POLITECNICO DI TORINO
Repository ISTITUZIONALE

SA-FEMIP: A Self-Adaptive Features Extractor and Matcher IP-Core Based on Partially Reconfigurable
FPGAs for Space Applications

Original

SA-FEMIP: A Self-Adaptive Features Extractor and Matcher IP-Core Based on Partially Reconfigurable FPGAs for
Space Applications / DI CARLO, Stefano; Gambardella, Giulio; Prinetto, Paolo Ernesto; Rolfo, Daniele; Trotta, Pascal. -
In: IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. - ISSN 1063-8210. - STAMPA.
- 23:10(2015), pp. 2198-2208. [10.1109/TVLSI.2014.2357181]

Availability:
This version is available at: 11583/2571938 since: 2015-11-16T15:58:59Z7

Publisher:
IEEE / Institute of Electrical and Electronics Engineers

Published
DOI:10.1109/TVLSI.2014.2357181

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 May 2024

SA-FEMIP: a Self-Adaptive Features Extractor and
Matcher IP-core based on Partially Reconfigurable
FPGAs for Space Applications

Stefano Di Carlo, Senior Member, IEEE, Giulio Gambardella, Student Member, IEEE, Paolo Prinetto, Senior
Member, IEEE, Daniele Rolfo, Student Member, IEEE, Pascal Trotta, Student Member, IEEE.

Abstract—Video-Based Navigation (VBN) is increasingly used
in space-applications to enable autonomous Entry, Descent and
Landing of aircrafts. VBN algorithms require real-time perfor-
mances and high computational capabilities, especially to per-
form Features Extraction and Matching (FEM). In this context,
Field-Programmable Gate Arrays (FPGAs) can be employed as
efficient hardware accelerators. This paper proposes an improved
FPGA based FEM module. On-line self-adaptation of the param-
eters of both the image noise filter and the features extraction
algorithm is adopted to improve the algorithm robustness. Ex-
perimental results demonstrate the effectiveness of the proposed
self-adaptive module. It introduces a marginal resource overhead
and no timing performance degradation when compared to the
reference state-of-the-art architecture.

Index Terms—Video-based navigation, image processing,
FPGA, hardware acceleration, space applications.

I. INTRODUCTION

PCOMING plans for solar system exploration in the next
30 years are expected to include landing, sample and
return missions to moons, planets, asteroids, and comets [1].
In recent space missions Spirit, Opportunity, and Curiosity, the
spacecraft descending trajectory and the final landing point
were precomputed and fixed during the mission planning,
enabling to reach a maximum landing precision, quantified in
terms of area in which the spacecraft is likely to land (landing
ellipse) of 20 km [2]. Spacecraft autonomous precision landing
capabilities able to reduce the landing ellipse to sub-kilometer
accuracy would provide safe and affordable access to landing
sites that promise the highest science return and pose minimal
risk to the spacecraft [3]. Video-Based Navigation (VBN) is an
area of computer vision that exploits image frames captured by
cameras and image processing algorithms to assist navigation
in several application domains, including robotics, unmanned
vehicles, and avionics [4] [5]. The wide availability of cameras
on spacecrafts makes VBN a very interesting approach for the
implementation of autonomous Entry, Descent and Landing
(EDL) control systems for next generation space missions.
VBN algorithms extract geometrical information from a set
of real-time sampled image frames. They basically perform
two activities named Feature Extraction and Matching (FEM),
and Motion Estimation (ME). During FEM, each frame is

S. Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta are with
the Department of Control and Computer Engineering, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 1-10129 Torino, Italy. E-mail: {stefano.dicarlo,
giulio.gambardella, paolo.prinetto, daniele.rolfo, pascal.trotta} @polito.it.

processed to detect those pixels that represent features of
interest for the image (e.g., corners or edges of surfaces). The
detected features are then compared to extract those that can
be recognized in two consecutive images (matching points).
Eventually, the ME algorithms analyze the detected matching
points and estimate the relative position and orientation of
the camera (fixed with respect to the moving object). To
increase accuracy, ME algorithms require very accurate match-
ing points distributed across the entire frame [6]. While ME
algorithms are not computationally intensive, FEM algorithms
require high computation capability to guarantee high frame
rates and therefore high accuracy. Hence, very efficient hard-
ware accelerators for this task are mandatory.

This paper proposes SA-FEMIP, an optimized FPGA-based
self-adaptive FEM architecture based on the well known Harris
feature extractor algorithm [7]. This architecture extends the
solution proposed by the authors in [8] by enabling self-
adaptation of the parameters of the image noise filter and
the feature extraction algorithm. Self-adaptation enables to
better optimize the FEM algorithm to the environmental con-
ditions, thus increasing the robustness with respect to noise
and variations of external conditions that are typical of the
space environment. Adaptation is obtained introducing very
marginal overhead and guaranteeing high operational rates.
This is achieved by resorting to the Dynamic Partial Reconfig-
uration (DPR) capabilities of modern space-qualified FPGAs.
Experimental results clearly show that SA-FEMIP enables
increased accuracy and performance compared to previous
architectures, two key characteristics for the implementation
of VBN systems for next generation space missions.

The rest of the paper is organized as follows: Section
I overviews related works, while Sections III, IV and V
introduce the proposed architecture and its main improvements
and peculiarities. Section VI shows the results obtained from
an extensive experimental campaign and, finally, Section VII
summarizes the main contributions and concludes the paper.

II. RELATED WORKS

Feature extraction is the most complex activity performed
by FEM algorithms. Several feature extraction algorithms have
been proposed in the literature (e.g., Beaudet [9], SUSAN [10],
Harris [7], SURF [11] and SIFT [12]). From the algorithmic
point of view, SURF and SIFT are probably the most robust
solutions since they are scale- and rotation-invariant. This

means that features can be matched between two consecu-
tive frames even if they have differences in terms of scale
and/or rotation. However, due to their complexity, hardware
implementations are very resource hungry. As an example,
[13] and [14] propose two FPGA-based implementations of the
SUREF algorithm. The architecture proposed in [13] consumes
almost 100% of the LUTs available on a medium sized Xilinx
Virtex 6 FPGA, without guaranteeing real-time performances.
Similarly, the architecture proposed in [14] consumes about
90% of the internal memory of a Xilinx Virtex 5 FPGA. It
saves logic resources, but it is able to real-time process images
with a resolution limited to 640x480 pixels. Another example
is presented in [15], where an FPGA-based implementation of
the SIFT algorithm is presented. It is able to real-time process
640x480 pixel images, consuming about 30,000 LUTs and 97
internal DSPs in a Xilinx Virtex 5 FPGA.

Among the available feature extraction algorithms, Harris is
probably the best trade-off between precision and complexity
[16]. Under the assumption of small differences between
consecutive frames (i.e., high frame rates or small camera
displacements), its accuracy is comparable to SURF and SIFT,
with a significant lower complexity. Since high frame-rates are
mandatory during the EDL phase to allow real-time correction
of the descending trajectory, Harris is a very good candidate
to implement a high-speed and low-area FEM accelerator
block for space-applications [17]. For each pixel (z,y) of a
frame, Harris computes the so called corner response R(z,y)
according to the following equation':

R(z,y) = Det(N(z,y)) — k- Tr*(N(z,y)) (1)

where k is an empirical correction factor equal to 0.04, and
N(z,y) is the second-moment matrix, which depends on
the spatial image derivatives L, and L,, in the respective
directions (i.e., x and y) [7]. Pixels with high corner response
have high probability to represent a corner (i.e., an image
feature) of the selected frame and can be selected to search
for matching points between consecutive frames.

