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ABSTRACT 

Modelling of physical systems may be a challenging task when it requires solving large sets of 

numerical equations. This is the case of photovoltaic (PV) systems which contain many PV 

modules, each module containing several silicon cells. The determination of the temperature 

field in the modules leads to large scale systems, which may be computationally expensive to 

solve. In this context, Model Order Reduction (MOR) techniques can be used to approximate 

the full system dynamics with a compact model, that is much faster to solve. Among the several 

available MOR approaches, in this work we consider the Discrete Empirical Interpolation 

Method (DEIM), which we apply with a suitably modified formulation that is specifically 

designed for handling the nonlinear terms that are present in the equations governing the 

thermal behaviour of PV modules. The results show that the proposed DEIM technique is able 

to reduce significantly the system size, by retaining a full control on the accuracy of the solution. 
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1. Introduction 

A photovoltaic (PV) system usually consists of an array of PV modules (e.g. 10), and each module 

contains several solar silicon cells (e.g. 60 or 70 in commercial modules). Each module is a 

layered composite such that the silicon cells are sandwiched between the different layers (see 

Fig. 1 for a schematic representation of a module cross-section). The computation of thermal 

stresses and thermo-elastic displacements is of paramount importance both during the 

production process, and during the operating conditions of the module. In the former case, 

compressive residual thermo-elastic stresses may arise and are beneficial in case of cracks 

within silicon due to the activation of partial crack closure [1]. In the latter, cyclic thermoelastic 

stresses are responsible for crack growth in silicon cells and a power-loss of the PV system in 

time. Moreover, thermoelastic deformation may induce failure of the busbars connecting solar 

cells, due to an increase in the gap between cells, as experimentally and numerically studied in 

[2, 3]. In all of these cases, it is important to accurately compute the temperature distribution 

in the plane of the solar cells [4], but also the temperature in the various layers [5] for the study 

of fully coupled thermomechanical problems.   

So far, semi-analytical and numerical solutions [2, 3] for the assessment of the change in the 

gap between solar cells have been proposed by assuming a uniform temperature field across 

the module, which is an assumption holding for stationary conditions. In reality, temperature 

contour plots obtained from finite element thermal analysis [6] show that there is a 

temperature gradient across each layer, with the regions near the frame being significantly 

cooler, while the temperature distribution across the cells in the centre of the module is found 

to be quite uniform. In addition, existence of cracks in the silicon cells may induce a localized 

temperature increment (hot spots) in the region near the cracks due to a localized electric 

resistance [7]. Moreover, transient regimes, such as those taking place in accelerated 

environmental tests within climate chambers, or under operating conditions, have only 

marginally been investigated due to the inherent complexity related to the very different 

thicknesses of the layers composing a PV module. In such cases, accurate predictions require 

the solution of large systems of equations resulting from the finite element or finite difference 

approximation of the (nonlinear) partial differential equation governing the problem of heat 

conduction. Suitable techniques for reducing the computational requirements for such 

simulations are therefore highly desirable. 

The purpose of this study is to formulate a thermal model of a PV system, and to identify an 

appropriate class of Model Order Reduction (MOR) techniques, capable of approximating the 

full system by a compact dynamical model characterized by a much smaller number of degrees 

of freedom (state variables), and whose numerical solution requires a significantly reduced time 

with respect to the full system. 

Choosing a particular MOR technique that is suitable for a given problem depends on several 

factors, such as type of system (linear or nonlinear), number and structure of equations to be 

solved for and, in case of nonlinear systems, the degree of nonlinearity. Model order reduction 

is a mature field when applied to linear systems, and several excellent books on the subject are 
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available [8-11]. Many techniques are available for linear order reduction, including Krylov 

subspace projection based on orthogonal Arnoldi [12, 13] or biorthogonal Lanczos [14] 

processes, principal components analysis and balanced truncation [15], Hankel norm 

approximation [16], and singular value decomposition (SVD) based methods, which include 

Proper Orthogonal Decomposition (POD) in its many variants [17]. Many extensions to 

nonlinear system are also available, see e.g. [18-22], which combine system projection or 

truncation with suitable approximations of the nonlinear terms. 

