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Closed-form Output Statistics of MIMO
Block-Fading Channels

Giuseppa Alfano, Member, IEEE, Carla-Fabiana Chiasserini, Senior Member, IEEE,
Alessandro Nordio, Member, IEEE, Siyuan Zhou

Abstract—The information that can be transmitted through
a wireless channel, with multiple-antenna equipped transmitter
and receiver, is crucially influenced by the channel behavior
as well as by the structure of the input signal. We charac-
terize in closed form the probability density function (pdf) of
the output of MIMO block-fading channels, for an arbitrary
SNR value. Our results provide compact expressions for such
output statistics, paving the way to a more detailed analytical
information-theoretic exploration of communications in presence
of block fading. The analysis is carried out assuming two different
structures for the input signal: the i.i.d. Gaussian distribution
and a product form that has been proved to be optimal for non-
coherent communication, i.e., in absence of any channel state
information. When the channel is fed by an i.i.d. Gaussian input,
we assume the Gramian of the channel matrix to be unitarily
invariant and derive the output statistics in both the noise-limited
and the interference-limited scenario, considering different fading
distributions. When the product-form input is adopted, we
provide the expressions of the output pdf as the relationship
between the overall number of antennas and the fading coherence
length varies. We also highlight the relation between our newly
derived expressions and the results already available in the
literature, and, for some cases, we numerically compute the
mutual information, based on the proposed expression of the
output statistics.

Index terms: Output statistics, MIMO, block fading, imperfect
channel state information.

I. INTRODUCTION

The availability of an explicit statistical characterization of
the output of a wireless channel, impaired by additive and mul-
tiplicative random disturbance, is of paramount importance to
communication- and information-theoretic purposes. Indeed,
a closed-form expression for the output probability density
function (pdf) is relevant for the evaluation of the ergodic
mutual information between the input and the output signals
of a randomly faded channel [1]. It also turns out to be crucial
in the finite block-length regime, in order to characterize the
information density of the communication at hand [2].

In spite of its importance, few explicit results are available
in the literature for the output signal pdf in the case of MIMO
block-independent fading channels. The works in [3], [4], [5]
all focus on the case of block-Rayleigh fading. In these papers,
the output statistics are derived under different assumptions on
the relative values of the number of involved antennas and of
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the coherence length of the fading. The input distribution, too,
plays a crucial role in the cited derivations. More specifically,
in [3] the authors assume the input to be i.i.d. Gaussian
and investigate the behavior of the output distribution as the
fading coherence length varies from being quite short to very
long, compared to the overall number of transmit and receive
antennas. In both [4] and [5], instead, the input is assumed to
be given by the product of a diagonal matrix (representing
the power allocation over the transmit antennas) times an
isotropically distributed matrix with unitary columns. The
main difference between the two papers is in the assumption
on the fading duration. Indeed, the first one focuses on the case
where the coherence length of the Rayleigh fading is greater
than the number of involved antennas; in this case, the high
Signal to Noise Ratio (SNR)-optimal power allocation matrix
turns out to be a scaled version of the identity matrix [6]. The
study in [5], instead, solves the problem of characterizing,
again in the high-SNR regime, the optimal power allocation
profile, assuming the fading coherence length to be shorter,
compared to the number of involved antennas. In the latter
case, indeed, the diagonal matrix of the power allocation is
characterized by the eigenvalues of a matrix-variate Beta joint
distribution of the entries [5].

In this paper, we consider both the input models described
above, and derive closed form expressions of the output pdf
in presence of a multiple-antenna channel affected by additive
noise and block-fading. In particular, in the case of i.i.d. Gaus-
sian input, our procedure allows the derivation of a closed-
form expression for the output statistics of channels with
unitarily invariant fading law. Apart from the canonical i.i.d.
Rayleigh fading, already treated in [3], this encompasses the
Rician channel with scalar Line-of-Sight (LOS) matrix, whose
analysis was previously limited to the evaluation of the fading
number [7], and the LOS MIMO [8] with a certain amount
of residual scattering. Also, we provide results for the Land
Mobile Satellite (LMS) with scalar average power LOS matrix
[9, Property I] and for the above cases of MIMO Rayleigh and
Rician fading communications impaired by Rayleigh-faded co-
channel interference [10]. We remark that the expressions of
the output pdf that we derive hold for any arbitrary value of
SNR.

The paper is organized as follows. Section II introduces the
notations used throughout the paper, the communication model
of the wireless system and relevant mathematical background.
Section III presents the analytical derivation of the output pdfs,
as the channel is fed by an i.i.d. Gaussian input. Section IV
provides the output pdfs in presence of optimized product
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form in Rayleigh block-fading channels. Finally, Section V
concludes the paper.

II. PRELIMINARIES AND COMMUNICATION MODEL

A. Notations

1) Vectors and matrices: Throughout the paper, uppercase
and lowercase boldface letters denote matrices and vectors,
respectively. The identity matrix is denoted by I. The pdf of
a random matrix A, pA(A), is simply indicated with p(A),
except when referring to A is needed for clarity. E[·] represents
statistical expectation, (·)H indicates the conjugate transpose
operator, Tr{·} denotes the trace of a square matrix, and ‖ · ‖
stands for the Euclidean norm1. Also, we indicate with {aij}
the matrix whose elements are aij and with |A|, or |{aij}|,
the determinant of matrix A. We often employ the following
property of the determinant:

Property 1: Let F = {fij} be an m × m matrix where
fij = αaibijcj . Then,

|F| = αm|{bij}|
m∏
i=1

ai

m∏
j=1

cj . (1)

2) Complex multivariate Gamma function: Γm(a) is the
complex multivariate Gamma function defined as [11]:

Γm(a) = πm

m∏
`=1

Γ(a− `+ 1)

with m being a non-negative integer and

πm = πm(m−1)/2 .

3) Vandermonde determinant: Let A be an m × m Her-
mitian matrix with eigenvalues a1, . . . , am. Then the Vander-
monde determinant of A is defined as [12, eq. (2.10)]:

V(A) =
∏

1≤i<j≤m

(ai − aj) , (2)

where we assume the eigenvalues to be ordered in decreasing
order so that V(A) is non negative. Moreover, for any constant
c, we have V(cA) = cm(m−1)/2V(A). Let also F = {fi(aj)},
i, j = 1, . . . ,m, be an m ×m matrix, where fi(·)’s are any
differentiable functions. Clearly, if the eigenvalues of A are
not distinct, V(A) = 0 and |F| = 0. In such a case, the
ratio |F|/V(A), which appears in the density of many matrices
that we study in the following, can be evaluated by applying
l’Hôpital’s rule. More precisely, let n be an integer such that
0 < n < m, then [13, Lemma 5]

lim
an+1,...,am→a

|F|
V(A)

=
πmΓn(m)

πnΓm(m)

|F̃|
V(Ã)

|Ã− aI|n−m (3)

where Ã is of size n× n and has eigenvalues a1, . . . , an and

(F̃)ij =

{
fi(aj) i = 1, . . . ,m; j = 1, . . . , n

f
(m−j)
i (a) i = 1, . . . ,m; j = n+ 1, . . . ,m

1As applied to a matrix, we mean ‖A‖2 = Tr{AHA}.

with f (k)
i (·) denoting the k-th derivative of fi(·). For n = 0,

we have

lim
a1,...,am→a

|F|
V(A)

=
πm

Γm(m)
|F̃| (4)

where (F̃)ij = f
(m−j)
i (a), i, j = 1, . . . ,m.

4) Generalized hypergeometric function: The generalized
hypergeometric function is defined as pFq(a; b;X ), where
a = [a1, . . . , ap]

T, b = [b1, . . . , bq]
T, and X is a set of

arguments that can be either scalars or square matrices [14]. In
the case of a single scalar argument, X = {x}, the generalized
hypergeometric function is defined as in [12, eq. (2.24)]:

pFq(a; b;x) =

∞∑
k=0

[a]k
[b]k

xk

k!
(5)

where [a]k =
∏p
i=1[ai]k, [b]k =

∏q
j=1[bj ]k, and [z]k =

Γ(z + k)/Γ(z) denotes the Pochhammer symbol. Note that
0F0(; ;x) = ex, and 1F0(a; ;x) = (1 − x)−a. The function
0F1(; b;x) is closely related to the Bessel’s function, and in
the literature functions 1F1(a; b;x) and 2F1(a1, a2; b;x) are
also called confluent hypergeometric function of the first kind
and Gauss’s hypergeometric function, respectively.

The generalized hypergeometric function of two matrix
arguments, X = {Φ,Ψ}, both of size m×m, can be written
through hypergeometric functions of scalar arguments as [12,
eq. (2.34)]

pFq(a; b; Φ,Ψ) = c
|{pFq(ã; b̃;φhψk)}|
V(Φ)V(Ψ)

(6)

h, k = 1, . . . ,m, where the constant c is given by [12]

c =
Γm(m)

πq−p+1
m

 q∏
j=1

Γm(bj)

(bj −m)!m

[ p∏
i=1

(ai −m)!m

Γm(ai)

]
,

ãi = ai−m+ 1, i = 1, . . . , p, b̃j = bj −m+ 1, j = 1, . . . , q,
and the eigenvalues of Φ and Ψ are denoted by φ1, . . . , φm
and ψ1, . . . , ψm, respectively.

The `-th derivative of the generalized hypergeometric func-
tion pFq(a; b; sx) is given by [14]:

d`

dx`
pFq(a; b; sx) = s`

(a)`
(b)`

pFq(ã; b̃; sx) (7)

where ãi = ai + `, b̃j = bj + `, i = 1, . . . , p, j = 1, . . . , q,
and s is a parameter.

5) Matrix spaces: We will denote by U(m) the unitary
group of size m and by S(m,n) the Stiefel manifold of
m × n matrices [6, Sec. II.C]. The region defined by the
Stiefel manifold S(m,n), with m ≥ n, is compact and has
volume |S(m,n)| = 2nπmn/Γn(m). When m = n, the
Stiefel manifold is a unitary group and its volume is given
by |U(m)| = 2mπm

2

/Γm(m) .