In [8] we presented an FPGA-based FEM core called
FEMIP, based on the standard Harris algorithm, overcoming
limitations of previous state-of-the-art implementations [17]-
[19]. It guarantees high frame rates (up to 33 fps), with very
limited hardware resources and without resorting to external
co-processors. Nevertheless, FEMIP parameters are fixed at
design time and do not allow to adapt to the continuous
environmental changes (e.g., light, noise, etc.) that are typical
of extreme space missions. The architecture presented in
this paper, named SA-FEMIP, overcomes this limitation by
introducing adaptation capability to the architecture presented
in [8], thus obtaining high FEM robustness with respect to
both noise and image characteristic variations.

III. SA-FEMIP ARCHITECTURE

This section shortly introduces the SA-FEMIP architecture
discussing where and how adaptation to environmental condi-
tions has been introduced.

'Det(X) denotes the determinant of matrix X, and Tr(X) denotes the
trace of matrix X

SA-FEMIP is a pipelined architecture that processes a
32-bit input stream representing a sequence of 1024x1024
grey scale frames with 10 bit per pixel (bpp) resolution (see
Fig. 1). Frame size and resolution are those provided by
almost all space-qualified CMOS cameras [20]. Images are
received in a raster format, line-by-line from left to right and
from top to bottom. The output of SA-FEMIP is the set of
matching points identified in the processed frames. The SA-
FEMIP pipeline includes three main functional blocks: the
Reconfigurable Gaussian Filter, the Adaptive Harris Feature
Extractor, and the Feature Matcher. Moreover, SA-FEMIP
includes an input/output interface to communicate with an
external memory used to temporarily store images filtered by
the Reconfigurable Gaussian Filter and later required during
the feature matching step.

| External Memory Interface |

SA-FEMIP
Adaptive
Pixels (?a G;c:slil:'n 1 4,| Harris Feature Matching
stream Filter Feature Matcher Points
¢ Extractor

Fig. 1: SA-FEMIP computational pipeline

The Reconfigurable Gaussian Filter performs Gaussian
smoothing of the input image. It reduces the image noise level,
thus improving the feature extraction accuracy [21]. Gaussian
filtering is performed by means of a 2D-convolution of the
input image with a 7x7 Gaussian kernel mask [21] according to
(2). A 7x7 kernel is enough to approximate a two-dimensional
Gaussian function with variance 0? < 2[22], which enables to
forcefully reduce the noise that strongly affects images taken
in space environments.

s—1s—1
FI(z,y) =YY I(6z+i,0y+3)«K(@i,j) ()

i=0 j=0
In (2), FI(x,y) is the filtered pixel in position (x,y), I
represents the input image, s is the kernel size (s = 7 in this
architecture), K (4, 7) is the kernel factor in position (i, j), and
éx and dy are computed according to the following equation:

5x,5y::r,y—<8;1) 3)

The static filter architecture presented in [8], which represents
the base for the proposed Reconfigurable Gaussian Filter, is
briefly recalled here. The reader may refer to [8] for further
details on the architecture. The input pixels stream is stored
in an internal buffer called Row Buffer, composed of 7 FPGA
Block-RAMs (BRAMs) [23] each one able to store a full
image row?. Rows are buffered using a circular policy as
reported in Fig. 2. Pixels of a row are loaded from right to
left, and rows are loaded from top to bottom (Fig. 2a). When
the buffer is full, the first row of the buffer is used again (Fig.
2b). When the first 7 rows of the image are ready in the Row
Buffer the actual pixel filtering starts. At this stage, pixels of

2The number of rows of the buffer is equal to the kernel size.

the central row (row number 4) can be processed and filtered. It
is worth to remember here that, using a 7x7 kernel matrix, a 3-
pixel wide border of the image is not filtered, and related pixels
are therefore discarded during filtering. For each pixel to filter,
a 7x7 image patch is extracted from the Row Buffer and stored
in the Slide Window Buffer (i.e., a buffer composed of 49 10-
bit registers). This can be efficiently done if one considers that
the image is received in a raster way as shown in Fig. 2c. At
each clock cycle, a full Row Buffer column is shifted into the
Sliding Window Buffer (Fig. 2c). After the 7th clock cycle,
the first image block is ready and the Sliding Window Buffer
is convolved with the Kernel Mask. At each following clock
cycle, a new Row Buffer column enters the Sliding Window
Buffer and a new filtered pixel of the row is produced. While
this process is carried out, new pixels continue to feed the Row
Buffer, thus implementing a fully pipelined computation. From
(2), taking into account the considered kernel size (i.e., 7x7
pixels), 49 multiplications are required to produce a filtered
pixel FI(z,y). In our architecture, all multiplications are
executed in parallel within a single clock cycle. Since kernel
factors have been internally represented through constants, 49
constant-multipliers are instantiated. After that, an adder tree
(similar to the one presented in [24]) adds the 49 multiplication
results to produce the filtered pixel.

4= 18,

(b) 8-th image row received

= 10,

(N‘D)||(N°8))
(D) ||(@®)
19 |(s)

2 ==
S NE
=z 2=

(@TL)
(I'L)

(a) 1st to 7-th row received

SHIFT 5
E] HEL EEEEEEERE E
74 | = 2 L R|= = =
slelelelelele] |5 £
= HAE EEEREEEME ;
2 Sl EINEISE SIS i [=FE4
= : : z E
2 = Sl|2|S|2|8|2 = =

ROWS BUFFER SLIDING WINDOW BUFFER KERNEL MASK

(c) Slide window filling for Pixel (4,4)

Fig. 2: Gaussian Filter internal buffers architecture. (i,j) indi-
cates the pixel coordinates.

The main drawback of this architecture is that a fixed
Gaussian filter variance (a)%) works well if the noise level of
the processed frames is known a priori. As an example, a
high filter variance is useful for high noise levels. Instead, for
low noise levels the images are oversmoothed, thus reducing
the accuracy of the feature extraction and matching modules
[21]. To overcome this problem, SA-FEMIP exploits FPGA
DPR to adapt the variance UJ% of the Reconfigurable Gaussian
Filter frame-by-frame, based on the estimated noise affecting
the input frame (see Section IV). This represents the first
main contribution to the FEM adaptation introduced in the
SA-FEMIP architecture.

The Adaptive Harris Feature Extractor implements the
Harris corner detector. It processes the filtered pixels, received
from the Reconfigurable Gaussian Filter, and computes the
frame features. Each feature is represented by its coordinates

