum is that
the same hardware and software technologies and industrial
players will act across all computing segments introducing a
radical change compared to past business and technical
development models. On aggregate, this computing continuum
represents a total addressable market approaching a billion
processors a year, which is expected to explode to more than
two billion per year before 2020 [1].

In this exciting scenario, very critical technological
challenges are creating serious threats for the successful
development of next generation computing systems in all
segments. Future device integration technology is expected to
dramatically reduce the device quality, and therefore the
operational reliability of circuits due to higher device
variability, manufacturing defects, aging, and higher

susceptibility to transient faults (soft errors) and permanent
faults (device degradation, wear-out) [2]. One of the biggest
challenges for future technologies is the implementation of
“dependable” systems on top of significantly unreliable
components, which will degrade and even fail during normal
lifetime of the chip.

Figure 1: The computing continuum

Digital systems reliability is not a new issue for the
scientific community. However, current practices to guarantee
reliability of electronic systems are based on pessimistic (worst
case) scenarios and expend significant development costs,
energy and resources to tolerate the device unreliability by
adding fault tolerance mechanisms at different levels
(technology, architecture, software). The rising energy costs
required to compensate for increasing unreliability are rapidly
becoming unacceptable in today’s environment where power
consumption is often the limiting factor on integrated circuit
performance, and energy efficiency is a top concern. In this era,
where low reliability threatens to seriously slow down or even
to end the benefits of feature size reduction, a holistic approach
to guarantee high reliability is required. Such an approach aims
at ranging across different computing disciplines, across
computing system layers and across computing market
segments to have a unique reliability assessment methodology.
Such a holistic approach in which several techniques can be
applied at different levels in a complex system (e.g.,

Computing Continuum

Services

Application

System SW

Architectures

Silicon

technology, architecture, software, etc.) cannot be successful if
not complemented with methods and tools enabling the
assessment of the actual reliability level of a system starting
from the early stages of its design. Nowadays, system time-to-
market (TTM) is already pivotal for the market success of both
HPC and ES designs. An increasing number of projects whose
reliability was assessed at very late stages of the design cycle,
miss their announced market entry dates due to major design
changes that in many cases are not affordable. Therefore, early
budgeting for reliability has the potential to save significant
design effort and resources and has a profound impact on the
TTM of a product. These considerations are supported by
initiatives such as the CLERECO European Project [3] that
investigate new methodologies to accurately assess system
reliability through all stages of the design cycle for the future
systems of the computing continuum.

This paper reviews current approaches for reliability
evaluation at different design levels and discusses motivations
and requirements for the research of new methods for early and
precise reliability evaluation at system level.

II. RELATED WORK
The global research community has been very active in
researching technological and architectural methods to improve
reliability of specific components and systems. However, when
focusing on the reliability evaluation, especially when moving
at high abstraction levels, significant work still needs to be
carried out. This section is an overview of how reliability is
nowadays evaluated at different design stages.

A. Reliability prediction at circuit and gate-level
Circuit-level reliability estimation tries to estimate the

probability of a given failure mode at the output of a logic gate
due to intrinsic phenomena like aging, or external perturbations
like heavy ions [4],[5]. Today, reliability device simulators
have become an integral part of the design process. These
simulators successfully model the most significant physical
failure mechanisms in modern electronic devices. Moreover,
some analysis pointed out that, the performance improvement
of a full technological generation step can be lost due to
process variations [6]. In response to the need to analyze
designs under process variations, researchers have developed
statistical timing analysis techniques to be applied for deep
sub-micron chip designs [7].

Gate-level reliability estimation moves the focus to the
nodes of a netlist [5]. Estimating the error susceptibility of a
node requires computing the probability of sensitizing the node
with an input vector able to propagate the erroneous value to
one of the outputs of the circuit [6]. This however is a very
computational intensive task and requires the simulation of
several random vectors whose number significantly increases
with the size of the circuit [4], [5], [8], [9], [10], [11].
Reliability prediction tools now model the failure probability of
chips at the end of life by analyzing only the single dominant
wear-out mechanisms. Modern prediction tools do not predict
the random, post burn-in, failure rate that would be seen in the
field.

