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Content-centric wireless networks with limited
buffers: when mobility hurts
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† Dipartimento di Informatica, Università di Torino, Italy

Abstract—We analyze throughput-delay scaling laws of mobile
ad-hoc networks under a content-centric traffic scenario, where
users are mainly interested in retrieving contents cached by other
nodes. We assume limited buffer size available at each node and
Zipf-like content popularity. We consider nodes uniformly visiting
the network area according to a random-walk mobility model,
whose flight size varies from the typical distance among the
nodes (quasi-static case) up to the edge length of the network
area (reshuffling mobility model). Our main findings are i) the
best throughput-delay trade-offs are achieved in the quasi-static
case: increasing the mobility degree of nodes leads to worse and
worse performance; ii) the best throughput-delay trade-offs can
be recovered by power control (i.e., by adapting the transmission
range to the content) even in the complete reshuffling case.

Index Terms—Ad-hoc networks, content-centric networking,
scaling laws, delay-throughput trade-off.

I. INTRODUCTION AND RELATED WORK

During the past several years, we have witnessed a gradual
shift in the way users search and retrieve data from the
Internet: the traditional host-to-host communication paradigm
has evolved towards a new host-to-content kind of interaction,
in which the main networking functionalities are directly
driven by object identifiers, rather than host addresses. This
change has been promoted by the great success obtained by
Content Delivery Networks (CDNs), which represent nowa-
days the standard solution adopted by content providers to
serve large populations of geographically spread users. The
extreme of this new way of thinking about the Internet has
been perhaps reached by recent Content-Centric-Networking
proposals (CCNs), which aim at redesigning the entire Internet
architecture, including core routers, with named data as the
central element of the communication [1]. A key component
of both CDNs and CCNs is the content replication strategy,
i.e., how many copies of the available contents to put in the
network, and where. High-performing, distributed and self-
adapting caching solutions still represent one of the main
challenges in this area.

It is inevitable that content-based networking will also affect
the wireless domain, and this has already started in academic
research. As observed in [2], the most celebrated results about
the scalability of wireless networks (such as Gupta-Kumar [3],
Grossglauser-Tse [4]) have pushed researchers to mainly con-
sider the scenario in which n end-to-end flows are randomly
established among the nodes. However, this (unicast) traffic

A preliminary version of this paper appeared at IEEE INFOCOM 2013.

pattern is not suitable to describe content-centric networks,
where users are primarily interested in retrieving objects: as
contents may be cached in multiple nodes in the network,
requests can be served from multiple locations (anycast), and
they are typically directed to the closest node to save network
resources and improve the user-perceived performance.

On the other hand, existing works departing from the
assumption of unicast communications (i.e., those considering
either multicast or anycast traffic) have mainly focused on
the case of static networks [5], [6], [7]. We believe that
a significant gap still exists in the asymptotic analysis of
wireless networks, when we jointly consider anycast (content-
centric) communications and node mobility. In this paper,
we seek to partially fill this gap by considering a content-
centric wireless network in which nodes are mobile. Given
the tremendous number of different rules of the game that one
could choose to study this problem, we decided to maintain
the same assumptions adopted in the recent paper [2]. The two
most important ones are: limited buffer size available at each
node, and Zipf-like content popularity. Instead of the static grid
topology considered in [2], we let the nodes independently and
uniformly move over the network area. By varying the flight
size of the random walk mobility model, we obtain a family of
throughput-delay trade-offs, ranging from a quasi-static case
to a fully mobile scenario similar to the reshuffling mobility
model.

Interestingly, we discover that the best throughput-delay
trade-offs are obtained in the quasi-static case: increasing the
mobility degree of nodes leads to worse and worse perfor-
mance. A rather surprising result is that the best throughput-
delay trade-offs (i.e., those achievable under static or quasi-
static conditions) can be recovered by power control (i.e., by
adapting the transmission range to the content) even in the
extreme case of the reshuffling mobility model.

Throughput-delay trade-offs in mobile networks under uni-
cast traffic have been investigated in [8], [9], [10], [11], [12],
[13] for various mobility models. Especially relevant to our
work is [14], where authors show that if buffer sizes are
not scaled appropriately, the scaling law for the throughput
capacity of mobile networks is not significantly better than
that for static networks.

A remarkable application of our theoretical analysis is
the recent idea of exploiting device-to-device, opportunistic
communications among mobile users to reduce the downlink
traffic in cellular networks [15], [16], [17].
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To the best of our knowledge, we are the first to analyse
delay-throughput trade-offs in mobile wireless networks under
content-centric (anycast) traffic. Our main contribution is to
show that an apparently hard joint optimization problem,
which combines interference, mobility, scheduling, routing,
content replication, zipf-like content popularity, can nonethe-
less be reduced to simple constrained optimization problems
that are solvable by standard Lagrangian relaxation. Although
we rely on assumptions and techniques previously adopted in
the literature, our results provide novel and interesting insights
about the impact of mobility in content-centric scenarios.

II. SYSTEM ASSUMPTIONS

A. Network and mobility model

We consider an extended network comprising N nodes
moving over a square region O of area N with wrap-around
conditions (i.e., a torus), to avoid border effects. Time is
divided into slots of equal duration, which is normalized to 1.
For what concerns nodes’ mobility, we will first consider the
simple case in which the position of every node is updated
at the beginning of each slot by choosing a new location
uniformly at random in the network area, independently of
other nodes. Such a model has been called differently in
the literature, as reshuffling model, or bi-dimensional i.i.d.
mobility model [8], [9], [10]. In this work we will refer to
it as the reshuffling model. This mobility pattern turns out to
be very simple to analyze, although it is clearly unrealistic,
as nodes are allowed to instantaneously jump to arbitrarily
far positions in the network area. For this reason, we will
later generalize our analysis to the case in which nodes move
according to independent random walks with average flight
size F .

B. Traffic model

We assume there are M contents available in the system,
and we let M grow to infinite as the number of nodes in-
creases. In particular, we will focus on the case1 M = Θ(Nβ),
with 0 ≤ β ≤ 1. We consider that all contents have the same
(unit) size2.

We assume that nodes have limited storage capacity. This
turns out to be a crucial (but realistic) assumption, as explained
later in Section III. In particular, let K be the storage capacity
of each node, measured in number of (equal-size) contents.
Similarly to [2], we assume that the set of contents stored
by each node is a-priori, statically determined by the system,
that can choose the number of replicas for each content (on
the basis of its popularity) and pre-populate the caches of all

1Given two functions f(n) ≥ 0 and g(n) ≥ 0: f(n)=o(g(n))
means limn→∞ f(n)/g(n) = 0; f(n) = O(g(n)) means
lim supn→∞ f(n)/g(n) = c < ∞; f(n) = ω(g(n)) is equivalent
to g(n) = o(f(n)); f(n) = Ω(g(n)) is equivalent to g(n) = O(f(n));
f(n) = Θ(g(n)) means f(n) = O(g(n)) and g(n) = O(f(n)); at last
f(n) ∼ g(n) means limn→∞ f(n)/g(n) = 1.

2Our results extend easily to the general case of variable-size contents,
provided that: i) the content size does not scale with N ii) the ratio between
the largest and the smallest content size is bounded by a constant. In Sect V
we address this point.

nodes. Notice that this assumption implies that we have a static
set of contents with known popularity3.

We consider a Zipf’s law for the content popularity distribu-
tion, which is frequently observed in traffic measurements and
widely adopted in performance evaluation studies [18], [19].
This law implies that, having sorted the contents in decreasing
order or popularity, a request is directed to content i with
probability

pi =
H

iα
, 1 ≤ i ≤M (1)

where α is the Zipf’s law exponent, and H = (
∑M

i=1 i
−α)−1

is a normalization constant. We have:

H =

 Θ(1) , α > 1
Θ(1/ logM) , α = 1
Θ(Mα−1) , α < 1

(2)

We assume that users request contents according to the fol-
lowing sequential process: each node i) generates a content
request according to the probability law (1); ii) it waits until
it retrieves the requested content; iii) it further waits for a
random idle time I with average Ī; iv) it generates another
request; and so on. Idle times, which are assumed to form an
i.i.d. sequence for each node, are introduced in the model to
trade-off throughput and delay. Indeed, according to the above
request generation process, node throughput λ (expressed in
contents/slot) and average content transfer delay D̄ (expressed
in slots) are tightly related by the following equation:

λ =
1

D̄ + Ī
(3)

as consequence of elementary renewal theory arguments. Note
that each node has at most one pending content request at any
given time4.