(x,y) in the frame, and by the related corner response R(z,y),
computed according to eq. (1). The computed corner responses
must be thresholded in order to identify those features that
potentially represent a real corner. However, the value of the
threshold strongly depends on the image environment (e.g.,
Mars or Moon) and condition (e.g., brightness, noise, contrast).
To provide a certain level of adaptation, [8] introduced a self-
adaptive threshold. The threshold 7'H is initialized at 0 at
startup (i.e., all features are accepted). It is then updated based
on the number of features extracted from the current image,
and applied to the next frame. In particular, for each frame,
the number of selected features (N F') is compared with the
number of expected features (T'F’) set to 3,000 in our specific
test application. If the two numbers are equal with a tolerance
(6) the threshold is already optimized. If not, the new threshold
is computed as TH =TH+ ((TF—-NF)«(0.5/TF)«TH).
The reader may refer to [8] for additional details.
Computing the threshold for the next frame based on
information on the current frame is acceptable thanks to the
high frame rate of the proposed architecture, that guarantees
marginal differences in consecutive frames. However, if the
image presents a single small rugged region, the extracted
features, and subsequently the extracted matching points, will
be concentrated in that limited region. This leads to poor
information extracted from the input frames, and therefore to
errors in the Motion Estimation phase. This drawback derives
from the usage of a single global threshold for an entire frame.
The Adaptive Harris Features Extractor (AHFE) component
proposed in Section V, implements an adaptive cell-based
thresholding that relies on frame partitioning to apply different
thresholds to different portions of the frame. This ensures that
the extracted features uniformly cover the overall frame.
Eventually, the Feature Matcher of Fig. 1 receives and stores
in an internal buffer the features extracted by the Adaptive
Harris Feature Extractor. All stored features are then analyzed
to discard the ones that are too close to each other. Only the
strongest feature in a 3x3 pixel neighborhood is considered and
stored in an internal buffer called NMS Buffer (Non-Maxima-
Suppression (NMS) phase). The NMS Buffer stores up to 1,000
features coordinates using 4 BRAMs. It is split in two sub-
buffers named Frame I Features buffer and Frame 2 Features
buffer alternatively used to store features associated with
two consecutive images that must be analyzed and matched.
Features stored in the two NMS sub-Buffers are then compared
using a cross-correlation-based approach (Matching phase)
to identify the matching points. Only potentially correlated
features are actually compared. Analyzing the speed of a
space-module during the descending phase, and considering
the high input frame rate used to sample images, we identified
that a feature can perform a maximum movement of 17
pixels between two consecutive images [25] [2]. Thus, two
features can be considered as potentially correlated if they
are both in a 35x35 pixel neighborhood in the two considered
images. Cross-Correlation is therefore only computed on these
features, thus reducing the computational load and speeding
up the matching task. Basically, the Feature Matcher scans the
Frame 1 Features buffer and the Frame 2 Features buffer look-
ing for two correlated features. It compares the coordinates

associated with a feature contained in one of the two buffers
with all the coordinates in the other buffer. Whenever two
potentially correlated features are found, their un-normalized
Cross-Correlation is computed using the intensity of all pixels
contained in the two 11x11 pixels windows surrounding the
two correlated features. These values (previously stored by the
Gaussian Filter) are loaded from the external memory. Finally,
the Cross-Correlation results are thresholded, in order to
eliminate fake matchings. If the calculated Cross-Correlation
value is less than a given threshold, the coordinates of the
correlated features are stored inside an internal buffer. The
reader may refer to [8] for additional details on this block.

IV. RECONFIGURABLE GAUSSIAN FILTER

The Reconfigurable Gaussian Filter exploits FPGA DPR to
implement frame-by-frame adaptation of the filter variance o/%,
based on the estimated noise affecting the input images.

In literature, many works propose adaptive filters [26] [27]
[28] [29]. Among the proposed approaches, those based on
evolutionary algorithms are the most promising, in terms
of timing performances and hardware resources usage [30].
Nevertheless, they provide very good results if the processed
images are similar to the one used during the training phase
of the evolutionary algorithm. Instead, if the received image
characteristics (e.g., illumination conditions, tonal distribution,
etc.) cannot be predicted, as in the harsh space environment,
the filtering performances become very poor [31] [32].

[33] presents a Gaussian filter architecture able to self-
adapt a? pixel-by-pixel depending on the noise level affecting
the processed image. This approach ensures a higher level
of adaptivity with respect to evolutionary filters. However, it
wastes a lot of hardware resources, making it not suitable for
space-applications that require high optimization. To overcome
this issue, we exploit FPGA DPR to provide filter adaptation
while saving area and power consumption. Basically, the
proposed approach estimates the level of noise affecting the
input image using the same algorithm adopted in [33]. The
noise level estimated for the current frame is used to select the
filter variance that would guarantee optimum filtering results.
This filter variance is then used to filter the next input image,
allowing adaptation of the filter parameters frame-by-frame
during the entire descending sequence. The adaptation of the
filter variance is achieved by reconfiguring the 49 constant
multipliers required to perform the convolution of the image
with the Gaussian kernel (see Section III). This significantly
saves hardware resources with respect to a solution that uses
49 generic multipliers in which the Gaussian kernel constants
are selected using multiplexers driven according to the selected
filter variance. Fig. 3 shows the architecture implementing the
proposed approach.

The Reconfigurable Gaussian Filter is composed of: (i)
the Noise Variance Estimator (NVE), (ii) the Reconfigura-
tion Manager, and (iii) the Gaussian Filter. The Gaussian
Filter is implemented as described in Section III, but, in
order to enable its reconfiguration, the 49 multipliers are
enclosed in an FPGA reconfigurable module (RM in Fig. 3).
A reconfigurable module is a portion of an FPGA design

External Memory
Interfa
A

v -

Reconfig.| | £ ¢

NVE > Reconfig. =

n | Manager 5 =

. Gaussian Filter
Pixels Filtered
from RM > ixels
the camera p

Fig. 3: Reconfigurable Gaussian Filter hardware architecture

that can be reconfigured at run-time, without impacting the
behavior of the rest of the design. While the Gaussian Filter
processes the input image, the NVE estimates the noise level.
The NVE is implemented adopting an architecture similar to
the one presented in [33]. However, we compute here the
noise standard deviation (o,) instead of the noise variance
(02). This change has not functional effects since o, is not
actually used to perform calculations like in [33] during the
filtering process. When a full frame has been processed, the
NVE provides the current estimated o,, to the Reconfiguration
Manager. The Reconfiguration Manager exploits this value
to look-up into a bitstream address table and to select the
proper configuration for the multipliers inside the RM. The
multipliers reconfiguration is accomplished by reading the
multipliers configuration bitstream from the external mem-
ory, choosing the configuration associated with the estimated
standard deviation. The bistream is then used to program the
reconfigurable module of the FPGA resorting to the FPGA
internal Configuration Port (i.e., ICAP [34] in Xilinx FPGAs).
It is worth to highlight here that using the noise standard
deviation instead of the noise variance strongly reduces the
NVE area, avoiding the multiplier required to compute o2.

During the reconfiguration process, the Reconfiguration
Manager must access the external memory to retrieve the RM
configuration bitstream. To avoid the stall of the processing
chain, this access must be scheduled when no other module
requires information from the external memory. As shown in
the timing diagram of Fig. 4, the external memory is accessed
by the Reconfigurable Gaussian Filter in write mode to store
the computed filtered pixel values. As described in Section
I, during this phase the Reconfigurable Gaussian Filter and
the Adaptive Harris Feature Extractor work in pipeline, while
the noise variance is computed (Image Filtering, Features
Extraction and Noise Estimation activities in Fig. 4). At the
end of the feature extraction, the NMS phase takes place,
and, finally, the Feature Matcher performs the matching phase
where it accesses the external memory in read mode to retrieve
the data needed to compute the cross-correlation. It is worth
noting that the Image Filtering and the Features Extraction
slots are not perfectly aligned due to the latency in loading
the internal pipeline of the Reconfigurable Gaussian Filter.
Looking at Fig. 4, the external memory is always idle during
the NMS phase (¢;4; in Fig. 4). This time slot can be used
to reconfigure the filter (R task in Fig. 4) without stalling
the processing chain. This means that no timing overhead is
introduced in the feature extraction and matching task.