B. Reliability prediction at architectural level
The research community has provided a lot of results in the

area of Architectural Vulnerability Factor (AVF) calculation
and AVF estimation. The AVF is the probability that a fault in
a processor structure will result in a visible error in the final
output of a program. Most attempts are offline analysis and
AVF calculation with complex simulators [12], [13], [14], like
ACE-analysis (Architectural Correct Execution). This offline
estimation is a complex process, requiring many resources to
track values and instructions as they travel through a processor.
Normally, only a limited number of instructions can be
analyzed in a reasonable amount of time. There have been
some works on estimating the AVF in real time [15], [16].
Walcott et al. [16], apply statistical analysis using a detailed
simulator to analyze the AVF behavior at large scale. Then
they use linear regression to explore the relationship between
and various microarchitecture level variables such as structure
occupancy, number of instructions executed, etc.

AVF prediction has been also based on the study of various
microarchitecture level variables. Duan et al. [17] proposes the
use of boosted regression trees as a predictive model for AVF.
Later, Biswas et al. [18] extend this work by calculating and
estimating AVF over short windows of time, providing better
opportunities for hardware components error protection during
design. Soundararajan et al. [15] propose a method to estimate
AVF for the reorder buffer (ROB) in the processor. Fu et al.
[19] explore program reliability/vulnerability phase behavior to
predict AVF. They observe that a methodology based on the
study of the software code structure is promising in classifying
program reliability phase behavior. They also explore the use
of performance counters similar to previous works [16].
However, they only explore the AVF estimation for the issue
queue and the reorder buffer in an out-of-order processor.

C. Reliability prediction of caches

Memory structures reliability is hard to predict and deserve
specific solutions for vulnerability evaluation [20]. Following
Duan et al. [17] work on using boosted regression trees as a
predictive model, Ma et al. [21] developed a model based on
Bayesian additive regression trees for the cache memories.
Cheng et al. [22] study the variability in AVF for different
cache configurations. Li et al. [23] propose to use simple
modifications to the processor to estimate AVF.

D. Reliability prediction at system level

When analyzing the lifetime reliability of processor-based
systems, it is essential to investigate the impact at system level.
Srinivasan et al. [24] describe a model for lifetime analysis for
microprocessors and conducted dynamic reconfigurations
based on the model. In this model, authors assume identical
vulnerability of devices and uniform device density over the
whole chip. Later, Shin et al. [25] develop a fine-grain model
where different structures of the processor (e.g., register file,
functional units) have different failure mechanisms. However,
the model suffers from the same inaccuracies as AVF analysis
methods based on architectural simulators.

Other works predict lifetime reliability based on
simulations [26]. Similar to previous work [24], [25], the
failure mechanisms do not consider aging effects, which lead to

inaccuracies in the simulation results. Huang and Xu [27] have
proposed AgeSim, a simulation framework for evaluating the
lifetime reliability of SoCs at system level.

Recently, researchers have begun to explore the system-
level impact of variations on power, performance, and
reliability. Humenay et al. [28] and Romanescu et al. [29]
developed models of process variation on pipelined processors.
They show that globally-asynchronous, locally synchronous
(GALS) design techniques may offer ways to mitigate the
impact of correlated within-die variations, but random
variations, particularly within memory structures, cannot be
easily addressed with these coarse-grained approaches.

Reliability assessment is a critical topic, especially in large
and heterogeneous systems. In fact, reliability evaluation, at
system level, often relies on statistical models. Thus, model
selection is crucial to obtain trustworthy results, depending on
the application field. The research activity in this field is active
even if not specifically related to the design flow of complex
digital systems. Extreme value theory is often the theoretical
foundation to build statistical models to evaluate both lifetime
and reliability in several fields [30].

E. Reliability impact of software

Scarce works have focused on systematically including the
software into the reliability evaluation process. The work
published in [31] analyzes various compiler optimization
effects on the AVF of an embedded processor. Similar
approaches at the compiler level have been also proposed in
[32] and [33]. In [34] the authors proposed a first attempt of
performing static analysis of a computer system including its
software. Sridharan and Kaeli [35] propose to compute a
Program Vulnerability Factor (PVF) for a set of benchmarks
exploited to improve AVF computation for several
microprocessors. However, neither the final software
workload, nor the full stack is explicitly considered. Savino, et
al. [36] propose a solution that considers the impact of the
application software running on embedded microprocessors.
However, it does not consider the operating system (OS) and
multi-processing solutions in the overall evaluation. One of the
few attempts to consider the full software stack including the
operating system has been proposed in [37]. Nevertheless, only
very preliminary results are shown and it is uncertain how it
can be extended to modern systems employing massive
parallelism.

