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Abstract—Nowadays, Field-Programmable Gate Arrays (FP-
GAs) are increasingly used in critical applications. In these
scenarios fault tolerance techniques are needed to increase system
dependability and lifetime.
This paper proposes a novel methodology to achieve autonomous
fault tolerance in FPGA-based systems affected by permanent
faults. A design flow is defined to help designers to build a system
with increased lifetime and availability. The methodology exploits
Dynamic Partial Reconfiguration (DPR) to relocate at run-time
faulty modules implemented onto the FPGA. A partitioning
method is also presented to provide a solution which maximizes
the number of permanent faults the system can tolerate.
Experimental results highlight the negligible performance degra-
dation introduced by applying the proposed methodology, and
the improvements with respect to state-of-the-art solutions.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are increasingly
used in many application fields. Nowadays, FPGAs are com-
monly adopted not just for Application Specific Integrated
Circuits (ASICs) prototyping, but also for the implementation
of embedded systems in critical scenarios (e.g., automotive
or aerospace [1][2]) that require high reliability, availability,
and long system lifetime. They offer limited Non-Recurrent
Engineering (NRE) costs, and high flexibility, thanks to their
dynamically reconfigurable characteristics.
FPGA dynamic reconfiguration can be effectively exploited
to allow remote, or on-site, run-time system maintenance.
In fact, when the system availability is a priority, remote
repairing/maintenance is not the best solution, since it is slow
and not always possible. In this context, systems able to
autonomously self-recover are preferred. These systems are
called Autonomous Fault-Tolerant Systems (AFTSs). They are
of great interest because they offer increased lifetime and
availability [3].
SRAM-based FPGAs are subject to two kinds of errors: soft-
errors and hard-errors. In general, soft-errors (such as Single
Event Upsets (SEUs) and Multiple Bit Upsets (MBUs) [4][5])
are induced by radiations and are temporary. On the other
hand, hard-errors are caused by permanent faults and they
are induced by device wear-out and aging [6]. In the last
years many solutions investigated how to deal with soft-errors
[7][8] while just few works were presented to cope with
hard-errors [9][10]. Filling this gap is gaining importance
as it has been remarked by the International Road Map for
Semiconductors [11]. Permanent faults occur more frequently
in modern systems as devices and wires have increasingly

smaller dimensions and they operate at high temperatures.
Furthermore, in those scenarios in which devices are expected
to last several years, system lifetime is one of the most relevant
aspects of the design. Therefore, aging and wear-out effects
must be taken into account.
This paper proposes a design methodology to achieve au-
tonomous fault tolerance in FPGA-based systems affected by
permanent faults. A design flow is defined to help designers
to build a system with increased lifetime and availability.
The methodology exploits the Dynamic Partial Reconfigu-
ration (DPR) feature of modern FPGAs [12] to relocate at
run-time faulty modules implemented onto the device. DPR
allows fast self-recovery from permanent faults, guaranteeing
high availability and increased system lifetime. A parition-
ing method is also presented to provide a solution which
maximizes the number of permanent faults the system can
tolerate. The proposed design methodology improves existing
literature solutions by dramatically reducing recovery time
and memory space needed to store recovery information. The
rest of the paper is organized as follows. Section II briefly
overviews existing literature solutions to cope with permanent
faults on FPGA-based systems, highlighting the limitations
they suffer from. Section III introduces the proposed pari-
tioning and recovery methodology, while, Section IV reports
results gathered from two case studies where the proposed
methodology is adopted. Eventually, Section V concludes the
paper and discusses possible future works.

II. RELATED WORKS

In literature, many solutions have been proposed to detect
permanent faults in FPGA-based systems [13] [14], while,
only few works address the fault tolerance improvement, or
the recovery of this kind of systems from such faults.
To increase the fault tolerance of FPGA-based systems two
alternative approaches can be exploited. The former exploits
the introduction of redundancy, at design-time, allowing sys-
tem operations without any interruption even in presence of
faults. An example of such technique is the Triple Modular
Redundancy (TMR), which consists of triplicating the hard-
ware functionality to detect faults which cause errors in the
outputs of a module. Nevertheless, this technique incurs in
large hardware resources overhead.
The second, more efficient, approach consists of exploiting
the dynamically reconfigurable capability of modern FPGAs
to recovery from permanent faults, enabling to obtain Au-
tonomous Fault-Tolerant Systems (AFTS) [3]. The idea of