C. Communication Model

To account for interference among simultaneous transmis-
sions, we adopt a generalized version of the classical protocol
model, in which different transmission ranges are allowed
(see [20]). More specifically, we assume that nodes can adapt
their transmission range to the content being transmitted, i.e.,
content i is transmitted employing transmission range Ri, with
Ri = Ω(1). Note that this model includes, as a special case,
also the standard protocol model in which there is a unique
transmission range R, by letting Ri = R, ∀i.

According to our generalized protocol model, the transmis-
sion of a content i from node s to node d is feasible if and
only if the following conditions hold:

1) the distance between s and d is smaller than or equal to
Ri, i.e., dsd(t) ≤ Ri.

2) for every other node k simultaneously transmitting,
dkd(t) ≥ (1 + ∆)Ri, being ∆ a guard factor.

3We leave to future work the analysis of the case in which the set of
available contents (and their popularity) can change over time, as well as
other forms of run-time optimization.

4The scaling order of our results does not change when nodes are allowed
to send out multiple contents requests in parallel, provided that the number
of pending requests at each node is bounded.
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We emphasize that, for a large class of power attenuation
functions, the above generalized version of the protocol model
can be easily shown to be in order sense equivalent to the phys-
ical model introduced in [3] for point-to-point communications
over the Gaussian channel, according to which a transmission
between two nodes is successful if and only if the signal-to-
interference-and-noise ratio (SINR) at the receiver is larger
than a given threshold.

In Appendix A we prove that the above equivalence between
protocol and physical models indeed holds also in our system,
where we adopt more restrictive assumptions with respect to
those considered in [20], where a similar proof was originally
proposed.

First, to avoid well-known divergence problems at short
distances, we assume the power attenuation at distance d to
be l(d) = min

(
1, d−γ

)
, with γ > 2. Note that previous

expression, which has been largely used in previous work,
guarantees that l(d) is indeed an attenuation, for any value
of d. Then, to compensate for the signal attenuation, we
assume that a node transmitting content i employs power
Pi = P/l(Ri). By so doing, the useful signal arrives at
the receiver with power at least equal to P , where P is a
given constant. Note that the above power-control strategy
does not perfectly compensate the power attenuation as a
function of the specific distance between transmitter and
receiver. This, together with our choice of power-attenuation
function, are essentially the reasons why we need a different
proof of the equivalence between protocol and physical model
(see Appendix A). Having established this equivalence, in
the following we will consider only the generalized protocol
model.

When a successful transmission occurs, we assume that
the total amount data transferred during the slot is large
enough to permit the transfer of one content from the sender
to the receiver. Although this assumption may appear to be
simplistic, it is not a critical one: the same asymptotic results
for throughput and delay are obtained for the case in which one
successful transmission allows to transfer only one segment
of the content file, as long as each content can be split into
a bounded number of segments. The impact of variable-size
contents will be discussed in more details in Section V.

On the other hand, previous work [11] has shown that
by arbitrarily reducing the size of data segments exchanged
between two nodes (up to the limit case in which the file
can be considered as a fluid), one can achieve improved
performance in order sense, since multi-hop communications
become feasible during each slot. In our work, we do not
consider this possibility, restricting our attention to the case
in which data can be transmitted over a bounded number of
hops during a slot. Table I summarizes the adopted notation.

III. RESHUFFLING MOBILITY MODEL

We start analyzing the network performance achievable
under the reshuffling mobility model. One fundamental point
to understand is that, in our considered system:

Proposition 1: Under the reshuffling mobility model, the
network performance cannot be improved by making nodes

TABLE I
NOTATION

Symbol Definition
N number of nodes
M number of contents
β growth exponent of M : M = Θ(Nβ), 0 ≤ β ≤ 1
K number of contents stored by each node, K = Θ(1)
pi probability to request content i
α Zipf’s law exponent of content popularity
Ri transmission range employed to transmit content i
λ asymptotic per-node throughput (contents/slot)
D̄ asymptotic average content transfer delay (slots)
F average flight length

relay contents for other nodes, i.e., by delivering contents over
multi-hop routes.

Proof: The assertion is a consequence of the fact that we
jointly assume that: i) a message transmission occupies a non-
vanishing fraction of each time slot (i.e., we cannot transfer
arbitrarily small content pieces, like in the fluid limit); ii)
nodes have a finite storage capacity; iii) the network topology
is completely reshuffled at each step.

As shown in [14], assumption ii) implies that store-carry-
and-forward schemes, such as the celebrated two-hops scheme
proposed by Grossglauser-Tse [4], can not be exploited in
our case to increase the transmission opportunities among the
nodes. Indeed, as consequence of i) and ii) a node can only
store packets destined to a finite number of destinations. Hence
its transmission opportunities (which determine throughput
and delay) scale in the same way as if it were responsible
for transmitting only its own contents (we refer the reader
to [14]–Section V, for a complete proof of this assertion).

Furthermore we cannot employ a multi-hop route over
multiple slots to progressively move data closer and closer to
the destination, as consequence of the fact that, after each slot,
nodes move to totally different, arbitrary locations (assumption
iii). This fact, which looks rather intuitive, can be formally
derived from Lemma 6 in Section IV-A (setting F = Θ(

√
N)),

whose proof is given in [11].
At last observe that we could, in principle, perform a multi-

hop route within a single slot, but assumption i) implies that
we can only make a finite number of hops, which does not
improve the network performance in order sense.

From the above proposition, it follows that we can restrict
ourselves to the case in which communications occur over just
a single hop, i.e., when a node requesting a given content falls
within the communication range of a node storing a copy of
it. We will first consider in Section III-A the case in which the
transmission range is the same for all contents. Later on, in
Section III-B we will analyze the gains achievable by adapting
the transmission range to the content.

A. Fixed transmission range

Let R be the common transmission range employed by all
transmissions. We first introduce some definitions and existing
results:

Definition 1: feasible tx-rx pair. A pair of nodes {i, j} is
defined to be a feasible transmitter-receiver pair (tx-rx pair) in
a given time slot, if and only if the following conditions hold:
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i) one node, say node j, has a pending request for a certain
content m; ii) node i stores content m in its cache. iii) the
distance between i and j is smaller than or equal to R.
Notice that a feasible tx-rx pair is not necessarily enabled to
transmit by the scheduling scheme, i.e., it represents only a
transmission opportunity. A feasible tx-rx pair {i, j} is said
m-feasible tx-rx pair if node i stores content m and node j is
interested to m.

Definition 2: Active square. A square region of the net-
work is defined to be active if it contains at least one feasible
tx-rx pair, i.e., a feasible pair such that both transmitter and
receiver lie in the considered square.

Notice that, if we want a square to be active with non
vanishing probability (as we increase the number of nodes), a
necessary condition is that the mean number of tx-rx pairs
falling in it does not vanish. It would not be difficult to
compute exactly the mean number ρ(S) of tx-rx pairs falling in
an arbitrary square of size S. Such mean depends on several
factors5, including obviously the square size, the replication
strategy, the transmission range R, and the probability that
in an arbitrary slot a node has an active pending request for
a given content. We do not present the exact expression of
ρ(S) as function of the above variables, because we do not
really need it. For our purposes, we only need to establish an
important property of ρ(S), stated in the following lemma.

Lemma 1: Consider the case in which S = Θ(R2). Then
ρ(S) increases quadratically (in order sense) with the square
area S i.e., ρ(S2) = Θ(S2/S2

0), for some S0 such that
ρ(S0) = Θ(1).

Proof: Since by hypothesis S = Θ(R2), without lack
of generality we fix R =

√
S. Recall that every node has at

most one pending request, hence: ρ(S) =
∑

m ρm(S), where
ρm(S) is the average number of m-feasible tx-rx pairs falling
in the considered square of area S. Indeed, by construction,
exactly one content (the content the receiver is interested to)
can be exchanged between any tx-rx pair contributing to ρ(S).

Observe that ρm(S) is proportional to the product of the
number m-tx of nodes in the square storing a copy of content
m and the number m-rx of nodes in the square interested to
content m. Since in the considered square both m-tx and m-rx
scale linearly with the area size S, ρm(S) scales quadratically
with S. The assert descends immediately, observing that by
construction an S0 ≤ 1 can always be found such that ρ(S0) =
Θ(1).

Definition 3: contact probability. The contact probability
pcontact(m) associated to a given content m is defined as the
probability that a node having a pending request for content
m falls, in a given slot, within the transmission range of a
node holding a copy of content m.

Lemma 2: The contact probability for content m satisfies
pcontact(m) = Θ(min(1, XmR2

N )), where Xm is the number
of replicas of content m.