F. Impact of errors

The issue and impact of soft errors is an important
emerging concern in the design and implementation of future
microprocessors. A considerable amount of research at the
microarchitecture level has conducted fault injection studies
using software-based methods [38] [39] [40] [41] [42] [43].
They focus on understanding how errors in low-level circuits
or hardware structures manifest at the architecture level. Inside
this large body of work about fault injections and soft errors,
there are studies that characterize the fault tolerant behavior of
the system. The susceptibility of commodity operating systems
running on IA-32 and IA-64 microprocessors to soft errors was
investigated in [44]. The results indicated that with improved
microprocessor support like the Machine Check Architecture

(MCA), and a little application knowledge, the system could
reduce the need for reboots due to the detected soft errors.
Additionally, previous work [38] noticed that not all faults at
the low levels affect program correctness.

Identifying the effects of faults in program behavior and
which programs are more fault-resilient at higher levels has
also been deeply studied. Some works [45], [46], [47] have
analyzed certain aspects related to program output
requirements, algorithm features, and cognitive resilience of
various applications from the application’s standpoint.

Finally, another research vector has explored the possible
anomalous symptoms or atypical events caused by faults, and
used this information to perform error detection at different
levels [48], [49], [50]. This class of research tries to
characterize and catch selected events, symptoms, to diagnose
the likely presence of a failure caused by soft errors.

III. EARLY RELIABILITY ESTIMNATION: CHALLENGES
Traditionally, reliability estimation performed at different
stages of the design cycle can lead to worst-case decisions and
over-designed systems. While the required system reliability
can be guaranteed, the cost of the employed reliability
mechanisms (in terms or area, energy/power, and performance)
and the design time required for their integration and
evaluation are both excessive. Moreover, standard reliability
evaluation approaches strongly rely on massive and time-
consuming simulations and/or fault injection campaigns, which
are becoming a bottleneck due the increasing complexity of
computing systems.

Early, fast, and accurate evaluation of computing systems
reliability to support design decisions for hardware and
software reliability enhancing mechanisms in the system is a
key enabler for the continuation of technology scaling benefits
harnessing for several decades. The benefits of an early and
accurate reliability estimation methodology for the computing
continuum are many. In particular, design time, energy
efficiency and system performance are the main design
dimensions that can benefit from this early analysis.

A. Design time
Early reliability evaluation supports the system design

process and avoids under-estimations or over-estimations of
the final system’s reliability that can adversely affect the
system development cost and/or its TTM constraints. Early and
accurate identification of reliability weaknesses of the
computing systems leads to suitable decisions for the
employment of hardware and software mechanisms against
them. When the reliability weaknesses are identified late in the
system design, major redesign costs may be imposed and TTM
can be significantly affected. Moreover systems are often over-
designed to ensure the fulfillment of the reliability
requirements. This is due to the lack of accurate and early
estimation methods. Instead the system should be developed to
fulfill its purpose at minimal design costs.

B. Energy-efficient reliability
Energy and power consumption is already the primary

limitation in the design of computing systems in all domains.
Typical reliability solutions based on worst-case scenarios and

massive guard-banding at low abstraction layers add excessive
energy overheads and performance delimiters in scaled
technologies. For instance, fault tolerance solutions such as
Double Modular Redundancy (DMR) or Triple Modular
Redundancy (TMR) are typically used in high-reliability
systems. This means 100%-200% more area and energy over-
head compared to the unprotected system. Early reliability
evaluation system will enable the employment of more fine
grain reliability solutions (e.g., use DMR only in the very
vulnerable parts of the system) with a positive impact on the
power budget of the system.