exploiting dynamic reconfiguration to cope with permanent
faults affecting a system implemented on a SRAM-based
FPGA is not new [15][16][17][18].
The main idea is that, when a permanent fault caused by elec-
tromigration or device aging [6] affects a portion of the FPGA
fabric, making it unusable, a different circuit configuration
needs to be loaded, avoiding the usage of the permanently
damaged area. This recovery action requires that the corrupted
area is identified and delimited.
The most common solution to this problem is the so called
relocation: whenever a portion of the FPGA is detected as
faulty, the function implemented by that portion is moved
to a spare reconfigurable area. The process is usually per-
formed without stopping the portions of the FPGA that are
not involved in the relocation so that other functionalities of
the system remain available. Relocation consists of loading
the proper configuration file, called bitstream, into the FPGA
configuration memory. In particular, it is possible to configure
the whole device [9][19] or, exploiting Dynamic Partial Re-
configuration (DPR) [12], to configure just a part of it [10].
In [9] and [19], authors present a detection and recovery
methodology targeting both transient and permanent faults.
Whenever a permanent fault is detected, the proposed recovery
strategy consists of reconfiguring the whole FPGA with a pre-
computed different bitstream so that the circuit will not use the
faulty FPGA resource. However, the number of full bitstream
to store increases exponentially with the number of portions in
which the design is split in. In this case, large recovery time
is expected, since the full FPGA configuration bitstream is
composed of several Mbits of data. Moreover, large memories
storing all possible bitstreams are needed.
Instead, in [10] authors propose a DPR-based methodology
for pipelined circuits. The usage of FPGA partial reconfig-
uration slightly reduces the recovery time and the memory
requirements for bitstreams storing. However, the proposed
methodology is not efficient, since even if a single circuit
module is targeted as faulty, all the following modules must
be also reconfigured. Authors do not address the problem of
faults affecting the interconnections among adjacent modules,
making the proposed methodology not applicable in real use-
cases.
The methodology presented in this paper overcomes the afore-
mentioned limitations exploiting Dynamic Partial Reconfigu-
ration to relocate, at run-time, faulty modules implemented on
the FPGA. Fast recovery time is guaranteed since it requires
only the faulty module relocation, and the interconnection
network update. Faults affecting interconnections between
modules are taken into account by introducing spare resources
reserved for the recovery of faulty interconnections. Moreover,
the proposed methodology requires to store partial bitstreams
whose size is dramatically reduced with respect to full FPGA
configuration bitstreams.
Finally, an optimal paritioning method is presented to max-
imize the faults the system can tolerate, considering the free
resources in FPGA device. The presented methodology enables
to increase the availability and the lifetime of FPGA-based
Autonomous Fault-Tolerant Systems.

III. PROPOSED METHODOLOGY

Basically, the proposed recovery strategy consists of run-
time relocation of faulty modules in spare FPGA resources.

To support this strategy, an FPGA-based architecture and a
paritioning methodology are defined. Run-time relocation is
obtained by means of Dynamic Partial Reconfiguration (DPR)
[12].model is designed to find a paritioning able to maximize
the number of permanent fault the system can tolerate.

A. Proposed architecture

The proposed architecture addresses to the implementation
of AFTSs on SRAM-based FPGAs. The designed systems
must be able to autonomously detect and recover from faults.
For this reason the architecture is composed of three blocks,
each of them implementing different functions. As illustrated
in Fig. 1, the three main components are:

• an SRAM-based FPGA hosting the hardware function-
ality, called Application FPGA,

• a Fault Manager which contains the Configuration
Controller and the Fault Classifier,

• a Bitstream memory storing the Application FPGA
configuration files.

Figure 1: Proposed system architecture

The Fault Manager monitors faults that occur in the application
FPGA and manages the recovery process. In details, the Fault
Classifier detects faults and it establishes where they have
happened. This task can be accomplished by running periodic
tests on the Application FPGA [13][14], or simply collecting
error signals generated by fault detection hardware embedded
in the Application FPGA modules [20][21].
The Configuration Controller, instead, runs the recovery op-
erations so that the system is restored back to a working
state. It is important to notice that recovery operations are
managed on the basis of the Fault Classifier diagnosis. For an
SRAM-based FPGA system, recovery from permanent faults



means a reconfiguration of the FPGA. As a consequence,
the Configuration Controller is connected to the Bitstream
memory, so that a direct access to configurations is always
guaranteed.
As robustness is of primary importance, both the Configuration
Controller and the Fault Classifier can be implemented ex-
ploiting fault tolerance design techniques [22][23]. Moreover,
the Bitstream memory can implement error detection and
correction codes to avoid errors while the configuration files
are read [24]. However, the actual Fault Manager and the
Bitstream memory implementations are out of the scope of
this paper.
The Application FPGA hosts the system’s hardware function-
alities. It is divided into several partitions, called tiles. The
characteristics of tiles and their paritioning methodology are
discussed in the following subsection.

