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Summary. We address the generation of broadband macro-
models of complex linear systems via rational curve fit-
ting. We show that standard approaches may not ensure that
the macromodel accuracy is preserved in system-level sim-
ulations, under loading conditions that are different from
the adopted identification settings. Our main contribution is
an automated procedure for the definition of a frequency-
dependent norm weighting strategy that tunes the macro-
model accuracy for a specific nominal termination network,
thus improving model robustness under realistic operation.

1 Introduction and problem statement

We consider the situation depicted in Fig. 1. The box
on the left represents a complex (large-scale) Linear
Time Invariant (LTI) system, that we assume with-
out loss of generality to be known through a set of
tabulated frequency samples of its scattering matrix
(ωk, Ŝk) for k = 1, . . . ,K. The box on the right repre-
sents the nominal termination network that is to be
connected to the LTI structure during system-level
verification via transient numerical simuation. This
termination includes at least one transient source u(t)
and at least one output variable y(t) of interest.

Our reference application is Power Integrity (PI)
verification of electronic structures, for which the LTI
system represents the electrical interconnect network
that is responsible for power distribution to the chip
through package and board, and the termination net-
work includes: a number of transient current sources
(the inputs) representing on-chip switching; several
decoupling capacitors; and at least one Voltage Regu-
lator Module (VRM) which defines the nominal sup-
ply voltage Vdd. All these components or subsystems
are connected at suitably defined ports of the Power
Distribution Network (PDN). The outputs of interest
are the transient voltages at all interface ports. The
purpose of PI verification is to make sure that the tran-
sient voltage fluctuations due to the parasitics of the
PDN are kept below a prescribed design threshold.

System-level verification is usually performed via
transient simulation within standard circuit solvers
of the SPICE class. Due to the complexity of the
PDN structure, it is desirable to compute a reduced-
order macromodel described by a state-space realiza-
tion {A,B,C,D}, whose frequency response S(jω) =
D+C(jωI−A)−1B matches closely the raw available
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Fig. 1. System configuration under investigation

frequency samples. Once synthesized into a SPICE-
compatible netlist, this macromodel allows fast tran-
sient analysis and enables simulation-driven design,
verification, and optimization flows.

In this work, we concentrate on a black-box macro-
modeling procedure, which constructs the macromodel
in pole-residue form

S(s) = R0 +
N

∑
n=1

Rn

s− pn
(1)

by optimizing poles pn, residue matrices Rn and di-
rect coupling R0 so that the following cost function is
minimized

E2 =
K

∑
k=1

ε
2
k =

K

∑
k=1

w2
k‖S(jωk)− Ŝk‖2

F , (2)

where F denotes the Frobenius norm and wk is a
suitable frequency-dependent weighting scheme. The
standard practice is to set wk = 1. The well-known
Vector Fitting (VF) algorithm [1] computes a solution
to the above optimization problem through a so-called
iterative pole relocation process. The VF algorithm is
the de facto standard rational curve fitting tool in sig-
nal and power integrity modeling, due to its excellent
robustness and scalability properties. Therefore, we
will use this scheme as the main identification engine.

Suppose now that the termination network (Fig. 1,
right box) is known exactly, and let us consider the
frequency samples of the transfer function H(s) be-
tween some input u and some output y. The error be-
tween the exact transfer function Ĥk evaluated using
the raw scattering samples Ŝk and the approximate
samples H(jωk) evaluated using the macromodel can
be defined as

∆
2 =

K

∑
k=1

δ
2
k =

K

∑
k=1
‖H(jωk)− Ĥk‖2

F (3)
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The real objective is to control the target error ∆ ,
since this is the error that is observed when running
a system-level simulation using the macromodel in-
stead of an exact PDN model. The question arises
whether we can control ∆ by minimizing E. Our
main objective is therefore to design optimal weight-
ing coefficients wk that, when used in the minimiza-
tion of (2) through VF, will guarantee a small target
error ∆ < ∆max.

2 Formulation

The main idea is to embed the minimization of (2)
within an outer loop that optimizes the weights wk
through iterations. Denoting the outer iteration index
with µ , we setup the following scheme:

1. set µ = 0 and initialize weights w0
k = 1 for all k;

2. compute by VF a macromodel Sµ(s) by minimiz-
ing (2) based on the current weights wµ

k ;
3. compute the resulting target errors δk and ∆ based

on (3); if ∆ < ∆max, stop;
4. update the weights as wµ+1

k = wµ

k · fk(δ ), where
δ is a vector collecting all δk, and where fk is a
smoothing filter centered at the k-th sample;

5. set µ ← µ +1 and go to step 2.

The above scheme upates the weighting coefficients
in step 4, based on the frequency-dependent target er-
ror δk of the current macromodel. This allows to em-
phasize those frequencies for which there is a large
sensitivity of the target error due to the feedback
mechanism induced by the terminations onto the macro-
model. The smoothing filter f is used to reduce the
influence of noise.

Several improvements are possible and have been
succesfully implemented and tested. For instance, step
1 can start with an initial set of weights determined by
a first-order sensitivity analysis (either numerical or
analytical) of the error transformation δk(εk), see [2].
Alternatively, an elementwise or matrix-based rela-
tive instead of absolute error metric can be used in (2)
and (3). This choice depends on the particular appli-
cation at hand. We finally remark that, once a final set
of weights wk is available, they can be used to define
a cost function to be minimized within standard pas-
sivity enforcement schemes [3], should the computed
macromodel be affected by passivity violations.

3 Results

We demonstrate our proposed scheme on two PDN
examples having 18 and 11 ports, respectively. Both
cases correspond to industrial chip-package structures
and are known through tabulated frequency samples
of their scattering matrix, obtained numerically from
a full-wave solver. In both cases one of the ports is
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Fig. 2. Comparison between standard and proposed macro-
models (see text).

connected to an ideal voltage source (a VRM model),
and the remaining ports are connected to either decou-
pling capacitor models or to core circuit block mod-
els. The target transfer function is represented by the
transfer impedance that returns the voltage at a pre-
scribed node resulting from a uniformly distributed
current excitation at all device ports.

Figure 2 depicts in top and bottom panels the
results obtained from the two cases. The thin solid
blue line represents the nominal impedance computed
from the raw scattering samples describing the PDN.
The black dashed line is the target impedance com-
puted using a standard macromodel, obtained with
relative weights without applying the proposed strat-
egy. The red dashed line reports the result of our pro-
posed approach, which is observed to match now very
closely the nominal impedance. We remark that these
responses are resulting from passive macromodels, as
processed by the passivity enforcement scheme of [3].

In summary, we have proposed a black-box macro-
modeling strategy that optimizes accuracy based on
closed-loop nominal operating conditions, and not on
standard input-output open-loop representations. The
simple proposed approach is able to compensate for
the error amplification that occurs when loading the
macromodel with termination networks.
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