Proof: Each of the Xm replicas of m falls in a disc of
radius R around the requesting node with probability πR2

N .
Hence pcontact(m) = 1 − (1 − πR2

N )Xm which is in order

5To simplify the notation we explicit only the dependency on S, charac-
terized in Lemma 1.

sense equivalent to min(1, XmR2

N ).
Corollary 1: Given the number of replicas Xm of content

m, the average transfer delay D̄m associated to content m

satisfies D̄m = Ω

(
1

min(1,XmR2

N )

)
.

Proof: The delay associated to content m is lower
bounded by the times it takes to a node requesting content
m to come in contact with a node storing a copy of m,
which is geometrically distributed with mean 1/pcontact(m).
The results follows applying Lemma 2.

We now recall a basic result well known in the literature:
Lemma 3: The aggregate transmission rate (also called

network capacity) Λ of a network of area A employing a proto-
col model with transmission range R, satisfies Λ = O(A/R2).
Network capacity Λ = Θ(A/R2) can be attained when the
average number of tx-rx pairs in an arbitrary square of area
S = Θ(R2) is not vanishing.
We do not repeat the details of the scheduling scheme that
allows to achieve (in order sense) the maximum network
capacity under the protocol model, since such a scheme is well
known in the literature (see for example [21]). Essentially, the
network area is divided into squarelets of area S = R2. The
entire set of squarelets is then partitioned into a finite number
of subsets, such that squarelets belonging to the same subset
are sufficiently spaced apart (depending on the guard factor ∆)
to permit scheduling an active transmission in each squarelet
of the subset6. In any given slot, one subset is uniformly
selected, and at most one tx-rx pair is enabled to transmit
in each squarelet belonging to the selected subset. A network
capacity in order sense equal to the number of squarelets can
be achieved, provided that the average number of tx-rx pairs
that can be enabled in an arbitrary squarelet is non vanishing
(which implies that the probability that a squarelet is active is
non vanishing).

Remark. Observe that, for the scheme we are designing,
the network capacity equals the aggregate network throughput
Λ = Nλ, since contents are transferred over a single hop.

Previous lemmas allow us to establish our first fundamental
result.

Theorem 1: Consider nodes generating requests according
to the sequential model described in Section II-B, with speci-
fied average idle time Ī . Given a replication strategy (i.e., given
Xm for any m), the optimal network performance in terms of
throughput and delay is achieved by selecting a transmission
range R̂ such that the average number ρ(R̂2) of tx-rx pairs in
a square of area R̂2 satisfies 0 < c1 < ρ(R̂2) < c2, where c1
and c2 are constants.
The proof is reported in Appendix B.

Remark. The optimal value R̂ for the transmission range
characterized by previous Theorem depends on the chosen av-
erage idle time Ī at nodes. Different trade-offs can be achieved
by controlling Ī , i.e. the interval between the reception of a
content and the next content request. Indeed, observe that on
the one hand from Theorem 1 and Lemma 3 the per-node
throughput is tightly coupled to R̂, by the relationship λ = 1

R̂2
.

6A similar scheme can be applied under the physical model, obtaining that
squarelets belonging to the same subset can only weakly interfere with each
other, guaranteeing one successful transmission in each squarelet.
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On the other hand per-node throughput, average delay and
average idle time are related by: λ = 1

D̄+Ī
. Thus, as long as

the target throughput λ is feasible, i.e., it is smaller than the
inverse of the target average delay D̄, we can properly set Ī
so as to achieve the desired trade-off.

For what concerns the average delay D̄, the most important
consequence of Theorem 1 is stated in the following:

Corollary 2: Given a replication strategy (i.e., given Xm

for any m), the average content transfer delay behaves asymp-
totically as:

D̄ = Θ

(
M∑

m=1

pm

min(1, XmR̂2

N )

)
(4)

Proof: Theorem 1 guarantees that, by adopting the opti-
mal transmission range R̂, the delay experienced by any con-
tent transfer attains its lower bound in Corollary 1. Averaging
over all contents, we obtain the provided expression for D̄.

Let us now assume that a feasible per-node throughput λ
(and the corresponding transmission range R̂ =

√
1/λ has

been chosen. Among all the possible replication strategies
{Xm}m, the optimal will be the one that minimizes the
associated average delay D̄ in (4). Indeed, by selecting such
replication strategy we achieve the best possible delay perfor-
mance among all strategies guaranteeing the target throughput.

The optimal scheme can thus be found in two steps, by first
identifying the minimum possible delay and the associated
optimal replication strategy:


min

{Xm},m=1...M

M∑
m=1

pm

min(1, XmR̂2

N )

s.t.
∑M

m=1Xm ≤ KN
1 ≤ Xm ≤ N m = 1 . . .M

(5)

and then deriving the value of Ī , so as to meet condition (3).
Focusing on the optimization problem (5), we observe

that it is clearly better to allocate more replicas to the most
popular contents, i.e., those having smaller index m. Hence
the sequence {Xm} should be non-increasing. However, the
term min(1, XmR̂2

N ) in the objective function tells us that it
is useless to replicate any content more than X∗ = dN/R̂2e
times. Therefore, let m∗ ≥ 0 be the index such that all contents
with index m ≤ m∗ are replicated X∗ times (if such contents
do not exist, m∗ = 0). These m∗ most popular contents will
consume m∗X∗ aggregate buffer space. We can assume that
the remaining buffer space left for the least popular contents
having index m > m∗ is still of order N . This assumption can
be checked a-posteriori, but can be easily believed to be true
by considering that the optimal delay in order sense should
not be sensitive to the specific constant K. Hence we can
always devote K∗N aggregate buffer space, with K∗ ≤ K in-
dependent of N , to the least popular contents without affecting
the asymptotic results. The above considerations allow us to
analyze the reduced optimization problem, valid for contents

of index m > m∗:
min

{Xm},m>m∗

∑
m>m∗

Npm

XmR̂2

s.t.
∑

m>m∗ Xm ≤ K∗N
1 ≤ Xm ≤ N m > m∗

(6)

We now have all ingredients to prove our main result for the
considered scenario:

Theorem 2: The throughput-delay performance achievable
under the reshuffling model with uniform transmission range
depends on the Zipf’s law exponent α:

• For α > 2, it is possible to achieve the best possible
throughput λ = Θ(1) and the best possible delay D̄ =
Θ(1), using transmission range R = Θ(1).

• For 1 < α < 2, the optimal throughput-delay trade-off
is D̄ = Θ(λM2−α). The minimum delay D̄ = Θ(1)
can be achieved with R = Θ(M1−α/2), and the as-
sociated throughput is λ = Θ(Mα−2). The maximum
throughput λ = Θ(Mα/2−1) can be achieved with
R = Θ(M1/2−α/4), and the associated delay is D̄ =
Θ(M1−α/2).

• For α < 1, the optimal throughput-delay trade-off is D̄ =
Θ(λM). The minimum delay D̄ = Θ(1) can be achieved
with R = Θ(

√
M), and the associated throughput is λ =

Θ(1/M). The maximum throughput λ = Θ(1/
√
M) can

be achieved with R = Θ(M1/4) and the associated delay
is D̄ = Θ(

√
M).

The proof is reported in Appendix C. Note that Appendix C
also includes an algorithm to distribute content replicas among
the nodes, which guarantees that the buffer size needed at each
node can be upper bounded by a constant.

Results obtained so far for the case of fixed transmission
range are summarized in Table II.

B. Different transmission ranges

We now consider the case in which the transmission range
can be adapted to the content being transmitted. The analysis
goes along the same lines followed in Section III-A. We
will consider only the case α < 2, since for α > 2 we
already achieve the best possible performance in terms of
both throughput and delay by employing a fixed transmission
range for all contents (Theorem 2). We start with the following
lemma:

Lemma 4: The contact probability for content m satisfies
pcontact(m) = Θ(min(1,

XmR2
m

N )).
whose proof is analogous to that of Lemma 2. Similarly to
before, it immediately follows that,

Corollary 3: The average delay D̄m associated to content
m satisfies D̄m = Ω( 1

min(1,XmR2
m/N) ).