C. Reducing the performance impact of reliability
Throughput of systems will also benefit from the capability

of early reliability evaluation. Reliability mechanisms based on
time redundancy, including error correcting codes or message
duplication are computation hungry and they may cause up to
40% of system computational power to be assigned to
reliability related tasks. If the faults and their error propagation
are known, it is possible to develop just the right mitigations to
detect and handle errors in an efficient and accurate way. Again
with the capability of performing early reliability evaluations
and with the employment of more fine grain reliability
solutions, designers will be able to obtain significant
improvements in achieved performance.

IV. EARLY RELIABILITY ESTIMATION: PROMISES
The system reliability stack reported in Figure 2 summarizes
the masking effect in a computer system. The system is split
into three main layers: (1) technology, (2) hardware and (3)
software. The low-level raw errors of the physical devices are
masked in several different ways as their effect is propagated
through the hardware layer and the software layer of the system
stack towards the final program/application outputs.

Figure 2: Masking effects in a computer system

A key enabler of early reliability of such systems is the
possibility to analyze these three layers in isolation, to later
combine the outcome of this local analysis in order to infer
reliability measures at the system level. Each layer defines an
interface with the upper layer that in turns sets how the errors
can be propagated from one layer to the next one. The most
difficult challenge is the ability of splitting the hardware and
the software layers, and to study the two layers independently.
While the hardware layer is already deeply analyzed (as shown
in Section III), no mature works do exist for the software layer.

For a complete analysis, the software layer must consider
both the system software (i.e., the operating system) and the
application software. Since the global system outcome is
commonly represent by the outcome of the software executed
in the system (both application and system software), analyzing
the software impact on the system reliability implies analyzing

the way the software reacts on faults that reach its interface
with the hardware layer. In general, the Instruction Set
Architecture (ISA) of the target hardware platform executing
the software defines this interface.

The ability of a software component to mask and/or
intrinsically tolerate errors coming from the hardware is also
referred in the literature as software resilience. To define the
resilience of a software application, it is necessary to evaluate
the probability of functional correctness of the software in the
presence of errors in either the software data or software
instructions.

It is important to highlight here that the main interaction
point between the hardware layer and the software layer is the
ISA of the microprocessors and co-processors (e.g.,
accelerators such as GPUs or crypto devices) available in the
system. A straightforward way to model the error propagation
from the hardware layer to the software layer is therefore to
map hardware errors into a set of faults model that affect the
ISA instructions and their data. This somehow detaches the
software analysis form the underlying hardware analysis and
moves the work of combining the obtained results later on.

Table 1 provides a potential taxonomy of software fault
models defined at the ISA level that could be considered in a
reliability estimation tool (either based on fault injection or
static/dynamic analysis of the software). This is a first attempt
to define a set of software fault models that can be directly
linked to the effect of errors arising at the hardware level. All
models are defined at the ISA level, they therefore apply both
to system and application software.

Table 1: Definition of Software Fault Models

Software Fault Model Description

Wrong Data in a Operand An operand of the ISA instruction
changes its value

Not-accessible Operand An operand of the ISA instruction cannot
change its value

Source Operand Forced Switch An operand is used in place of another

Instruction Replacement An instruction is used in place of another

Faulty Instruction The instruction is executed incorrectly

Control Flow Error The control flow is not respected
(control-flow faults)

External Peripheral
Communication Error

An input value (from a peripheral) is
corrupted or not arriving

Signaling Error An internal signaling (exception,
interrupt, etc.) is wrongly raised or
suppressed.

Execution timing Error An error in the timing management (e.g.
PLL) interferes with the correct
execution timing.

Synchronization Error
An error in the scheduling processes
causes an incoherent synchronization of
processes/tasks.

The promise for the early evaluation of the software stack is
to identify a virtualization environment able to develop
software using a Virtual Instruction Set Architecture (VISA),

Software

Hardware

Technology

System Reliability

Raw error rates

Hardware masking

Software masking

creating an additional layer between the software stack and the
actual hardware architecture (see Figure 3). Both the Operating
System and the Application Software shall be described
according to this VISA. This additional level of abstraction will
enable to investigate the error propagation properties of the
software and to efficiently correlate them with errors arising in
the actual hardware.

