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Abstract

The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of
metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations
and, on the other, provide key insight into a cell’s metabolic production capabilities. When the conserved quantity identifies
with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative
integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to
compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate
for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships
in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic
networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily
designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation
laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the
size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.
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Introduction

When studying metabolic networks at the scale of the whole

genome, it is often the case that the information required to

develop dynamical models is not available, because either kinetic

parameters or reaction mechanisms are partially or fully unknown.

In many cases, the most reliable information is encoded in the

stoichiometry of the reaction network (the stoichiometric matrix)

and, partly, in the assignment of reaction reversibility [1–4]. Based

on these, constraint-based models like Flux Balance Analysis (FBA)

have been able to shed light on functional optimality in different

contexts, providing (mostly for unicellular organisms) unprece-

dented predictive power on issues like the organization of reaction

fluxes, response to knock-outs, or gene essentiality [5–8]. FBA can

now almost routinely be performed on genome-scale networks [9].

Stoichiometric matrices however harbor a host of additional

physical, biological and functional information [5,10–12], includ-

ing regulatory (see e.g. extreme pathways [13,14] and flux modes

[15]), robustness (see e.g. the geometry of the FBA solution space

[16–18]) and statistical (see e.g. the individual distributions of

allowed fluxes and flux-flux correlations [18–20]) characteriza-

tions. Unluckily, the full solution of the problems just listed on

genome-scale networks with thousands of reactions and metabo-

lites presents serious computational challenges, as the algorithms

currently available do not scale gently with the system size. This is

also the case for the identification of moiety conservation laws that

we shall consider here [10,21,22].

Conservation relationships for concentration variables emerge

in biochemical reaction networks from the sheer structure of their

input-output stoichiometry [10]. In particular, given a stoichio-

metric matrix, it is generically possible to find linear combinations

of metabolite levels that are due to be constants of motion of the

dynamical system governing the time evolution of concentrations

and reaction rates. For instance, if the subset of metabolic

reactions describing energy metabolism is considered, ATP and

ADP would be coupled in every reaction – one is a product

whenever the other is a substrate –, so that the aggregate

concentration of ATP and ADP would remain constant over time

while individual levels may fluctuate in a correlated way. The

existence of such relationships has profound consequences. In first

place, any intervention aimed at altering the level of a certain

metabolite should consider whether its variations are limited or not

by conservation laws. Secondly, conservation laws constrain a

network’s production capabilities, as there clearly cannot be a net

stationary output of a compound belonging to a conserved

quantity. Therefore, mapping out these conservation laws

amounts to obtaining a genome-scale picture of what a cell can

(in principle) excrete or make available to processes outside
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metabolism, in particular secondary metabolism, e.g. the produc-

tion of pigments and antibiotics. Finally, conserved quantities

imply an effective reduction of the number of independent flux or

concentration variables in a reaction network, an important aspect

especially for dynamical modeling.

The problem of finding generic conservation laws is relatively

straightforward to solve with the tools of linear algebra, since, as

said above, they correspond to specific (linear) dependencies of the

rows of the stoichiometric matrix. When one is interested in the

conservation of particular chemical moieties, however, the

problem takes a more challenging twist. Indeed, because of

intrinsic discreteness, the combinations that describe moiety

conservation should only be constructed with non-negative

integers. We refer to these particular combinations as ‘moiety

conservation laws’ (MCLs), and we shall be interested in finding a

basis for MCLs (i.e. a maximal linearly independent set of MCLs)

in large, genome-scale metabolic networks. Computing an MCL

basis in a large system is much harder than finding linear row-

dependencies, as one passes from a linear to an integer-linear

programming problem with the concomitant increase of compu-

tational complexity up to NP-hard [23,24]. On the other hand,

knowledge of an MCL basis allows, as we shall see, to map out

exhaustively a large class of conservation laws in biochemical

networks.

The literature on conservation laws in reaction networks, mostly

focused on characterizing the so-called semi-positive conservation

laws (SPCLs, given by linear combinations of MCL basis vectors),

is quite rich. Pioneering mathematical analyses of SPCLs in

biochemical systems date back to the early 1990’s [21,25]. Besides

clarifying the origin and significance of these invariants, such

studies have shown that conservation laws can be encoded in a

convex representation of the left kernel of the stoichiometric

matrix [25]. Later on [22], a classification of conservation laws has

been proposed based on an analogy between properties of the

right (extreme pathways) and left null spaces of the stoichiometric

matrix. The computational demand of finding MCLs in genome-

scale networks has driven further work concerned with the

development of ad hoc algorithms [26,27]. After the seminal

proposals made in [25], already in [22] a method is presented, that

however scales exponentially with the system size and can only be

employed for the analysis of rather small networks. The

Metabolite Concentration Coupling Analysis (MCCA) and the

Minimal Pool Identification (MPI) tools for genome-scale meta-

bolic network analysis were instead introduced in 2005 [28]. The

former allows for the identification of subsets of metabolites whose

concentrations are coupled within common SPCLs, while MPI

helps to determine the SPCLs for individual metabolites. More

recently [29], the formal algebraic duality of metabolite produci-

bility and conservation has been exploited to devise a method that

relates biomass producibility to nutrient availability, which was

then applied to the metabolism of Escherichia coli, obtaining a large

set of novel putative growth media. Then in [30] a mixed integer-

linear programming problem has been posed and solved in order

to find the ensemble of all metabolites that appears in SPCLs.

Furthermore, in modeling metabolic networks in terms of Petri

nets, the problem of finding MCLs has been connected with the

search for the so-called P-invariants of the network [31]. It is worth

noting that metabolite levels are in principle experimentally

accessible (e.g. by mass spectrometry), although such knowledge is

mostly used in metabolomic analysis to reconstruct flux patterns.

Despite many efforts, a consistent computational method to

determine all MCLs in genome-scale networks has remained so far

elusive. In this work we construct such a computational method.

The technique we propose exploits the above mentioned duality

and combines different kinds of algorithms (message passing,

Monte Carlo and relaxation). The mathematical background and

the structure of the method we employ are discussed in ‘Materials

and Methods’. As case studies, we have considered different

reconstructions of the metabolic network of the bacterium E. coli

and six tissue-specific human metabolic networks derived from the

Recon-2 database [32]. In particular, we have been able to

identify in each case all MCLs in different conditions (see

‘Results’). Furthermore, by studying E. coli we have uncovered a

relation between the number of pools and the size of a network

(number of metabolites and/or reactions), a theoretical justifica-

tion for which is also discussed, before reporting our conclusions.