 

In this work, we propose a POD projection based approach for the reduction of the model 

dynamic order, combined with a Discrete Empirical Interpolation Method (DEIM) [22] for 

handling the nonlinear terms. We show that this approach is ideally suited to the inherent 

structure of the PV discretized heat transfer equations obtained through a finite difference 

scheme, allowing for massive order reduction at almost no loss of accuracy. A systematic 

validation study is conducted on a PV template system, showing the influence of the various 

parameters governing the reduction scheme. Numerical results confirm the excellent scalability 

of the proposed technique. 

 

 

Figure 1. A sketch of a cross-section of a PV module, not in scale. For the actual value of the 
thicknesses, see the labels in the figure. 

 

2. Formulation of the differential problem and finite difference approximation  

 

A 2D thermal model of a PV module is proposed here based on the work by Jones [23]. We 

consider a PV module containing 12 silicon cells embedded in a composite made of glass, EVA, 

Silicon, EVA, backsheet and tedlar layers with the properties described in Tab. 1 [24]. Although 

solar cells are separated from each other by a small amount of EVA in their plane, in this work 

we slightly simplify the structure and we consider all layers as uniform in the x and y directions, 

see Fig. 1. Further, we consider the y direction as infinite. 

Glass layer (h=4mm)  
EVA (h=0.5mm) 

Si cell 
(h=0.166mm) 

Backsheet 
(h=0.1mm) 

Tedlar (h=0.1mm) 125 mm 

1580 mm 

2mm 
x-axis 

z-axis 
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Under the above assumptions, the following general 2D heat equation for the composite PV 

panel holds: 

� ��
�� = ��

���
��� + �


���
�
� + � −         (1) 

where � (�, �, �) represents the space and time dependent temperature profile of the module. 

� (�, �) is an equivalent volumetric heat capacity (J/m3K), which is equal to an equivalent mass 

density times the equivalent specific heat capacity (C =�. ��) taking into account the composite 

structure of the laminate, see next section. The function � (�, �, �) represents the heat losses 

by radiation and convection taking place at any point within the PV module, and (�, �, �) is 

the electrical energy generated by the cell layer. The coefficients ��(�, �) and �
(�, �) are the 

thermal conductivities in the x and z directions respectively.  According to Fourier’s law of heat 

conduction, the heat flows in the x and z direction are related to these thermal conductivities 

by 

�
 = −�

��
�
 , �� = −��

��
��        (2) 

Substituting (2) into (1), we have: 

� ��
�� = − ���

�� − ���
�
 + � −         (3) 

Using now a finite difference (FD) discretization scheme defined by grid spacing ∆�� and ∆�  in 

the x and z-direction, respectively, with associated discretization indices ! for 1 ≤ ! ≤ $ and %  
for 1 ≤ % ≤ &  (see Fig. 2), we can rephrase (3) as  

��, 
'�(,)

'� =
�(*+

�,),�(-+
�,)

∆�(
+

�(,)*+
�

,�(,)-+
�

∆
)
+ ��, − �,      (4) 

 

Layer Thickness 

(mm) 

Thermal conductivity 

(W/moK) 

Density (Kg/m3) Specific heat capacity 

(J/KgoK) 

Glass 4 1.8 3000 500 

EVA 0.5 0.35 960 2090 

PV Cells 0.166 148 2330 677 

EVA 0.5 0.35 960 2090 

Back contact  0.1 237 2700 900 

Tedlar 0.1 0.2 1200 1250 

 

Table 1. Material properties of the layers of the PV module 

 

Figure 2. Finite difference discretization of the PV module in its plane. 

��,  ��./,  ��,/,  

��, ./ 

��, ,/ z-direction 

x-direction 
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where ��,+
�,  and ��.+

�,  are the heat flows through the left and right boundaries of element (!, %), 

and ��, ,+
�
 and  ��, .+

�
 are the heat flows through the upper and lower boundaries of the element 

in its plane. Multiplying (4) by the area 0�, = ∆��∆� of each grid element in the FD 

discretization leads to  

��, 0�, 
��(,)

�� = 1�,+
�, − 1�.+

�, + 1�, ,+
�

− 1�, .+
�

+ 0�, ��, − 0�, �,     

 (5) 

where 1 represents, consistently with energy conservation principles, the heat flow between 

adjacent cells, which can be further expressed as 1 = 2Δ� [24], where  Δ� is the temperature 

change between the two cells, and 2 is the corresponding thermal conductance. The latter is a 

function of the equivalent thermal conductivities of the two cells and the width and length of 

the elements, i.e. ∆�  and ∆��. 
 