B. Matrix-variate distributions

Definition 1: An m × n (m ≥ n) random Stiefel matrix
S ∈ S(m,n) is such that SHS = I and is uniformly distributed
on S(m,n). Then, it has pdf p(S) = |S(m,n)|−1.
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Definition 2: A square m×m random unitary matrix U ∈
U(m) is such that UUH = UHU = I. When it is uniformly
distributed on U(m), it has pdf p(U) = |U(m)|−1.

Definition 3: [15, Definition 2.6 and Lemma 2.6] An m×
m Hermitian random matrix A is unitarily invariant if the
joint distribution of its entries equals that of VAVH where
V is any unitary matrix independent of A. If A is unitarily
invariant, then its eigenvalue decomposition can be written as
A = UΛUH where U is a Haar matrix independent of the
diagonal matrix Λ. Since U is Haar (isotropic), it is uniformly
distributed on U(m).

Definition 4: Let H be an m × n matrix whose columns
are zero-mean independent complex Gaussian vectors with
covariance matrix Θ.
• For m ≤ n, the m × m random matrix W = HHH

is a central complex Wishart matrix, with n degrees of
freedom and covariance matrix Θ (W ∼ Wm(n,Θ)).
The joint distribution of the eigenvalues of W coincides
with the law of the squared non-zero singular values of H.
Let W = UΛUH be the singular value decomposition
(SVD) of W. If Θ = I, then W is unitarily invariant
[15]. In such a case, the joint distribution of the ordered
eigenvalues Λ can be written as [3], [11]

p(Λ) =
π2
m|Λ|n−me−Tr{Λ}

Γm(n)Γm(m)
V2(Λ) . (8)

• For m > n, if the rows of H are independent and their
covariance matrix is I, the distribution of the ordered
eigenvalues of HHH is given by [3]

p(Λ) =
π2
n|Λ|m−ne−Tr{Λ}

Γn(m)Γn(n)
V2(Λ) . (9)

Definition 5: Let H be an m × n random matrix whose
entries are independent, complex, Gaussian random variables
with unit variance and average M = E[H]. Then, matrix W =
HHH is non-central Wishart [11].
• For m ≤ n, the distribution of W is given by [11, eq.

(99)]

p(W) =
|W|n−m

Γm(n)
0F1( ;n; MMHW)

eTr{W+MMH} . (10)

If MMH has full rank and distinct eigenvalues,
µ1, . . . , µm, then the joint pdf of the ordered, strictly
positive eigenvalues (λ1, . . . , λm) = diag(Λ) of W is
given by [11, eq. (102)]

p(Λ) =
|Λ|n−mV(Λ)|{0F1( ;n−m+ 1;µiλj)}|

(n−m)!meTr{Λ+MMH}V(MMH)
. (11)

Note that (11) has been obtained from [11, eq. (102)] by
exploiting the result in (6).
As can be observed from (10), if MMH is a scalar
matrix (i.e., MMH = µI), p(W) only depends on the
eigenvalues of W. Thus W is unitarily invariant. In such
a case, the distribution of Λ can be obtained from (11)
by applying the limit in (3) and the property in (7), and
it is given by

p(Λ) =
π2
m|Λ|n|F|V(Λ)

Γm(m)Γm(n)eµm+Tr{Λ} (12)

where (F)ij = λ−ij 0F1( ;n− i+ 1;µλj).
Note that, since the Vandermonde determinant in (2) and
pdf are positive by definition, here and in the following
|F| represents the absolute value of the determinant of
matrix F. This avoids us to include in the provided results
coefficients that account for the sign of determinants.

• For m > n, the same expressions as in (10), (11),
and (12) hold but replacing, M, m and n with, respec-
tively, MH, n and m.

Lemma 1: Let H1 and H2 be, respectively, an m× n and
an m × p (m ≤ p) Gaussian complex random matrix whose
columns are independent, have zero mean, and covariance Θ1

and Θ2, respectively.
• For m ≤ n, the m × m random matrix W =

(H2H2
H)−1/2H1H1

H(H2H2
H)−1/2 is a central F-

matrix [11]. When Θ1 and Θ2 are both scalar matri-
ces, W is unitarily invariant and has a Beta type II
distribution [16]. Specifically, when Θ1Θ

−1
2 = ωI, the

distribution of its ordered eigenvalues is given by

p(Λ) =
π2
mΓm(p+ n)

ωmnΓm(m)Γm(p)Γm(n)

V2(Λ)|Λ|n−m

|I + Λ/ω|p+n
.

(13)
• For m > n, the matrix W = H1

H(H2H2
H)−1H1

is unitarily invariant and the distribution of its ordered
eigenvalues can be expressed as

p(Λ) =
π2
nΓm(p+n)|F||Ω|−nV(Λ)|I+Λ|m−p−n−1

(p+n−m)!−nΓn(p+n)Γm(p)Γn(n)V(I−Ω−1)
(14)

where Ω = Θ
1/2
1 Θ−1

2 Θ
1/2
1 , (F)ij = 1F0(p + n −m +

1; ; (1−ω−1
i )λj/(1+λj)) for i = 1, . . . ,m, j = 1, . . . , n,

and (F)ij = (1 − ω−1
i )m−j for i = 1, . . . ,m, j = n +

1, . . . ,m.
Proof: The proof is given in Appendix A.

Lemma 2: Let H1 and H2 be, respectively, an m× n and
an m × p Gaussian complex random matrix whose columns
are independent and have covariance Θ. Let also E[H1] = M
and E[H2] = 0.
• For m ≤ n, MMH = µI and Θ = θI, the non-central
F-matrix W = (H2H2

H)−1/2H1H1
H(H2H2

H)−1/2 is
unitarily invariant and the distribution of its eigenvalues
is given by

p(Λ) =
π2
mV(Λ)2Γm(p+n)1F1(p+n;n; µθΛ(I+Λ)−1)

Γm(m)Γm(n)Γm(p)eµm/θ|Λ|m−n|I+Λ|p+n
(15)

• For m > n, and MHΘ−1M = ωI, the matrix W =
H1

H(H2H2
H)−1H1 is unitarily invariant and the distri-

bution of its eigenvalues is given by

p(Λ) =
π2
nΓn(p+n)e−ωn

Γn(n)Γn(m)Γn(p+n−m)

|F||Λ|m−nV(Λ)

|I+Λ|p+1

(16)
where (F)ij = (λj/(1 + λj))

n−i
1F1(p+ n− i+ 1;m−

i+ 1;ωλj/(1 + λj)).
The proof is provided in Appendix B.

Definition 6: The n×n random matrix B is Beta-distributed
with positive integer parameters p and q (B ∼ Bn(p, q)) if
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• given T an upper triangular matrix with positive diagonal
elements, we can write B = (TH)−1CT where C ∼
Wn(p,Θ), and

• given A ∼ Wn(m,Θ), we can write A + C = THT.
Notice that, if either p < n or q < n, or both p <
n and q < n, the distribution is referred to as pseudo-
Beta since it involves pseudo-Wishart matrices [5, and
references therein].

When n ≤ p, B admits an eigendecomposition where the
matrix of the eigenvectors is independent of the matrix of the
eigenvalues [5, Lemma 8].

• For q ≤ n, the distribution of the q ordered non-zero
eigenvalues of B is given by [5, eq. (13)]:

p(Λ) =
π2
qΓq(p+ q)|I−Λ|n−q|Λ|p−nV2(Λ)

Γq(n)Γq(p+ q − n)Γq(q)
. (17)

• For q > n, B has n nonzero eigenvalues, whose ordered
joint distribution is given by [5, eq. (12)]:

p(Λ) =
π2
nΓn(p+ q)|I−Λ|q−n|Λ|p−nV2(Λ)

Γn(n)Γn(p)Γn(q)
. (18)

Due to the lack of the corresponding expression in the
literature, herein we derive the expression of the marginal
distribution of a single unordered eigenvalue of a Bn(p, q)-
distributed matrix, which will be needed in our subsequent
derivations.

Proposition 1: Given an n× n matrix B ∼ Bn(p, q),

• For q ≤ n, the pdf of a single unordered eigenvalue of
B is given by

p(λ) =
π2
q

qΓq(q)

Γq(p+ q)Γ(n− q + 1)

Γq(n)Γq(p+ q − n)

·
n∑

i,j=1

λp−n+i+j−2(1−λ)n−qDij (19)

with Dij being the (i, j)-cofactor of the (n × n) matrix
A such that

(A)`k =
Γ(p− n+ `+ k − 1)

Γ(p+ k − q + `)
. (20)

• For q > n, the pdf of a single unordered eigenvalue of
B is given by

p(λ) =
π2
n

nΓn(n)

Γn(p+ q)Γ(q − n+ 1)

Γn(p)Γn(q)

·
n∑

i,j=1

λ(p−n+i+j−2)(1−λ)q−nDij (21)

with Dij being the (i, j)-cofactor of the (n × n) matrix
A such that

(A)`k =
Γ(p− n+ `+ k − 1)

Γ(p+ k + q − 2n+ `)
. (22)

Proof: The proof is given in Appendix C.

C. Communication model

We consider a single-user multiple-antenna communication
system, with m and n denoting the number of receive and
transmit antennas, respectively. Assuming block-memoryless
fading with coherence length equal to b, the output can be
described by the following linear relationship:

Y =
√
γHX + N (23)

where Y is the m×b output matrix, and H is the m×n com-
plex random channel matrix whose entries represent the fading
coefficients between each transmit and receive antenna. N is
the m × b matrix of white Gaussian noise which is assumed
to have i.i.d. complex Gaussian entries with zero mean and
unitary variance. The normalized per-transmit antenna SNR is
denoted by γ = SNR/n, and X is the random complex n× b
input matrix whose structure will be specified in the following
sections. Moreover, for any positive integer n, we define

γn = γn(n−1)/2 .

Note that the above communication model is adopted in
all the following sections, except for Section III-B where we
resort to a slightly different model explicitly accounting for
interference.

III. OUTPUT STATISTICS WITH IID GAUSSIAN INPUT

In this section, we analyse the case where the distribution
of X is Gaussian i.i.d. and consider both the noise-limited
and interference-limited scenarios. Note that, in the case under
study, the average energy of the input signal is given by
E[Tr{XXH}] = nb.