Materials and Methods

Methods
Background. Given a metabolic network encoded by the

stochiometric matrix S~(Smr), where Smr is the stochiometric

coefficient of metabolite m[f1, . . . ,Mg in reaction r[f1, . . . ,Ng
(with the standard sign convention to distinguish substrates from

products), the time evolution of the concentration vector c~fcmg
satifies

_cc~Sv, ð1Þ

where v~fvrg is the vector of reaction fluxes and we have

assumed that the stoichiometry of metabolite exchanges with the

environment is included in S. Consider a linear combination Q of

concentration variables with fixed coefficients km§0, i.e.

Q~
XM
m~1

kmcm:(k,c), k~fk1, . . . ,kMg, ð2Þ

where the bracket (:,:) stands for the scalar product. Clearly,

_QQ~(k, _cc)~(k,Sv)~(v,ST k): ð3Þ

So if k belongs to the left null-space of S, that is if

ST k~0, k=0, km§0 Vm [ f1, . . . ,Mg ð4Þ

then the aggregate concentration variable Q is conserved in any

flux state v. Following [21], we shall generically call a conserved

metabolite pool like Q, defined by a vector k satisfying (4), a ‘semi-

positive conservation law’ (SPCL). From a physical viewpoint, a

SPCL represents an invariance constraint that is required to be

satisfied by trajectories of the dynamics of the system, i.e. by

solutions of (1) with given specifications of how v depends on c. In

principle, every vector k belonging to the left kernel of S (without

sign restriction) defines a conserved quantity, to which we can refer

generically as a ‘conservation law’. The total number of linearly

independent conservation laws of this type equals the dimension of

the left null-space of S, i.e. M{rank(S). This number also

provides an upper bound to the number of linearly independent

SPCLs, namely

#findependent SPCLsgƒM{rank(S): ð5Þ

The restriction to k§0 in (4) allows for a more straightforward

interpretation of quantities like Q. Considering, for instance, the

toy network formed by the three reactions

Identifying All Moiety Conservation Laws in Metabolic Networks
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AzB?CzD

E?FzB

DzF?E

ð6Þ

a simple calculation shows that two conserved quantities exist, i.e.

Q1~cBzcEzcD and Q2~cEzcF . However, Q2 could be also

written as Q’2 ~cF {cB{cD. While both Q2 and Q’2 are

conserved quantities, Q2 can be interpreted to be a total enzyme

mass if E and F represent, respectively, a bound and a free

enzyme species. A similar physical interpretation is harder to

imagine for Q’2 (and the situation rapidly becomes more

complicated in larger networks).

Among solutions of (4), those for which the coefficients km are

non-negative integers can be fully rationalized in chemical terms as

related to the conservation of moieties, groups or chemical

elements. We shall hereafter define a ‘moiety conservation law’

(MCL) as a solution of

ST k~0, k=0, km [N:f0,1,2, . . .gVm: ð7Þ

The problem we face here concerns the identification of all MCLs

of a given stoichiometric matrix S. Furthermore, we will be

interested in constructing an integer basis of the left null space of S

through which all SPCLs can be obtained as linear combinations

with real coefficients. From a mathematical view point, finding

such a basis represents a variation of the more general problem of

computing the minimal integer Hilbert basis of the polyhedral

cone defined by the left null-space of the stoichiometric matrix,

which is known to be NP-hard [33,34]. Although some exact

deterministic algorithms are available [35,36], their computational

costs become too high when the underlying network is sufficiently

large. In particular, for the sizes relevant to genome-scale

metabolic modeling (N,M *> 103) one always runs into the

combinatorial explosion of computation times.

Incidentally, if this integer basis suffices to generate all

conservation laws via linear combinations with real coefficients,

then all conservation relationships encoded in S are SPCLs and

the number of MCLs in the basis saturates the bound (5).

Otherwise, S necessarily allows for at least one conservation law

that cannot be expressed through a SPCL but also involves

negative coefficients. In such cases, we have

#findependent MCLsgvM{rank(S) and an integer basis of

the left kernel, rigorously speaking, does not exist.

It is very important to stress that a high computational

complexity does not necessarily imply the existence of an

exponential number of elements of the MCL basis (as a matter

of fact, we shall see that the basis size grows roughly linearly with

the network size); rather, it quantifies the time required to find a

single element of the basis in the worst case. Roughly speaking,

combinatorial explosion of computing times occurs when one has

to go through an exponential number of candidates (k-vectors in

our case) before finding a solution of (7). It is rather intuitive that

finding all solutions of (7) by a deterministic procedure would

require exploring the entire space of k-vectors, which assuming

non-zero upper bounds for the km’s is indeed exponentially large

in the number of metabolites.

In order to find all independent solutions to (7), stochastic

strategies are therefore mandatory. In brief, we shall map this task

to a global optimization problem whose solution can be retrieved

via stochastic algorithms known to be exact in special situations, a

kind of approach that has been used before with considerable

success in the solution of other NP-complete and NP-hard

problems [18,37–39]. Our strategy is divided in three steps: (a)

compute a list of all metabolites belonging to at least one MCL; (b)

construct an integer basis for MCLs from that list; (c) check that S

does not allow for any further MCL. Step (a) can be carried out in

different ways, starting, as we shall see, from a straightforward

analysis of the kernel of ST . We shall also discuss here a more

involved but more informative approach based on a message-

passing procedure. Step (b) will be done by Monte Carlo and step

(c) by a relaxation algorithm. The conceptual implementation of

each step is sketched below and a C++ code performing the

complete procedure can be downloaded from http://chimera.

roma1.infn.it/SYSBIO/, together with a test case (the E. coli

iAF1260 network). Further details and work flow are given in the

Text S1.

Step (a): finding all metabolites belonging to at least one

MCL. A first, elementary preprocessing step may consist in

computing the left kernel of S, e.g. by Gaussian elimination.

Evidently, every vector in a basis of Ker(ST) is a generic, linearly

independent conservation law, i.e. a non-null solution of S
T k~0

with real-valued k. Eventually, some of these vectors will be such

that km§0 for each m, i.e. will be outright SPCLs. The search for

MCLs can be carried out among metabolites that appear in this

basis with positive components. Furthermore, the size of such a

basis is an upper bound for the maximum number of linearly

independent MCLs. In order to compute the left kernel, we resort

to a Gaussian elimination method with partial scaled pivoting, a

technique currently employed to deal effectively with possible ill-

conditioning of the stoichiometric matrix under control. We

however cross-checked results, in every case, with the results

obtained by the robust routines employed by both Mathematica and

MatLab softwares. Ultimately, though, the relaxation algorithm

discussed below provides a definitive certificate for correctness, in

the sense that convergence only occurs when all kernel vectors

have been found (and removed from the stoichiometric matrix, see

below).