In the case of different transmission-ranges, the selection
of the optimal set of feasible tx-rx pairs to be enabled in
the network at a given time slot is not a trivial task. First,
we characterize the maximum network capacity achievable by
employing a given set of transmission ranges {Rm}m, by the
following result analogous to Lemma 3:

Lemma 5: The aggregate transmission rate Λ of a net-
work of area A, such that contents of type m, transmitted
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TABLE II
RESHUFFLING MOBILITY WITH FIXED RADIUS

Zipf’s exponent trade-off [λmin, λmax] [D̄min, D̄max]

α > 2 λ = Θ(1) D̄ = Θ(1)

1 < α < 2 D̄ = Θ
(
λM2−α

) [
Θ

(
Mα−2

)
,Θ

(
M

α
2
−1

)] [
Θ(1),Θ

(
M1−α

2

)]
α < 1 D̄ = Θ(λM)

[
Θ

(
1
M

)
,Θ

(
1√
M

)] [
Θ(1) ,Θ

(√
M

)]

TABLE III
RESHUFFLING MOBILITY WITH RADIUS ADAPTATION

Zipf’s exponent trade-off [λmin, λmax] [D̄min, D̄max]

α > 3
2

λ = Θ(1) D̄ = Θ(1)

1 < α < 3
2

D̄ = Θ
(
λM3−2α

) [
Θ

(
M2α−3

)
,Θ

(
Mα− 3

2

)] [
Θ(1),Θ

(
M

3
2
−α

)]
α < 1 D̄ = Θ(λM)

[
Θ

(
1
M

)
,Θ

(
1√
M

)] [
Θ(1) ,Θ

(√
M

)]
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Fig. 1. Illustration of the scheduling scheme in the case of variable
transmission ranges, for 0 < ∆ < 1 (q = 3).

with probability pm, employ transmission range Rm, satisfies
Λ = O(A/S̄). where S̄ =

∑M
i=1 piR

2
i . Network capacity

Λ = Θ(A/S̄) can be attained if the average number of m-
feasible tx-rx pairs in a square of area R2

m is not vanishing.
Proof: Suppose that the network sustains a given net-

work capacity Λ. Then, the average number of contents of
type m that are sent in each slot is λm = Λpm. The
transmission of a content of type m ‘consumes’ an area of
size Zm = π(1 + ∆)2R2

m, since we cannot put any other
transmitter within the disc of area Zm centered at the receiver.
Therefore, considering the ideal (infeasible) case in which we
can exploit the whole network area A to allocate transmissions
(ideal packing), we obtain that Λ must satisfy the inequality
Λ
∑M

m=1 pmZm ≤ A, from which we derive the upper bound
Λ = O(A/S̄).

A constructive scheduling scheme to achieve (in order
sense) Λ = Θ(A/S̄) is the following. We partition the set
of transmission ranges {Rm}m into a sequence of classes
i = 1, 2, . . . such that class i contains all transmission ranges
Rm such that Rmax/q

i < Rm ≤ Rmax/q
i−1, where Rmax

is the maximum transmission range employed in the network,

and q = d2+∆e. Let Mi denote the subset of indexes m such
that Rm belongs to class i. Notice that transmission ranges
falling in a given class have comparable sizes, meaning that
there can be at most a factor q between the largest and the
smallest transmission range in the class. The idea is to first
allocate tx-rx pairs whose transmission range belongs to class
1. In the remaining network area, we proceed to allocate tx-rx
pairs belonging to class 2, and so on. By so doing, we obtain a
scheduling scheme with optimal (in order sense) spatial reuse,
while achieving a feasible packing of transmissions employing
different ranges7. More in detail, we first consider class 1,
and partition the network area into squarelets of area R2

max.
Similarly to the traditional scheme for fixed transmission
range, we can partition the squarelets into a finite number
(q2) of subsets, such that squarelets in each subset can be
concurrently active. Fig. 1 illustrates the proposed scheme
in the case of 0 < ∆ < 1 (q = 3). In each slot, we
first activate a number of squarelets of class 1 at most equal
to Λ1 = ψ

∑
m∈M1

Apm

S̄
, where ψ is an arbitrary constant

smaller than 1. Constant ψ is introduced to guarantee that the
priority assigned to tx-rx pairs employing larger ranges does
not penalize tx-rx pairs employing smaller ranges. Notice that,
if, in accordance with the Lemma assumptions, the average
number of m-feasible tx-rx pairs in a square of area R2

m

is not vanishing, we can surely activate Θ(Λ1) squarelets,
since the size of class-1 squarelets is bigger than or equal
to R2

m, for all m ∈ M1. Notice that the precise positions of
the class-1 squarelets to be activated are not important. After
enabling class-1 squarelets, we remove them from the network,
together with their guard zones, and divide the remaining
network area into squarelets of edge Rmax/q, moving on to
class 2, and so on for all classes. In the end, we obtain an
aggregate rate Λ′ = Θ(A

S̄
), while fairly assigning transmission

opportunities to contents in such a way that each content m
achieves throughput Θ(pm

A
S̄
).

7A selection of tx-rx pairs in arbitrary order, ignoring transmission ranges,
does not in principle guarantee that enough tx-rx pairs employing large trans-
mission ranges can be activated in the ‘holes’ not occupied by transmissions
employing small transmission ranges.
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The above Lemma allows us to establish a result similar to
Theorem 1:

Theorem 3: Consider nodes generating requests according
to the sequential model described in Section II-B, with speci-
fied average idle time Ī . Given a replication strategy (i.e., given
Xm for any m), the optimal network performance in terms of
throughput and delay is achieved by selecting transmission
ranges Rm such that the average number ρm of m-feasible
tx-rx pairs in a square of area R2

m can be lower- and upper-
bounded by two constants, for each m.

Proof:
First we observe that, if a set {R̂m}m of transmission

ranges satisfying the above condition indeed exists (this will
be proven later), we could achieve the network capacity
Λ = Θ(N/S̄) , with S̄ =

∑M
i=1 piR

2
i , applying the scheme

presented in the proof of Lemma 5. The chosen set of
transmission ranges, and the associated scheme, turn out to
be optimal both in terms of throughput and in terms of delay.
In terms of throughput, it is easy to see that we cannot achieve
any higher throughput in order sense, by either increasing or
decreasing any transmission range in the set. If we increase any
transmission range, the throughput would decrease according
to Lemma 5; if we decrease any transmission range (actually,
all transmission ranges should be jointly reduced), the gain
deriving from the potential higher spatial reuse cannot be
exploited since the mean number of m-feasible tx-rx pairs
decreases quadratically with Sm = R2

m, for any m. In terms
of delay, we observe that set {R̂m} guarantees that the delay
associated to any content achieves its lower bound as in
Corollary 3. At last, the existence of a set {R̂m} satisfying
the requested constraint descends from the fact that ρm(R2

m)
is an increasing function of Rm, for any m.

The most important consequence of Theorem 3 is stated in
the following

Corollary 4: Given a replication strategy (i.e., given Xm

for any m), the average network delay behaves asymptotically
as:

D̄ = Θ

(
M∑

m=1

pm

min(1, XmR̂2
m/N)

)
(7)

whose proof is identical to that of Corollary 2.
Let us now assume that a feasible per-node throughput λ

(and the corresponding average square size S̄ = 1/λ) has
been chosen. The associated average delay D̄ in (7) can be
optimized in terms of both the number of replicas Xm and
the transmission ranges Rm. We will actually optimize the
performance in terms of square sizes Sm = R2

m:
min

{Xm,Sm}

M∑
m=1

pm

min(1, XmSm

N )

s.t.
∑M

m=1Xm ≤ KN
1 ≤ Xm ≤ N m = 1 . . .M∑M

m=1 pmSm = S̄

. (8)

Considerations analogous to those reported in Section III-A
allow us to analyze the following reduced optimization prob-
lem, valid for contents of index m > m∗, where m∗ is the

maximum index for which the delay Dm attains its minimum
value of 1. 

min
{Xm,Sm},m>m∗

∑
m>m∗

Npm
XmSm

s.t.
∑

m>m∗ Xm ≤ K∗N
1 ≤ Xm ≤ N m > m∗∑

m>m∗ pmSm = S̄∗

. (9)

where S̄∗ = S̄ −
∑

m≤m∗ pmSm.
We now have all ingredients to prove our main result for

the considered scenario:
Theorem 4: By adapting the transmission range to the

content, it is possible to improve the throughput-delay per-
formance achievable under the reshuffling model:

• For α > 3/2, it is possible to achieve the best possible
throughput λ = Θ(1) and the best possible delay D̄ =
Θ(1).

• For 1 < α < 3/2, the optimal throughput-delay trade-
off is D̄ = Θ(λM3−2α), with D̄ = Ω(1) and D̄ =
O(M3/2−α).

• For α < 1, the optimal throughput-delay trade-off is D̄ =
Θ(λM), with D̄ = Ω(1) and D̄ = O(

√
M).

The proof is reported in Appendix D. Results for this case
are summarized in Table III. We remark that the solution to
(9) leads to an optimal replication strategy in which Xm is
proportional to p2/3m , which is similar to the optimal replication
strategy found in [2] in a totally different (static) scenario.