Figure 3: Virtualization of the Instruction Set Architecture

V. CONCLUSIONS
Reliability is a key challenge for the next generation

computing systems, and its precise evaluation in the early
stages of the design process is pivotal for the design of high
optimized and efficient future systems.

From the analysis of the state-of-the-art in the area that has
been presented in this paper, it is clear that current tools and
models are still not mature to provide precise reliability
evaluations for a large set of applications as the ones that will
be expected in the upcoming computing continuum. By closing
this gap, significant improvements in the products performance
and quality will be expected. In particular, we expect that
improvements in tools and methods for precise evaluation of
the software impact on the hardware error propagation may
strongly boost our ability of precisely assess the reliability of a
full system and we expect to see resources and effort from
several research groups driven toward this challenging research
topic.

ACKNOWLEDGMENT
This paper has been fully supported by the 7th Framework

Program of the European Union through the CLERECO
Project, under Grant Agreement 611404. It has been also
supported in part by EU’s European Social Fund (ESF) and
Greek national funds under the “Thales/HOLISTIC” project.

REFERENCES

[1] D. Buchholz and J. Dunlop, “The future of enterprise computing: Pre-
pare for compute continuum.” [Available Online]:
http://goo.gl/KYb0H8, May 2011.

[2] S. Guertin and M. White, “Cmos reliability challenges the future of
commercial digital electronics and nasa,” in NEPP Electronic Technol-
ogy Workshop, 2010.

[3] CLERECO Consortium, “Cross-layer early reliability evaluation for the
computing continuum official website.” [Available Online]: http://www.
clereco.eu, 2013.

[4] M. Omana, G. Papasso, D. Rossi, and C. Metra, “A model for transient
fault propagation in combinatorial logic,” in On-Line Testing
Symposium, 2003. IOLTS 2003. 9th IEEE, pp. 111–115, July 2003.

[5] A. Maheshwari, I. Koren, and N. Burleson, “Techniques for transient
fault sensitivity analysis and reduction in vlsi circuits,” in Defect and
Fault Tolerance in VLSI Systems, 2003. Proceedings. 18th IEEE
International Symposium on, pp. 597–604, Nov 2003.

[6] K. Bowman, S. Duvall, and J. Meindl, “Impact of die-to-die and within-
die parameter fluctuations on the maximum clock frequency distribution
for gigascale integration,” Solid-State Circuits, IEEE Journal of, vol. 37,
pp. 183–190, Feb 2002.

[7] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analysis for
intra-die process variations with spatial correlations,” in Computer Aided
Design, 2003. ICCAD-2003. International Conference on, pp. 900–907,
Nov 2003.

[8] K. Mohanram and N. Touba, “Cost-effective approach for reducing soft
error failure rate in logic circuits,” in Test Conference, 2003.
Proceedings. ITC 2003. International, vol. 1, pp. 893–901, Sept 2003.

[9] K. Mohanram and N. Touba, “Cost-effective approach for reducing soft
error failure rate in logic circuits,” in Test Conference, 2003.
Proceedings. ITC 2003. International, vol. 1, pp. 893–901, Sept 2003.

[10] M. Reorda and M. Violante, “Accurate and efficient analysis of single
event transients in vlsi circuits,” in On-Line Testing Symposium, 2003.
IOLTS 2003. 9th IEEE, pp. 101–105, July 2003.

[11] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Dependable Systems and Networks, 2002. DSN
2002. Proceedings. International Conference on, pp. 389–398, 2002.

[12] S. S. Mukherjee, C. Weaver, J. S. Emer, S. K. Reinhardt, and T. M.
Austin, “A systematic methodology to compute the architectural vul-
nerability factors for a high-performance microprocessor.,” in MICRO,
pp. 29–42, ACM/IEEE, 2003.

[13] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Softarch: An architecture
level tool for modeling and analyzing soft errors.,” in DSN, pp. 496–505,
IEEE Computer Society, 2005.

[14] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ace analysis
reliability estimates using fault-injection.,” in ISCA (D. M. Tullsen and
B. Calder, eds.), pp. 460–469, ACM, 2007.

[15] N. Soundararajan, A. Parashar, and A. Sivasubramaniam, “Mechanisms
for bounding vulnerabilities of processor structures.,” in ISCA (D. M.
Tullsen and B. Calder, eds.), pp. 506–515, ACM, 2007.