A more complex but (in our view) more rewarding alternative is

suggested by the following considerations. Because MCLs are

represented by solutions of (7), one could obtain a statistical picture

of the set of MCLs by computing the marginals of the probability

distribution

P(k)~
1

N sol

P
N

i~1
d
XM
m~1

Sm,ikm; 0

 !
, km[N Vm, ð8Þ

where d(x; y) is the Kronecker delta function (~1 if x~y and ~0

otherwise) and N sol stands for the number of solutions of (7).

Indeed, each marginal

Pm(km):
X

fkngn=m

P(k) ð9Þ

represents the probability that the m-th component of the k vector

attains a value km over the solution space of (7). Disposing of all

such marginals is equivalent to disposing of the list of metabolites

belonging to at least one MCL, since Pm(km)~0 implies that

metabolite m does not belong to any MCL. Actually, the set of

marginals provides much more information than that: in fact, by

definition,

Identifying All Moiety Conservation Laws in Metabolic Networks
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Pm(km)~
1

N sol

XN sol

s~1

d(ks
m; km), ð10Þ

where in the last equivalence we stressed the probabilistic

interpretation of the marginal as the histogram of the m-th

coordinate over the solutions fksg, s~1, . . . ,N sol. So, Pm is

proportional to the number of distinct MCLs to which metabolite

m belongs.

Unluckily, a direct evaluation of (10) requires computing a sum

over kM{1
max terms (assuming km[f0,1,2, . . . ,kmaxg), which be-

comes computationally infeasible for M larger than a few tens. We

can however estimate each marginal effectively by resorting to

message-passing (MP) techniques. MP is an efficient computation-

al strategy (with a running time scaling linearly, as opposed to

exponentially, with the number of variables) that is formally exact

on locally tree-like networks [40–42] and is extensively used as a

heuristic procedure to solve hard computational problems defined

on sparse or even loopy networks [37,43,44]. It has been also

applied previously to the analysis of metabolic networks [18].

In short, we have devised a MP algorithm to compute the

marginals (10) and obtain a full statistical representation of the

space of MCLs. Details are given in the Text S1. Upon

convergence, when all marginal probability distributions are

evaluated, one disposes of a list of metabolites belonging to at

least one MCL (with the additional information described above).

The following step concerns the construction of an integer basis for

MCLs from this list.

Step (b): constructing the basis. Because MP will have

considerably pruned the set of metabolites (thereby greatly

reducing the number of variables: we shall now denote by Mc

the number of metabolites belonging to at least one MCL), the

most convenient method to explore the structure of individual

MCLs is Monte Carlo. Indeed, the problem of finding the integer

solutions of (7) can be mapped onto that of finding the minima of

the fictitious, discrete ‘energy function’ given by

E(k)~
XN

i~1

XMc

m~1

Sm,ikm

 !2

~
XMc

m,n~1

Jm,nkmkn§0, ð11Þ

where km[f0,1,2, . . .gVm and

Jm,n:
XN

i~1

Sm,iSn,i: ð12Þ

Note that E(k)~0 if k satisfies (7). Therefore MCLs correspond to

the minima of E. Several controlled and optimized Monte Carlo

methods are available to compute the minima of functions like (11)

[45]. More specifically, these protocols (the simplest of which is

probably the Metropolis scheme) are capable of sampling vectors k
distributed according to

P(k)~
e{E(k)=T

Z(T)
, ð13Þ

where Tw0 is a parameter and Z(T) a normalization factor. The

minima are recovered upon slowly decreasing T (‘annealing’) in

the limit T?0.

In this work, in order to retrieve the individual MCLs as ground

states of E, we have performed iterated Metropolis-based

annealings to minimize the energy (11) as detailed in the Text

S1. Eventual linear dependencies among the retrieved minima can

be resolved by Gaussian elimination to yield an actual non-

negative integer basis for the space of MCLs. In case superposi-

tions of independent MCLs (for which E~0 as well) are identified

as minima of E by Monte Carlo, they can be easily reduced by

iteratively subtracting the other independent MCLs found, taking

care to maintain the non-negativity constraint for the coefficients

km.

Step (c): checking completeness. As in [29], we can exploit

the connection between (7) and its dual system [21], i.e.

Sv§0, v=0, vr[R Vr: ð14Þ

The solution spaces of (7) and (14) are linked by the Motzkin

theorem of the alternative, which can be stated as follows:

Theorem (Motzkin, 1936). Consider any arbitrary subset R of rows of

S. Then, either there exists a solution v* to system (14) such that all

inequalities corresponding to the subset R hold strictly, or system (7) has a

solution k*, with k�mw0 for each m[R.

In essence, Motzkin’s result guarantees that solutions of (14)

verify strict equalities for metabolites belonging to MCLs. This is

rather intuitive if one interprets strict inequalities in (14) as

conditions for metabolite producibility [29,46]. Luckily, a solution

of a subset of constraints in (14) with strict inequalities can be found

very efficiently by relaxation algorithms (e.g. MinOver [47] or

Motzkin’s scheme [48]). These classic methods work by correcting

iteratively (t being the step) the least unsatisfied constraint,

according to the scheme

m(t)~arg min
m

X
i

Sm,ivi(t) ð15Þ

vi(tz1)~vi(t)zlSm(t),i, ð16Þ

l being a parameter that can be fixed in different ways, from a

constant (as in MinOver [49]) to a quantity proportional to the

amount by which the constraint is violated (as in the so-called

Motzkin scheme [48]). The above dynamics converges to a

solution, if one exists, in polynomial time.

Therefore a simple numerical check to confirm that all MCLs

have been found consists in looking for a solution of (14) with strict

inequalities for all m’s remaining after having removed from S the

rows corresponding to metabolites belonging to at least one MCL:

when all MCLs have been found, a solution necessarily exists and

relaxation converges to it. Further detailes are reported in the Text

S1. This completeness analysis finalizes our protocol.

Materials
We shall apply the method described above to find MCL bases

for two reconstructions of E. coli’s metabolic networks of rather

different sizes, namely iJR904 [4], with M~761 chemical species

and N~1074 reactions, and iAF1260 [50], with M~1668 and

N~2381. These numbers refer to the sizes of the respective

stoichiometric matrices including all uptakes but excluding the

biomass reaction. Two limiting cases for the choice of the

exchange fluxes will be considered. First, we shall analyze MCLs

formed in a ‘rich medium’, where all uptake reactions are active.