IV. RANDOM WALK MOBILITY MODEL

We now consider the case in which nodes move (indepen-
dently of each other) according to a random walk mobility
model. In particular, we consider a general class of random
walks, in which the position X(t) of a node at time slot t
is updated according to the law, X(t) = X(t − 1) + Yt,
where Yt is a sequence of i.i.d., rotationally invariant random
vectors describing the individual movements (referred to as
flights) accomplished by the node. We denote by f = ||Yt|| the
random variable describing the flight length, and by F = E[f ]
its mean. In our analysis, we will consider for simplicity the
case of bounded flight lengths f ≤ fmax, where fmax = Θ(F ).
By letting F vary between the minimum value 1 (the typical
distance between neighboring nodes) and

√
N (the edge of

the network area) we vary the mobility degree of the nodes,
obtaining a wide class of mobility patterns ranging from
the quasi-static case (F = 1) to a fully mobile scenario
(F =

√
N ). For simplicity, we will assume that nodes are

not enabled to communicate while moving. In other words, at
any slot they can transmit or receive only from the position
reached at the end of the flight. However, we emphasize that
our analysis could be easily extended to the case in which
nodes can communicate while moving, and that this possibility
actually improves the network performance, in agreement with
recent results [13].

A. Preliminary results
The following lemmas, taken from [11], provide the keys to

analyze the case in which nodes move according to a random
walk:
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Lemma 6: Two nodes can effectively communicate over
multi-hop routes if and only if R = Ω(F ).
This is essentially due to the fact that, to effectively advance a
message toward a far-away destination, nodes belonging to a
multi-hop route should be considered as quasi-static at spatial
scale R.

The following result derives from rather sophisticated prop-
erties of random walks reported in [11], [22].

Lemma 7: Consider two nodes a and b that independently
move in a torus region of area A according to a random walk
with flight size F . Assume that the two nodes are uniformly
distributed over the region at time t = 0. The average first d-
hitting time Ta,b(d), defined as the infimum of t > 0 at which
the distance between a and b is less or equal to d, is given by:

Ta,b(d) =


O
(

A
d2 log

(
A
F 2

))
and Ω

(
A
d2

)
if d = O(F )

O

(
A

F 2 log( d
F )

)
if d = ω(F )

The above lemma can be exploited in our context to compute
the average time T (Xm, R) taken by a node requesting content
m to fall within the transmission range R of a node holding
a copy of it:

T (Xm, R) =


O
(

N logN
XmR2

)
and Ω

(
N

XmR2

)
if R = O(F )

O

(
N

XmF 2 log(R
F )

)
if R = ω(F )

(10)

Note that in the above equation we have assumed that
R = o(

√
N/Xm). Otherwise the node is, with non vanishing

probability, already within distance R from a node holding
content m, hence for R = Ω(

√
N/Xm) we have T (Xm, R) =

Θ(1).
Before going on, it is useful to separately examine the case

of a “quasi-static “network (F = Θ(1)). The results for this
preliminary case will shed light on the impact that mobility
has in our system, and will come in handy later on.

B. Analysis of the quasi-static case F = Θ(1)

In the case F = Θ(1), nodes can communicate with far
away destinations using multi-hop routes as long as they
employ any transmission range R = Ω(1), as immediate
consequence of Lemma 6. In this section we analyze the
performance of a scheme employing multi-hop routes to
deliver contents to the nodes (from the closest source), instead
of a single-hop communication scheme in which nodes wait
until they come in contact with a node caching a copy of the
requested content.

Considerations analogous to those in section III suggest that
the optimal operating point for the network is when the average
number of tx-rx pairs in a square of area R2 is constant. It
follows that λ = 1

D̄+Ī
= 1

R2D̄
where D̄ is the average number

of hops.
The average distance between a node requesting content

m and the closest node holding a copy of it is
√
N/Xm. It

follows that the replication strategy that minimizes the delay
is the solution to the following optimization problem:

min
{Xm},m=1...M

M∑
m=1

pm max

(
1,

√
N√

XmR

)
s.t.

∑M
m=1Xm ≤ KN

1 ≤ Xm ≤ N m = 1 . . .M

. (11)

Similarly to the optimizations problems considered before,
we can restrict ourselves to solving the following reduced
optimization problem, for contents of index m > m∗, where
m∗ is the maximum content index for which the delay Dm

attains its minimum value of 1.
min

{Xm},m>m∗

∑
m>m∗

pm
√
N√

XmR

s.t.
∑

m>m∗ Xm ≤ K∗N
1 ≤ Xm ≤ N m > m∗

. (12)

After relaxing the condition 1 ≤ Xm ≤ N (which is
verified by the solution), and applying the standard method of
Lagrange multiplier, we obtain that Xm must be proportional
to p2/3m though a constant C(N,M) possibly dependent on N
and M . We obtain the following results:
Case α > 3/2: In this case C(N,M) = Θ(N). The resulting
delay is D̄ = Θ(1 + 1

R ). By setting R = 1, we get the best
possible performance D̄ = Θ(1), λ = Θ(1).
Case 1 < α < 3/2: Now C(N,M) = Θ(NM2α/3). The
resulting delay is D̄ = Θ(M3/2−α/R) and the general trade-
off is D̄ = Θ(λM3−2α). The smallest possible delay D̄ =
Θ(1) requires to reduce the throughput to λ = Θ(M2α−3) by
selecting R = M3/2−α, Ī = M3−2α. The largest throughput
λ = Θ(Mα−3/2) can be achieved with R = 1 (and Ī = 0),
and incurs a delay D̄ = Θ(M3/2−α).
Case α < 1. Here C(N,M) = Θ(NM1/3). The resulting
delay is D̄ = Θ(

√
M
R ), and the trade-off is D̄ = Θ(λM).

The smallest possible delay D̄ = 1 requires to reduce the
throughput to λ = Θ(1/M) by selecting R = Θ(

√
M),

Ī = Θ(M). The largest possible throughput λ = Θ(1/
√
M)

can be achieved with R = 1 (and Ī = 0), and incurs a delay
D̄ = Θ(

√
M).

Remarks. We can make the following fundamental observa-
tions. First, the above trade-offs for the quasi-static case (with
common transmission range) are better than those achievable
under the reshuffling mobility model with common transmis-
sion range (see Theorem 2). As expected, they are the same as
those derived in [2] for the case in which nodes are statically
placed on a regular grid. Second, they are, incidentally, exactly
the same as those achievable under the reshuffling mobility
model by adapting the transmission range to the content
(see Theorem 4). In other words, by applying power control
under the reshuffling mobility model, we achieve the same
performance as that of a quasi-static network in which multi-
hop transmissions are exclusively employed.

The above results already suggest the main findings of our
work: the best performance is achieved under static (or quasi-
static) conditions. Mobility negatively affects the achievable
throughput-delay trade-offs, and the worst case is actually the
reshuffling mobility model. However, even in this worst case
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we can recover the optimal results of a quasi-static network
by power control. In the next sections we will confirm that
this intuition is correct.

C. Random walk mobility with fixed transmission range

We now consider the general case in which nodes move
according to a random walk mobility model with mean flight
size F = Ω(1), and employ a fixed transmission range R.
Notice that F should be intended as an exogenous parameter,
while R can be chosen to achieve a desired throughput-delay
trade-off.

Theorem 5: The throughput-delay performance achievable
under a random walk mobility model with average flight size
F depends on the Zipf’s exponent α:

• For α > 2, it is possible to achieve optimal performance
D̄ = Θ(1) and λ = Θ(1).

• For 3/2 < α < 2, we can achieve D̄ = Θ(1) jointly with
throughput λ = Θ(1/F 2). If F = ω(M1/2−α/4), we
can achieve higher throughputs according to the trade-off
D̄ = Θ(λM2−α logN), up to a maximum throughput of
order Mα/2−1/ logN .

• For 1 < α < 3/2, we can achieve trade-offs
λ = Θ(M2α−3D̄), for λ = Ω(M2α−3) and λ =
O(Mα−3/2/F ). If F = ω(Mα/2−1/2), we can achieve
higher throughputs according to the trade-off D̄ =
Θ(λM2−α logN), up to a maximum throughput of order
Mα/2−1/ logN .

• For α < 1, we can achieve trade-offs λ = Θ(D̄/M),
with λ = Ω(1/M) and λ = O(

√
N/(F

√
M)). Higher

throughputs can be achieved according to the law λ =
Θ(D̄/(M logN)), up to a maximum throughput of order
1/(

√
M logN).

