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ABSTRACT
Multicore architectures are increasingly used in embedded
systems to achieve higher throughput with lower energy con-
sumption. This trend accentuated the need to convert ex-
isting sequential code to effectively exploit the resources of
these architectures.

We present the work-in-progress of the EU FP7 PHARAON
project that aims to develop a complete set of techniques
and tools to guide and assist the designer in the develop-
ment process for heterogeneous parallel architectures. We
focus on the legacy C code parallelization flow that includes
a performance estimation tool, a parallelization tool, and
a streaming-oriented parallelization framework. We demon-
strate the effectiveness of the use of the toolset on a use case
where we measure the quality and time for parallelization for
inexperienced users and the parallelization flow and perfor-
mance results for the parallelization of a practical example
of a stereo vision application.

Categories and Subject Descriptors
D.1 [Programming Techniques]: Concurrent Program-
ming—Parallel programming

General Terms
execution profiling, data dependency analysis, program par-
allelization, energy estimation

1. INTRODUCTION
Market evolution over the last years shows a significant in-
crease of the use of multicore architectures in new projects
[4]. Over the last decade, processors and systems refocus
from the acceleration of the execution of a single-thread to

the increase of the overall throughput by means of multi-
processor architectures. Also, multicore architectures tradi-
tionally used in specific domains with very high processing
needs gradually permeated to many embedded systems in-
creasing the need to parallelize massive amounts of legacy
sequential code [3, 9]. However, even when parallelism is
taken into account from the start of a project, writing pro-
grams for efficient execution on parallel architectures is still
considered a challenging task [10, 2].

The revolution in hardware architectures challenges the soft-
ware development techniques to efficiently exploit the poten-
tial of the multicore architectures, including the performance-
power trade-offs that are often important for portable em-
bedded systems. Automated software parallelization has
been extensively explored especially at the statement, basic
block and loop levels, which are appropriate for VLIW and
vector processors [20, 8]. By contrast, the tools for explor-
ing the parallelization opportunities at the task level, which
are best suited for modern multi-core processors, were less
explored, with some notable exceptions [14, 6]. However,
most of the latter techniques are so far restricted to specific
types of loops and data access patterns.

The PHARAON project aims to enable the development of
complex systems with high processing needs and low-power
requirements. Figure 1 shows the techniques and tools de-
veloped to this end.

The first set addresses the design flow, starting from UML/-
MARTE1 specifications up to implementation on multicore
platform. It assists the design space exploration for for the
best software architecture and for parallelization opportuni-
ties. The second set addresses the run-time adaptation of
platform performance (e.g., frequency and voltage) to min-
imize the energy consumption.

1.1 Evolution beyond the state of the art
Although long studied, compilers can generally extract a
limited level of parallelism unless they are used for special
applications and, often, for specific coding styles [14, 13].
Efforts like MORPHEUS [24], CRISP [1] and MEGHA [22]

1UML Profile for MARTE http://www.omgmarte.org/



Figure 1: PHARAON global approach and tools in-
teractions

are usually tailored to the target architecture they produce
parallel code for. Dominant industry players have also pro-
posed several compilation and debugging tools. For exam-
ple, OpenCL and CUDA extend the C language to generate
efficient code for GPUs. In this project, OpenStream ex-
tended the OpenMP standard, better suited for CPUs, with
streaming-oriented constructs.

UML is a common modeling language for high-level system
design [19]. Previous works propose semi-automatic genera-
tion of HW/SW infrastructures [5] and a flow to dynamically
reconfigurable SoCs [12]. Low-power run-time management
and scheduling have also been proposed, most recent using
dynamic voltage and frequency scaling [7, 11]. Design-time
approaches use slow integer linear programming [23] and
cannot be used at run time. PHARAON proposes a com-
plete framework addressing heterogeneous multi-processor
platforms for power consumption optimization.

1.2 System design flow
Figure 2 shows the flow that extends from the high-level
UML specifications to the programming of the target plat-
form. UML specification allows to handle homogeneous, het-
erogeneous and distributed systems and explore the paral-
lelization between components though automatic code gen-
eration. This code is used to perform performance and par-
allelization analysis, code synthesis and power management
to optimize the use of target platform resources.

First stage uses the Pareon performance simulator to evalu-
ate the timing and energy of the C code of the UML com-
ponents. The second stage is driven by the interactive par-
allelization tool ParTools that is used to discover the paral-
lelization opportunities. The optimized code is either simu-
lated again or implemented and analyzed onto the physical
platform in the third stage, in order to assess both the paral-
lelization quality and to extract information for the run-time
optimizations. These are used by the reconfiguration man-
ager and low-power scheduler are deployed on the physical
platform to provide the required application performance
with reduced power consumption.