2.1 Thermal conductances and heat flows 

The discretized thermal conductances 2�,  (W/mK) provide information on the thermal coupling 

between the elements in the discretization of the PV module. Assuming perfect bonding at the 

various interfaces between the layers, the thermal conductance per unit length in the x-

direction between cells (! − 1, %) and (!, %) is given by [25] 

2�,+
�, = ∆
)

∆�(*+ 45� (*+,)⁄ .7�( 45� (,)⁄ .8(*+
�,)

      (6) 

where R is the thermal resistance at the interface between the elements. Since in the present 

approximation, the PV layers are uniform in the x-direction, the thermal conductivity �� does 

not change in the x direction and we have 9�,+
�, = 0 and we can simplify notation as �� �,/, =

�� �, = � . This assumption is still reasonable for the silicon cell layer, since the cells are 

separated from each other by a small amount of EVA (2mm), much smaller than the lateral size 

of each silicon cell (125mm). Grid spacing ∆� is also considered to be constant in the x direction. 

Therefore (6) becomes 

2�,+
�, = ∆
)

∆� 45)⁄ .∆� 45)⁄ = � 
∆
)
∆�         (7) 

 

and 2�,+
�, = 2�.+

�, = 2  due to material homogeneity in the x-direction.  

In the z-direction, we have: 

2 ,+
�

= ∆�
∆
)*+ 45� )*+⁄ .∆
) 45� )⁄ .8)*+

�
       (8) 

2 .+
�

= ∆�
∆
)-+ 45� )-+⁄ .∆
) 45� )⁄ .8)-+

�
  

At the top and bottom boundary elements of the PV module, (!, 1) and (!, &), we have 

2+
�

= ∆�
∆
+ 45� +⁄ .8+

�
           (9) 
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2;,+
�

= ∆�
∆
< 45� <⁄ .8<*+

�
         (10) 

where 9+
�
 and 9;,+

�
 are the thermal resistances between the top and bottom elements and the 

free surfaces. 

From (5), the heat flows through the left and the right boundaries of the element (!, %) are thus 

defined as 

1�,+
�, = 2 (��,/, − ��, )         (11) 

1�.+
�, = 2 (��, − ��./, )         (12) 

whereas the heat flows through the lower and upper boundary of the element (!, %) are 

1�, ,+
�

= 2 ,+
�
(��, ,/ − ��, )         (13) 

1�, .+
�

= 2 .+
�
(��, − ��, ./)         (14) 

 

2.2 Boundary conditions 

In this study, a constant (Dirichlet) temperature is applied to the right and left boundary of the 

module. Thus, the heat flow at the left and right boundary elements of the PV module (1, %) and 

($, %) are 

1+
�, = 2 (�=/ − �/, )          (15) 

1>,+
�, = 2 (�>, − �=4)         (16) 

Where �=/ and �=4 are the fixed temperatures imposed at the right and left of the module. In 

all subsequent simulations, we will set them equal to 343 K and 313 K in order to simulate a 

distinct differential temperature profile from one end of the PV module to the other. 

The heat flow at the top and bottom boundary elements of the PV module (!, 1) and (!, &) are 

instead 

1�,+�
= 2+

�
(�;?@ − ��,/)         (17) 

1�,;,+
�

= 2;,+
�
(��,; − �;?@)         (18) 

where �;?@ is the temperature of the sky. 

 

2.3 Heat loss  

The heat loss, which varies through the layer thickness of the module, is given by the sum of 

the following contributions [23] 

�(�, �, �) = �>A(�, �, �) + �;A(�, �, �) + �BCDE(�, �, �)     (19) 

where the long wave, short wave and convection heat transfers are denoted by �>A, �;A and 

�BCDE respectively. 

The short wave radiation heat transfer of a body of area A is given by 

�;A = 0FΦ           (20) 



 7

where F and Φ are the absorptivity of the material and the total incident irradiance input to 

the module surface, respectively. The long wave radiation heat transfer is given by the Stefan 

Boltzmann law 

�>A = Hε�J           (21) 

where H is the Boltzmann’s constant (5.607 × 10,O Js-1m-2K-4) and  ε is the emissivity of the 

body. It is assumed that the net long wave exchange is negligible for the rear of the module. 

Thus, it is only necessary to calculate the long wave exchange from the surface of the module. 