As for the communication channel, we focus our analysis
on some classes of channel matrices whose Gramian W =
HHH is unitarily invariant. As shown in the following, this
allows us to write the expression of the output pdf in terms
of the distribution of the eigenvalues of the channel matrix.
In particular, in both the noise-limited and the interference-
limited case, we draw on the following results:
• for m ≤ n, and for unitarily invariant HHH, the distri-

bution of Y is given by [3, eq. (40) and (41)]

p(Y) =
Γm(m)K(Y)

πmγm

∫
|E||I + γΛ|m−b−1

V(Λ)
p(Λ) dΛ ,

(24)
where Λ is an m × m diagonal matrix containing the
eigenvalues of channel matrix HHH, (E)ij = eyicj , and
cj = γλj/(1+γλj), j = 1, . . . ,m. Moreover, y1, . . . , ym
are the eigenvalues of YYH and

K(Y) =
e−‖Y‖

2

πmbV(YYH)
. (25)

• for m > n, and for unitarily invariant HHH, the pdf of
Y can be obtained by following the steps described in [3]
and is given by

p(Y) =
Γn(m)K(Y)

πnγn(m−n)

∫
|Ẽ||I + γΛ|m−b−1

V(γΛ)|Λ|m−n
p(Λ) dΛ

(26)
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where Ẽ is an m×m matrix whose elements are given
by (Ẽ)ij = eyicj for 1 ≤ j ≤ n, and (Ẽ)ij = yj−n−1

i for
n+ 1 ≤ j ≤ m. Note that in this case the matrix HHH

is of reduced rank since it has m − n zero eigenvalues.
Thus, here p(Λ) indicates the distribution of the n non-
zero eigenvalues of HHH and Λ is an n × n diagonal
matrix.

Proof: The proof is given in Appendix D.

A. Noise-limited

The output pdf of the uncorrelated Rayleigh-faded channel
has been evaluated in [3]. For sake of completeness, we recall
this result and present the corrected expression of the output
pdf when m > n. Then, we extend the analysis to two other
practically relevant fading models, namely, the Rician block-
fading channel [17], [18] and Land Mobile Satellite (LMS)
channel [9], [19].

1) Rayleigh fading channel: In the case of uncorrelated
Rayleigh channel, the entries of H follow an i.i.d. zero-mean,
unit-variance, complex Gaussian distribution.
• For m ≤ n, the distribution of the eigenvalues of HHH is

given by (8). It follows that, by using (24) and the result
in Appendix K, the distribution of Y can be written as [3,
Proposition 2].

p(Y) =
πm

γmΓm(n)
K(Y)|Z| (27)

where the i, j-th entry of the m ×m matrix Z is given
by

(Z)ij =

∫ ∞
0

exp

(
yiγx

1 + γx
− x
)

xn−m+j−1

(1 + γx)b+1−m dx .

• For m > n, the distribution of the eigenvalues of channel
matrix HHH is given by (9). By applying (26) and the
result in Appendix K, the output pdf is given by

p(Y) =
πn

Γn(n)γn(m−n)
K(Y)|Z| . (28)

Note that the expression above differs from the one
presented in [3, Proposition 2] in the term γn(m−n),
which appears at the denominator. The i, j-th entry of
the m×m matrix Z can be written as

(Z)ij =

∫ ∞
0

exp

(
yiγx

1 + γx
−x
)

(x/γ)j−1

(1 + γx)b+1−m dx ,

for 1 ≤ i ≤ m, 1 ≤ j ≤ n and (Z)ij = yj−n−1
i , for

1 ≤ i ≤ m,n+ 1 ≤ j ≤ m.
2) Rician channel: The Rician channel is traditionally mod-

eled as a superposition of a scattered plus a LOS component,
i.e.,

H =

√
κ

κ+ 1
H̄ +

√
1

κ+ 1
H̃ . (29)

In (29), κ is the Rician factor representing the ratio of the
average power of the unfaded channel component to the faded
channel component, the entries of H̃ are independent, zero-
mean unit-variance complex Gaussian, and H̄ is a determin-
istic matrix representing the LOS component.

Specifically, for m ≤ n, we consider the special case
H̄H̄H = hI (for m > n we assume H̄HH̄ = hI), where
h is a positive parameter. This assumption reflects two main
settings: the scalar LOS channel, introduced in [7] and therein
already analysed in the high-SNR regime, and the LOS MIMO
with residual scattering [8]. Both models assume the LOS
matrix to have high (full) rank. The one in [8] is suitable
for MIMO backhaul links where antenna spacing is carefully
designed and transmit-receive distance is fixed. Our model can
be thought of as a Gaussian perturbation, with small variance,
of the one in [8]. The model in [7], although being a sub-case
of the one in [8] from the pure mathematical viewpoint, has
played a major role in the early characterization of MIMO
Rician channels, due to the amenability of diagonal [20] (and,
in particular, scalar) non-centrality matrices for the derivation
of the capacity-achieving input law.

Under the aforementioned assumption, the Gramian of the
matrix H is unitarily invariant (see Definition 5), thus the pdf
of the output can be expressed as in the following proposition.

Proposition 2: Given a channel as in (23) and (29), with
i.i.d. Gaussian input and Rician block-fading,
• for m ≤ n, and H̄H̄H = hI, the pdf of its output can be

written as

p(Y) =
πm(1 + κ)mn

γmΓm(n)eκhm
K(Y)|Z| , (30)

where

(Z)ij =

∫ ∞
0

eyiγx/(1+γx)
0F1( ;n−j+1; x̂) dx

e(1+κ)xxj−n(1+γx)b−m+1

• for m > n, and H̄HH̄ = hI, the following result holds

p(Y) =
πn(1 + κ)nm

γnγn(m−n)Γn(n)eκhn
K(Y)|Z| (31)

where

(Z)ij =

∫ ∞
0

eyiγx/(1+γx)
0F1( ;m−j+1; x̂) dx

e(1+κ)xxj−n(1 + γx)b−m+1
,

for 1 ≤ i ≤ m, 1 ≤ j ≤ n and (Z)ij = yj−n−1
i , for

1 ≤ i ≤ m,n+ 1 ≤ j ≤ m,
with x̂ = κ(1+κ)hx.

Proof: The proof is given in Appendix E.
3) Land mobile satellite communication: The Land Mobile

Satellite (LMS) MIMO channel can be viewed as a non-central
channel with random mean. Thus, the channel matrix model
can be described as

H = H̄ + H̃ (32)

where the entries of H̃ are independent, zero-mean unit-
variance complex Gaussian and H̄ is a random matrix. As
shown in [9], in a LMS channel the matrix H̄H̄H follows a
matrix-variate Γ(α,Ω) distribution [21] where α plays the role
of a shape parameter, while Ω is a scale parameter. Indeed, α
can be viewed as a generalized number of degrees of freedom
of the non-centrality parameter, while Ω is related to the
average power of the random LOS component, as discussed in
detail in [9]. Assuming Ω = ωI, HHH is unitarily invariant,
as shown in [9, Property 1].
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Under this assumption, the expression of the output pdf can
be expressed as in the following proposition.

Proposition 3: Given an LMS MIMO channel as in (32)
with Ω = ωI,
• for m ≤ n, the pdf of its output can be written as

p(Y) =
πm

γmΓm(n)(1 + 1/ω)mα
K(Y)|Z| , (33)

where

(Z)ij =

∫ ∞
0

eyi
γx

1+γx
1F1

(
α−j+1;n−j+1; x

1+ω

)
exxj−n(1+γx)b−m+1

dx ;

• for m > n, the output pdf is given by:

p(Y) =
πn

γnγn(m−n)Γn(m)(1 + 1/ω)nα
K(Y)|Z| (34)

where

(Z)ij =

∫ ∞
0

eyi
γx

1+γx
1F1

(
α−j+1;m−j+1; x

1+ω

)
exxj−n(1 + γx)b−m+1

dx ,

for 1 ≤ i ≤ m, 1 ≤ j ≤ n and (Z)ij = yj−n−1
i , for

1 ≤ i ≤ m,n+ 1 ≤ j ≤ m.
Proof: The proof is given in Appendix F.

B. Interference limited

We now consider the case where the main impairment to
communication is represented by the co-channel interference.
In particular, each interferer is seen from the direct link
receiver under its own random channel, which we assume to
be affected by Rayleigh fading, again with block-length b. We
assume that there are L active interferers in the network, each
equipped, for homogeneity, with the same number of antennas,
n, as the transmitter of the useful signal. We evaluate the
output pdf when a whitening filter is applied to the received
signal and we consider two channel models. In the former,
the desired signal undergoes Rayleigh fading; in the latter, the
direct link is affected by Rician fading, i.e., we assume the
existence of an LOS path between the useful transmitter and
its intended receiver.

The received signal can be modeled as

Ỹ =
√
γHsX + W (35)

where

W =

L∑
`=1

Ĥ`X̂`

represents the interference. Specifically, the m×n matrix Ĥ`

models the channel connecting the `-th interferer with the
receiver, while the n×b matrix X̂` represents the signal trans-
mitted by the `-th interferer, ` = 1, . . . , L. The interference
can be rewritten as W = ĤX̂ where Ĥ = [Ĥ1, . . . , ĤL]
is an m × Ln matrix and X̂ = [X̂1

H, . . . , X̂L
H]H is of size

Ln× b. By assuming that the entries of X̂ are i.i.d. complex
Gaussian with zero mean and unit variance, the covariance
of the interference, conditioned on the knowledge of the
composite channel matrix Ĥ, is given by

R = E[WWH|Ĥ] = ĤE[X̂X̂H]ĤH = bĤĤH .

We apply to the received signal Ỹ the whitening filter B =√
bR−1/2 and obtain

Y = BỸ

=
√
bR−1/2Ỹ

=
(
ĤĤH

)−1/2

(
√
γHsX + W)

=
√
γHX + N (36)

where H =
(
ĤĤH

)−1/2

Hs and N =
(
ĤĤH

)−1/2

W.

Clearly, E[NNH|Ĥ] = bI. In the following, we provide the
pdf of Y.