Image ;

Image ,,,

Image Filtering

Image Filtering

Phase | Noise Estimation Noise Estimation
i R R
T filtering tidle tmatchinu 5 tﬁltering i tidle tmatching
21.5ms " L2ms 7.6ms i

Fig. 4: Timing diagram of SA-FEMIP

Finally, since for each value of UJ% a configuration bitstream
must be stored in the external memory, the range of possible
UJ% must be discretized according to the available external
memory space (see Section VI for detailed information about
the size of each bitstream).

V. ADAPTIVE HARRIS FEATURE EXTRACTOR

This section introduces the hardware architecture of the
Adaptive Harris Feature Extractor (Fig. 5), focusing on the
novel thresholding approach that ensures to uniformly dis-
tribute the extracted features on the input frame.

Filtered |[7 Lx [RCorner (x,y)
Pixels esponse
Ly Calculator R(x,y)
Adaptive
Cell-based > val_feat
Thresholding

Fig. 5: Adaptive Harris Features Extractor internal architec-
ture

The first two modules of the Adaptive Harris Feature
Extractor, L, and L,, compute the spatial image derivatives
of the filtered image in the horizontal (L) and vertical (L)
direction, respectively. This operation is performed by con-
volving the filtered image, received from the Reconfigurable
Gaussian Filter, with the 3x3 Prewitt kernel [21], using an
architecture similar to the one proposed for the Gaussian Filter.
Then, the Corner Response Calculator module computes
the determinant and the trace of the second-moment matrix
N(z,y), which are required to calculate the Harris corner
response R(x,y) associated with each input pixel. Finally, the
Adaptive Cell-based Thresholding (ACTH) module thresholds
the computed corner responses, asserting the val_feat signal
when the current processed pixel is above the threshold and
therefore represents an actual feature.

Selecting a well distributed set of features within the frame
improves the motion estimation accuracy. In order to level
the distribution of the extracted features on the processed
frames, the ACTH module splits the input image in 64 cells of
128x128 pixels each. It then tries to extract the same number
of features from each cell. This goal is achieved exploiting a
local threshold for each cell, instead of using a single global

threshold for the overall image, as done in [8]. The chosen
number of cells represents a good trade-off between accuracy
and memory requirements. As it will be discussed in Section
VI, it ensures to uniformly cover the input image and, at the
same time, to avoid the introduction of a large number of
cells that would require a lot of memory to store the related
information items.

The ACTH module analyzes information related to the
current frame implementing the decision process described
in Alg. 1, and computes the local thresholds to use for the
following frame. The threshold adaptation process requires
to know, for each cell composing the frame, (i) the number
of extracted features (INF'), (ii) the current threshold (1T°'H)
initialized at the highest possible value at startup (i.e., no
features are extracted), and (iii) the current number of expected
features (T'F’). In our tests, T'F has been initialized to 48 to fix
the overall number of expected features per frame (OTF) to
about 3,000 features. This value limits the size of the internal
buffer used to store the extracted features in the Feature
Matcher module. Since NF', TH and TF must be defined
for each cell of the frame, they are stored in the form of 8x8
matrices, with the matrix elements associated to the defined
frame cells.

Alg. 1 can be split in two main parts. The former (from
row 8 to 27) updates the cell threshold values. For every cell
(i,7), it compares the number of extracted features N F'[7, j]
with the number of expected features TF[i, j] (Disp at row
10). If these two values differ no more than a defined tolerance
(i.e., the difference is contained in the range [+4,—d]) the
threshold is not changed (row 23). Otherwise, the threshold
is updated adding Step to its current value (rows 13 and
21). One additional test is performed when the number of
extracted features is lower than the number of expected ones
(from row 14 to 18). In particular, the updated threshold
(new_TH][i, j]) is considered valid if it is higher than a lower
bound value (LowT H). If not, the threshold is not changed
(row 15). This avoids to over-reduce the threshold value and
to provide in output weak features that could be potentially
associated with the noise in the input frame. In fact, if a cell
represents a flat part of the planetary surface, a high value
of the image gradient, and consequently a high value of the
computed corner response, is mainly due to the noise.

The second part of Alg. 1 (from row 28 to 51) optimizes
the number of features extracted for each cell in order to
obtain a total number of features for the frame as close as

Algorithm 1 Adaptive Cell Thresholding approach

Require: NF[8,8]
Require: TH[8,8]
Require: TF[8,8]

1: Const N_cell=64

2: Const 6=15

3: Const LowT H=15
4: Const OT F'=3000

5: Curr_EF=}" N F[i, j]
6: LowTH_cell[8,8]=[0,...,0]
7

8

9

> # extracted features in each cell

> Threshold value of each cell

> # target features in each cell

> # of cell

> Tolerance

> Threshold lower bound

> Overall # target features

> Current overall # extracted features

. TF_slack=0

: for i=0;i<8;i++ do
for j=0:j<8;j++ do

10: Disp=NF[i,j]-TF[i]

11: Step = Disp * (0.5/OT F)*TH][i,j]
12: if Disp< —J then

13: new_THIij]=TH[ij]+Step

14: if new_THI[i,j]< LowT H then
15: new_THIij]=TH[ij]

16: LowTH_cell[i,j]=1

17: TF_slack=TF_slack + | Disp |
18: end if

19: else

20: if Disp> 4+ then

21: new_TH]i,j]=TH[i,j]+Step
22: else

23: new_THILj]=TH[Lj]

24: end if

25: end if

26: end for

27: end for

28: if TF_slack > 0 then
29: if TF_slack < N_cell then

30: TF_slack_cell = 1

31: else

32: TF_slack_cell = | TF_slack + N_cell]
33: end if

34: for i=0;i<8;i++ do

35: for j=0;j<8:j++ do

36: if Curr_EF <= OT'F then
37: if LowTH_cell[i,j]=0 then
38: new_TFI[i,j]=TF[i,j]+TF_slack_cell
39: else

40: new_TF[i,j]=NF[i]]
41: end if

42: else

43: if TF[ij] = O then

44: new_TF[ij]=TF[i]]
45: else

46: new_TF[i,j]=TF[ij-1
47: end if

48: end if

49: end for

50: end for

51: end if

52: return (new_TH, new_TF)

possible OT'F. To do that, it is worth to remember that all
cells that reach the threshold lower bound cannot further
update their threshold. If, with this threshold, the number
of extracted features for the cell NF[i, j] is lower than the
number of expected features for the cell TFi, j] there is a
certain amount of features corresponding to | Disp | that can
be redistributed to other cells with threshold higher than the
lower bound. To exploit this, each cell with threshold lower
than the lower bound is marked through the LowT H_cell]i, j]
flag (row 16) and the number of unused features of these
cells is accumulated in the TF_slack parameter (row 17)
in order to be redistributed to the other cells, according
to the decision process described from row 28 to 51. The
TF_slack represents the number of expected features that can
be borrowed to the cells that have not reached the threshold
lower bound (i.e., LowT H_cellli,j] = 0). The number of
features to borrow to each cell (T'F'_slack_cell) is computed
dividing T'F_slack by the number of cells composing the

image. To ensure a high number of extracted features, the
algorithm always borrows at least one feature to each cell with
LowT H_cellli, j] = 0 (rows 29 to 33). If the total number of
extracted features Curr_FEF is lower or equal to OT'F (from
row 36 to 41), if the cell has not reached the threshold lower
bound the number of expected features for the cell is increased
of TF_slack_cell (row 38). Otherwise, it is left unchanged
(row 40).

Using this approach, the total number of extracted features
(Curr_EF) could increase more and more due to the borrow
mechanism, that increases the TF[i,j] values. To allow a
decrease of the T'F[i, j] values, and so to maintain the overall
number of extracted features around OTF, if Curr_EF
exceeds OT' F, the target feature value of each cell is decreased
by 1 (from row 43 to 47).