The net long wave radiation exchange between two surfaces x and y is given by [23] 

 �>A�P = 0�Q�@RS� − S@T = 0@Q�@(S@ − S�)      (22) 

Here S� and S@ are long wave irradiance per unit area for surface x and y respectively which 

are given by 

S� = Hε���J
and S@ = H ε@�@J

 

where Q�@ is the view factor, a  fraction of the radiation leaving surface x that reaches surface 

y. 

A tilted module surface not overlooked by adjacent buildings at an angle U from the horizontal 

has a view factor of  
(V.WXY Z)

[   for the sky and  
(V,WXY Z)

[   for the horizontal ground [23]. Thus, 

inserting the view factor coefficient for sky and ground into S� we have 

S� = H (V.WXY Z)
[ ε;?@�;?@J + H (V,WXY Z)

[ ε\]C^D'�\]C^D'J
    (23) 

S@ = Hε_C'�J          (24) 

where ε_C' is the module emissivity. 

Substituting (23) and (24) into (22), we have 

�>A = 0H `(/.abc Z)
4 d;?@�;?@J + (/,abc Z)

4 d\]C^D'�\]C^D'J − d_C'�Je   

           (25) 

Further, �;?@ = �f_=�gD� − h�  for clear sky condition in which h� = 20K and �;?@ =
�f_=�gD� for overcast condition. 

The convection heat transfer is related to the temperature gap between the upper part of the 

solar panel and the ambient [23] 

�BCDE = −0RℎB,lC]Bg' + ℎB,l]ggT(� − �f_=�gD�)      (26) 

where ℎB,lC]Bg' and ℎB,l]gg    in W/m2 K are the forced and free convection heat transfer 

coefficients which depend on the wind speed. 

Collecting all the heat loss contributions together, we finally obtain  
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�m, = 0�, [F�, Φ + H `(/.abc Z)
4 d;?@�;?@J + (/,abc Z)

4 d\]C^D'�\]C^D'J − d�, � �, Je −
RℎB,lC]Bg' + ℎB,l]ggTR��, − �f_=�gD�T]        (27) 

where F�,  and d�,  denote the absorptivity and emissivity coefficients of the discretized 

elements in the different layers.  

2.4 Power generated by the PV Cell  

The power generated by the PV cell at location (!, %) can be estimated as [23] 

�, = �pp
q >D(rq)

� (,)
          (28) 

where �pp  is the fill factor model constant (1.22 K m2) and s(�) in t/v4
 is the incident 

irradiance input through the thickness of the PV module. The constant w is equal to 106 m2/W. 

It should be noted that the power generated by the discretized PV cells in (28) is non-zero only 

for the silicon cell layer. 

The incident irradiance input into the system is obtained from experimental data [23]. To obtain 

a validated result of the reduced order model to be derived in Sec. 3, a minute by minute 

irradiance input obtained from the solar resource and meteorological assessment project 

website (http://www.nrel.gov/midc/kalaeloa_oahu/) will be used. The plots for irradiance for 

a period of 30 min are shown below in Fig. 3. 

 

Figure 3. Experimental and simulated irradiance input (from 09:52-10:22, 11/01/2011) 

 

2.5 System of nonlinear ODEs for the PV module 

Considering all the relations established in Sec. 2, the discretized thermal equation (5) can be 

rewritten after substituting the corresponding expressions for Q,  � and  as 

��, 0�, 
��(,)

�� − 2 ��./, − 2 ��,/, + ��, x22 + 2�, .+
�

+ 2�, ,+
�
y − 2 .+

�
��, ./ − 2 ,+

�
��, ,/ −

0�, [F�, Φ + H `(/.abc Z)
4 d;?@�;?@J + (/,abc Z)

4 d\]C^D'�\]C^D'J − d�, � �, Je − RℎB,lC]Bg' +
ℎB,l]ggTR��, − �f_=�gD�T] = −0�, �pp

q >D(rq)
�(,)

      

      (29) 
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At the left and right boundaries of the PV module, 1�,+
�,  and 1�.+

�,   from (5) are replaced by 

1+
�,  and 1>,+

�,  respectively from (15) and (16), while at the top and bottom boundaries of the 

PV module, 1�, ,+
�
 and 1�, .+

�
 are replaced by 1�,+�

 and 1�,;,+
�
 respectively from (17) and (18). 