1) Rayleigh fading channel:
Proposition 4: We consider the interference-limited chan-

nel described by (35), with L active interferers, i.i.d. Gaussian
input and Rayleigh fading. If HsHs

H ∼ Wm(n,Θs) and
ĤĤH ∼ Wm(Ln, Θ̂), then we have the following results.
• For m ≤ n, due to mathematical constraints, we only

analyse the case of spatially uncorrelated receiving an-
tennas, i.e., Θs = θsI and Θ̂ = θ̂I. Then, the pdf of Y
can be written as

p(Y) =
πmΓm(Ln+ n)

γmωmnΓm(Ln)Γm(n)
K(Y)|Z| (37)

where ω = θs/θ̂ and

(Z)ij =

∫ ∞
0

eyi
γx

1+γxxn−j

(1 + γx)b−m+1(1 + x/ω)Ln+n
dx .

This result is obtained by substituting (13) in (24) and
by exploiting the result in Appendix K.

• For m > n, the pdf of Y is given by:

p(Y) =
πn(Ln+n−m)!mΓn(m)Γm(Ln+n)K(Y)

Γn(Ln+n)Γn(n)Γm(Ln)γnγn(m−n)

· |Ω|
m−n−1

V(Ω)

∫
|Ẽ||I+γΛ|m−b−1|F|dΛ

|Λ|m−n|I+Λ|Ln+n−m+1

(38)

where Ω = Θ
1/2
1 Θ−1

2 Θ
1/2
1 and the matrices Ẽ and F

have been defined below (26) and (14), respectively. This
result is obtained by substituting (14) in (26). However,
we cannot solve the integral by applying the result in
Appendix K directly. Indeed, although matrices Ẽ and
F are both of size m × m, a portion of their columns
and rows is composed of constant terms. Thus, we need
to resort to the property of the determinant of block
matrices, in order to obtain n × n blocks to which the
result in Appendix K can be applied. We skip the details
of this procedure due to the cumbersome expressions that
are involved.

2) Rician fading channel:
Proposition 5: We consider the interference-limited chan-

nel described by (35), with L active interferers, i.i.d. Gaussian
input, Rician faded useful signal and Rayleigh fading affecting
the interfering links. For a Rician channel, matrix Hs can be
written as in (29)

Hs =

√
κ

κ+ 1
H̄s +

√
1

κ+ 1
H̃s
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where κ is the Rician factor, H̄s is deterministic, and H̃s is
complex Gaussian with independent colums whose covariance
is Θ. According to our assumptions on LOS links made in
Section III-A, we have:
• for m ≤ n, setting Θs = Θ̂ = θI and H̄sH̄s

H = hI,

p(Y) =
πmΓm(Ln+ n)e−hκm/θ

γmΓm(n)Γm(Ln)κ̃−mn
K(Y)|Z| (39)

where

(Z)ij =

∞∫
0

eyi
γx

1+γx
1F1(L̃+j;n−m+j;hκκ̃x̃/θ) dx

(1+γx)b−m+1(1+κ̃x)L̃+1xm−nx̃1−j

(40)
with κ̃ = 1 + κ, L̃ = Ln+ n−m, and x̃ = x/(1 + κ̃x)

• for m > n, and H̄s
HΘ−1H̄s = hI,

p(Y) =
πnΓn(Ln+n)κ̃nme−hκn

γnγn(m−n)Γn(n)Γn(Ln+n−m)
K(Y)|Z|

(41)
where

(Z)ij =

∞∫
0

1F1(Ln+n−j+1;m−j+1;hκκ̃x̃) dx

e
−yiγx
1+γx (1 + κ̃x)Ln+1x̃j−n(1+γx)b−m+1

,

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and (Z)ij = yj−n−1
i , for

1 ≤ i ≤ m,n + 1 ≤ j ≤ m ; with κ̃ = 1 + κ and
x̃ = x/(1 + κ̃x).
Proof: The proof is given in Appendix G.

Note that also in this case mathematical issues made the
analysis only possible for uncorrelated receivers.

C. Exploitation of the analytical results

The mutual information between the channel input, X, and
the channel output, Y, normalized to the fading coherence
length, can be expressed as:

I =
1

b
[h(Y)− h(Y|X)] (42)

where h(Y) = E[− log p(Y)] and h(Y|X) =
E[− log p(Y|X)]. Once the pdf of the channel output,
p(Y), is obtained, it can be used to evaluate its differential
entropy, h(Y). For Rayleigh and Gaussian channels with
identity covariance matrix, considering that X is given, the
output Y is complex Gaussian and its rows are i.i.d. Hence,
in order to derive the conditional differential entropy h(Y|X),
we can compute its value for an arbitrary row of Y and then
scale it by the number of rows of Y [3].

In [3], the mutual information has been computed in
presence of Rayleigh channel and i.i.d. Gaussian input, for
m ≤ n. In the following, we provide three examples of mutual
information computation. First, we address the case of noise-
limited Rayleigh channel with m > n and, then, the noise-
limited Rician channel, both with m ≤ n and m > n.

In the case of Rayleigh channel, the conditional differential
entropy is obtained using [3, eq. (4)], while the unconditional
differential entropy is evaluated using (27) or (28) depending
on the relationship between m and n. Fig. 1 shows the mutual
information as a function of the SNR, with b = 6, 10, m = 2

 0

 2

 4

 6

 8

-10 -5  0  5  10  15  20

M
u
tu

a
l 

In
fo

rm
a
ti

o
n
 [

b
/s

/H
z
]

SNR[dB]

 Perfect CSI

 No CSI, b = 10

 No CSI, b = 6

Fig. 1. Mutual information vs. SNR in Rayleigh channel: comparison
between the case where no CSI is available (solid line) and the case of perfect
CSI at the receiver (dashed line), with b = 6, 10, m = 2 and n = 1.

and n = 1, when no channel state information (CSI) is
available and in the case of perfect CSI at the receiver. The
latter is obtained by computing [3, eq. (10)]. The results
confirm the intuition, as well as previous analysis [4], [6]: the
higher the SNR and the value of b, the better the performance,
while the lack of CSI causes a noticeable degradation.

For the Rician channel, the expression of the channel matrix
is given by (29). By adopting again the method in [3], the
differential entropy of the output conditioned on the input
signal can be computed. Let us denote by y an arbitrary
row of Y; then, using [3, eq. (31)] and considering the
translation-invariant property of differential entropy, we can
write the mutual information when the receiver does not have
any knowledge of the non-LOS component:

h(y|X) = h(yH|X) = E
[
log2

(
(πe)b

∣∣∣∣I+
γXHX

1+κ

∣∣∣∣)] (43)

with the expectation being over the distribution of X. The
above expression can be conveniently computed resorting
to [3, eq. (4)]. The unconditional differential entropy of the
output is derived through (30) and (31).

Fig. 2 shows the mutual information as a function of the
SNR, with b = 6, m = 2 and n = 2. Rician factors are set to
κ = 1 and κ = 10. The plot depicts the mutual information in
the two cases where the receiver has knowledge of the non-
LOS component [3, eq. (10)] and where it does not (43). The
deterministic channel matrix in (29) is set as follows:

H̄ =

[ √
2 0

0
√

2

]
.

In Fig. 2, the relative gap between the achievable mutual
information in the two scenarios with κ = 1 is more evident
than for κ = 10, since the higher the Rician factor, the higher
the amount of information on the LOS component, which
is known at the receiver. This is also compliant with the
monotonicity results in [20].

Finally, Fig. 3 shows the mutual information for the two
scenarios above, in the case of m > n, namely, m = 2, n =
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1, and b = 6. The Rician factor is set to κ = 1 and κ =
5. In this scenario, the deterministic channel matrix is set to

H̄ =
[√

3/2, 1/
√

2
]H

. Similar observations to those above
hold. However, comparing Fig. 2 to Fig. 3, we notice that,
as expected, the reduction in the number of antennas at the
transmitter leads to severe performance degradation.

IV. OUTPUT STATISTICAL CHARACTERIZATION WITH
PRODUCT INPUT FORM

As in [3], [6], [22], [23], we assume total lack of CSI at
both the ends of the wireless link. This case is of particular
interest for the energy efficiency of the communication, as the
availability of CSI would imply a high energy and time con-
sumption at both the transmitter and the receiver. Under this
assumption, in the high-SNR regime, the capacity-achieving

input matrix X is proven to have a product structure [22,
theorem 2] and can be written as

X =
√
cD1/2Φ (44)

where c is a normalizing constant and D is a real random n×n
diagonal matrix, which is positive definite with probability
1. The entries of D represent the amount of transmit power
allocated to each of the n transmit antennas, while Φ ∈ S(n, b)
represents the beamforming n × b matrix. In order to be
consistent with the definition of SNR, we impose the constraint
on the average input energy E[Tr{XXH}] = nb. It follows
that, for our specific input structure, the normalizing constant
is given by:

c =
nb

E[Tr{D}]
. (45)

In [5, Lemma 10], it is proven that without CSI, in Rayleigh
block-fading channels, the optimal power allocation at the
transmitter depends on the relationship between the coherence
length, b, and the total number of antennas at both the
transmitter and receiver. Specifically,
• If b ≥ m+n, all diagonal entries of D are almost surely

equal to 1. This case corresponds to the conventional uni-
tary space-time modulation (USTM) [22], where D = I
and c = b;

• If b < m + n, the optimal input is D ∼ Bn(b − n,m +
n − b), which is referred to as Beta-variate space-time
modulation (BSTM) [5]. This scenario allows the analysis
of an uplink massive-MIMO system, with m ≥ n and
even m � n, which is relevant in the next-generation
cellular setting.

A. Case b ≥ m+ n

As mentioned above, when b ≥ m + n, the optimal power
allocation over the transmitter antennas is given by a diagonal
matrix, D, with entries almost surely equal to 1. Under these
assumptions, the following results hold.

Proposition 6: Consider a channel as in (23), affected by
i.i.d. block-Rayleigh fading and with input given by (44). Let
∆ = γcD(I + γcD)−1 = diag(δ1, . . . , δn), with δi’s being
distinct values. Then,
• for m ≤ n, the pdf of its matrix-variate output, condi-

tioned on D and for n ≤ b, can be expressed as

p(Y|D) =
Γm(b)K(Y)|YYH|m−n|G|
πm(b−n)!mV(∆)|I + γcD|m

(46)

where for j = 1, . . . , n

(G)ij =

{
1F1(1; b−n+1; yiδj) i = 1, . . . ,m

δn−ij i = m+ 1, . . . , n

• for m > n, the conditioned output pdf becomes

p(Y|D) =
Γn(b)K(Y)|∆|n−m|G|

πn(b−m)!nV(∆)|I+γcD|m
(47)

where i=1, . . . ,m, are given by

(G)ij =

{
1F1(1; b−m+1; yiδj) j = 1, . . . , n

ym−ji j = n+ 1, . . . ,m .