The hardware architecture of the ACTH module is shown
in Fig. 6.

R(x,y) val_feat

Features
Counter

| Thresholds 1

TH | & e NF
sh_vector Target Features sh_vector
Updater

Controller

Fig. 6: Adaptive Cell-based Thresholding hardware architec-
ture

It is composed of four main modules: (i) the Features
Counter, (ii) the Thresholds & Target Features Updater, (iii)
the TH sh_vector, and (iv) the NF sh_vector. The Thresholds
& Target Features Updater module implements Alg. 1, while
the Features Counter performs the actual thresholding of each
corner response R(z,y) received from the Corner Response
Calculator (see Fig. 5). This module reads the thresholds
associated with each image cell (i.e., THJ[i,j] in Alg. 1)
that are stored in the TH sh_vector, and compares them with
the received corner responses, asserting the val_feat signal if
R(z,y) is higher than the threshold associated with the image
cell containing the currently processed pixel.

Sel

|

&

B = N

shifter_1] |
L J
L]

1
| P

Shifter_7

Data_in|

=]

Data_out
—p —

i

—

th_phase en

Fig. 7: TH and NF shifter vector hardware architecture

The TH sh_vector module is implemented as in Fig. 7.

It is composed of eight 8-positions shift registers connected
as circular buffers. Each shift register stores eight threshold
values associated with a row of image cells (it is worth to
remember that the image is split in 64 cells organized in 8
rows with 8 cells each, and a threshold value is associated with
each cell). The en signal enables the 1-position right shifting
operation, while the Sel signal selects which shift register must
be rotated. These two control signals are driven in order to
provide in output the threshold associated with the image cell
of the currently processed pixel. Since the image is received
in a raster way, and each image cell is composed of 128x128
pixels, en is asserted for a clock cycle every 128 received
corner responses (i.e., whenever we move from a cell to the
following one). Instead, Sel selects the next shift register (i.e.,
the next row of image cells) after 128x1024 received corner
responses (i.e., whenever a complete row of image cells has
been processed). To avoid loosing the threshold values, during
the thresholding phase each shift register composing the TH
sh_vector acts as a circular buffer through the multiplexer
driven by the th_phase signal (see Fig. 6). Instead, during the
thresholds updating phase, the content of the TH sh_vector is
overwritten (exploiting the Data_in port) with new thresholds
values computed by the Thresholds & Target Features Updater
module.
Simultaneously to the thresholding task, the Features Counter
counts (through an accumulator) the number of extracted
features for each image cell (i.e., NF[i,j] in Alg. 1), and
stores these values inside the NF sh_vector. The NF sh_vector
is implemented as the TH sh_vector (Fig. 7), and both modules
share the input control signals. Whenever we move from
the current image cell to the next one, the content of the
internal accumulator is stored inside the NF sh_vector, and
it is initialized with the output value provided by the NF
sh_vector. At the end of the operations described by Alg. 1, a
local reset is asserted to clear the content of the NF sh_vector
in order to prepare it for the next image processing cycle. All
aforementioned control signals are generated by the Controller
module (Fig. 6), which also coordinates the operations of all
modules included in the ACTH.

VI. EXPERIMENTAL RESULTS

To estimate the hardware resources and the timing per-
formances, the SA-FEMIP architecture has been synthesized
and implemented, resorting to Xilinx ISE Design Suite 14.6,
on a space-qualified Xilinx Virtex 4-QV VLX200 FPGA de-
vice that, together with the Virtex 5-QV VFXI30 FPGA,
represents the state-of-the-art architecture for space-qualified
reprogrammable FPGAs. The reason to select the Virtex 4
architecture instead of the newer Virtex 5 is twofold. First the
SA-FEMIP architecture has been designed to be integrated
and tested inside the Thales Alenia Space Avionic Testbench
(ATB), i.e., a hardware infrastructure emulating the on-board
computing platform of a spacecraft. The ATB is equipped
with a Gaisler Research GR-CPCI-XC4V development board
[35]. This board integrates a Xilinx Virtex 4 VLX200 FPGA,
which provides the same internal logic architecture of the

space-qualified version. Second, implementing SE-FEMIP on
a Virtex 4 FPGA allowed us to perform fair comparisons with
other published architectures, thus highlighting the benefits of
the introduced improvements. Post place and route simulations
have been done using Modelsim SE 10.0c to annotate the
switching activities of internal nodes, and the Xilinx XPower
Analyzer has been exploited of power consumption estimation.
Table I compares the proposed adaptive architecture with
the fixed architecture proposed in [8] (FEMIP). Comparison
is performed in terms of area overhead by considering internal
logic and memory resources (i.e., registers, Look-Up Tables
(LUTs), and Block-RAMs (BRAMs) [23]). Percentages in
Table I represent the used portion of the hardware resources
available in the Xilinx Virtex 4-QV VLX200 FPGA. It is im-
portant to point out that the synthesis of both FEMIP and SA-
FEMIP architectures has been forced to avoid the use of DSPs.
The reasons for this choice will be better elaborated later in
this section. Power consumption is analyzed considering an
operating frequency of 60 MHz for both architectures.

TABLE I: Resources usage and power consumption of FEMIP
and SA-FEMIP, implemented on a Xilinx XQR4VLX200 Virtex
4 FPGA device

Module FPGA Area Occupation Max.Freq. | Power
Registers LUTs BRAMs [MHZz] W]
GF 696 (0.30%) 5,896 (3.31%) 7 (2.08%) 118.36 0.064
7 9 7
FEMIP 8] HFE 1,106 (0.62%) 11,081 (6.22%) 6 (1.79%) 62.55 0.407
FM 2,432 (1.36%) 656 (0.37%) 19 (5.65%) 101.30 0.037
Total 4,234 (2.38%) 17,633 (9.89%) 32 (9.52%) 62.55 2.002
RF 939 (0.53%) 7,448 (4.18%) 10 (2.98%) 118.36 0.083
Proposed AHFE 1,362 (0.76%) 12,468 (7.00%) 6 (1.79%) 62.55 0.462
P M 2,432 (1.36%) 656 (0.37%) 19 (5.65%) 101.30 0.037
Total 4,733 (2.66%) | 20,576 (11.55%) | 35 (10.42%) 62.55 2.097
[Overhead | Total | 499 (0.28%) | 2943 (1.66%) | 3 (0.90%) | 0] 0095 |

Table I shows that SA-FEMIP FPGA occupation is around
10% for logic and memory resources, and the overhead
w.r.t. FEMIP is less than 2%. This overhead is due to the
additional modules required to perform adaptation in the Re-
configurable Gaussian Filter (RF) described in Section IV and
the additional hardware required to implement the Adaptive
Harris Features Extractor (AHFE) presented in Section V.
In particular, in the RF, the increased occupation is due to
the NVE and the Reconfiguration Manager modules. Instead,
in the AHFE, the area overhead is introduced by the usage
of a more complex thresholding approach, with respect to the
simple one adopted in FEMIP. It is worth to highlight here that
an effort has been placed to limit the registers overhead. The
AHFE architecture strongly relies on shift registers structures
to implement the required vectors and matrices included in
Alg. 1. This kind of component can be efficiently implemented
in Xilinx FPGAs, exploiting the Xilinx SRL capability of the
Look-Up Tables (LUTs) [23]. This capability makes it possible
to use LUTSs as shift registers instead of a chain of Flip-Flops,
saving hardware resources. As an example, a single LUT, in
a Xilinx Virtex-4, can act as a 16x1-bit shift register avoiding
a chain of 16 flip-flops [23].