The discretized thermal equation (29) can finally be written in a compact matrix form 

z{ '|(})
'� = ~�|(�) + {�(|(�), s(�))        (30) 

or, in explicit form, as 

'|(})
'� = ~|(�)���

������ ����
+ �(|(�), s(�))���������

�b�,������ ����
        (31) 

where ~ = (z{),V. (~�) and � = z,V�.  The independent variable � ∈ [0, ℎ] denotes time, and 

|(�) = [�/(�), … . , �D(�)]� ∈ ℝD is the unknown temperature vector for all the elements in the 

FD discretization, where we use a single subscript with n denoting the total number of nodes. 

E(t)  is the time-varying irradiance input to the system, the matrix ~ ∈ ℝD×D contains 

constants and �(|(�), s(�)) is a nonlinear function evaluated at |(�) component-wise i.e. 

� = [Q/, … . . , QD]�          (32) 

2.6 Reference solution for the complete system 

Before applying our proposed model order reduction approach, we derive a reference solution 

for (31) by direct time discretization. A backward finite difference scheme is selected to solve 

the thermal problem to avoid any convergence issues associated with explicit methods in terms 

of choice of time step. The numerical method is implemented in Matlab. A uniform 

discretization of the module in the x-direction is adopted with $=361 grid points, while there 

are &=6 strips in the z-direction with different thicknesses so that � = & × $ = 2166. The 

solution of this problem is performed for �;=186 time steps, each step representing 10 s of 

physical time. Figure 4(a) shows the temperature profile for node 741 in the silicon layer for all 

the 186 time steps. The temperature along the silicon layer vs. position at the last time step is 

shown in Fig. 4(b). As it can be seen, the transient regime is quite evident and the temperature 

in the silicon cell layers is significantly different from cell to cell. 
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Figure 4. Temperature profile of the full system for (a) a node within the silicon layer vs. time 

step and (b) along the silicon layer at the last time step of the simulation. 

 

3. Model order reduction  

The direct numerical simulation of (31) may be quite demanding in terms of computing 

resources, especially in view of its extension to a full 3D geometry. For this reason, we 

investigate in this work a MOR technique, with the objective of approximating the large-scale 

system (31) with a lower order compact dynamical model, that is able however to preserve 

accuracy in its input/output transient response. The two key aspects of proposed MOR 

approach are: i) a massive reduction in the degrees of freedom (states), and ii) an accurate 

representation of the nonlinear terms that influence the heat exchange of the structure. These 

two aspects are analysed in detail. 

 

3.1 System projection 

 

The reduction in the degrees of freedom is here performed through a standard projection 

approach. The vector | collecting all � cell temperatures is approximated as a linear 

superposition of a small number � of “basis vectors”, which span a reduced order subspace. 

More precisely, we consider the representation | ≈ �?|� , where |� ∈ ℝ?  is a reduced 

temperature vector collecting the coefficients of | into a reduced basis, defined by the columns 

of matrix  �? ∈ ℝD×?. We consider an orthonormal basis, so that  �?|�? = � ∈ ℝ?×? (� ≪ �) 

with � an identity matrix. Introducing the above reduced expression for | into (31), we have 

�?
'|�(�)

'� ≈ ~�?|�(�) + �(�?|�(�), s(�))        (33) 

Projecting now these equations along the subspace generated by �? leads to 

'|�(�)
'� ≈ �?�~�?����� |�(�) + �?��(�?|�(�), s(�))  

with �?�~�? = ~�  and where ~� ∈ ℝ?×? 

The reduced form of the thermal equation (31) reads 

'|�(�)
'� = ~�|�(�) + �?��R�?|�(�), s(�)T        (34) 

The above system represents a reduced order model, since its main variables are the 

coefficients of a reduced basis. In order to determine �?, we use a Proper Orthogonal 

Decomposition (POD), which extracts the basis vectors from the actual transient solution of the 

full system by means of a truncated singular value decomposition.  In particular, we collect the 

�; snapshots |(��) obtained from the full solution of the system at discrete time steps of size 

ℎ in the following snapshot matrix  

� = [|(�/), … . , |(�D;)]         (35) 
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and we apply the POD algorithm below 

 

INPUT: � = [|(�/), … . , |(�D;)] ⊂ ℝD×D; 

OUTPUT: �? = [�V, … . . , �?]  ∈ ℝ�×  

1. Form the shapshot matrix � = ¡|(�/), … . , |(�D;)¢ 

2. Perform the singular value decomposition | = �£¤� to produce orthogonal matrices 

� = [�V, … . , �¥]  ∈ ℝ�×¥ and ¤ = [¦/, … . . ¦]]  ∈ ℝD<×] and diagonal matrix £ =
diag (H/, … . , H]) ∈ ℝ¥×¥ where r is the rank of �. 