Then, we shall look at the case of ‘minimal medium’, by studying

MCLs after having eliminated part of the intakes, while keeping

exchange reactions for ca2, fe2, glc-D, h2o, h, k, mg2, mn2, na1,

nh4, o2, pi, so4 and zn2. (In the latter case a much larger number

of MCLs is to be expected.) We shall see that, while for iAF1260

Identifying All Moiety Conservation Laws in Metabolic Networks
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independent MCLs suffice to generate all conservation laws as

linear combinations with non-negative coefficients (in other words,

the bound (5) is saturated), the model iJR904 presents one

conserved quantity that cannot be expressed as a linear

superposition of MCLs with non-negative coefficients.

We have furthermore computed the independent MCLs

emerging in 6 tissue-specific reconstructions of human metabolic

networks derived from the reactome Recon-2 [32] (bone marrow,

breast glandular, heart muscle, hippocampus glial and neuronal

and liver hepatocytes), as well as in the entire reactome. The latter

case serves mainly to obtain computing times in a worst case

(largest reconstruction tested). MCLs for the human networks were

obtained using stoichiometric matrices that include all uptakes and

exclude the (eventual) biomass reaction.

Results

E. coli iAF1260
Table 1 lists the independent MCLs found for iAF1260 with a

‘rich medium’. They are 38 in total, matching exactly the

dimension of the left kernel of the stoichiometric matrix.

20 of them (numbers 1–19 and 32) are formed by a tRNA in

two forms: free and bound to its corresponding amino-acid. To

have a physical interpretation, we note that if a model possesses a

conserved quantity corresponding to a chemical moiety, then that

model is closed with respect to that moiety, in the sense that it does

not allow for changes in the level of that particular chemical

group. In this sense, MCLs based on a tRNA reflect the fact that,

in the model where they have been found, the expression of each

tRNA is necessarily constant (more precisely, it is assumed to

change on time scales longer than those over which metabolite

levels equilibrate).

Compounds in MCL 20, arbutin 6-phosphate (arbt6p) and

hydroquinone (hqn) only occur in one reaction (arbutin 6-

phosphate glucohydrolase: arbt6p + h2o R g6p + hqn). From a

topological point of view, they represent ‘leaves’ of the reaction

network, in the sense that arbt6p is not produced by any reaction

while hqn is not consumed by any reaction. The fact that their

overall level is invariant is merely due to this peculiar geometric

property.

MCL 21 is composed by hydrogen cyanide (cyan) and

thiocyanate (tcynt) in their cytoplasmic form. Interestingly, the

aggregate concentration of these compounds is conserved despite

the fact that, in the rich medium, there are uptakes for both. This

is due to the fact that the model lacks reactions that transport the

periplasmic species into the cytoplasm. Exactly the same situation

holds for the MCLs 22 and 23, formed by dymethyl-sulfide (dms)

and -sulfoxide (dmso), and by thrymethylamine (tma) and

thrymethylamine-N-oxide (tmao), respectively.

MCLs 24–28 express the conservation of the level of

lipoproteins (apolipoprotein, disulfide isomerase I and II, disulfide

interchange and oxidase). Notice that MCL 28 is the only one to

involve periplasmic species exclusively.

MCLs 29–31 describe the invariance of the level of the redox

enzymes flavodoxin (fldox), glutaredoxin (grdox) and thioredoxin

(trdox).

Compounds in MCLs 33 and 34 are all based on the element

selenium, with respect to which the model is closed (i.e. there are

no uptakes of selenium-based compounds). We also note from this

example that independent MCLs can be overlapping, in the sense

that the same compound (sectrna in this case) may belong to

different conserved quantities. In such cases, the levels of

metabolites in the overlapping groups become effectively coupled,

allowing to re-cast the moiety conservation laws associated to the

overlapping pools in simpler terms. In the present case, for

Table 1. The 38 independent MCLs found for the network iAF1260.

MCL ID Size Conserved species Formula

1–19 2 tRNA alatrna[c] + trnaala[c], argtrna[c] + trnaarg[c], asntrna[c] + trnaasn[c], asptrna[c] + trnaasp[c], cystrna[c] +
trnacys[c], glntrna[c] + trnagln[c], glutrna[c] + trnaglu[c], glytrna[c] + trnagly[c], histrna[c] + trnahis[c],
iletrna[c] + trnaile[c], leutrna[c] + trnaleu[c], lystrna[c] + trnalys[c], phetrna[c] + trnaphe[c], protrna[c] +
trnapro[c], sertrna[c] + trnaser[c], thrtrna[c] + trnathr[c], trptrnatrp[c] + trnatrp[c], tyrtrnatyr[c] +
trnatyr[c], valtrnaval[c] + trnaval[c]

20–23 2 missing transport and leaves arbt6p[c] + hqn[c], cyan[c] + tcynt[c], dms[c] + dmso[c], tma[c] + tmao[c]

24–28 2 lipoprotein alpp[p] + lpp[p], dsbaox[p] + dsbard[p], dsbcox[p] + dsbcrd[p], dsbdox[c] + dsbdrd[c], dsbgox[p] +
dsbgrd[p]

29–31 2 redox enzymes fldox[c] + fldrd[c], grdox[c] + grxrd[c], trdox[c] + trdrd[c]

32 3 tRNA fmettrna[c] + mettrna[c] + trnamet[c]

33–34 3 selenium compounds sectrna[c] + seln[c] + selnp[c], sectrna[c] + sertrnasec[c] + trnasecys[c]

35 3 biotin btn[c] + btnso[c] + s[c]

36 3 8aonn[c] + amob[c] + pmcoa[c]

37 6 8aonn[c] + btn[c] + btnso[c] + dann[c] + dtbt[c] + pmcoa[c]

38 53 ACP 3haACP[c] + 3hcddec5eACP[c] + 3hcmrs7eACP[c] + 3hcpalm9eACP[c] + 3hcvac11eACP[c] +
3hddecACP[c] + 3hdecACP[c] + 3hhexACP[c] + 3hmrsACP[c] + 3hoctACP[c] + 3hoctaACP[c] +
3hpalmACP[c] + 3ocddec5eACP[c] + 3ocmrs7eACP[c] + 3ocpalm9eACP[c] + 3ocvac11eACP[c] +
3oddecACP[c] + 3odecACP[c] + 3ohexACP[c] + 3omrsACP[c] + 3ooctACP[c] + 3ooctdACP[c] +
3opalmACP[c] + ACP[c] + acACP[c] + actACP[c] + apoACP[c] + but2eACP[c] + butACP[c] + cddec5eACP[c]
+ cdec3eACP[c] + dcaACP[c] + ddcaACP[c] + hdeACP[c] + hexACP[c] + malACP[c] + myrsACP[c] +
ocACP[c] + ocdcaACP[c] + octeACP[c] + palmACP[c] + t3c11vaceACP[c] + t3c5ddeceACP[c] +
t3c7mrseACP[c] + t3c9palmeACP[c] + tddec2eACP[c] + tdeACP[c] + tdec2eACP[c] + thex2eACP[c] +
tmrs2eACP[c] + toct2eACP[c] + toctd2eACP[c] + tpalm2eACP[c]

The suffixes [c] and [p] indicate the presence of that species in the cytoplasm and periplasm, respectively, in agreement with the compartmentation indicated in the
reconstruction.
doi:10.1371/journal.pone.0100750.t001
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instance, the fact that sectrna is shared by MCLs 33 and 34

corresponds to the conservation of the single quantity

cseln½c�zcselnp½c�{csectrnasec½c�{ctrnasecys½c�.