The maximum operating frequencies of each module re-
ported in Table I demonstrate that no timing penalty is
introduced in SA-FEMIP by the introduction of the adaptivity

features.

The power consumption of each module reported in Table
I does not take into account the contribution of the clock
circuitry and the leakage. These contributions are included
in the overall power consumption. By comparing the power
consumption of SA-FEMIP with the one of FEMIP a very
limited overhead equal to 4.75% is observed. It is worth
noting that the power consumption of the RF module does
not include the power used during the partial reconfiguration
process. However, according to [36] the reconfiguration pro-
cess consumes few tens of mW, only.

Eventually, the throughput, in terms of frames-per-second
(fps), is the same (i.e., 33 fps) for both FEMIP and SA-FEMIP.

In Table II, the performances and the area occupation of
SA-FEMIP have been compared with FEIC [17] [37]. FEIC
is a Feature Extraction and matching Integrated Circuit, based
on the Harris algorithm, that University of Dundee developed
for the European Space Agency (ESA) in the framework of
the Navigation for Planetary Approach and Landing (NPAL)
project. LUTs and BRAMs used by FEIC are reported for a
Virtex II device (as in [37]), but the internal logic and memory
architecture is the same as in Virtex 4 family devices. The
reported data confirm the great improvements of the proposed
architecture, both in terms of resources usage and throughput.

TABLE II: Resource usage and throughput of FEIC and SA-
FEMIP for a Xilinx XQR4VLX200 Virtex 4 FPGA device

Resource Usage Max. Speed
LUTs BRAMs [KB] [fps]
Proposed 20,576 78.75 33
FEIC [37] 50,688 162.5 20
Improvements | -59.4% -51.5% +65%

The low area occupation of SA-FEMIP allow designers to
exploit the free hardware resources to apply fault mitigation
strategies to increase the reliability of the design, a key
requirement in space applications. Several fault-mitigation
strategy against Single Event Upset (SEU) can be applied
on FPGA devices. Following [38], these techniques can be
classified as (1) netlist level techniques or (2) register transfer
level techniques.

Netlist level techniques include different types of Triple
Modular Redundancy (TMR) techniques [38]. Triplication can
be limited to the sequential elements of the circuit (i.e., Se-
quential logic TMR) introducing for each register of the design
two additional registers and a 3-input voter. Otherwise, the
full design can be triplicated (i.e., Global TMR) introducing a
hardware overhead equal to the 200% of the original design.

Register transfer level techniques aim at protecting the
Finite State Machines (FSMs) of the design (e.g., Safe FSM
Coding, and 3-Hamming distance enhancement in FSMs).
Usually, the overhead introduced by these techniques is one
order of magnitude lower than the one associated with the
TMR techniques.

In general, the total hardware overhead, even if a com-
bination of the aforementioned techniques is exploited, can

vary from 60% up to 200% of the original design [38]. It is
clear that, given the low amount of resources required by SA-
FEMIP, fault tolerance techniques can be freely implemented
within the selected device. Moreover, even after the imple-
mentation of fault tolerance techniques, space is also available
to integrate in the same device additional FPGA-based IP-
cores useful to accelerate other computational intensive tasks
performed during the descending phase (e.g., Hazard map
computation [39]). This is very important considering the
limited resources available in space applications.

As mentioned at the beginning of this section SA-FEMIP
has been synthesized avoiding the use of DSPs. This decision
can now be better motivated. DSPs have the advantage of
further reducing the area occupation of FEMIP especially
when multipliers are implemented. With the use of DSPs the
SA-FEMIP occupation would be reduced to 9,029 (5.06%)
LUTs, 66 (68.75%) DSPs, while the occupation of registers
and BRAMs remains the same. Nevertheless, DSPs are limited
resources. With 66 DSPs required out of the 96 available in the
Virtex 4 VLX200 FPGA, TMR techniques for this portion of
the design would not be possible. Moreover, the intensive use
of DSPs increase the routing complexity introducing a 30%
frequency penalty in the design.

SA-FEMIP has not been compared to [19], since [19]
implements the multi-scale Harris detector (i.e., a rotation-
invariant version of the Harris detector). [19] consumes a lot
of hardware resources, and implements a feature that is not
actually required in EDL applications since rotations between
two consecutive images are limited [40].

The proposed architecture has been evaluated in terms of
accuracy and robustness, exploiting an image dataset, provided
by Thales Alenia Space Italia s.p.a. company, that covers
different landing zones (i.e., portions of the Mars surface),
environmental conditions (i.e., image quality), and camera
movement types, in a synthesized Mars environment. Camera
movement types include displacements, up to 30 meters, at
different altitudes (from 1,000 meters to 5,000 meters), and
angular speed (up to 2.5 °/s, in accordance to [40]), while
image quality types include the injection of different levels of
Gaussian noise, blur, brightness and contrast variations.

According to [40], the robustness has been evaluated ex-
ploiting two parameters: (i) Number of Extracted Matches
(NEM), that identifies the number of matching points, and
(1) Spatial Distribution of Points (SDP), that measures how
much the extracted matching points are uniformly spread in
the image, defined as:

N
> —pilogp;

=1
SDP = TN 4

where p; is computed as the number of matching points
within an image cell (see Section V) over the total number of
extracted matching points in the frame, and [V is the number
of image cells (i.e., 64).

Fig. 8 shows the SDP results obtained from FEMIP [8]
and SA-FEMIP by providing in input the images composing
the aforementioned dataset. Thanks to the adaptive cell-based

thresholding approach, the proposed architecture outperforms
FEMIP results in every test case (i.e., Test Index). In particular,
the improvements are very high (from Test Index 0 to 76)
when the input images represent a landing zone characterized
by few small rugged regions. This is visually highlighted in
Fig. 9 that depicts the matching points extracted by FEMIP
(Fig. 9a) and SA-FEMIP (Fig. 9b). Each figure shows two
consecutive input images with lines connecting the features
that match in the two images.

100%
N'WWWW

90% "‘W"\/

80% u w’"\”\"‘\v\,;\,v
o 0% 1
5 I

S TRCAYEAR

50% v

0% v —Proposed

—FEMIP [15]

0 20 40 60 80 120 140 160 180 200

100
Test Index

Fig. 8: SDP results for FEMIP and the proposed architecture

Fig. 10 shows the NEM versus different levels of injected
Gaussian noise variance U]% (since FEMIP has a fixed O'J% =2,
its NEM is represented by the dashed line).

A fixed o} does not allow to reach the highest NEM for
every noise level. Thus, exploiting the reconfigurable filter
architecture (see Section IV) it is possible to highly increase
the number of extracted matches, as shown by the Optimal
line in Fig. 10. In order to follow the trend of this line, in the
proposed architecture 5 configurations for the RF module have
been chosen. In particular, these configurations are associated
to a]% equal to 0.5, 0.75, 1, 1.5 and 2, for the noise level

(a) FEMIP

(b) Proposed architecture

Fig. 9: Example of extracted matches

e Filter Variance = 1.75
EmFilter Variance = 1.5
e3Filter Variance = 1.25
e=mFilter Variance = 1
CFilter Variance = 0.75
=3 Filter Variance = 0.5
—Optimal

=Filter Variance =2

100 150 200 300 400 500 600 700 800 900 1000 1100 1600
Gaussian Noise Variance

Fig. 10: NEM results for different levels of injected Gaussian
noise, varying the Gaussian Filter variance

ranges [0,100], [100,200], [200,300], [300,600], [600,1600],
respectively. As can be seen in Fig. 10, the usage of a
reconfigurable filter increases the NEM value w.r.t. FEMIP
up to 2 times, especially for a o2 lower than 600.