3. Set a threshold to pick the � highest modes from the diagonal matrix £  

4.  Pick the columns in matrix � which correspond to the modes selected in 3 to generate 

the POD basis �? = [�/, … . . , �?]  ∈ ℝD×? 

 

Note that in the present case we choose �; = 186, as the total number of time steps in the full 

solution. The choice of �; should be carefully considered since it can strongly influence the 

accuracy of the approximation and the computational cost, as shown later. 

 

3.2 Discrete Empirical Interpolation Method (DEIM) 

System (34) is a reduced order model, but the evaluation of the nonlinear term still requires 

the mapping �? to the full-size space. The DEIM approach is used here to further approximate 

the nonlinear terms, thus reducing the computational cost associated with the simulation of 

the reduced model.  According to [10], we write the nonlinear term of (34) as 

¬R|�T = � �
?×D

�R� |�(�), s(�)T�����������
D×/

        

 (36) 

and we define 

®(�) =  �R� |�(�), s(�)T         (37) 

The basic idea is to approximate ®(�) by projecting it onto the subspace spanned by a suitable 

set of v ≪ � basis vectors ¯/, … . , ¯_ via 

®(�) ≈ °W(t)           (38) 

where ° = [¯/, … . , ¯_]  ∈ ℝD×_. The corresponding coefficient vector W(t) is determined by 

selecting v significant rows from the overdetermined system (38). This can be achieved by 

considering the mapping matrix 

± = [²³+ , … . , ²³´]  ∈ ℝD×_         (39) 

Where ²³( = [0, … . ,0,1,0, … . ,0]| ∈ ℝD is the µ�th column of the identity matrix  ¶ ∈ ℝD×D for 

! = 1, … . , v. The coefficient W(t) can thus be determined by inverting system 
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±·®(�) = (±·°)W(t)         (40) 

 

Provided ±·° is non-singular, the final approximation of (38) is 

®(�) ≈ °W(t) = °(±·°),V±·®(�)        (41) 

Since ®(�) =  �R� |�(�), s(�)T, (41) can thus be written as 

�R� |�(�), s(�)T ≈ °(±·°),V±·�R� |�(�), s(�)T      (42) 

Eq. (42) ensures that the nonlinear function � is evaluated for the full system and then 

interpolated by matrix ±, an operation which still shows the dependence of the reduced system 

on the complete system size. To avoid this dependence, DEIM interpolates the input vector of 

the nonlinear function � and then evaluates � component-wise at its interpolated input vector. 

Based on this, (42) can be written as 

�R� |�(�)s(�)T ≈ °(±·°),V��R±·� |�(�), s(�)T      (43) 

Where �� denotes the selected components of �.This approximation is particularly effective 

when the full nonlinear function � is evaluated independently for each component of its vector 

argument, as in present FD formulation.  The nonlinear term in (36) can now be represented as 

¬R|�(�)T = � �°(±·°),V���������
?×_

��R±·� |�(�), s(�)T�������������
_×/

      (44) 

Now, to evaluate ¬R|�T in (44), we must specify the projection basis [¯/, … . , ¯_] and the 

interpolation indices[ ¸/, … . , ¸_]. We can obtain the basis [¯/, … . , ¯_] by applying the above 

described POD scheme to the matrix collecting the nonlinear snapshots  � =
¡QR|(�/)T, … . . , QR|(�D;)T¢ resulting from a direct evaluation of the nonlinear function of the 

full system at different time steps, and then using the DEIM algorithm described in [22]. The 

following implementation is used to iteratively construct the basis vectors and the set of 

interpolation indices. 

 

INPUT: ¡¹m¢�º/_ ⊂ ℝD linearly independent 

OUTPUT: »̧»¼ = [ ¸/, … . , ¸_]  ∈ ℝ_ 

1. [|¾|, ¸V] = ¿ÀÁ¡|¯/|¢ 

2. ° = |¯/|, ± = Â²¸VÃ, »̧»¼ = [ ¸V]  

3. for ! = 2 to m do 

4. Solve (±·°)W = ±·¹m for W  

5. Æ = ¹m −  °W  

6. [|¾|, ¸m] = ¿ÀÁ¡|Æ|¢ 

7. ° ← [° ¹m], ± = Â± ²¸mÃ, »̧»¼ = È »̧»¼
¸mÉ  

end for 

 

3.3 Modification of DEIM formulation 

To control the accuracy of the reduced system more efficiently, we notice that: i) there are two 

nonlinear terms with different characteristics in the thermal formulation of the PV module, and 

that ii) these two terms influence different layers of the PV module. In fact, since we assumed 
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that the net long wave exchange for the rear of the module is negligible (see section 2.3), the 

heat loss term in the thermal system formulation has most impact on the surface of the PV 

module. On the other hand, the power output is generated only by the silicon cell (third layer). 