MCL 35 reflects the conservation of the level of biotin, while the

sulfur atom is a leaf of the network, appearing only in the biotin

synthase reaction.

MCL 36 expresses the invariance of the aggregate level of 8-

amino-7-oxononanoate (8aonn), S-adenosyl-4-methylthio-2-oxo-

butanoate (amob) and pimeloyl-coa (pmcoa), while MCL 37

involves 8aonn, pmcoa, the biotin compounds of pool 35 (btn,

btnso), plus 7,8-diaminononanoate (dann) and dethiobiotin (dtbt),

providing a further instance of overlapping independent pools. At

odds with previously described MCLs, these appear lack a clear

interpretation in terms of a chemical moiety.

Finally, MCL 38 represents the conservation of the level of acyl

carrying protein (ACP).

We can argue that a suitable set of additional uptakes

(comprising tRNAs, selenium, disulfide proteins, the aforemen-

tioned redox enzymes, biotin, and ACP), together with the missing

periplasm-cytosol transport reactions (for cyan, tma and dms), will

render the iAF1260 network completely open, thereby allowing for

the possibility that the levels of each of the chemical moieties

appearing therein are altered. Eliminating uptakes, on the other

hand, will generate additional MCLs. Table 2 reports the 36

additional independent MCLs that occur in iAF1260 in a ‘minimal

medium’ containing only ca2, fe2, glc-D, h2o, h, k, mg2, mn2,

na1, nh4, o2, pi, so4 and zn2 (i.e. by allowing for 14 of the 299

possible uptakes). A close inspection reveals that many of these

MCLs emerge from the lack of uptakes for elements like silver (39),

cadmium (40), nickel (41), molybdenum (42), cobalt (43), tungsten

(44), mercury (46), chloride(47), arsenic (55) and copper (64). A

more detailed biochemical analysis is required to interpret the

remaining MCLs.

Notice that, while 72 of the MCLs discussed above correspond

to solutions of (7) with km[f0,1g Vm, MCL 72 has km[f0,1,2g Vm

while MCL 73 has km[f0,1, . . . ,4g Vm. This shows that, while in

general identifying SPCLs cannot be treated as a Boolean

problem, the range of values of km to be considered in (7) can

be relatively small.

E. coli iJR904
For sakes of comparison, in Tables 3 and 4 we report the

independent MCLs found in the iJR904 reconstruction of E. coli’s

metabolism in the ‘rich’ (all uptakes allowed) and ‘minimal’

(defined in the same way as for iAF1260) media, respectively. One

can see that, in essence, the MCLs of iJR904 are included among

those of iAF1260, with some simplifications. For instance, the pool

related to ACP conservation (number 17 in Table 3) is smaller in

iJR904 than it is in iAF1260. Notice also that MCL 29 in Table 4

displays two anomalous coefficients km~50, due to the effective,

non-integer stoichiometry with which the corresponding com-

pounds occur in the reconstruction. When a compound is

represented by a small non-integer coefficient in a reaction,

solutions of (7) will typically take on large values of km.

Considering the ‘rich medium’, it is interesting to note that,

even though Table 3 exhausts all of its MCLs (17 in total), the

existence of an additional conservation law is revealed by studying

the left kernel of the stoichiometric matrix, whose dimension turns

out to be 18 rather than 17. The corresponding conserved

quantity cannot be expressed as a linear combination of MCLs

with non-negative coefficients. In particular, it is formed by the

levels of 7 metabolites, with the formula

c5prdmbz½c�zcdmbzid½c�zcrdmbzi½c�{

cadocbi½c�{cadocbip½c�{cagdpcbi½c�{ccbi½c�:
ð17Þ

Once we move to the ‘minimal medium’, however, the chemical

species pertaining to this conserved quantity fall into well defined

MCLs, namely numbers 30 and 31 in Table 4. The additional 14

independent MCLs generated by iJR904 in a ‘minimal medium’

suffice to describe all conservation laws for this network.

Human metabolic network reconstructions
Finally we turn our attention to the independent MCLs arising

within the human reactome Recon-2 and in six of the tissue-

specific networks derived from it [32]. The full details of the MCLs

we found are provided as Material S1. To summarize results, the

sizes of the bases (number of independent MCLs) and the

convergence times of the method (specifically, of the C++ code

downloadable from http://chimera.roma1.infn.it/SYSBIO/) are

reported in Table 5.

We note that if a MCL occurs in Recon-2 and its metabolites

are present in a specific subnetwork, then the same MCL will be

present in the subnetwork as well. An example is given by the

aggregate level of mithocondrial NAD and NADPH, which is

conserved in the complete reactome and in all subnetworks we

tested. On the other hand, a MCL may be present in a tissue

specific network but not in the full reactome, as is the case for the

MCL describing the conservation of the sodium cathione, which

occurs in all subnetworks we tested but not in Recon-2, due to the

presence of a sodium uptake in the latter but not in the tissue-

specific reconstructions.

Only one of the networks we analyzed presents conservation

laws that cannot be derived from MCLs, namely the bone marrow

cell metabolic network. In this particular case, the convergence

time of the method suffers from the lack of a stopping criterion in

terms of the dimension of the kernel, so that verification of

completeness by a relaxation dynamics is mandatory. In just two

other cases convergence times exceed a few seconds, namely for

the entire reactome (whose size is over twice as large as that of any

other network we tested) and the hippocampus glial network. In

the latter case, a large MCL related to the conservation of

coenzyme A is present, whose discovery requires a longer

computing time. In the worst case (Recon-2), however, the time

for the full procedure to converge and output the basis vectors is

just over 3 minutes on an Intel Dual Core at 3.06 GHz.

Finally, we note that the number of MCLs and of metabolites

involved therein considerably exceed those found in the E. coli

reconstructions, even though the network sizes are comparable at

least with iAF1260. Considering that a reduced structure of MCLs

correlates with larger production capabilities, this suggests that

bacterial metabolic networks may be intrinsically designed by

evolution to cover a broader spectrum of production profiles than

their human counterparts. It will be important to validate this

scenario on future, more accurate reconstructions of human

metabolism.