Proof: We provide only the main ideas behind the proof:
details are based on the same steps adopted in the proof of
Theorem 2 and in the derivation reported in Section IV-B.
The trade-offs achievable for a given value of flight size F
are essentially a combinations of the trade-offs achievable in
a static network with those achievable under the reshuffling
model. The main observations that allows us to identify the
optimal communication strategy to be adopted in the network
are the following:

• if we end up using a transmission range R = Ω(F ), it is
always more convenient to directly transfer the contents
employing multi-hop communications, instead of waiting
until nodes come in contact with the sources. Indeed,
from the analysis of the static case we have found that
multi-hopping provides largely better throughput-delay
trade-offs even when the average hitting time for content
m is Θ(N/(XmR

2)) (notice that when R = ω(F ) the
actual hitting time is larger than N/(XmR

2), see (10),
reinforcing our claim);

• the only reason to use R = o(F ) would be to obtain
a higher throughput than the maximum one achievable
by multi-hopping with R = Ω(F ). This, actually, is not
always possible, but depends on F : only when F is larger
than a given value (which is a function of M and N ), it
is possible to achieve a higher throughput by adopting a

single-hop scheme according to which nodes wait until
they come in contact with a node holding a copy of
the requested content. In this case the delay would be
Dm = T (Xm, R) = O(N logN/(XmR

2)) (see (10)),
which is essentially the same expression encountered
under the reshuffling model increased by a factor logN .
Hence the optimization for R = o(F ) leads to the same
trade-offs reported in Theorem 2, with the only difference
that delays are increased by a factor logN .

Notice than when the single-hop scheme indeed allows to
achieve higher throughput than that achievable by multi-
hopping (i.e., for F large enough), we get a discontinuity in
the delay, as consequence of the fact that we switch from a
multi-hop to a single-hop scheme.

D. Random walk mobility with different transmission ranges

At last, we consider the case in which the transmission
range can be adapted to the content being transmitted, under a
random walk mobility model with mean flight size F . This
case turns out to be simple to analyze. Indeed, we have
already seen that, by adapting the transmission range, one can
essentially recover the trade-offs achievable in static or quasi-
static conditions even under the extreme case of the reshuffling
mobility model (Section III-B). Hence we can expect that the
same is possible for intermediate degrees of mobility. This is
actually the case, as stated in the following

Theorem 6: By adapting the transmission range to the con-
tent, it is possible to obtain the throughput-delay performance
achievable under quasi-static conditions (i.e., F = 1).

Proof: One simple way to prove this result is the fol-
lowing. Given a desired (feasible under static conditions)
throughput-delay trade-off, we compute the optimal transmis-
sion ranges Rm that should be adopted under the reshuffling
mobility model to achieve the desired trade-offs, and the
(fixed) transmission rangeR̂ that should be adopted under static
conditions to achieve the same trade-off. Then we partition the
contents in two subsets: the first subset includes all contents
whose adapted transmission range Rm = o(F ), while the
second subset includes contents for which Rm = Ω(F ). If we
schedule transmission belonging to the first subset in odd slots
(applying for them the single-hop scheme), and transmission
belonging to the second subset in even slots (applying for
them the multi-hop scheme), we get at least half of the target
throughput and at most twice the target delay, which is enough
to establish our result in order sense.

V. EXTENSION TO VARIABLE-SIZE CONTENTS

As already anticipated in Sec. II-C, our results easily extend
to the case of heterogeneous content sizes, as long as i) content
sizes do not scale with N ; ii) the ratio between the largest and
the smallest content size is bounded by a constant.

The natural way to tackle this case is to segment the contents
into constant-size chunks, which are then independently trans-
ferred from sources to destinations using the previous schemes
developed for constant content size. We can actually further
generalize our analysis, accounting also for the probability
that contacts among the nodes might not always provide a
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reliable communication channel to successfully transfer even
one chunk of a content.

The only assumption that we need is that, when two nodes
fall within transmission range of each other, during the contact
duration at least one chunk can be successfully transferred
between them with non-vanishing probability p > 0. A
sufficiently large target probability p > 0 can be achieved by
properly setting the chunk size and/or the modulation/coding
scheme.

Given assumptions i) and ii) above, any content is split into a
number of chunks that is upper-bounded by a constant. Chunks
are treated as independent objects that are replicated in the
network and transferred between nodes according to the same
schemes introduced before: when a contact occurs between,
say, node a, which is requesting content m, and node b, which
is storing one chunk of m not already collected by a (usual
bitmap techniques can be employed for this), the chunk is
transmitted from b to a. Chunks which fail to be transmitted
correctly are simply discarded and retransmitted again in the
future8.

Previous scaling order analysis can be directly applied also
to this more general case, thanks to the fact that contents
are divided into a bounded number of independent chunks.
While the average content throughput can be easily expressed
in terms of the average chunk throughput and the successful
chunk transmission probability p, some care is needed when
we consider the delay. Indeed, we must consider the fact
that a content is fully transferred in the network when all
chunks of it are successfully received by the requesting node.
The delay analysis of a specific chunk can be carried out
repeating similar arguments as before. Note that the fact
that a chunk is successfully transmitted only with probability
p > 0 does not affect results in order sense, since the con-
sidered chunk is successfully retrieved after a geometrically
distributed number of contacts. The total content transfer delay
is equal, by construction, to the maximum delay incurred by
the constituting chunks. As long as the number of chunks
is bounded, we can easily conclude that the average content
transfer delay scales in the same way as the average chunk
transfer delay, in light of the following general property: given
{Zi}i∈I i.i.d. non-negative random variables (belonging to a
set I of cardinality |I|), and given Y = maxi(Zi), we have
E[Y ] ≤ E[

∑
i Zi] = |I| · E[Z1].

VI. CONCLUSIONS

We have established, for the first time to the best of
our knowledge, asymptotic delay-throughput trade offs for a
mobile ad-hoc network operating in a content-centric scenario
under the same assumptions adopted in previous work in
the case of a static grid topology. Our results show that
mobility tends to worsen the system performance, as the
best throughput-delay trade-offs are achieved in a quasi static
case. The adoption of smart power control techniques permits
to fully recover the optimal performance also in scenarios
characterized by a high degree of mobility. In all considered

8Of course, more than one chunk transmission can be attempted during the
same contact, if the contact duration is large enough.

cases, the size of the content catalog, and the content pop-
ularity profile, both have a dramatic impact on the system
performance.
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APPENDIX A
EQUIVALENCE BETWEEN PHYSICAL AND PROTOCOL

MODEL

It is rather immediate to see that, if a given set of tx-rx
pairs satisfy the physical model (i.e., they can be activated
simultaneously producing a SINR at each receiver greater than
a desired threshold σ), the same set is feasible also under



11

a protocol model with a suitable choice of guard factor ∆.
Note, indeed, that physical model constraints are in general
more stringent than those imposed by the protocol model, as
direct consequence of the fact that while the physical model
explicitly accounts for the total aggregate interference at the
receiver (sum of all interfering contributions), the protocol
model essentially approximates the cumulative interference
with the strongest interfering signal alone. The challenging
part of the order-sense equivalence proof between protocol
and physical model is to show the opposite, i.e., that a
configuration of tx-rx pairs satisfying the protocol model, also
meets the SINR constraint imposed by the physical model, for
a sufficiently large guard factor ∆.

We start establishing the following minimum distance prop-
erty between simultaneous transmitters under the protocol
model:

Property 1: According to the considered protocol model,
given two nodes s1 and s2 that are simultaneously transmitting
to node d1 and d2, respectively, employing transmission range
R1 and R2, respectively, then the distance between the two
transmitters satisfies:

ds1,s2 ≥ ∆max(R1, R2) (13)

In addition, whenever ∆R2 > R1:

ds2,d1
≥ ∆R2 −R1 (14)

Proof: The proof descends immediately from the trian-
gular inequality, i.e.;

ds1,s2 ≥
{
ds2,d1 − ds1,d1 ≥ (1 + ∆)R1 −R1

ds1,d2 − ds2,d2 ≥ (1 + ∆)R2 −R2

Similarly:

ds2,d1 ≥ ds1,d2 − ds1,d1 − ds2,d2 ≥ (1 + ∆)R2 −R2 −R1

From previous property, it immediately descends that:
Property 2: If we draw a ball of radius ∆

2 Ri around every
transmitter i (employing transmission range Ri), the balls do
no intersect.

Proof: To have an intersection between any two balls of
radii R1 and R2, the distance between their centers (i.e., the
distance between s1 and s2) must satisfy: ds1,s2 <

∆
2 R1 +

∆
2 R2 < ∆max(R1, R2), but this contradicts (13).