[16] K. R. Walcott, G. Humphreys, and S. Gurumurthi, “Dynamic prediction
of architectural vulnerability from microarchitectural state.,” in ISCA (D.
M. Tullsen and B. Calder, eds.), pp. 516–527, ACM, 2007.

[17] L. Duan, B. Li, and L. Peng, “Versatile prediction and fast estimation of
architectural vulnerability factor from processor performance metrics,”
in High Performance Computer Architecture, 2009. HPCA 2009. IEEE
15th International Symposium on, pp. 129–140, IEEE, 2009.

[18] A. Biswas, N. Soundararajan, S. S. Mukherjee, and S. Gurumurthi,
“Quantized avf: A means of capturing vulnerability variations over small
windows of time,” in IEEE Workshop on Silicon Errors in Logic-System
Effects, 2009.

[19] X. Fu, J. Poe, T. Li, and J. A. B. Fortes, “Characterizing microarchitec-
ture soft error vulnerability phase behavior.,” in MASCOTS, pp. 147–
155, IEEE Computer Society, 2006.

[20] A. Biswas, P. Racunas, R. Cheveresan, J. S. Emer, S. S. Mukherjee, and
R. Rangan, “Computing architectural vulnerability factors for address-
based structures.,” in ISCA, pp. 532–543, IEEE Computer Society, 2005.

[21] A.Ma,Y.Cheng,andZ.Xing,“Accurateandsimplifiedpredictionofavf for
delay and energy efficient cache design.,” J. Comput. Sci. Technol., vol.
26, no. 3, pp. 504–519, 2011.

[22] Y. Cheng, A. Ma, Y. Tang, and M. Zhang, “Accurate vulnerability
estimation for cache hierarchy,” in Networked Computing and Advanced
Information Management (NCM), 2011 7th International Conference on,
pp. 7–14, IEEE, 2011.

[23] X.Li,S.V.Adve,P.Bose,andJ.A.Rivers,“Onlineestimationofarchi- tectural
vulnerability factor for soft errors,” in Computer Architecture, 2008.
ISCA’08. 35th International Symposium on, pp. 341–352, IEEE, 2008.

[24] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for
lifetime reliability-aware microprocessors,” Proceedings of the 31st
Annual International Symposium on Computer Architecture, vol. 32, no.
2, p. 276, 2004.

[25] J.Shin,V.V.Zyuban,Z.Hu,J.A.Rivers,andP.Bose,“Aframeworkfor
architecture-level lifetime reliability modeling.,” in DSN, pp. 534–543,
IEEE Computer Society, 2007.

[26] T. S. Rosing, K. Mihic, and G. D. Micheli, “Power and reliability
management of socs.,” IEEE Trans. VLSI Syst., vol. 15, no. 4, pp. 391–
403, 2007.

[27] L. Huang and Q. Xu, “Agesim: A simulation framework for evaluating
the lifetime reliability of processor-based socs.,” in DATE, pp. 51–56,
IEEE, 2010.

[28] E. Humenay, D. Tarjan, W. Huang, and K. Skadron, “Impact of parame-
ter variations on multicore architectures,” in Workshop on Architectural
Support for Gigascale Integration (ASGI-06, held in conjunction with
ISCA-33), 2006.

[29] B. Romanescu, S. Ozev, and D. Sorin, “Quantifying the impact of pro-
cess variability on uniprocessor behavior,” in Workshop on Architectural
Reliability, 2006.

[30] R. L. Smith, “Statistics of extremes, with applications in environment,
insurance, and finance,” Monographs on Statistics and Applied Proba-
bility, vol. 99, pp. 1–78, 2004.

[31] T. M. Jones, M. F. O’Boyle, and O. Ergin, “Evaluating the effects of
compiler optimisations on avf,” in Workshop on interaction between
compilers and computer architecture (INTERACT-12), Citeseer, 2008.

[32] V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural depen-
dency from architectural vulnerability.,” in HPCA, pp. 117–128, IEEE
Computer Society, 2009.