Scaling of the number of independent MCLs with the
network size

In Figure 1 we display the size of the MCL basis (i.e. the

number of independent MCLs) as a function of the network size

(M in this plot) for the E. coli networks we have considered above

as well as for a smaller reconstruction, namely the core matrix of

the iAF1260 model [50] (formed by M~72 metabolites that

interact through N~94 reactions), both for the ‘rich’ and
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‘minimal’ media. The ‘rich medium’ for the E. coli core network

allows for 20 uptakes, 5 of which (glc-D, o2, nh4, pi, h2o) survive

in the ‘minimal medium’. This network is easily seen to present, in

both media, 5 MCLs with straightforward biochemical meaning:

nad z nadh (nad conservation), nadp z nadph (nadp conserva-

tion), q8 z q8h2 (coenzyme-Q conservation), amp z arp z atp

(adenylate moiety conservation) and coa z accoa z succoa

(coenzyme-A conservation). It appears that the number of

independent MCLs scales approximately linearly with the network

size. (A similar study for the human tissue-specific networks is less

fruitful, as the network sizes are similar in those cases and indeed

the number of independent MCLs retrieved is roughly constant, as

shown in the Text S1.) While the investigation of a larger family of

networks is needed to characterize this regularity more thoroughly,

it is instructive to analyze the origin of this scaling behaviour.

Interestingly, some insight can be obtained from the analysis of

random networks.

Consider an ensemble of ‘random metabolic networks’ with N

reactions and M compounds, such that each stoichiometric

coefficient is chosen randomly and independently with probabil-

ities (0vcv1)

Prob(Smr~0)~1{c ð18Þ

Table 2. The 36 additional independent MCLs that are found in iAF1260 in a ‘minimal medium’.

MCL ID Size Formula

39 2 ag[c] + ag[e]

40–47 3 cd2[c] + cd2[e] + cd2[p], ni2[c] + ni2[e] + ni2[p], mobd[c] + mobd[e] + mobd[p], cobalt2[c] + cobalt2[e] + cobalt2[p], tungs[c] + tungs[e] +
tungs[p], met-D[c] + met-D[e] + met-D[p], hg2[c] + hg2[e] + hg2[p], cl[c] + cl[e] + cl[p]

48–57 4 betald[c] + glyb[c] + glyb[e] + glyb[p], bbtcoa[c] + gbbtn[c] + gbbtn[e] + gbbtn[p], 4hoxpacd[e] + 4hoxpacd[p] + tym[e] + tym[p], dms[e] +
dms[p] + dmso[e] + dmso[p], cyan[e] + cyan[p] + so3[e] + so3[p], 3sala[c] + so2[c] + so2[e] + so2[p], gdp[e] + gdp[p] + gtp[e] + gtp[p],
aso3[c] + aso3[e] + aso3[p] + aso4[c], 34dhpac[e] + 34dhpac[p] + dopa[e] + dopa[p], tma[e] + tma[p] + tmao[e] + tmao[p]

58 6 feoxam-un[c] + feoxam-un[e] + feoxam-un[p] + feoxam[c] + feoxam[e] + feoxam[p]

59 6 cpgn-un[c] + cpgn-un[e] + cpgn-un[p] + cpgn[c] + cpgn[e] + cpgn[p]

60 6 fecrm-un[c] + fecrm-un[e] + fecrm-un[p] + fecrm[c] + fecrm[e] + fecrm[p]

61 6 fe3hox-un[c] + fe3hox-un[e] + fe3hox-un[p] + fe3hox[c] + fe3hox[e] + fe3hox[p]

62 6 arbtn-fe3[c] + arbtn-fe3[e] + arbtn-fe3[p] + arbtn[c] + arbtn[e] + arbtn[p]

63 6 acgal1p[e] + acgal1p[p] + acgal[e] + acgal[p] + udpacgal[e] + udpacgal[p]

64 6 cu2[c] + cu2[e] + cu2[p] + cu[c] + cu[e] + cu[p]

65 6 cyan[e] + cyan[p] + tcynt[e] + tcynt[p]

66 6 chol[c] + chol[e] + chol[p] + g3pc[c] + g3pc[e] + g3pc[p]

67 7 mercppyr[c] + tcynt[c] + tcynt[e] + tcynt[p] + tsul[c] + tsul[e] + tsul[p]

68 7 pac[c] + pacald[c] + pacald[e] + pacald[p] + peamn[e] + peamn[p] + phaccoa[c]

69 9 g3pi[c] + g3pi[e] + g3pi[p] + inost[c] + inost[e] + inost[p] + mi1p-D[c] + minohp[e] + minohp[p]

70 9 5prdmbz[c] + adocbl[c] + adocbl[e] + adocbl[p] + cbl1[c] + cbl1[e] + cbl1[p] + dmbzid[c] + rdmbzi[c]

71 10 crnDcoa[c] + crn-D[c] + crn-D[p] + crn[c] + crn[e] + crn[p] + crncoa[c] + ctbt[c] + ctbt[p] + ctbtcoa[c]

72 10 (2) dopa[e] + (2) dopa[p] + (2) h2o2[e] + (2) h2o2[p] + o2s[e] + o2s[p] + (2) peamn[e] + (2) peamn[p] + (2) tym[e] + (2) tym[p]

73 11 aragund[c] + garagund[c] + gfgaragund[c] + (2) o16a2und[p] + (3) o16a3und[p] + (4) o16a4colipa[e] + (4) o16a4colipa[p] + (4)
o16a4und[p] + o16aund[c] + o16aund[p] + ragund[c]

74 12 adocbi[c] + adocbip[c] + adocbl[c] + adocbl[e] + adocbl[p] + agdpcbi[c] + cbi[c] + cbi[e] + cbi[p] + cbl1[c] + cbl1[e] + cbl1[p]

Numbers in parenthesis refer to the values of km for the specific metabolites, when different from 1.
doi:10.1371/journal.pone.0100750.t002

Table 3. The 17 independent MCLs found for the complete network iJR904.