B. Paritioning methodology

The Application FPGA provides three kinds of tiles, de-
pending on their employment in the final system (Fig. 1).
Logic tiles host the circuits that perform computation and data
processing. Recovery tiles are adopted as spare tiles. When
a permanent error occurs in a logic tile, the functionality
implemented by the faulty tile is relocated into a recovery
tile. Finally, interconnection tiles host the wires allowing
communication among tiles.
During the design phase, the hardware functionality is built
with a modular approach. The whole circuit is divided into
basic components, which are interconnected to each other.
Each basic component is then characterized by a certain
amount of required FPGA resources (i.e., Slices, BRAMs and
DSPs [25]) and by the number of connections with the other
basic components.
Basic components are grouped and organized in logic tiles
(Fig. 2). To host basic components, a logic tile must sat-
isfy their resource requirements. As a result, logic tiles are
characterized on the basis of the amount of resources and
interconnections of the hosted components.

Figure 2: Circuit basic components and tiles organization

When a logic tile needs to be moved to a recovery tile because
of a permanent fault, it must be guaranteed that the recovery
tile has a sufficient number of resources.
All recovery tiles are sized in order to provide a number of
resources equal to the one required by the most demanding

logic tile. As a result, each logic tile can be moved to each
recovery tile. Consequently, the number of recovery tiles is
equal to the maximum number of faulty logic tiles the system
can tolerate.
When a permanent fault in a logic tile is detected, the Con-
figuration Controller loads the proper configuration file into
the FPGA configuration memory to relocate the faulty tile
into a recovery tile (Fig. 3a and 3b). However, this operation
is not sufficient as the interconnections have to be updated
too. To overcome this problem, the active interconnection tile
is also reconfigured by the Configuration Controller, so a
new configuration file for the interconnections tile is loaded
(Fig.3b).
Backup interconnection tiles are added to the design to cope
with faults affecting interconnections (Fig.3c). However, there
is just an active interconnection tile at the time, while the
remaining ones are employed only when faults occur. The
number of required backup interconnection tiles must be equal
to the number of interconnection faults (i.e., faults affecting
interconnection tiles) the system must tolerate. Whenever a
permanent fault occurs in the active interconnection tile, a
backup interconnection tile is activated, while the faulty one
is no longer used (Fig.3d), and it is reconfigured with an
empty partial bitstream (i.e., a bitstream which not contains
any circuit information). The proposed architecture offers
great flexibility as it does not rely on a fixed interconnection
architecture among system modules (i.e., it can be applied to
systems based on buses, point-to-point connections, intercon-
nection networks, etc.).
To implement our methodology the following number of
configuration files, n conf files are required:

n conf files = n logic tiles× n faults +

+

n faults−1∏
i=0

(n logic tiles− i)× (n faults+ 1) +

+n logic tiles

(1)

where n logic tiles is the number of logic tiles and n faults is
the number of permanent faults the system can tolerate. The
first contribution is due to relocation of functions implemented
in logic tiles to recovery tiles. The second contribution is
due to interconnection tiles. In fact there are n faults + 1
interconnection tiles that must provide connection for all the
possible combinations of logic tiles relocated to recovery tiles.
Finally, the third term of Eq. 1 takes into account that faulty
logic tiles must be reconfigured with an empty bitstream. The
proposed recovery methodology provides two main improve-
ments with respect to [9]. The first one concerns the recovery
time. In fact, to recover from a permanent fault affecting a
tile, partial configuration files have to be loaded, instead of
reconfiguring the entire FPGA. Secondly, the memory required
to store configuration files is dramatically reduced as we need
a certain number of configuration files for interconnection tiles
whose size is greatly reduced with respect to the ones required
for the whole FPGA.
For the presented recovery strategy, the way the system is
partitioned is extremely important. In fact, it influences the
maximum number of permanent faults the system can tolerate.
In fact, the largest number of recovery tiles that can be
accommodated into the applications FPGA depends directly
on how basic components are grouped and distributed among



(a) The system without any faulty
logic tiles

(b) The system recovered from a
faulty logic tile

(c) The system without any faulty
interconnection tiles

(d) The system recovered from a
faulty interconnection tile

Figure 3: The recovery strategies when a permanent faults oc-
cur. Fig 3a illustrates the relocation of the faulty logic tile into
a recovery tile and the reconfiguration of the interconnection
tile. Fig 3d shows how interconnections are reconfigured when
a permanent fault is detected inside the active interconnection
tile

logic tiles. The following subsection details the partitioning
algorithm that can be used to find the basic components
paritioning that maximize the number of tolerable faulty tiles.