Let us now consider a tagged receiver, whose transmitter
is employing transmission range R0. We have the following
property:

Property 3: The number N(Ri, r) of interfering trans-
mitters employing transmission range Ri and lying within
distance r from the tagged receiver satisfies:

N(Ri, r) ≤

{
0 r ≤ max[(1 + ∆)R0,∆Ri −R0]

4 βiπr
2

π∆2

4 R2
i

r > max[(1 + ∆)R0,∆Ri −R0]

(15)
for some set of constants βi > 0 such that

∑
i βi = 1.

Proof: The proof descends from the fact that i) no
transmitter employing transmission range Ri can be found
within distance max[(1 + ∆)R0,∆Ri −R0] from the tagged

receiver, as consequence of the definition of protocol model
and of (14); ii) all potential transmitters residing in the disc
of radius r centered at the tagged receiver satisfy property 2.
Thus, if we neglect for the moment border effects, we can
easily bound N(Ri, r) by computing an upper bound to the
number of balls of radius ∆

2 Ri that can be packed into a disc
of radius r. If we denote by βi the fraction of the disc of
radius r covered by balls of radius Ri we can write:

N(Ri, r) ≤
βiπr

2

π
(∆

2 Ri)
2

4

In the above expression, factor 4 takes into account possible
border effects, i.e., the fact that not necessarily an entire ball
of radius ∆

2 Ri must lie within the considered disc of radius
r, given that the ball center falls in it. Elementary geometrical
considerations, however, allow us to say that at least 1/4 of
any considered ball must lie within the disc of radius r, since
by construction i) the ball center is located inside the disc; ii)
radius Ri of the ball satisfies ∆Ri < r + R0, as immediate
consequence of property 1 and i). 9

The total interference I0 at the tagged receiver can be
computed as:

I0=
∑
i

[∫ 1

0

Pi dN(Ri, r) +

∫ ∞

1

Pir
−γ dN(Ri, r)

]
=

=
∑
i

PiN(Ri, 1) +
∑
i

γ

∫ ∞

1

Pir
−(γ+1)N(Ri, r) dr (16)

where the second sum that appears in the last expression is
obtained integrating by parts. Now, recall that, without loss of
generality, all transmission ranges can be assumed to be larger
than 1. As consequence, using property 3, the first sum that
appears in the last term of (16) is identically equal to zero.

For the other summation, using again property 3, we obtain,

I0 ≤
∑
i

4γ

∫ ∞

max[(1+∆)R0,∆Ri−R0]

Pir
−(γ+1) βiπr

2

π∆2

4 R
2
i

dr =

16γ

(2− γ)∆2
P
∑
i

βiR
γ−2
i (max[(1 + ∆)R0,∆Ri −R0])

2−γ

Now, by making ∆ sufficiently large we can achieve a full
control of the interference (indeed I0 → 0 when ∆ → ∞),
thus we can always set ∆ in the protocol model so as to meet
the desired constraint on the SINR imposed by the physical
model.

APPENDIX B
PROOF OF THEOREM 1

First we observe that, if a value R̂ satisfying the requested
condition on ρ(R2) indeed exists (this will be proven later), we
could achieve the network capacity Λ = Θ(N/R̂2) applying
the standard scheme recalled in Lemma 3, according to which
the network is partitioned into squarelets of area R̂2, each
guaranteed to be active with non-vanishing probability. The
transmission range R̂, and the associated scheme, turn out

9Without lack of generality we assume the arbitrary guard factor ∆ ≥ 1.
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to be optimal both in terms of throughput and in terms
of delay. In terms of throughput, it is easy to see that we
cannot achieve any higher throughput in order sense, by either
increasing or decreasing the transmission range: if we increase
R, the maximum network capacity Λ and the corresponding
per-node throughput λ, would decrease according to Lemma
3; the network capacity could be in principle increased by
augmenting the spatial reuse, i.e., by reducing R, according
to the formula Λ = N/R2, but values R = o(R̂) would lead to
a vanishing number of tx-rx pairs in a square of area R2 i.e., to
a vanishing probability that the square is active, which totally
offsets the achievable gain. Indeed, according to Lemma 1,
the mean number of tx-rx pairs decreases quadratically with
S = R2, hence the average number of simultaneously active
squarelets (equal to Λ) decays as R2, for R = O(R̂).

In terms of delay, the value R̂ guarantees that nodes having
a pending request for an arbitrary content can obtain it after a
delay that equals (in order sense) the time needed to come in
contact with a node holding a copy of the requested content:
indeed, when this condition occurs, the two nodes form a tx-
rx pair which has a constant probability to be immediately
enabled to transmit. This because the tx-rx pair falls in a
squarelet with constant probability, and the average number of
tx-rx pairs in the squarelet is bounded. Hence the average delay
D̄m associated to content m achieves (in order sense) the lower
bound 1/pcontact(m). We cannot achieve any better delay
by either increasing or decreasing the transmission range:
if we select R = o(R̂), the contact probability can only
decrease (and the corresponding delay increases accordingly).
It would make sense to increase the transmission range only
if pcontact(m) = o(1), which occurs when pcontact(m) =
Θ(XmR

2/N). However, the gain achievable by increasing the
contact probability would be totally offset by the contention
arising by the fact that the number of tx-rx pairs in a squarelet
increases quadratically with S = R2, according to Lemma 1.

At last, the existence of a value R̂ satisfying the requested
condition on the number of tx-rx pairs falling in it follows
from the fact that ρ(R2) increases monotonically with R, and
in the extreme case of R =

√
2N coincides with the total

number of nodes having a pending content request, which can
be reasonably assumed to be larger than 1 (at least, larger than
one with non vanishing probability).

APPENDIX C
PROOF OF THEOREM 2

Case α > 2. Consider the following replication strategy:10

Xm = max(1, N
2mα/2 ), ∀m, combined with the choice of

transmission range R = 1.
It can be verified that conditions

∑M
m=1Xm ≤ KN (for

K > 2) and 1 ≤ Xm ≤ N are both satisfied. Moreover,
XmR

2 ≤ N , ∀m. It follows that the average delay is
D̄ =

∑M
m=1

H
mαm

α/2 = Θ(1). In any square of area R2 we
have a bounded mean number of nodes (and thus a bounded

10For the moment we disregard the fact that contents should be replicated
in an integer number of times. As we will show rounding effects do not affect
the asymptotic results.

mean number of tx-rx pairs). Moreover, considering bounded
idle time Ī , in any square of area R2 we find with non
vanishing probability a node requesting content m = 1 jointly
with another node holding a copy of content m = 1. Hence the
network capacity is Λ = Θ(N), and the per-node throughput
is λ = Θ(1). Since we cannot have any better performance
(in order sense) than Θ(1) for either throughput or delay, the
chosen scheme is enough to establish the results for this case.
Case 1 < α < 2. We first consider the reduced optimization
problem (6), and show that the optimal solution to it, for
1 < α < 2, satisfies Xm = Θ(NMα/2−1

mα/2 ), m > m∗,
where m∗ is (for now) an arbitrary index. We solve it by
relaxing the condition 1 ≤ Xm ≤ N (which is verified
by the found solution) and applying the standard method of
Lagrange multiplier. We obtain that the ratio pm/X

2
m must

be the same for all contents, i.e., the number of replicas Xm

should be proportional to
√
pm, through a constant C(N,M)

possibly dependent on N or M . Indeed, by imposing that∑
m>m∗

C(N,M)
mα/2 equals K∗N , we obtain the proportionality

factor C(N,M) = Θ(NMα/2−1). Let now m∗ be the index
(if any) such that for all m ≤ m∗ quantity min(1, XmR

2/N)
saturates to 1. By convention, m∗ = 0 if X̂mR

2 ≤ N , ∀m.
The average delay of any content m ≤ m∗ is Θ(1), hence the
average overall delay is given in order sense by

D̄ = Θ

(
m∗∑
m=1

H

mα
+
∑

m>m∗

H

mα

mα/2

Mα/2−1R2

)
=

Θ

(
1 +

M2−α

R2

)
= Θ

(
λM2−α

)
We obtain a family of delay-throughput trade-offs by vary-
ing R. In particular, the minimum possible delay Θ(1) is
attained by choosing R = Θ(M1−α/2). Notice that this
quantity is o(

√
N), i.e., we do not need to make the trans-

mission range comparable to the network edge to obtain
bounded delay. Indeed, we can obtain an associated throughput
λ = Θ(Mα−2) = ω(1/N), choosing Ī =M2−α.

On the other extreme, the maximum throughput λ = 1/D̄,
achievable with Ī = 0, is obtained by solving for R the identity

M2−α

R2
= R2

which provides R = Θ(M1/2−α/4). With this choice,
we obtain λ = 1/D̄ = Mα/2−1. In addition, we observe
that the choice of R determines the value m∗ such that
all contents with index m ≤ m∗ can be replicated just
X∗ = dN/R2e times. Indeed, it is sufficient to compute the
minimum m′ such that X ′

m = Θ(NMα/2−1

m′α/2 ) > X∗, and set
m∗ = m′ − 1. At last, we can check a posteriori that the
additional constraint 1 ≤ Xm ≤ N is satisfied by our solution.