MCL ID Size Formula

1–10 2 trdrd[c] + trdox[c], seln[c] + selnp[c], trnaglu[c] + glutrna[c], dms[c] + dmso[c], tmao[c] + tma[c], hqn[c] + arbt6p[c], tcynt[c] + cyan[c],
3dhguln[c] + 23doguln[c], idp[c] + itp[c], acon_T[c] + aconm[c]

11–14 3 ctbt[c] + gbbtn[c] + crn[c], g3pi[c] + inost[c] + mi1p_D[c], 8aonn[c] + amob[c] + pmcoa[c], bbtcoa[c] + crncoa[c] + ctbtcoa[c]

15 4 pacald[c] + peamn[c] + pac[c] + phaccoa[c]

16 6 pmcoa[c] + 8aonn[c] + dann[c] + dtbt[c] + btn[c] + btnso[c]

17 12 apoACP[c] + acACP[c] + actACP[c] + ACP[c] + malACP[c] + ddcaACP[c] + octeACP[c] + myrsACP[c] + palmACP[c] + hdeACP[c] + tdeACP[c]
+ 3hmrsACP[c]

The suffix [c] indicates that the compound occurs in the cytoplasm.
doi:10.1371/journal.pone.0100750.t003
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Prob(Smr~1)~Prob(Smr~{1)~c=2: ð19Þ

The parameter c rules the average connectivity of the network. In

particular, we will assume that c~2c=N (with c a constant), and

consider the limit N,M??, keeping a fixed ratio a~N=M. In

this limit, the above model generates sparse stoichiometric

matrices with Poisson distribution for the in- and out-degrees,

with average values Sdm
inT~Sdm

outT~c for metabolites and

Sdr
inT~Sdr

outT~c=a for reactions, respectively. (In real networks,

the degree distribution of metabolites is known to have heavy tails

due to the presence of ubiquitous compounds like water, ATP, etc.

whose connectivities typically grow with the network size. On the

other hand, the degree distribution of the remaining metabolites

follows a Poissonian law to a good approximation.) By definition,

the overall number of MCLs of size n (i.e. involving n chemical

species) is given by

N n~
X

k:DDkDD~n

P
N

r~1
d
XM
m~1

kmSmr

 !
, ð20Þ

where d(x) denotes Dirac’s d-function, we assume km[f0,1g for

sakes of simplicity for each m, and DDkDD~
P

m km. N n as defined

above however includes all linear combinations of independent

MCLs that produce a new MCL of size n. To obtain the number

of independent MCLs, one should subtract from N n the

contributions due to superpositions of smaller pools. For instance,

all distinct pairs of pools of size 1 would contribute to N 2 as well,

so that the number of independent pools of size 2 is given by

N irr
2 ~N 2{

N 1(N 1{1)

2
: ð21Þ

Expression (20) furthermore depends on the particular network

being examined. We shall focus on its average over the entire

ensemble. Writing the d-function as d(x)~ 1
2p

Ð 2p

0
exp(ixw)dw,

summing over km’s and averaging over the stoichiometry one finds

SN nT~
M

n

� �
1

2p

ð2p

0

(1{czc cos w)ndw

� �N

: ð22Þ

Expanding the integrand and noting that

1

2p

ð2p

0

(cos w)kdw~
2{k

k

k=2

� �
if k is even

0 otherwise

8<
: , ð23Þ

one finally obtains

Table 4. The 14 additional independent MCLs that are found in iJR904 in a ‘‘minimal medium’’.

Pool ID Size Formula

18–23 2 fuc1p_L[c] + fuc1p_L[e], dmso[e] + dms[e], nad[e] + amp[e], met_D[e] + met_D[c], tmao[e] + tma[e], gbbtn[e] + crn[e]

24–27 3 glyb[c] + betald[c] + glyb[e], taur[e] + taur[c] + aacald[c], gbbtn[c] + gbbtn[e] + bbtcoa[c], tsul[e] + tsul[c] + tcynt[c]

28 5 ctbtcoa[c] + ctbt[c] + crncoa[c] + crn[c] + crn[e]

29 5 g3pc[c] + chol[c] + (50) pc_EC[c] + (50) agpc_EC[c] + chol[e]

30 6 rdmbzi[c] + adocbl[c] + cbl1[c] + cbl1[e] + 5prdmbz[c] + dmbzid[c]

31 7 adocbip[c] + agdpcbi[c] + adocbl[c] + cbl1[c] + cbl1[e] + adocbi[c] + cbi[c]

Numbers in parenthesis refer to the values of km for the specific metabolites, when different from 1.
doi:10.1371/journal.pone.0100750.t004

Table 5. Summary of the number of independent MCLs, of the overall number of metabolites included in at least one MCL basis
element and of the convergence times of our algorithm for the networks being examined.

Network N M # MCLs # metabolites in MCLs convergence time (s)

E. Coli core 94 72 5 12 ,1026

E. Coli iJR904 1074 761 17 52 5.47

E. Coli iAF1260 2381 1668 38 131 2.86

Bone_Marrow 2274 1579 85 294 78

Breast_glandular 2484 1716 88 279 1.7

Heart_muscle 2692 1929 104 346 2.1

Hippocampus_glial 1576 1033 107 414 49.21

Hippocampus_neuronal 2303 1588 94 275 1.47

Liver_hepathocytes 3040 2166 95 309 2.89

Recon 2 7440 5063 397 1135 216

Convergence times were measured for the C++ code thaht can be downloadad from http://chimera.roma1.infn.it/SYSBIO/ on an Intel Dual Core running at 3.06 GHz. N

and M denote, respectively, the numbers of reactions and metabolites that characterize the reconstructions.
doi:10.1371/journal.pone.0100750.t005
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SN nT~
M

n

� �
(1{c)Nn

X
k even

n

k

� �
k

k=2

� �
ck

2k(1{c)k

" #N

, ð24Þ

which can be evaluated in the limit N??. For n~2, keeping

only the leading-order terms in M and approximating

SN 2
1T^SN 1T2 in (21), one gets

SN irr
2 T^

M

2
(e{2c{e{4c): ð25Þ

For the networks being examined, once the most connected

compounds are removed, one finds c^1:6, leading to

SN irr
2 T^2,15,32 for the E. coli core, iJR904 and iAF1260 models,

respectively (considering a ‘rich medium’). This should be

compared with the actual numbers of independent pools of size

2 we found, namely 3,10 and 31 respectively. (Similar results can

be obtained, with more work, for larger values of n.)

It is now straightforward to show that the size B of the pool basis

scales linearly with M. Upon summing (24) over n, the total

number of pools N tot~
P

n SN nT is seen to satisfy

(1ze{2c)M
ƒN totƒ2M : ð26Þ

In other terms, there exists a number z[½1,2� such that N tot~zM .

On the other hand, assuming for simplicity that pools in the basis

are non-overlapping, one has N tot~2B, from which we get

B~M log2 z, i.e. a linear scaling with M, in agreement with the

behavior displayed in Figure 1. Therefore, despite the coarse way

in which it approximates the considerably more structured real

metabolic networks, this ensemble of random networks does

provide useful hints about the origin of the scaling behavior

observed in cellular networks.