2. PHARAON WORKFLOW FOR PARAL-
LELIZATION

Parallelizing an existing sequential implementation guided
only by a classical source code profiler is not trivial with-
out prior knowledge of the software. For instance, a typical
gprof profile shown in Listing 1

Listing 1: Typical execution profile (gprof) output
% cum. self self total

time sec. sec. calls s/call s/call name
16.61 2.79 2.79 788215425 0.00 0.00 Dot
13.78 5.12 2.32 141631877 0.00 0.00 IntersectQuad
8.26 6.50 1.39 281277610 0.00 0.00 intersectObject
8.02 7.86 1.35 139645733 0.00 0.00 IntersectSphere
7.90 9.19 1.33 69361053 0.00 0.00 NormalizeVec3
...

shows clearly the most computation-intensive parts of the
program, but does not provide any information on data flows
and dependencies, which are well known as one of the most
important parallelization inhibitors. More advanced tools
provide more details, but still do not cover the data depen-
dencies within the whole program.

For these reasons, the PHARAON workflow for paralleliza-
tion collects program-wide data dependencies at run-time
and presents them for analysis in an abstracted and intuitive
way. The toolset flow does not make any specific assump-
tions on the developer skills, parallelization method, syntax
or parallelization framework:

• it starts with run-time collection of execution profile
and data dependencies of the serial program;

• performance analysis either simulated or from the (em-
bedded) target system to collect energy consumption
estimates and execution histograms;

• display in an intuitive and interactive graphical form
of the execution profile, data dependencies, and per-
formance estimations;

• manual analysis of the data and selection of the most
promising parallelization opportunities and style;

• parallelization, test and debug of the parallel code, and
measurement of performance enhancements;

• code refactoring to improve the parallelization perfor-
mance of the algorithms.

The steps above can be iterated as needed until are achieved
satisfactory results with the effort allocated to the project.
In the following sections, the PHARAON toolset compo-
nents that support the flow will be presented in more de-
tail. Then, the effectiveness of the use of the toolset will be
demonstrated, both in terms of simplification of the paral-
lelization task for low skill users as well as the acceleration
obtained on a stereo vision application of practical interest.

2.1 ParTools parallelization toolset



Figure 2: PHARAON design flow

Figure 3: ParTools toolset parallelization flow

ParTools2 [16, 15] is a free software project designed to sup-
port the developers of various skill levels to parallelize legacy
sequential C code that can include complex control struc-
tures, pointer operations, and dynamic memory allocation.
ParTools was designed to facilitate the discovery of both
task and data parallelization opportunities and can be used
for any parallelization technique.

The toolset flow, shown in Figure 3, is divided in four stages:
I source instrumentation, II run-time execution trace profile
and data dependency collection and compaction, III graph-
ical visualization and analysis of execution data, and IV
source code parallelization. Its operation is controlled from
the Code::Blocks IDE.

An automatic annotator instruments in stage I the sequen-
tial source for run-time data dependency collection. The
data generated by the instrumentation are collected and

2ParTools project: http://sf.net/projects/partools/

compacted at run-time in stage II by a library, and saved
in the project at the end of the execution. It is graphically
displayed in stage III as a data dependency graph (DDG),
with the nodes representing program control (e.g., state-
ments, loops, function calls) and the edges representing the
data dependencies. All elements are analyzed based on their
execution call stacks, since their execution parameters can
change with the context. The nodes for complex program
structures (e.g., loops, function calls) fold all the execution
call stacks rooted there. These can be unfolded progres-
sively, as needed to discover good parallelization candidates,
as we will show later. Stage IV supports manual program
parallelization based on above exploration. The source code
in the IDE is connected with the graph elements in the graph
viewer. Also, the graph viewer provides several methods to
temporarily hide graph sections that are not relevant for the
parallelization, such as graph re-rooting to any given node.

ParTools analysis can complement automatic parallelization
tools (e.g., that of Compaan Design3) which can signifi-
cantly benefit from the toolset-driven program-wide data de-
pendency analysis. ParTools can show: where the compute
intensive procedures are; if there are any data dependencies
besides those through procedure arguments; whether the
procedure inputs and outputs are truly unaliased; whether
the procedure inputs are truly read-only and outputs are
truly write-only. Also, ParTools can import data from ex-
ternal analysis tools that complement its analysis capabili-
ties. For example, energy analysis and execution histograms
from Pareon can be imported and displayed on the graph to
provide the developers with a more comprehensive view on
program execution to make better parallelization decisions.

Graphical visualization opens by abstracting all execution
details under the call to main() function, as shown in Fig-
ure 4. The fold label shows the fold type, its estimated
execution load and energy consumption (imported from the
Pareon analyzer), the source file name and line, the function
name followed by its unique call stack ID. The folds can be
unfolded one level at a time to help the developer uncover

3Compaan Design BV http://www.compaandesign.com/



Figure 4: ParTools initial view folds all execution
and dependencies under the main() function.