Proof: The proof is given in Appendix H.



9

1) Case D = I: The expressions of p(Y|D) in (46)
and (47) hold provided that the diagonal elements of D are
distinct. Thus, in general, the unconditional pdf of Y can
be derived by integrating p(Y|D) over the distribution of
D. In this section, however, we focus on a particular power
allocation matrix, D = I, and, by (45), we consider c = b.
Note that, in this case the elements of D are not distinct, and
expressions (46) and (47) cannot be directly evaluated. Indeed,
|G| = 0 and V(∆) = 0, and again a limit procedure must be
applied.

We first observe that, for D = I and c = b, we have ∆ =
γbD(I + γbD)−1 = δ̄I where δ̄ = γb

1+γb .
• For m ≤ n, we apply the limit in (4) to the ratio
|G|/V(∆) in (46) and, after some algebra, obtain

lim
∆→δ̄I

|G|
V(∆)

=
πnΓm(n)(b− n)!m

Γn(n)Γm(b)
|YYH|n−m|Ĝ|

where Ĝ is an m×m matrix whose elements are given by
(Ĝ)ij = ym−ji 1F1(n−j+1; b−j+1; yiδ̄), i = 1, . . . ,m,
j = 1, . . . ,m. By recalling (46), the distribution of Y is
then given by

p(Y) =
πnΓm(n)

πmΓn(n)

K(Y)|Ĝ|
(1 + γb)nm

. (48)

• For m > n, we apply the limit in (4) to (47) and obtain

lim
∆→δ̄I

|G|
V(∆)

=
πn(b−m)!n|Ĝ|
Γn(b−m+ n)

where in this case

(Ĝ)ij = yn−ji 1F1(n−j+1; b−m+n−j+1; yiδ̄)

for i = 1, . . . ,m, j = 1, . . . , n, and (Ĝ)ij = ym−ji for
i = 1, . . . ,m, j = n+ 1, . . . ,m.
By recalling (47), it follows that

p(Y) =
Γn(b)K(Y)δ̄n(n−m)|Ĝ|

Γn(b−m+ n)(1+γb)nm
. (49)

We remark that, under the above assumptions, the output pdf
also appears in [4]. The corresponding derivations provided
therein involve Fourier integrals and Hankel matrices thus
resulting in a slightly less compact form than ours.

B. A massive MIMO regime: b < m+ n

Now, we consider the case of b < m + n; an instance of
this scenario, by letting m � n, can adequately model the
reverse link of the celebrated massive-MIMO channel [24].
In presence of uncorrelated block-Rayleigh fading, the high-
SNR capacity-achieving input structure, as already mentioned,
departs from the equal power allocation and is Beta distributed.
We provide herein the output pdf for a block-fading channel
fed by BSTM [5].

Proposition 7: Given a channel as in (23), with X =√
cD1/2Φ, n ≤ b, and D ∼ Bn(b− n, n+m− b), the pdf of

its output can be written as

p(Y) =
πnΓn(b)Γn(m)(γc)n(n−b)K(Y)|F4||Z|
γncn(n−1)/2Γn(n)Γn(b−n)Γn(n+m−b)

(50)

where Z is an n×n matrix, whose generic entry is given by:

(Z)ij =

∫ 1

0

(1− x)m−bxi−1−n

(1 + cγx)m−b+1

·

eyj
cγx

1+cγx −
b−n∑
`,k=1

(F−1
4 )`k

yn+k−b
j

ey`+n
cγx

1+cγx

 dx

(51)

with (F4)ij = yb−n−jn+i i, j = 1, . . . , b− n.
Proof: The proof is given in Appendix I.

C. Exploitation of the analytical results

We now use the above results to compute the achievable
mutual information in a massive MIMO case. In order to derive
the output differential entropy conditioned on the input signal,
h(Y|X), we exploit the analytic expression of the conditional
pdf of the output, p(Y|X), obtained above.

Proposition 8: Given a channel as in (23), the differential
entropy of the output, Y, conditioned on the channel input,
X, can be written as:

h(Y|X) = bm log2(πe) +Km

n∑
i,j=1

aij

m−b∑
`=0

(−1)`
(
m−b
`

)
si,j,`−1

·
[
log2(1+cγ)−cγ2F1(1, si,j,`; si,j,`+1;−γ)

si,j,` ln 2

]
(52)

where K is a constant term, si,j,` = b−2n+i+j+`, and aij
is the (i, j)-cofactor of an n× n matrix A such that

A`k =
Γ(b− 2n+ `+ k − 1)Γ(m− n+ 1)

Γ(b− 3n+m+ `+ k)
.

Proof: The proof is given in Appendix J.
The mutual information obtained in a massive-MIMO-like

case is shown in the following figures. Fig. 4 depicts the
mutual information for n = 1, as the SNR varies and m grows
up to very large values. The plot also compares our results
(denoted by markers) are compared to the approximation given
in [5] for the high SNR regime (dashed lines). The two sets of
curves match very closely for any value of the parameters, as
expected due to the tightness of [5, eq. (8)]. As m varies, all
three curves have the same slope, as this has been proven to be
insensitive to the number of receiving antennas in our setting
[5, eq. (8)]. As expected, better performance is obtained as m
increases. However, interestingly, Fig. 5 shows that a much
higher improvement can be achieved as the fading coherence
length and the number of antennas at the transmitter sightly
increase while m is fixed to 10. In particular, by comparing the
two plots, a limited gain in performance is obtained when m
increases, while, as expected, the mutual information growth
is significant when n is increased by 1.

V. CONCLUSION

We obtained new, closed-form expressions for the prob-
ability density function of the output signal of a block-
fading MIMO channel. By relying on recent results from the
field of finite-dimensional random matrix theory, we provided
results for the case of an i.i.d. Gaussian input under the
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Fig. 5. Mutual information vs. SNR in massive MIMO channel with BSTM:
m = 10 and different values of b and n. Our results (denoted by markers)
are compared to the approximation in [5] (dashed lines).

assumption that the Gramian of the channel matrix is unitarily
invariant. We addressed both the cases of Rayleigh and Rician
fading. Furthermore, we derived the output probability density
function in the case of product-form input. We particularized
our newly derived expressions to those already available in
the literature for the canonical case of uncorrelated Rayleigh
fading, and we characterized the output signal behavior under
different assumptions on the amplitude fading distribution.

VI. ACKNOWLEDGMENTS

This paper was made possible by NPRP grant ]5-782-2-
322 from the Qatar National Research Fund (a member of
Qatar Foundation). The statements made herein are solely the
responsibility of the authors.

APPENDIX A
PROOF OF LEMMA 1

Let H1 and H2 be, respectively, an m × n and an m × p
(m ≤ p) Gaussian complex random matrix whose columns
are independent, have zero mean, and covariance Θ1 and Θ2,
respectively.
• For m ≤ n, the distribution of the ordered eigenvalues

of (H2H2
H)−1/2H1H1

H(H2H2
H)−1/2 is given by [11,

eq. (98)]

p(Λ) =
π2
mV(Λ)|Λ|n−m|{1F0(p+n−m+1; ;−λjωi )}|
(p+n−m)!−mΓm(p)Γm(n)|Ω|nV(−Ω−1)

(53)
where Ω = Θ1Θ

−1
2 , and ω1, . . . , ωm are the eigenvalues

of Ω. When Θ1 and Θ2 are scalar matrices, and Ω =
Θ1Θ

−1
2 = ωI, the distribution of Λ can be obtained first

by applying the limit (4) to (53):

p(Λ) =
π2
m(p+ n−m)!m

Γm(p)Γm(n)

V(Λ)|Λ|n−m

ωmn

· lim
Ω→ωI

|{1F0(p+n−m+1; ;−λj/ωi)}|
V(−Ω−1)

=
π2
mΓm(p+n)V(Λ)|Λ|n−m

Γm(m)Γm(p)Γm(n)ωmn

·|{λm−ij 1F0(p+n−j+1; ;−λj/ω)}| (54)

and then by observing that

|{λm−ij 1F0(p+ n− i+ 1; ;−λj/ω)}|
= |{λm−ij (1 + λj/ω)−(p+n−i+1)}|
= |{[λj/(1 + λj/ω)]m−i(1 + λj/ω)−(p+n−m+1)}|
= V(Λ(I + Λ/ω))|I + Λ/ω|−(p+n−m+1)

= V(Λ)|I + Λ/ω|1−m|I + Λ/ω|−(p+n−m+1)

= V(Λ)|I + Λ/ω|−(p+n) . (55)

• For m > n, the distribution of the n× n random matrix
W = H1

H(H2H2
H)−1H1 is given by [25, eq. (61)]

p(W) =
Γm(n+ p)1F0(p+n; ; I−Ω−1,W(I+W)−1)

Γm(p)Γn(m)|Ω|n|W|n−m|I + W|p+n
(56)

where Ω = Θ
1/2
1 Θ−1

2 Θ
1/2
1 is of size m×m. Note that,

for any unitary matrix V independent of W, we have
|VWVH| = |W|, |I + VWVH| = |I + W|. Moreover,
the eigenvalues of VWVH(I+VWVH)−1 are the same
as those of W(I + W)−1. Thus, p(VWV) = p(W). It
follows that W is unitarily invariant.
Let Ψ = W(I + W)−1 and the eigenvalues of W be
λ1, . . . , λn. Then, Ψ has eigenvalues ψj = λj/(1 + λj),
for j = 1, . . . , n. In order to compute the hypergeometric
function of two matrix arguments of different size appear-
ing in (56), we extend Ψ to the m×m matrix Ψ̃ given
by

Ψ̃ =

[
Ψ 0
0 E

]
where E is an (m−n)×(m−n) matrix whose eigenvalues
are e = [e1, . . . , em−n]T. Then the eigenvalues of Ψ̃ are
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ψ̃ = [ψ1, . . . , ψn, e1, . . . , em−n]T. It follows that

1F0(p+ n; ; I−Ω−1,Ψ)