Discussion

Conservation laws described by the left kernel of the stoichio-

metric matrix S take on a specific biochemical significance when

the coefficients involved in their definition are non-negative

integers, in which case they typically describe the conservation of a

particular molecular moiety. Moiety conservation laws have been

shown to have relevant biotechnological or medical implications

[51], and are bound to play a key role in understanding the

dynamics of intracellular reaction networks. Indeed, conservation

relationships, as specific dependencies among variables, allow in

principle to reduce the number of degrees of freedom, thereby

speeding up dynamical simulations. Unluckily, though, dynamical

approaches are still largely prevented from limited knowledge of

kinetic constants and reaction mechanisms. Identifying the

independent conserved moieties embedded in a given S, however,

requires solving the hard constraint-satisfaction problem of finding

all integer, non-negative, solutions to a linear system of equations

defined by the network’s input-output relationships and corre-

sponding roughly to the maximal conserved moieties introduced in

[25]. Methods to tackle this issue on small networks are available

and have been employed before. For the network sizes relevant in

metabolic modeling, though, the a priori search space of the

problem is huge and exact methods are doomed to fail because of

exceeding computational costs. It is crucial to stress that

intractability arises even in presence of a small number of

independent MCLs from the fact that retrieving them by a

deterministic method would require an exhaustive search through

an exponentially large number of candidate solutions. (On the

other hand, it is clear that problems with an exponential number

of solutions are not necessarily hard to solve.)

Luckily, powerful heuristics to tackle this type of problems has

been developed in the last decade at the interface between

statistical mechanics and computer science. Here, we have

constructed and applied a technique that allows to obtain full

information about the independent MCLs associated to a large-

scale stoichiometric matrix S in reasonable compsuting times (a

few seconds for genome-scale metabolic networks). In particular,

we combine different approaches (message passing, Monte Carlo,

and relaxation algorithms) in order to construct a basis for MCLs

through which all conserved metabolite pools (i.e. all semi-positive

conservation laws) can be described. In short, we first prune

irrelevant variables, then extract individual MCLs from the

Figure 1. Scaling of the number of independent MCLs with the network size. Size of the MCL basis as a function of the number of
metabolites (M) for three E. coli metabolic network reconstructions in ‘rich’ (all uptakes active) and ‘minimal’ media.
doi:10.1371/journal.pone.0100750.g001
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remaining ones, and finally validate our results for completeness of

the MCL basis thus obtained. We have analyzed the structure of

the MCLs emerging in two large-scale reconstructions of the

metabolism of E. coli and in the human reactome reconstruction

Recon-2, as well as in six tissue-specific subnetworks. In most

cases, independent MCLs either display a simple biochemical

meaning or their origin can be clearly traced back to properties of

the reconstruction. In some cases, however, it is difficult to identify

a precise molecular rationale for the groups we obtain. We note

however that cofactors like ATP, ADP, AMP, NADH, NADPH,

FADH2, etc. do not generically appear in conservation relation-

ships in genome-scale reconstructions. More generally, we have

suggested the existence of a linear relation between the number of

independent MCLs and the network size, validating it in data and

by an analytical calculation for ‘random metabolic networks’,

although more work will be needed to characterize this picture

more thoroughly.

The foremost advantage of our stochastic method is provided by

the limited computing times with respect to the previously defined

deterministic methods, which require exponentially large CPU

costs in the worst case. It is anyway worth to comment briefly

about the appropriateness of the techniques we employ to find

independent MCLs. Concerning the Monte Carlo method, the

algorithm is a Markov chain verifying the detailed balance

condition with respect to the measure (13). Since the states are

connected, this condition implies that the chain is ergodic [52]. In

very large networks the method may however suffer from effective

breakdowns of ergodicity due to exceeding relaxation times. We

have however not encountered phenomena of this type on the

genome-scale networks we analyzed. On the other hand, the MP

protocol we use is formally guaranteed to converge only on tree-

like networks, which is a potential drawback. We have however

noted that the list of metabolites belonging to at least one MCL

can be also computed in other ways, e.g. by analyzing the left

kernel of the stoichiometric matrix. This is indeed done explicitly

in the C++ code that can be downloaded (together with the test

case given by the iAF1260 reconstruction of E. coli’s metabolic

network) from http://chimera.roma1.infn.it/SYSBIO/, where the

overall method we propose is implemented in an automatic way

with the only input of a stoichiometric matrix. The fact that MP

and kernel analysis provide the same results on each of the 9

networks we tested very strongly suggests that the convergence

problems of which MP may suffer on metabolic networks may be

less severe than one would have expected. This only confirms the

indications obtained from previous MP-based studies of metabolic

networks [18]. Unfortunately, MP algorithms are hard to

automatize. The possibility to obtain more thorough and

potentially useful information through this heuristics (e.g. about

the statistics of the vector k over the solution space) still represents

a very high incentive toward their use in our view. For instance, it

may be possible to replace the Monte Carlo step by complement-

ing MP with a decimation procedure [52,53], thus allowing to

map out the full set of independent MCLs of a large, genome-scale

metabolic network by MP alone, something that would be

unfeasible by Monte Carlo.

Besides their importance for dynamical modeling widely

discussed in the literature [22,26,27,51], MCLs (or, more

generally, the SPCLs that they generate) provide crucial indica-

tions concerning how a cell will respond to a perturbation that e.g.

increases the level of a particular chemical species. The manner in

which that perturbation propagates is indeed constrained by the

map of MCLs. In addition, results obtained here can improve

producibility predictions [19]. The technique we have presented is

successful in large, genome-scale models, and applicability to other

organisms is straightforward. More interestingly, however, it may

represent a general protocol by which different stoichiometry-

based problems that are inherently integer programming ones can

be tackled. For instance, a similar approach may form the basis of

a method that will tackle the potentially harder problem of

computing all extreme pathways of a reaction network at genome-

scale resolution [13]. The main difference with the case discussed

here is that, while computing the independent MCLs of a genome-

scale metabolic network means finding a non-negative integer

basis for the SPCLs described by the left kernel of the

stoichiometric matrix, extreme pathways form an outright Hilbert

basis of the right kernel of the stoichiometric matrix, and the

number of elements of a Hilbert basis can be much larger than

that of a simple basis. Nevertheless, the existence of useful upper

bounds [54] and the excellent performance of the algorithm we

introduce may combine to provide cost-effective heuristics for this

problem as well. We finally point out that the general issue of

producibility in metabolic networks goes beyond purely stoichio-

metric (mass) constraints and it should include thermodynamics

constraints as well. This can be addressed with similar computa-

tional techniques, an aspect that we will leave for further studies.

Supporting Information
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network size in human metabolic reconstructions.
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