Case α < 1. The analysis of this case is similar to the
previous one. The optimal solution to the reduced optimization
problem is still Xm = Θ(NMα/2−1

mα/2 ). Indeed, the number of
replicas Xm should again be proportional to

√
pm, through a

constant C(N,M) possibly dependent on N or M . This time
we have C(N,M) = Θ(N/

√
M). Notice that, for α < 1,
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we need to take into account also the fact that H = Mα−1.
Similarly to before, we can express the average delay as:

D̄ = Θ

(
m∗∑
m=1

Mα−1

mα
+
∑

m>m∗

Mα−1

mα

mα/2

Mα/2−1R2

)
=

Θ

(
(M/m∗)α−1 +

M

R2

)
= Θ(1 + λM)

In the last passage, we have considered that the delay cannot
be lower than Θ(1), when λM = o(1). We obtain a family
of delay-throughput trade-offs by varying R. In particular,
the minimum possible delay Θ(1) is attained by choosing
R = Θ(

√
M). Notice that this quantity is o(

√
N), i.e., we

do not need to make the transmission range comparable to the
network edge to obtain bounded delay. Indeed, we can still
obtain an associated throughput λ = Θ(1/M) = ω(1/N),
with Ī =M .

On the other extreme, the maximum throughput λ = 1/D̄,
achievable with Ī = 0, is obtained by solving for R the identity

M

R2
= R2

which provides R = Θ(M1/4). With this choice, we obtain
λ = 1/D̄ = Θ( 1√

M
).

To conclude the proof we show that contents’ replicas can be
distributed among the nodes in such a way that the buffer size
needed at each node is bounded by a constant, while respecting
the constraint than different replicas of the same content are
stored by different nodes. In particular, we describe a simple
algorithm that permits distributing the set of all replicas evenly
among the nodes, guaranteeing that the number of contents to
be stored by each node is upper bounded by K ′ = 2K, which
is enough for our purposes.

To satisfy our content replication requirements, the proposed
algorithm deterministically distributes dXme replicas of each
content m to different nodes, being Xm the (real) value
resulting from the solution of the optimization problem (5).

First observe that, by construction,
∑

m(dXme−Xm) ≤M ,
and since

∑
mXm ≥ M (being Xm ≥ 1, ∀m) we have∑

mdXme ≤ 2
∑

mXm ≤ 2KN . To distribute content
replicas, our algorithm implements a simple water-filling-like
strategy, in which contents are considered in sequence. In
particular, the algorithm is decomposed into M steps, each
in charge of distributing the replicas of a given content to
different nodes. At the m-step, the m-th most popular content
(content m) is considered11. The basic idea is that, at the
generic step m, a set Nm of (distinct) nodes (of cardinality
dXme) is selected and a replica of content m is assigned to
every node in Nm. Nodes in Nm are preferentially chosen
among those having the smaller number of replicas assigned
to them after the execution of the first m − 1 steps of the
algorithm (possible ties are broken at random). Note that,
by construction, our algorithm guarantees that replicas of the
same content are distributed to different nodes, and that, after

11Our algorithm does not require that contents are considered in decreasing
order of their popularity (actually, any order is fine). This particular choice
just simplifies the algorithm description.

the execution of step M , all replicas of all contents have
been assigned to nodes, and the algorithm can terminate.
The correctness of the algorithm is based on the following
invariance property:

Lemma 8: Let Kn(m) be the load of node n after step
m (i.e., Kn(m) is the number of contents assigned to
node n after the execution of the first m steps). We have:
maxnKn(m)−minnKn(m) ≤ 1, ∀m (i.e., at any step the
load is almost balanced among the nodes).

Proof: The proof is easily obtained by induction. In the
first step (n = 1), necessarily maxnKn(1) = 1, whereas
we either have minnKn(1) = 0 (if dX1e < M ) or
minnKn(1) = 1 (if dX1e = M ). Thus, in both cases,
maxnKn(1)−minnKn(1) ≤ 1.

Now assume that the property holds after executing
the generic step m. This means that for some h ≥ 0,
minnKn(m) = h, while maxnKn(m) ≤ h + 1 (i.e.,
maxnKn(m)−minnKn(m) ≤ 1). Let Nh+1(m) and Nh(m)
denote the number of nodes with load h+1 and h, respectively,
after the first m steps (by construction Nh+1(m) +Nh(m) =
N ). At step m + 1, the algorithm has to assign a copy of
content m+1 to a set of nodes Nm+1 of size dXm+1e. It does
so by first using the pool of nodes having load h, breaking
ties at random (if any). There are three possible cases: i) if
dXm+1e < Nh(m), only a subset of nodes with previous load
h are assigned a copy of content m+ 1. Hence we still have
minnKn(m + 1) = h, whereas maxnKn(m + 1) = h + 1.
In particular, Nh+1(m + 1) = Nh+1(m) + dXm+1e and
Nh(m + 1) = Nh(m) − dXm+1e; ii) if dXm+1e = Nh(m),
we just use all of the nodes having previous load h. Hence
Nh(m + 1) = 0, and consequently Nh+1(m + 1) = N . This
implies that maxnKn(m + 1) = minnKn(m + 1) = h + 1;
iii) if dXm+1e > Nh(m), we have to use, in addition to all
nodes having previous load h, also some nodes with previous
load h + 1. Hence, we will have maxnKn(m + 1) = h + 2,
while minnKn(m+1) = h+1. In particular, Nh+2(m+1) =
dXm+1e−Nh(m) and Nh+1(m+1) = Nh(m)+N−dXm+1e.
We can observe that, in all three cases above, maxnKn(m+
1)−minnKn(m+1) ≤ 1, hence the property is preserved at
step m+ 1.

When the algorithm terminates, at most 2KN replicas (see
previous upper bound on the total number of replicas to be
distributed) are nearly equally distributed among the nodes,
and we can conclude that the load of each node is bounded
by K ′ = 2K. This concludes the proof of Theorem 2.

APPENDIX D
PROOF OF THEOREM 4

Recall that we can restrict ourselves to α < 2. We have
three cases:
Case 3/2 < α < 2: By selecting Xm = Θ( N

m2α/3 ),
Sm = mα/3, for all m ≥ 1, one we can achieve the best
possible performance D̄ = Θ(1), λ = Θ(1).
Case 1 < α < 3/2: We relax the condition 1 ≤ Xm ≤
N (and later check that this condition is verified by the
obtained solution), and apply the standard method of La-
grange multipliers to the other two constraints related to
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Xm and Rm, respectively. We obtain that the number of
replicas Xm should be proportional to p2/3m , through a constant
C(N,M) possibly dependent on N or M . By imposing
that

∑
m>m∗

C(N,M)
m2α/3 equals K∗N , we obtain C(N,M) =

Θ(NM2α/3−1). Moreover, squares sizes Sm should be pro-
portional to p

−1/3
m , through a constant B(N,M) possibly

dependent on N or M . Since transmission ranges increase
with m, the value S̄∗ = Θ(S̄) = Θ(N/Λ), and we obtain
B(N,M) = Θ(NM2α/3−1/Λ) = Θ(M2α/3−1/λ). The
resulting throughput-delay trade-off is D̄ = Θ(λM3−2α). The
smallest possible delay D̄ = 1 requires to reduce the through-
put to λ = Θ(M2α−3) by selecting S̄ = Θ(M3−2α), Ī =
Θ(M3−2α). The largest possible throughput λ = Θ(Mα−3/2)
can be achieved with S̄ = Θ(M3/2−α) (and Ī = 0), and incurs
a delay D̄ = Θ(M3/2−α). At last, for indexes m < m∗ we
can use transmission ranges Sm = B(N,M) p

−1/3
m , and set

Xm = N/Sm.
Case α < 1. In this case, the constraints on Xm and Sm lead
to C(N,M) = Θ(NM−1/3) and B(N,M) = Θ(S̄M−1/3).
The resulting throughput-delay trade-off is D̄ = Θ(λM).
The smallest possible delay D̄ = 1 requires to reduce the
throughput to λ = Θ(1/M) by selecting S̄ = Θ(M),
Ī = Θ(M). The largest possible throughput λ = Θ(1/

√
M)

can be achieved with S̄ = Θ(
√
M) (and Ī = 0), and incurs a

delay D̄ = Θ(
√
M). Indexes m < m∗ are treated as in case

1 < α < 3/2.
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