Moreover, as described in Section IV, the usage of the
DPR enables to save resources with respect to use a static
hardware architecture including 49 multipliers, each one with
a multiplexer to select the right Gaussian kernel value. In
the proposed architecture, using the same fixed-point data
representation adopted in [8], the RM and the Reconfiguration
Controller (Fig. 3) require 5,320 LUTs and few registers.
Instead, a static hardware architecture (as the one reported
in [33]), with the same data parallelism, would require about
19,000 LUTs, leading to a save of 72% of hardware resources.

Since each bitstream for the RM module is 166 KB (for the
selected FPGA device), to store the 5 configurations 830 KB
are required in the external memory. Since the throughput of
the Reconfiguration Controller is 400 MB/s (i.e., this value is
limited by the maximum throughput of the ICAP [34]), the
time required to reconfigure the RM is equal to 0.42 ms. This
time fits the idle time of the external memory (i.e., ¢;q; in Fig.
4) that is equal to 1.2 ms (i.e., the time required by the Matcher
to perform the NMS phase). For the sake of completeness,
considering an operating frequency of SA-FEMIP chain equal
to 60 MHz, the time required to perform the filtering and the
matching tasks (i.e., tfiitering and tmatching in Fig. Fig. 4) is
21.5 ms and 7.6 ms, respectively.

Eventually, Fig. 11 shows the percentages of Correct
Matches (CM) for the different filter configurations and
injected noise levels. CM has been computed exploiting
the knowledge about the camera movement between two
consecutive images of the dataset. Starting from the position
of a matching point in the first image, it is possible to
compute its expected position in the second image by using
a three dimensional roto-traslation model. For each couple of
images in the dataset this process has been automated through
a MATLAB script. Then, the CM values have been computed
by comparing the outputs of the script with the ones of the
proposed architecture.

It is worth noting that, the CM values are not computed for
every UJ% since, as shown in Fig. 10, with a filter characterized
by a low variance it is not possible to extract matching points
for very high noise levels.

As can be seen in Fig. 11, the accuracy of the different filter

100%
95%
90%
85%
80%
75%
70%
65%
60%
55%
50%

|
|
.

CM

T Y

150 200 300 400 500

600 700 800 900 1000 1100 1600

Gaussian Noise Variance

B Filter Variance = 1.75
O Filter Variance = 0.75

W Filter Variance =2
& Filter Variance = 1

B Filter Variance = 1.5 & Filter Variance = 1.25

Filter Variance = 0.5

Fig. 11: Correct Matches (CM) results for different levels of injected Gaussian noise, varying the Gaussian Filter variance

configurations is higher than 85% for every noise level, and it
is almost equal for a fixed noise level. These data demonstrate
that the proposed filter is able to maximize the NEM, while
preserving the correctness of its outputs.

VII. CONCLUSION

This paper presented a self-adaptive module for features

extraction and matching designed to suit modern space-
qualified FPGAs. In order to make the core completely self-
adaptive, the Dynamic Partial Reconfiguration (DPR) feature
of modern space-qualified FPGAs is exploited to design a self-
reconfigurable Gaussian Filter module, while a novel adaptive
algorithm and the associated hardware architecture, embedded
in the features extraction module, increase the quality of the
output results of the entire features extraction and matching
processing chain.
Experimental results show the accuracy and the limited over-
head of resources needed to implemented the proposed archi-
tecture, while maintaining the same throughput performances
with respect to a state-of-the-art reference architecture, al-
lowing to exploit the free hardware resources to apply fault
mitigation strategies to increase the reliability of the design.

ACKNOWLEDGMENT

The authors would like to express their sincere thanks
to the whole design team of Thales Alenia Space Italia
s.p.a company for their helpful hints, guidelines, and fruitful
brainstorming meetings.

REFERENCES

[11 NASA, “Solar system exploration roadmap,” [Accessed 28-July-2014].
[Online]. Available: http://solarsystem.nasa.gov/multimedia/downloads/
SSE_RoadMap_2006_Report_FC-A_med.pdf

[2] ——, “NASA Curiosity Rover: Entry, Descent, and Landing,” [Accessed
28-July-2014]. [Online]. Available: http://mars.jpl.nasa.gov/msl/mission/
timeline/edl/

[3] A. Mourikis, N. Trawny, S. Roumeliotis, A. Johnson, A. Ansar, and
L. Matthies, “Vision-aided inertial navigation for spacecraft entry, de-
scent, and landing,” IEEE Transactions on Robotics, vol. 25, no. 2, pp.
264-280, April 2009.

[4] J. Zhang, W. Liu, and Y. Wu, “Novel technique for vision-based UAV
navigation,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 47, pp. 2731-2741, 2011.

[5] P. Nangtin, P. Kumhom, and K. Chamnongthai, “Video-based obstacle
tracking for automatic train navigation,” in Proc. of 2005 International
Symposium on Intelligent Signal Processing and Communication Sys-
tems (ISPACS), 2005, pp. 21-24.

[6] E. Loupias, N. Sebe, S. Bres, and J.-M. Jolion, “Wavelet-based salient

points for image retrieval,” in Proceedings. 2000 International Confer-

ence on Image Processing, vol. 2, 2000, pp. 518-521 vol.2.

C. Harris and M. Stephens, “A combined corner and edge detector,” in

Proc. of the 4th Alvey Vision Conference, 1988, pp. 147-151.

[8] S. Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta, and

P. Lanza, “FEMIP: A high performance FPGA-based features extractor

and matcher for space applications,” in 23rd International Conference

on Field Programmable Logic and Applications (FPL), 2013, pp. 1-4.

P. Beaudet, “Rotationally invariant image operators,” in Proc. of 4th

International Joint Conference on Patter Recognition, 1978, pp. 579—

583.

[10] S. M. Smith and J. M. Brady, “SUSAN - a new approach to low level
image processing,” International Journal of Computer Vision (IJCV),
vol. 23, pp. 45-78, 1995.

[11] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “SURF: Speeded up
robust features,” Computer Vision and Image Understanding (CVIU),
vol. 110, pp. 346-359, 2008.

[12] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proceedings of the International Conference on Computer Vision-
Volume 2 - Volume 2, ser. ICCV °99. Washington, DC, USA: IEEE
Computer Society, 1999.

[13] N. Battezzati, S. Colazzo, M. Maffione, and L. Senepa, “SURF algorithm
in FPGA: A novel architecture for high demanding industrial applica-
tions,” in Proc. of 2012 Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, pp. 161-162.

[14] D. Bouris, A. Nikitakis, and 1. Papaefstathiou, “Fast and efficient
FPGA-based feature detection employing the SURF algorithm,” in /8th
IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2010, pp. 3-10.

[15] L. Yao, H. Feng, Y. Zhu, Z. Jiang, D. Zhao, and W. Feng, “An architec-
ture of optimised SIFT feature detection for an FPGA implementation of
an image matcher,” in International Conference on Field-Programmable
Technology, 2009. FPT 2009., 2009, pp. 30-37.

[16] T. Tuytelaars and K. Mikolajczyk, Local Invariant Feature Detectors: A
Survey. Now Publishers Inc., 2008.