= lim
e→0

1F0(p+ n; ; I−Ω−1, Ψ̃)

(a)
= lim

e→0

Γm(m)(p+ n−m)!m

Γm(p+ n)

|{fi(ψ̃j)}|
V(I−Ω−1)V(Ψ̃)

=
Γm(m)(p+ n−m)!m

Γm(p+ n)V(I−Ω−1)
lim
e→0

|{fi(ψ̃j)}|
V(Ψ̃)

(57)

where in (a) we applied (6) and fi(ψ̃j) = 1F0(p + n −
m+ 1; ; (1− ω−1

i )ψ̃j), i, j = 1, . . . ,m. By applying the
limit in (3) and the properties in (1) and (7), the limit
in (57) can be computed as

lim
e→0

|{fi(ψ̃j)}|
V(Ψ̃)

=
Γm(p+n)Γn(m)

Γn(p+n)Γm(m)

(p+n−m)!n−m|F|
|Ψ|m−nV(Ψ)

(58)
where for i = 1, . . . ,m

(F)ij=

{
fi(ψj), j = 1, . . . , n
(1−ω−1

i )m−j j = n+1, . . .,m

We now write the eigenvalue decomposition of W as
W = UΛUH, where (λ1, . . . , λn) = diag(Λ). We then
observe that |W| = |Λ|, |I+W| = |I+Λ|, |Ψ| = |Λ||I+
Λ|−1, and that V(Ψ) = V(Λ)|I + Λ|1−n. Therefore, by
using (56), (57), and (58), the pdf of W can be rewritten
as

p(W) =
Γm(p+n)(p+n−m)!n

Γn(p+n)Γm(p)

|I+Λ|m−p−n−1|F|
|Ω|nV(I−Ω−1)V(Λ)

.

(59)
The pdf of the ordered eigenvalues of a complex random
n× n matrix W is given by [11, eq. (93)]:

p(Λ) =
π2
nV(Λ)2

Γn(n)

∫
pW(UΛUH) dU .

In our case, since p(UΛUH) does not depend on U, we
obtain (14).

APPENDIX B
PROOF OF LEMMA 2

• For m ≤ n, let us define W2 = H2H2
H. Then the matrix

W = W
−1/2
2 H1H1

HW
−1/2
2 can be rewritten as W =

HHH where H = W
−1/2
2 H1. For any given matrix W2,

for Θ = θI and MMH = µI, H is a Gaussian complex
matrix with average M̃ = W

−1/2
2 M and independent

columns whose covariance is Σ = θW−1
2 . It follows

that, given W2, W is a non central Wishart matrix and
p(W|W2) is given by [11, eq. (99)]

pW|W2
(W|W2) = 0F1(;n; Σ−1M̃M̃HΣ−1W)

· e−Tr{Σ
−1W}|W|n−m

eTr{Σ
−1M̃M̃H}Γm(n)|Σ|n

= 0F1(;n; θ−2µW2W)

· e−Tr{θ
−1W2W}|W2|n

eµm/θθnmΓm(n)|W|m−n
.

On the other hand, W2 is a central Wishart with covari-
ance θI. Thus, the density of W can be written as

pW(W) =

∫
pW|W2

(W|W2)pW2(W2) dW2

=

∫
0F1(;n;

µ

θ2
W2W)

· e
−Tr{W2(I+W)/θ}|W2|p+n−m dW2

eµm/θθ(p+n)mΓm(n)Γm(p)|W|m−n

=
|W|n−m

eµm/θθ(p+n)mΓm(n)Γm(p)

·
∫

0F1(;n; µθ2 W2W) dW2

eTr{W2(I+W)/θ}|W2|m−p−n
.

In order to solve the above integral, we employ the
following result∫
B=BH>0

pFq(a; b; CB)

|B|m−ceTr{AB} dB =
p+1Fq(a, c; b; CA−1)

[Γm(c)]−1|A|c
,

which holds for m ×m matrices A,B, and C, and for
R(c) > m− 1 [26, eq. (115)]. Then,

pW(W) =
Γm(p+n)1F1(p+n;n; µθW(I+W)−1)

Γm(n)Γm(p)eµm/θ|W|m−n|I+W|p+n
.

It can be observed that p(W) depends only on the
eigenvalues of W, thus it is unitarily invariant. It follows
that the pdf of the ordered eigenvalues of W is given
by [11, eq. (93)]

p(Λ) =
π2
mV(Λ)2

Γm(m)

∫
pW(UΛUH) dU ,

which provides the results in (15).
• For m > n, the distribution of the n × n matrix W =

H1
H(H2H2

H)−1H1 is given by [11, eq. (105)]

p(W) =
Γn(p+n)1F1(p+n;m; Ω(I+W−1)−1)

Γn(m)Γn(p+n−m)eTr{Ω}|W|n−m|I+W|p+n
(60)

and the distribution of its eigenvalues is given by

p(Λ) =
p!n

(m−n)!n
πne−Tr{Ω}V(Λ)|F||Λ|m−n

Γn(p+n−m)V(Ω)|I+Λ|1+p
(61)

where Ω = MHΘ−1M, (F)ij = 1F1(p + 1;m − n +
1;λjωi/(1 +λj)), and ω1, . . . , ωn are the eigenvalues of
Ω. This result has been obtained by applying (6) to [11,
eq. (106)].
In the particular case where Ω is a scalar matrix (i.e., Ω =
ωI), matrix W is unitarily invariant since its pdf in (60)
only depends on its eigenvalues Λ. Indeed, |W| = |Λ|,
|I + W| = |I + Λ|, and the generalized hypergeometric
function 1F1(p+n;m;ω(I+W−1)−1) only depends on
the eigenvalues of its matrix argument, i.e., on Λ. In such
a case, the distribution of Λ can be obtained from (61)
by applying the limit in (4) to the ratio |F|/V(Ω) and
the property in (7). The result is reported in (16).
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APPENDIX C
PROOF OF PROPOSITION 1

The proof of (19) and (21) follows from the application
of [27, Theorem I] to (17) and (18), respectively.

The density given in (18) is an ordered eigenvalue distribu-
tion and the unordered eigenvalue distribution is obtained by
dividing (18) by n!. Then, applying the Laplace determinant
expansion, the unordered eigenvalues distribution becomes

p(Λ) =
π2
nΓn(p+ q)(1− λ1)q−nλp−n−2

1

n!Γn(n)Γn(p)Γn(q)

·
n∑
i=1

n∑
j=1

(−λ1)i+j

·
n∏
k=2

(1− λk)q−nλq−nk |V̄(Λ)||Ṽ(Λ)|

(62)

where V̄(Λ) and Ṽ(Λ) are (n−1)×(n−1) matrices obtained
by deleting the first row and column from the Vandermonde
matrix V(Λ) and its conjugate transpose, separately. The
(i, j)-th entry of V(Λ) and its conjugate transpose are λj−1

i

and λi−1
j , respectively. Thanks to [28, Corollary 1], the result

in (21) can be obtained through integration over n − 1
eigenvalues from λ2 to λn. The final expressions are in both
cases due to the definition of the scalar Beta function [14]. It
should be noticed that the choice of λ1 in (62) has no effect on
the final result, since we started from an unordered eigenvalue
distribution. Using the same approach, the proof of (19) is
straightforward.

APPENDIX D
PROOF OF (24) AND (26)

We first observe that for m > n the matrix HHH does not
have full rank and has m − n zero eigenvalues. The n non-
zero eigenvalues of HHH, denoted by λ1, . . . , λn, are also
the eigenvalues of HHH and are the elements of the n × n
diagonal matrix Λ. We start by rewriting [3, eq. (38)] in the
case m > n and obtain

p(Y) =

∫
e−‖Y‖

2

p(Λ)

πmb|I+γΛ|b

[∫
eTr{C̃UHYYHU}p(U|Λ) dU

]
dΛ

(63)
where U is a unitary m×m matrix, C̃ is an m×m diagonal
matrix whose elements are given by (C̃)jj = cj = λjγ/(1 +
γλj), j = 1, . . . ,m, with cj = 0, for j = n + 1, . . . ,m.
Since we assume that W = HHH is unitarily invariant, its
eigenvalues do not depend on U. Moreover, U is a Haar matrix
(see Definition 3). Then, p(U|Λ) = p(U). The inner integral
over U can be solved using the Harish-Chandra-Itzykson-
Zuber integral [29]∫

U(m)

eTr{C̃UHYYHU}p(U) dU =
Γm(m)|E|

πmV(C̃)V(YYH)
.

The elements of matrix E are given by (E)ij = eyicj , i, j =
1, . . . ,m and yi, i = 1, . . . ,m, are the eigenvalues of YYH.
Due to the fact that cj = 0 for j = n + 1, . . . ,m, we have

|E| = 0 and V(C̃) = 0; thus the limit in (3) must be applied
to the term |E|/V(C̃). We have

lim
cn+1,...,cm→0

|E|
V(C̃)

=
πmΓn(m)

πnΓm(m)

|Ẽ|
V(C)|C|m−n

(64)

where Ẽ is an m × m matrix whose elements are given by
(Ẽ)ij = eyicj for 1 ≤ j ≤ n, and (Ẽ)ij = yj−n−1

i for n+1 ≤
j ≤ m. Also, C is an n×n diagonal matrix whose elements are
(C)jj = cj = λjγ/(1 + γλj), j = 1, . . . , n. Therefore, (63)
can be rewritten as

p(Y) =
Γn(m)K(Y)

πn

∫
p(Λ)|Ẽ|
|I + γΛ|b

|C|n−m

V(C)
dΛ (65)

where K(Y) = e−‖Y‖
2

/(V(YYH)πmb) was defined in (25).
Since cj = λjγ/(1 + γλj), by applying the definition
of the Vandermonde determinant, we get V(C) = |I +
γΛ|1−nV(γΛ). Moreover, |C| = |γΛ||I + γΛ|−1. By sub-
stituting these results in (65), we obtain (26).

APPENDIX E
PROOF OF PROPOSITION 2

We first observe that the matrix H in (29) can be written
as H = H0/

√
1 + κ, where H0 =

√
κH̄ + H̃.