On this note, the DEIM operation is here performed separately for the two nonlinear terms 

using two different sets of snapshots. Accordingly, we have Eq. (43) respectively expressed for 

the two nonlinear terms in the reduced system as 

�VR� |�(�), s(�)T ≈ °V(±V·°V),V��VR±V·� |�(�), s(�)T     (45) 

�[R� |�(�), s(�)T ≈ °[(±[·°[),V��[R±[·� |�(�), s(�)T     (46) 

Finally, the nonlinear term in (36) can now be represented as 

¬R|�T = � �°V(±V·°V),V�����������
?×_+

��VR±V·� |�(�)s(�)T�������������
_+×/

+ � �°[(±[·°[),V�����������
?×_�

��[R±[·� |�(�), s(�)T���������������
_�×/

           (47) 

 

With this modification, the interpolation of the nonlinear terms can be handled independently, 

enabling a finer control on reduced system complexity and efficiency. 

 

4. Numerical results 

In this section, we assess the accuracy of the proposed reduced modeling scheme by comparing 

the responses of the compact model and the original system. In particular, we investigate the 

convergence of the reduced system as a function of the three parameters that measure its 

complexity, namely the size � of the reduced basis used in the state-space (linear) projection, 

and the two orders m1, m2 of the nonlinear interpolation. 

  

(a)      (b) 

Figure 5. Convergence of reduced solution to the full solution with increasing order of k and fixed 

interpolation points m1=m2= 3 for (a) a specific point in the silicon layer, and (b) for the entire silicon 

layer. 

As shown in Fig. 5, the cell temperatures at the last time step of the iterative solution of the full 

system and of the reduced system are in fair good agreement by increasing the order k of the 

reduced system. As the order of the reduced system increases from k=1 to k=7, the 
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approximation of the reduced system approaches the exact value of the complete system. At 

k=7, the reduced system approximation fits well the complete system such that further 

increasing the order of the reduced system does not change the result significantly.  

It is noticed that the number of snapshots �; used to construct the compact model also affects 

its convergence to the full solution. Convergence is achieved more efficiently using a high 

number of samples in the snapshots matrix � than using a small number of samples. The plots 

in Fig. 6 illustrate the convergence of the reduced solution using 185, 100, 70 and 40 snapshots 

while fixing the order of k = 7 and interpolation order m1=m2 = 5. 

  

Figure 6. Convergence of the reduced solution by increasing the number of snapshots for order 

of basis k=7 and interpolation points with m1=m2 = 5. 

4.1 Validation of the reduced model using simulated irradiance data 

In this section, we investigate the sensitivity of the reduced model to the input irradiance signal. 

To this end, the reduced model is first constructed based on snapshots derived from 

experimental irradiance data, see Fig. 3. Then, simulated irradiance data is used to excite the 

model, and the corresponding response is compared to the full system response computed by 

direct time discretization. The irradiance data for this validation was carefully selected to have 

different environmental characteristics with the identification experimental data. On this basis, 

a day is chosen in autumn of November, 2011 with average air temperature of 22oC and average 

wind speed of 3 m/s. It is verified that the reduced model approximates the full system to a 

reasonable degree of accuracy also under this different excitation, as shown in Fig. 7.  
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(a)      (b) 

Figure 7. Convergence of reduced solution to the full solution with increasing order of k and 

fixed interpolation points m1=m2 = 3 for (a) a specific point in the silicon layer, and (b) for the 

entire silicon layer. 

 

4.2 Error analysis 

To demonstrate the efficiency and accuracy of the nonlinear order reduction, an error plot is 

deemed necessary to observe the convergence of the responses by varying the interpolation 

points m1, m2 and the dynamical order �. To do this, we compute a normalized error 

d(�, v/, v4) as 

d = Ê|,|�Ê�
‖|‖�

           (48) 

where the norm is defined either in time domain by fixing the cell location, or in the space 

domain by fixing time step. 