[17] M. Dunstan, S. Parkes, and S. Mancuso, “Visual navigation chip for
planetary landers,” in Proc. of 2005 Conference on DAta Systems In
Aerospace (DASIA), 2005, pp. 1-7.

[18] A. Benedetti and P. Perona, “Real-time 2D feature detection on a
reconfigurable computer,” in Proc. of 1998 Conference on Computer
Vision and Pattern Recognition (CVP), 1998, pp. 586-593.

[19] C. Cabani and W. MacLean, “A proposed pipelined-architecture for
FPGA-based affine-invariant feature detectors,” in Proc. of 2006 Com-
puter Vision and Pattern Recognition Workshop (CVPRW), 2006, pp.
121-126.

[20] Cypress Semiconductor Corporation, “Star1000 1m pixel radiation hard
cmos image sensor,” [Accessed 28-July-2014]. [Online]. Available:
http://www.onsemi.com/pub_link/Collateral/ NOIS 1SM1000A-D.PDF

[21] R. Gonzalez and R. Woods, Digital Image Processing. Pearson/Prentice
Hall, 2008.

[22] J. Fernandez-Berni, R. Carmona-Galan, F. Pozas-Flores, A. Zarandy, and
A. Rodriguez-Vazquez, “Multi-resolution low-power gaussian filtering

17

—

9

[t

[23

[24]

[25]

[26]

[27]

[28]

[29

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

by reconfigurable focal-plane binning,” in SPIE Microtechnologies.
International Society for Optics and Photonics, 2011, pp. 806 806—
806 806.

Xilinx Corporation, “Virtex-4 FPGA User Guide - UG070,” [Online
- accessed 28-July-2014]. [Online]. Available: http://www.xilinx.com/
support/documentation/user_guides/ug070.pdf

S. Di Carlo, G. Gambardella, M. Indaco, D. Rolfo, G. Tiotto, and
P. Prinetto, “An area-efficient 2-D convolution implementation on FPGA
for space applications,” in Proc. of 6th International Design and Test
Workshop (IDT), 2011, pp. 88 -92.

Thales Alenia Space, “Aerospace module speed and trajectory estimation
- internal report,” Tech. Rep., 2012.

F. Russo, “A method for estimation and filtering of gaussian noise
in images,” IEEE Transactions on Instrumentation and Measurement,
vol. 52, no. 4, pp. 1148 — 1154, 2003.

Z.-B. Zhao, J.-S. Yuan, Q. Gao, and Y.-H. Kong, “Wavelet image
de-noising method based on noise standard deviation estimation,” in
Proc. of International Conference on Wavelet Analysis and Pattern
Recognition (ICWAPR), vol. 4, 2007, pp. 1910 — 1914.

G. Deng and L. Cahill, “An adaptive gaussian filter for noise reduction
and edge detection,” in Proc. of Nuclear Science Symposium and
Medical Imaging Conference, 1993, pp. 1615 — 1619 vol.3.

J. Tian and L. Chen, “Image noise estimation using a variation-adaptive
evolutionary approach,” IEEE Signal Processing Letters, vol. 19, no. 7,
pp. 395 — 398, 2012.

R. Dobai and L. Sekanina, “Image filter evolution on the xilinx zynq
platform,” in Adaptive Hardware and Systems (AHS), 2013 NASA/ESA
Conference on, 2013, pp. 164-171.

J. Mora, A. Gallego, A. Otero, B. Lopez, E. de la Torre, and T. Riesgo,
“A noise-agnostic self-adaptive image processing application based on
evolvable hardware,” in 2013 Conference on Design and Architectures
for Signal and Image Processing (DASIP), 2013, pp. 351-352.

J. Mora, A. Gallego, A. Otero, E. de la Torre, and T. Riesgo, “Noise-
agnostic adaptive image filtering without training references on an
evolvable hardware platform,” in 2013 Conference on Design and
Architectures for Signal and Image Processing (DASIP), 2013, pp. 182—
189.

S. Di Carlo, P. Prinetto, D. Rolfo, and P. Trotta, “AIDI: An adaptive
image denoising FPGA-based IP-core for real-time applications,” in
Adaptive Hardware and Systems (AHS), 2013 NASA/ESA Conference
on, 2013, pp. 99-106.

Xilinx Corporation, “Partial reconfiguration user guide - ug702,”
[Accessed 28-July-2014]. [Online]. Available: http://www.xilinx.com/
support/documentation/sw_manuals/xilinx12_3/ug702.pdf

Gaisler Research AB, “GR-CPCI-XC4V LEON PCI Virtex 4
development board - product sheet,” [Accessed 28-July-2014]. [Online].
Available: http://www.pender.ch/docs/GR-CPCI-XC4V_product_sheet.
pdf

R. Bonamy, D. Chillet, S. Bilavarn, and O. Sentieys, “Power con-
sumption model for partial and dynamic reconfiguration,” in 2012
International Conference on Reconfigurable Computing and FPGAs
(ReConFig), 2012, pp. 1-8.

M. Dunstan and M. Souyri, “The FEIC development for NPAL project:
A core image processing chip for smart landers navigation applications,”
in MicroElectronics Presentation Days, ESA/ESTEC, 2004.

C. Urbina-Ortega, G. Furano, G. Magistrati, K. Marinis, and
A. Menicucci, “Flash-based FPGAs in Space, design guidelines and
trade-off for critical applications,” in Proc. of IEEE Conference on
Radiation Effects on Components and Systems (RADECS), 2013.

C. Villalpando, R. Werner, J. Carson, G. Khanoyan, R. Stern, and
N. Trawny, “A hybrid FPGA/Tilera compute element for autonomous
hazard detection and navigation,” in Aerospace Conference, 2013 IEEE,

2013, pp. 1-9.
EADS Astrium, “Navigation for planetary approach
and landing - final report,” [Accessed 28-July-

2014]. [Online]. Available: http://www.scribd.com/doc/18759944/
EADS-Navigation-for-Planetary- Approach-Landing

Stefano Di Carlo received the MS degree in com-
puter engineering and the PhD degree in information
technologies from the Politecnico di Torino, Italy,
where he has been an assistant professor in the
Department of Control and Computer Engineering
since 2008. His research interests include DFT,
BIST, and reliability. He is a golden core member
of the IEEE Computer Society and a senior member
of the IEEE.

Giulio Gambardella received the MS degree in
electronic engineering from Politecnico di Torino,
Italy, where he has been Ph.D student in the Depart-
ment of Control and Computer Engineering since
2012. His research interests include FPGA depend-
ability and memory testing. He is a student member
of IEEE.

Paolo Prinetto Paolo Prinetto received the MS
degree in electronic engineering from the Politecnico
di Torino, Italy, where he is a full professor of com-
puter engineering in the Department of Control and
Computer Engineering. He is also a joint professor
at the University of Illinois, Chicago. His research
interests include testing, test generation, BIST, and
dependability. He is a golden core member of the
IEEE Computer Society.

Daniele Rolfo received the MS degree in electronic
engineering from Politecnico di Torino, Italy, where
he has been Ph.D student in the Department of
Control and Computer Engineering since 2012. His
research interests include high-performance FPGA-
based accelerators, especially for image processing,
and dependability issues on hardware accelerators,
like CUDA GPUs and FPGA devices. He is a student
member of IEEE.

Pascal Trotta received the MS degree in electronic
engineering from Politecnico di Torino, Italy, where
he has been Ph.D student in the Department of
Control and Computer Engineering since 2013. His
research interests include image processing hardware
acceleration in critical applications, and dependabil-
ity of reconfigurable devices. He is a student member
of IEEE.