C. Partitioning algorithm

Recovery tiles contain the necessary resources to accom-
modate every logic tile and their size is proportional to the
number of slices, BRAM and DSP they offer. A fine-grained
partitioning approach (e.g., assigning a basic component to
each logic tile) leads to smaller recovery tiles, while a coarse-
grained partitioning (i.e., grouping more than one component
in a logic tile) requires larger tiles. In addition, changing
partitioning means changing the number of wires inside the
interconnection tiles, and so their area.
Because of the relevance of the partitioning strategy, we
propose an algorithm to find a feasible paritioning offering
the maximum number of faulty tiles the system can tolerate
(see Algorithm 1).
As explained in the previous subsections, a model of the circuit
is obtained by characterizing all the logic tiles by a number

Algorithm 1 Partitioning algorithm

Const N components . # of basic components
Const FPGA res . resources of the application FPGA
max tolerated faults = 0;
for n logic tiles= 1 to N components do

for each possible partitioning composed of n logic tiles do
Slack res = FPGA res − Logic tiles res −

Interc tile res
n tolerated faults = Slack res

Rec tiles res+Interc tile res
if n tolerated faults > max tolerated faults then

max tolerated faults = n tolerated faults;
update best partitioning;

end if
end for

end for

of resources and connections they require. The resources
demanded by each logic tile depends on the basic component
circuits it accommodates, while the number of connections
is related to the partitioning. It is important to notice that
interconnection tiles do not require any resource since they do
not perform computation, instead they just need connections.
As a consequence, the delay introduced by interconnection tile
is assumed negligible for the most of the applications (as will
be shown in Sec. IV) since the critical path is bounded in a
basic component.
In Algorithm 1, Rec tiles res represents the resources needed
by a single recovery tile, Interc tile res is an amount of FPGA
slices containing interconnections among all the logic and
recovery tiles, while Slack res are the spare resources when
only logic tiles and one interconnection tile are taken into
account.
Starting from the resources available on the target FPGA and
the resources required by every basic component, the algorithm
finds the best partitioning solution in terms of tolerable faulty
tiles. Basic component circuits are partitioned with different
granularities. The number of logic tiles ranges from one, a
single huge partition which represents the coarsest granularity,
to the number of basic components defined in the modular
design, the finest granularity. For each iteration all possible
basic components grouping combinations are analyzed, and
the number of tolerated faulty tiles is computed. To compute
the number of tolerated faulty tiles for a given partitioning it
is supposed that for each recoverable permanent fault there is
one recovery tile and one backup interconnection tile.
As aforementioned, interconnection tiles do not require any
computational element. Nevertheless, because of the technol-
ogy imposed by FPGA vendor, reconfigurable partitions re-
quire input/output pins, represented by FPGA Look-Up Tables
[12].
The resulting number of tolerated faults, n tolerated faults,
is the lowest among the ones computed for every type of
resource. When n tolerated faultsis greater than the temporary
maximum number of tolerated faults, max tolerated faults, it
is saved as the best partitioning.
The proposed algorithm is complex from a computational point
of view, that is, it scales badly with the increasing number of
n logic tiles. However, since it must be executed just once at
design-time, its execution time does not influence the overall
performance of the implemented system.



IV. EXPERIMENTAL RESULTS

To analyze and measure the performancec of the proposed
methodology, it has been applied to two case studies.
A Xilinx Virtex-4 VSX55 FPGA has been chosen as the target
Application FPGA as it provides a large number of slices,
BRAMs and DSPs [26]. This FPGA can be dynamically and
partially reconfigured by means of the SelectMAP port at a
maximum reconfiguration throughput equal to 400MB/s [12].
For both case studies, basic components are characterized by
their resource requirements and these values are fed into the
proposed partitioning algorithm. The partitioning that maxi-
mizes the number of tolerated faulty tiles is chosen for the final
system implementation. Performance are analyzed in terms of
number of tolerated permanent faulty tiles, system recovery
time and bitstream size.
In the first case study the proposed methodology is applied on
an IP-core for images feature extraction and matching, called
FEMIP [27]. As presented in Fig. 4, FEMIP is composed of
five basic components. In Fig. 4, numbers between components

Figure 4: FEMIP basic components

represent the interconnection widths. Resources required by
each component are reported in Table I.