In order to observe the rate of convergence of the reduced system as we increase its dynamical 

order k with a fixed number of interpolation points m1=m2=m, we compute the error at specific 

time steps representative of the beginning, middle and end of simulation. A time variation error 

plot is also obtained for a selected element in the PV module for all the time steps. The results 

are shown in Fig. 8. 
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(c)      (d) 

Figure 8. Error plot for the topmost layer for fixed m1=m2=m at (a) 50th time step (b) 150th time step 

(c) 186th time step, and for (d) node number 150 in the discretized module for all 186 time steps. 

A clear lower error bound can be observed from the error plots, which is an indication that the 

reduced system response converges, as the order of the system is increased, only to the extent 

allowed by the representation of the nonlinear terms. It should be generally noted that the 

error obtained by using only one interpolation point (i.e. an equivalent of a linear system) is in 

the range of 10-5 to 10-6, an indication that the nonlinearity in the system is not at all strong. 

Increasing the number of interpolation points further shifts the error bound from 10-5 to less 

than 10-8 which confirms the excellent suitability of the DEIM algorithm for this thermal 

modelling task. 

In order to verify the improved efficiency that can be achieved by using different interpolation 

points for the two nonlinear terms, as against using the same interpolation order for the two 

nonlinear terms, we perform various experiments by independently varying m1 and m2. The 

results are shown in Fig. 9. 
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(c)      (d) 

 Figure 9. Error plot for the third layer at the 186th time step for (a) m1=m2=m (b) m1=1 (c) m1=5 (d) 

m1=7 

The plots shown in Fig. 9 confirm that by independently varying m1 and m2, we can achieve 

better control of the accuracy of the reduced model. In Fig. 9a where the same interpolation 

order is used for the two nonlinear terms, the reduced model becomes efficient as order � is 

increased above 50 when the lower bound error becomes more stable. By varying m1 and m2 

independently, the stability of the lower error bound is attained with a smaller order � . It can 

be clearly observed in Fig. 9b-9d that there is a reduction in the lower bound error from less 

than 10-6 to less than 10-8 as m1 is increased from 1 to 7 while m2 is varied for each fixed m1. 

Furthermore with independent variation of m1 and m2, a lower order � (< 50) of the linear 

subspace projection is required to attain a stable error bound. This observation proves that, a 

better approximation of the full system can be achieved by independent variation of the 

interpolation of the nonlinear terms.  

4.3 Runtime 

Finally, we emphasize the advantages of proposed MOR technique by reporting the runtime 

required for the various simulations on the same commodity laptop. A transient analysis of the 

full system requires 61.40 seconds. Based on available snapshots, the construction of the 

reduced model via the proposed POD/DEIM requires as few as 0.86 seconds, whereas the 

transient simulation of the reduced model (k=7 and m1=m2=3) takes only 1.40 seconds. 

Excluding model setup and construction, the overall speedup is almost 44X. Considering that 

the proposed model is a quite simplified and 2D structure, more dramatic speedup is expected 

when applying this process to a full 3D geometry. 

5. Conclusion 

 

The partial differential equation governing the heat conduction within a 2D photovoltaic system 

has been derived and a numerical solution based on a finite difference scheme has been 

proposed. In order to limit the computational burden, we have identified the DEIM as a suitable 

technique to reduce the system through a combination of linear subspace projection and 
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interpolation of nonlinear terms. In the numerical examples, we show that the heat conduction 

of a PV system discretized into 2166 nodes along the module span is successfully reduced to a 

compact model with dynamical order k=7, based on interpolation with only m1=m2=3 points. 

For the specific system under investigation, we see that further increment in k does not result 

into a significant accuracy, and that the efficiency in the numerical solution of the reduced 

model, which depends on the number of interpolation points, can be fine- tuned by carefully 

selecting a different interpolation order for individual nonlinear terms. From the validation 

results, it is also concluded that the reduced solution is not very sensitive to the input function 

as it approximates well the simulated irradiance data much the same way as the experimental 

irradiance data used in the construction of the compact model. As a future development of the 

present research, the generalization of the present formulation for coupled thermo-mechanical 

problems is envisaged. In this case, the presence of cohesive crack bi-material interfaces 

between the layers, to model temperature-induced debonding of the back-sheet, should be 

exploited in order to assess the durability of PV modules. Also, extension to a full 3D geometry 

is under way. 
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