[33] J. A. Butts and G. S. Sohi, “Dynamic dead-instruction detection and
elimination.,” in ASPLOS (K. Gharachorloo, ed.), pp. 199–210, ACM
Press, 2002.

[34] A. Benso, S. Di Carlo, G. Di Natale, and P. Prinetto, “Static analysis of
seu effects on software applications.,” in ITC, pp. 500–508, IEEE
Computer Society, 2002.

[35] V. Sridharan and D. R. Kaeli, “Using pvf traces to accelerate avf
modeling,” in Proceedings of the IEEE Workshop on Silicon Errors in
Logic-System Effects, pp. 23–24, 2010.

[36] A. Savino, S. Di Carlo, G. Politano, A. Benso, A. Bosio, and G. Di Na-
tale, “Statistical reliability estimation of microprocessor-based
systems.,” IEEE Trans. Computers, vol. 61, no. 11, pp. 1521–1534,
2012.

[37] V. Sridharan and D. R. Kaeli, “The effect of input data on program
vulnerability,” in Workshop on System Effects of Logic Soft Errors
(SELSE-5), 2009.

[38] [38] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing
the effects of transient faults on a high-performance processor pipeline.,”
in DSN, pp. 61–, IEEE Computer Society, 2004.

[39] [39] G. P. Saggese, N. J. Wang, Z. Kalbarczyk, S. J. Patel, and R. K.
Iyer, “An experimental study of soft errors in microprocessors.,” IEEE
Micro, vol. 25, no. 6, pp. 30–39, 2005.

[40] [40] D. Thaker, D. Franklin, J. Oliver, S. Biswas, D. Lockhart, T.
Metodi, and F. Chong, “Characterization of Error-Tolerant Applications
when Protecting Control Data,” in Workload Characterization, 2006
IEEE International Symposium on, pp. 142–149, IEEE, 2006.

[41] [41] S. Z. Shazli, M. A. Abdul-Aziz, M. B. Tahoori, and D. R. Kaeli,
“A field analysis of system-level effects of soft errors occurring in
microprocessors used in information systems.,” in ITC (D. Young and
N. A. Touba, eds.), pp. 1–10, IEEE, 2008.

[42] [42] M. Rahman, B. R. Childers, and S. Cho, “Stealth works: Emulating
memory errors,” in Proceedings of the First International Conference on
Runtime Verification, RV’10, (Berlin, Heidelberg), pp. 360–367,

[43] Springer-Verlag, 2010.�[43] S. Pan, Y. Hu, and X. L. 0001, “Ivf:
Characterizing the vulnerability of microprocessor structures to
intermittent faults.,” in DATE, pp. 238–243, IEEE, 2010.

[44] A. Messer, P. Bernadat, G. Fu, D. Chen, Z. Dimitrijevic, D. J. F. Lie, D.
Mannaru, A. Riska, and D. S. Milojicic, “Susceptibility of commodity
systems and software to memory soft errors.,” IEEE Trans. Computers,
vol. 53, no. 12, pp. 1557–1568, 2004.

[45] [45] M. Breuer, “Multi-media applications and imprecise computation,”
in Digital System Design, 2005. Proceedings. 8th Euromicro
Conferenceon, pp. 2–7, IEEE, 2005.�[46] X. Li and D. Yeung,
“Application-level correctness and its impact on

[46] fault tolerance,” in High Performance Computer Architecture, 2007.
HPCA 2007. IEEE 13th International Symposium on, pp. 181–192, Feb
2007.

[47] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “Ersa: Error
resilient system architecture for probabilistic applications.,” in DATE,
pp. 1560–1565, IEEE, 2010.

[48] P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee,
“Perturbation-based fault screening.,” in HPCA, pp. 169–180, IEEE
Computer Society, 2007.

[49] N.J.WangandS.J.Patel,“Restore:Symptom-basedsofterrordetection in
microprocessors.,” IEEE Trans. Dependable Sec. Comput., vol. 3, no. 3,
pp. 188–201, 2006.

[50] P. Ramchandran, S. Adve, V. Adve, and Y. Z. M.-L. Li, “Swat: An error
resilient system,” in 4th Workshop on Silicon Errors in Logic - System
Effects (SELSE - IV), 2008.