Table I: Resources requirements for FEMIP basic components

Component # slices # BRAMs

Gaussian filter 2560 8
Derivative filter 1344 8
Harris filter 3456 0
NMS filter 360 4
Matcher filter 650 6

Taking into account the overall resources available in the
target Application FPGA, the maximum number of tolerated
faulty tiles, obtained with the proposed partitioning algorithm,
is four. Resources requirements for the best partitioning are
shown in Table II. The number of recovery tiles and backup

Table II: Resources requirements for FEMIP tiles

Tile Components # slices # BRAMs Bitstream
Logic 1 Gaussian filter 2560 8 254.5 KB

Logic 2 Derivative filter 1344 8 144.6 KB

Logic 3 Harris filter 3456 0 360.1 KB

Logic 4 NMS filter 1010 10 120.0 KB
Matcher filter

Interconnection (x5) 128 - 7.2 KB

Recovery (x4) 3456 10 360.1 KB

interconnection tiles is four. Exploiting Eq. 1, the number of

partial bitstreams to store in the Bitstream Memory is equal
to 72. Thus, the memory required is 4, 192KB, 2, 880.8KB
for recovery tiles (8 configuration files), 432KB for intercon-
nection tiles (60 configuration files) and 879.2KB for empty
logic tiles (4 configuration files in total). As reconfiguration
throughput is 400MB/s, the worst case recovery time is equal
to 1.82ms (including the reconfigurations of the faulty logic
tile with the empty bitstream, the relocated recovery tile, and
the interconnection tile).
The introduction of the interconnection tile to allow communi-
cations between tiles does not affect timing performance of the
system for two reasons. First, the critical path is bounded inside
basic components logic. Secondly, the delay introduced by
interconnection tiles is 0.2ns, which is negligible with respect
to the FEMIP minimum clock period. As a consequence, the
maximum operating frequency of FEMIP remains equal to
the one obtained without any fault tolerance technique (i.e.,
60MHz).
To allow comparison with respect to the methodology pre-
sented in [9], the proposed methodology has been applied to an
H.246 video encoder. The comparison has been made in terms
of number of tolerated faults, bitstreams size, and recovery
time. Basic components and relative resources requirements
for the H.246 video encoder can be found in [9].
Performance of the partitioning selected by our algorithm
are reported in Table III. With the given partitioning it is

Table III: Resources requirements for H.264 video encoder
tiles

Tile Components # slices # BRAMs # DSPs Bitstream
Logic 1 intra8x8cc 3225 6 0 349.3 KB

coretransform
intra4x4

recon

Logic 2 dctransform 2811 0 0 296.5 KB
calvc

Logic 3 buffer 3123 6 6 380.3 KB
process1
quantise

invdctransform
dequantise

invtransform

Logic 4 process2 3120 0 0 349.3 KB

Logic 5 header 1605 0 0 176.5 KB
tobyte

Interconnection (x3) 320 0 0 18.0 KB

Recovery (x2) 3225 6 6 380.3 KB

possible to recover from two permanent faults, as in [9]. For
this purpose two recovery tiles and backup interconnection
tiles are accommodated in the Application FPGA. For our
implementation the total amount of required Bitstream memory
is 6434.9KB (75 configuration files in total), 3803KB for the
recovery tiles (10 configuration files in total), 1080KB for
the interconnection tiles (60 configuration files in total) and
879.2KB for empty logic tiles (5 configuration files in total).
Although the number of bitstream is comparable to the one of
[9], the memory space required for bitstreams is dramatically
reduced. Thanks to dynamic partial reconfiguration, it is almost
35x smaller than 219MB demanded for a recovery strategy
consisting in reconfiguring the entire Application FPGA.
Finally, the proposed methodology allows to shorten the recov-



ery time since just a part of the implemented circuit is to be
configured. In fact, in the worst case, 1.95ms are required to
recover from a permanent fault, leading to a 4x improvement
with respect to the 7.5ms needed when a full reconfiguration
of the FPGA is performed (as in [9]).

V. CONCLUSIONS

This paper presented a novel methodology to increase
availability and lifetime of FPGA-based systems affected by
permanent faults. The methodology exploits Dynamic Partial
Reconfiguration (DPR) to relocate at run-time faulty modules.
A partitioning method is also presented to provide a solution
which maximizes the number of permanent faulty modules the
system can tolerate.
Experimental results highlight the negligible performance
degradation introduced by applying the proposed methodology,
and the improvements in terms of both fault recovery time and
memory requirements with respect to state-of-the-art solutions.
Future works will focus on increasing the relocation efficiency,
in order to further decrease the recovery time, and on the
development of a framework, which includes FPGA device
models, to allow designer to accurately and automatically
apply the proposed methodology. In addition, some efforts will
address the optimization of the partitioning algorithm to reduce
its complexity, e.g., by means of heuristic techniques.
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