• For m ≤ n and H̄H̄H = hI, the joint distribution of the
ordered eigenvalues of H0H0

H is given by (12) where
µ = κh, i.e.,

p0(Λ0) =
π2
m|Λ0|nV(Λ0)|{λ−i0j 0F1( ;n−i+1;κhλ0j)}|

Γm(m)Γm(n)eκhm+Tr{Λ0}

where (λ01, . . . , λ0m) = diag(Λ0). Then, the pdf of the
ordered eigenvalues of HHH is given by

p(Λ) = (1 + κ)mp0((1 + κ)Λ)

=
π2
m(1 + κ)mn|Λ|n|F|V(Λ)

Γm(m)Γm(n)eκhm+(1+κ)Tr{Λ} (66)

where (F)ij = λ−ij 0F1( ;n− i+ 1;κ(1 + κ)hλj), i, j =
1, . . . ,m. By substituting this equation in (24) and by
applying the result in Appendix K, we obtain (30).

• For m > n, and for H̄HH̄ = hI, we adopt a procedure
similar to the one above. In this case, the pdf of the
non-zero eigenvalues of HHH is given by (66) where
n and m should be replaced by m and n, respectively.
By substituting p(Λ) in (26) and by applying the result
in Appendix K, we obtain (31).

APPENDIX F
PROOF OF PROPOSITION 3

For m ≤ n, the distribution of the ordered eigenvalues of
HHH is expressed as [9, eq. (9)]

p(Λ) =
Γ(α−m+1)m

Γ(n−m+1)m
πme−Tr{Λ}

V((I+Ω)−1)

V(Λ)|Λ|n−m|F|
Γm(α)|I+Ω−1|α

(67)

with (F)ij = 1F1(α−m+ 1;n−m+ 1;λj/(1 +ωi)). When
Ω = ωI, the expression of p(Λ) can be derived from (67)
by applying the limit in (4) and by using the property in (1).
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For simplicity, we define Θ = (I + Ω)−1 = θI where θ =
(1 + ω)−1. Then,

p(Λ) =
πmΓ(α−m+1)mV(Λ)|Λ|n−m

Γm(α)Γ(n−m+1)meTr{Λ}(1+1/ω)mα

· lim
Θ→θI

|F|
V(Θ)

=
π2
mV(Λ)|Λ|n|F̃|

Γm(m)Γm(n)eTr{Λ}(1 + 1/ω)mα

(68)

where (F̃)ij = λ−ij 1F1(α− i+1;n− i+1;λj/(1+ω)), i, j =
1, . . . ,m. The proposition statement follows by replacing (68)
in (24). Similarly, when m > n and Ω = ωI, the distribution
of the eigenvalues of HHH is given by

p(Λ) =
π2
ne−Tr{Λ}V(Λ)|Λ|m

Γn(m)(1 + 1/ω)nα
|F̃|

Γn(n)

where (F̃)ij = λ−ij 1F1(α − i + 1;m − i + 1;λj/(1 + ω)),
i, j = 1, . . . , n. Again, the proposition statement is obtained
by replacing the above equation in (26).

APPENDIX G
PROOF OF PROPOSITION 5

We first observe that the matrix H in (35) can be written
as H = H0/

√
1 + κ, where

H0 =
√
κ
(
ĤĤH

)−1/2

H̄s +
(
ĤĤH

)−1/2

H̃s

• for m ≤ n, and H̄sH̄s
H = hI, the distribution of the

ordered eigenvalues of H0H0
H is given by (15)

p0(Λ0) =
π2
me−hκm/θΓm(Ln+n)V(Λ0)2|Λ0|n−m

Γm(m)Γm(n)Γm(Ln)|I + Λ0|Ln+n

·1F1

(
Ln+n;n;

hκ

θ
Λ0(I + Λ0)−1

)
where we set µ = hκ. The distribution of the eigenvalues
of HHH can then be obtained as

p(Λ) = κ̃mp0(κ̃Λ)

=
π2
mκ̃

mnΓm(Ln+n)|Λ|n−mV2(Λ)

Γm(m)Γm(n)Γm(Ln)ehκm/θ|I+κ̃Λ|Ln+n

· 1F1

(
Ln+n;n;

hκκ̃

θ
Λ(I+κ̃Λ)−1

)
(69)

where κ̃ = 1 + κ. By substituting the above expression
in (24), and by exploiting the property [12, eq. (2.36)]

1F1(a; b; Ψ) =
|{1F1(a−m+j; b−m+j;ψi)ψ

j−1
i }|

V(Ψ)
,

which holds for any m × m Hermitian matrix Ψ with
eigenvalues ψ1, . . . , ψm, we obtain (39).

• For m > n, the distribution of the eigenvalues of H0H0
H

is given by (16):

p0(Λ0) =
π2
nΓn(Ln+ n)e−ωn|F||Λ0|m−nV(Λ0)

Γn(n)Γn(m)Γn(Ln+ n−m)|I + Λ0|Ln+1

where Ω = ωI = MHΘ−1M. In our case we have
M =

√
κH̄s, thus ωI = κH̄s

HΘ−1H̄s. It follows that
the matrix HHH is unitarily invariant if H̄s

HΘ−1H̄s =
ω/κI. The distribution of the eigenvalues of HHH can
then be obtained as

p(Λ) = κ̃np0(κ̃Λ)

=
π2
nΓn(Ln+ n)|Λ|m−nV(Λ)

Γn(n)Γn(m)Γn(Ln+ n−m)

·
|{λ̃n−ij 1F1(Ln+n−i+1;m−i+1;ωκ̃λ̃j)}|

κ̃−nmeωn|I + κ̃Λ|Ln+1

where κ̃ = 1+κ and λ̃j = λj/(1+ κ̃λj). By substituting
this expression in (26), we obtain (41).

APPENDIX H
PROOF OF PROPOSITION 6

Given the above assumptions and considering that X =√
cD1/2Φ, p(Y|D) is given in as [5, eq. (53)]:

p(Y|D) =
e−‖Y‖

2

A

πmb|I+γcD|m
(70)

where

A =

∫
S(b,n)

eTr{∆ΦYHYΦH}p(Φ) dΦ

=
1

|S(b, n)|

∫
S(b,n)

eTr{∆ΦYHYΦH} dΦ

and ∆ = γcD(I+γcD)−1. In [5, Appendix A], it is observed
that the integral above is not an instance of the Harish-
Chandra-Itzykson-Zuber (HCIZ) integral [29] since the n× b
matrix Φ is not a square matrix. In order to circumvent this
problem, one has to extend matrix ΦH to the unitary b × b
Haar matrix Φ̃H = [ΦH,Φ⊥

H], where Φ⊥
H is the orthogonal

complement of ΦH with respect to the unitary group U(b).
Thus, following [5, Appendix A], we can write

A =
1

|S(b, n)||U(b−n)|

∫
U(b)

eTr{∆ΦYHYΦH} dΦ̃ .

Next, the n × n diagonal matrix ∆ = diag(δ1, . . . , δn)
can be extended to the b × b matrix ∆̃ =
diag(δ1, . . . , δn, q1, . . . , qb−n) where the elements of
q = [q1, . . . , qb−n] are distinct and different from δ1, . . . , δn.
The above integral can then be written as

A =
1

|S(b, n)||U(b−n)|
lim
q→0

∫
U(b)

eTr{∆̃Φ̃YHYΦ̃H} dΦ̃ . (71)

We observe that the matrix YHY has b−m zero-eigenvalues,
and its non-zero eigenvalues are the eigenvalues of YYH.
Since the HCIZ integral is a function of the eigenvalues of
the matrices ∆̃ and YHY, we replace the matrix YHY with
the b× b block diagonal matrix Ψ = diag(YYH,P) where P
is diagonal and has diagonal entries p = [p1, . . . , pb−m]. Such
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elements are positive, distinct, and they are different from the
eigenvalues of YYH. In conclusion, we can write:

A =
1

|S(b, n)||U(b− n)|
lim
q→0

lim
p→0

∫
U(b)

eTr{∆̃Φ̃ΨΦ̃H} dΦ̃

=
Γb(b)|U(b)|

πb|S(b, n)||U(b− n)|
lim
q→0

lim
p→0

|F|
V(Ψ)V(∆̃)

=
Γb(b)

πb
lim
q→0

lim
p→0

|F|
V(Ψ)V(∆̃)

(72)

where (F)ij = eψiδ̃j and ψi and δ̃j are the eigenvalues
of Ψ and ∆̃, respectively. In (72) we first used the HCIZ
integral [29] and then the equality |U(b)| = |S(b, n)||U(b−n)|.
Then, we apply twice the limit in (3) and obtain:

lim
q→0

lim
p→0

|F|
V(Ψ)V(∆̃)

=
πbΓm(b)|YYH|m−b

πmΓb(b)V(YYH)

·πbΓn(b)|F̂||∆|n−b

πnΓb(b)V(∆)
(73)

where for m ≤ n,

(F̂)ij =


eyiδj i = 1, . . . ,m; j = 1, . . . , n

yb−ji i = 1, . . . ,m; j = n+ 1, . . . , b

δb−ij i = m+ 1, . . . , b, j = 1, . . . , n

(b− i)! i = j; j = n+ 1, . . . , b
0 elsewhere ,

(74)

while for m > n,

(F̂)ij =


eyiδj i = 1, . . . ,m; j = 1, . . . , n

yb−ji i = 1, . . . ,m; j = n+ 1, . . . , b

δb−ij i = m+ 1, . . . , b, j = 1, . . . , n

(b− i)! i = j; j = m+ 1, . . . , b
0 elsewhere.

(75)

In summary,

p(Y|D) =
πbΓm(b)Γn(b)K(Y)|YYH|m−b|F̂||∆|n−b

πmπnΓb(b)V(∆)|I+γcD|m
(76)

where K(Y) was defined in (25).
We now focus on the case m > n and compute the

determinant |F̂|. Note that F̂ can be written as

F̂ =

[
F̂1 F̂2

F̂3 F̂4

]
where F̂1 is of size m×m, F̂2 m× (b−m), F̂3 (b−m)×m,
and F̂4 (b − m) × (b − m). By using the property of the
determinant of block matrices [30], we have:

|F̂| = |F̂4||T̂| ,

where T̂ = F̂1 − F̂2F̂
−1
4 F̂3. In our case, F̂4 is diagonal

(see the definition of F̂ in (75)) and |F̂4| =
∏b−m−1
i=0 i!.

Moreover, we have (F̂2F̂
−1
4 F̂3)ij =

∑b−m−1
k=0 (yiδj)

k/k! for
i = 1, . . . ,m, j = 1, . . . , n, and (F̂2F̂

−1
4 F̂3)ij = 0 otherwise.

It follows that for i = 1, . . . ,m

(T̂)ij =

{
eyiδj −

∑b−m−1
k=0

(yiδj)
k

k! j = 1, . . . , n

yb−ji j = n+ 1, . . . ,m .

Note that, for i = 1, . . . ,m and j = 1, . . . , n,

(T̂)ij = eyiδj −
b−m−1∑
k=0

(yiδj)
k

k!

=

∞∑
k=0

(yiδj)
k

k!
−
b−m−1∑
k=0

(yiδj)
k

k!

=

∞∑
k=b−m

(yiδj)
k

k!

=

∞∑
h=0

(yiδj)
b−m+h

(b−m+h)!

= (yiδj)
b−m

∞∑
h=0

(yiδj)
hh!

(b−m+ h)!h!

=
(yiδj)

b−m

(b−m)!

∞∑
h=0

(1)h(yiδj)
h

(b−m+1)hh!

=
(yiδj)

b−m

(b−m)!
1F1(1; b−m+1; yiδj)

since h! = (1)h and (b −m + h)! = (b −m + 1)h(b −m)!.
Also, for i = 1, . . . ,m and j = n+1, . . . ,m, (T̂)ij = yb−ji =
yb−mi ym−ji .

As a consequence, the matrix T̂ can be rewritten as T̂ =
LGR, where L and R are diagonal m × m matrices given
by, respectively, L = diag(yb−m1 , . . . , yb−mm ), and

R = diag(δb−m1 /(b−m)!, . . . , δb−mn /(b−m)!, 1, . . . , 1) .

Furthermore, G is an m × m matrix whose elements, for
i=1, . . . ,m, are given by

(G)ij =

{
1F1(1; b−m+ 1; yiδj) j = 1, . . . , n

ym−ji j = n+ 1, . . . ,m .

Thus, we have:

|F̂| = |F̂4||T̂|

= |L||G||R|
b−m−1∏
i=0

i!

=
|YYH|b−m|G||∆|b−m

(b−m)!n

b−m−1∏
i=0

i! . (77)

In conclusion, by substituting (77) in (76), we get (47).
For m ≤ n, a similar procedure can be used to compute the

determinant |F̂|. In this case,

|F̂| = |YYH|b−n|G||∆|b−n

(b− n)!m

b−n−1∏
i=0

i! .

Again, by substituting the above expression in (76), we
get (46). Here, however, the expression of (G)ij changes as
follows:

(G)ij =

{
1F1(1; b− n+ 1; yiδj) i = 1, . . . ,m

δn−ij i = m+ 1, . . . , n

and for j = 1, . . . , n.
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APPENDIX I
PROOF OF PROPOSITION 7

The law of the output of a channel, as the one in (23),
conditioned on the input power allocation D, is reported in
[5, eq. (58)], i.e.,

p(Y|D) =
Γn(b)K(Y)|I + cγD|b−m−1|F|

πnγn|γcD|b−nV(cD)
, (78)

where K(Y) = e−‖Y‖
2

/(πmbV(YYH)) and (F)ij =

exp
(
cγyidj
1+cγdj

)
, i = 1, . . . , n, j = 1, . . . , b, and Fij = yb−ji ,

i = n+ 1, . . . , b, j = 1, . . . , b.
In order to take average of (78), we first write |F| as the

product of two determinants. Indeed, we partition F as

F =

[
F1 F2

F3 F4

]
(79)

where (F4)ij = yb−n−jn+i i, j = 1, . . . , b − n, and F1 is the
principle n× n submatrix of F. Applying the property of the
determinant of block matrices [30] to (79), we obtain

|F| = |F4||T| , (80)

where T = F1−F2F
−1
4 F3. We notice that |F4| is independent

of D, and the matrix T has the same size as D. For m > n,
p(D) is given by (18). We then get

p(Y) =

∫
p(Y|D)p(D) dD

=
Γn(b)K(Y)|F4|

πnγn

∫
|I+cγD|b−m−1|T|p(D)

|γcD|b−nV(cD)
dD

=
πnΓn(b)Γn(m)(γc)n(n−b)K(Y)|F4|

γnΓn(n)cn(n−1)/2Γn(b−n)Γn(n+m−b)

·
∫
|I + cγD|b−m−1|T|
|I−D|b−m|D|n

V(D) dD ,

=
πnΓn(b)Γn(m)(γc)n(n−b)K(Y)|F4||Z|
γncn(n−1)/2Γn(n)Γn(b−n)Γn(n+m−b)

(81)

where

(Z)ij =

∫ 1

0

(1 + cγx)b−m−1xi−1−n

(1− x)b−m

·
[
exp

(
cγyix

1 + cγx

)
− (F2F

−1
4 F3)ij

]
has been obtained by using the result in Appendix K, and

(F2F
−1
4 F3)ij =

b−n∑
`,k=1

(F−1
4 )`k exp

(
cγxy`+n
1 + cγx

)
yb−k−nj .

APPENDIX J
PROOF OF PROPOSITION 8

Conditioned on the input X, the output Y is complex
Gaussian and has i.i.d. rows, so that the evaluation of the
differential entropy can be carried out by considering just an
arbitrary row, y, of Y and, then, scaling the result by m. We
note that y is multivariate Gaussian distributed with covariance
equal to (I + γXHX). Thus, considering the optimal input

matrix, X =
√
cD1/2Φ and conditioning on it, the differential

entropy is given by:

h(y|X) = b log2(πe) + nE [log2 (1 + cγδ)] , (82)

with δ being distributed as a single unordered eigenvalue of
the matrix D. By using (18) and considering p = b − n and
q = m+ n− b, p(D) reads as

p(D) =
π2
nΓn(m)|I−D|m−b|D|b−2nV2(D)

Γn(n)Γn(b− n)Γn(m+ n− b)
. (83)

By exploiting the result given in Proposition 1 and by denoting
the constant terms in the above expression by K, we obtain:

p(δ) =
K

n

n∑
i,j=1

δ(b−2n+i+j−2)(1− δ)(m−b)aij (84)

with aij being defined as in the above proposition. The integral
in (82) can be solved by resorting to partial integration. Indeed,
taking log2 (1 + cγδ) as the primitive factor and recalling
that (1 − δ)n−m =

∑n−m
`=0

(
n−m
`

)
(−1)`δ`, by virtue of [31,

3.194.1], we obtain

E [log2 (1 + γδ)] =
K

n

n∑
i,j=1

aij

m−b∑
`=0

(
m− b
`

)
(−1)`

si,j,` − 1

·
[
log2(1 + cγ)− cγ 2F1 (1, si,j,`; si,j,` + 1;−γ)

ln(2)(si,j,`)

]
where si,j,` = b− 2n+ i+ j + `. Then, using this expression
in (82), we get (52).

APPENDIX K
LEMMA 2 IN [32]

Consider a function ξ(x), an arbitrary n × n matrix Φ(x)
such that (Φ)ij = φi(xj), and an arbitrary m×m matrix Ψ,
m ≥ n, whose elements are given by

(Ψ)ij =

{
ψi(xj) 1 ≤ i ≤ m, 1 ≤ j ≤ n
cij 1 ≤ i ≤ m,n+ 1 ≤ j ≤ m

where cij are constant. Then, the following identity holds:∫
[a,b]n

|Φ(x)||Ψ(x)|
n∏
k=1

ξ(xk) dx = n!|Ξ| (85)

where, for 1 ≤ i ≤ m,

(Ξ)ij =

{ ∫ b
a
ψi(x)φj(x)ξ(x) dx 1 ≤ j ≤ n

cij n+ 1 ≤ j ≤ m.

For the specific case m = n, this result appears in [28,
Corollary II].
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Limited Rician Block-Fading Channels,” IEEE International Symposium
on Information Theory, Chicago, IL, June 2004.

[18] G. Taricco, and G. Coluccia, “Optimum Receiver Design for Correlated
Rician Fading MIMO Channels with Pilot-aided Detection,” IEEE J.
on Selected Areas in Communications, Vol. 25, No. 7, pp. 1311-1321,
Sep. 2007.

[19] K. Liolis, J. Gmez-Vilardeb, E. Casini, and A. I. Prez-Neira, “Statistical
Modeling of Dual-Polarized MIMO Land Mobile Satellite Channels,”
IEEE Trans. on Communications Vol. 58, No. 11, pp. 3077–3083, 2010.

[20] D. Hösli and A. Lapidoth, “The Capacity of a MIMO Ricean Channel
Is Monotonic in the Singular Values of the Mean,” ITG Conf. Source
and Channel Coding, 2004.

[21] A. K. Nagar and L. Cardeno, “Matrix-variate Kummer-Gamma dis-
tribution,” Random Operators and Stochastic Equations, Vol. 9, No. 3,
pp. 208–217, 2001.

[22] T. L. Marzetta, and B. M. Hochwald, “Capacity of a mobile multiple-
antenna communication link in Rayleigh flat fading,” IEEE Trans. on
Information Theory, Vol. 45, No. 1, pp. 139–157, 1999.

[23] A. Lapidoth, and S. M. Moser, “Capacity Bounds via Duality with
Applications to Multiple-Antenna Systems on Flat Fading Channels,”
IEEE Trans. on Information Theory, Vol. 49, No. 10, pp. 2426–2467,
2003.

[24] T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited
Numbers of Base Station Antennas,” IEEE Trans. on Wireless Com-
munications, Vol. 9, No. 11, pp. 3590–3600, 2010.

[25] C. G. Khatri, “On Certain Distribution Problems Based on Positive
Definite Quadratic Functions in Normal Vectors,” The Annals of Math-
ematical Statistics, Vol. 37, No. 2, pp. 467–479, Apr. 1966.

[26] M. McKay and I. Collings, “General Capacity Bounds for Spatially
Correlated Rician MIMO Channels”, IEEE Transactions on Information
Theory, Vol. 51, No. 9, September 2005.

[27] G. Alfano, A. Tulino, A. Lozano, and S. Verdú, “Eigenvalue Statistics
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