Figure 5: Analysis of a stereo vision application.
The two loop folds (square shape) with stronger
colourization include 53% and 18% of program ex-
ecution and may be good parallelization candidates
with no strong data dependencies between them.

data relevant for discovery of parallelization opportunities.
For instance, Figure 5 shows an expanded view in the anal-
ysis of the stereo vision application shown in Figure 4, in
which the rectangular nodes correspond to loop folds and
the node labels show data similar to that shown in Figure 4.

The data dependency view of a selected DDG node is an-
other important feature of the toolset to help the paral-
lelization decisions. It can be generated for any fold node
and shows in detail the read and write data dependencies of
that fold, which are essential for any parallelization mecha-
nism, language and style. The view is organized in layers,
as shown in the excerpt in Figure 6. The top layer displays
the leaf nodes (C statements) that produce the incoming
data, which are displayed on the next layer. The middle
layer displays the statements in the selected fold that con-
sume data from or produce data for outside the fold, which
are shown on the next layer. The bottom layer displays the
leaf nodes from outside the fold that consume the data pro-
duced within it. These dependencies are typically difficult
to extract through static code analysis or inspection, since
the producers and consumers can be at various depths and
in different call stacks, and transfer data through any type
of data (dynamic, local, global, etc.)

Figure 7: Data dependencies and OpenMP pragma
template inserted as comments in the source code.

To further help the developer, the toolset can insert com-
ments in the source code with the data dependencies and
an OpenMP pragma template that can be adapted for the
parallelization of the fold node of interest (see Figure 7).

2.2 Performance analysis in Pareon
2.2.1 Performance analysis toolflow

The Pareon tool-suite features leading-edge analysis and in-
teractive parallelization capabilities. In the PHARAON project,
it provides the analysis of the performance of C and C++ ap-
plications on the target hardware platforms (currently ARM
Cortex A9 and an Intel Core 5), including energy consump-
tion estimation. These data are then imported by the par-
allelization tool (ParTools) to provide the developer with a
comprehensive view of the run-time effects of the program,
to help them making effective parallelization decisions. The
energy estimates are also used by the low power scheduler to
select the most power-efficient operating mode of the system.
Pareon can also analyze parallel C and C++ programs that
use POSIX threads or OpenMP pragmas (the latter are un-
der test), which allows to check the parallelization decision
effects and close the loop of the PHARAON toolset4.

The internal Pareon flow for performance analysis is shown
in Figure 8. Pareon offers both command line interface
(CLI) tools and a GUI. The CLI tools are used to automate
the interface with the PHARAON project toolset, while the
GUI allows the developers to inspect the results of the mod-
elling. The vfcc compiler is one of the most important
CLI tools that translates the source code into a generic ex-
ecutable for a target-independent intermediate instruction
set architecture. This code is then run by the Pareon simu-
lator using the necessary test data, input files, environment
variables, etc. to collect various statistics. These can then
be converted into estimates for a particular hardware target
platform using report commands.

Pareon performance analysis is only a few hundred times
slower than native execution, which is much faster than the
usual gate-level back-annotated timing and power modelling
tools in the EDA industry. Due to architecture virtualiza-
tion, Pareon can model configurations that do not exist (yet)
as hardware components, e.g., using more processor cores,
or easily perform design space exploration by changing the
platform or the operating conditions for the simulation step.

4Extensive Pareon documentation is available online at
http://www.vectorfabrics.com/docs/pareon/current/



Figure 6: Excerpt of the data dependency view

Figure 8: Pareon performance analysis toolflow

2.2.2 Performance histograms
Pareon performance analysis can generate timing and invo-
cation count statistic histograms for functions and loops at
run-time. These are important for parallelization decisions,
since the execution parameters of the same code may depend
on the context (e.g., on function arguments). For example,
the loop body in Listing 2 has a variable execution time de-
pending on the function argument. Thus, parallelizing the
loop in the main() function using a round-robin schedul-
ing is inefficient, since the invocation time is not constant.
This would lead to imbalanced load and low speedups with
respect to a dynamic scheduling.

Listing 2: Varying function timing
int foo(int n)
{

int s = 0, i;
for (i = 0; i < n; i++)

s += i * i;
return s;

}

int main()
{

int val[] = { 5, 4, 2, 3, 4, 4, 3, 5 };
int i;
for (i = 0; i < 8; i++)

val[i] = foo(val[i]);
return 0;

}

Pareon histograms can be explored using the tool GUI or
can be exported for integration in other tools, e.g., to com-
plement the call stack-based analysis of ParTools. E.g., Fig-
ure 9 shows the timing histogram for a loop in terms of



Figure 9: Pareon GUI with a timing histogram of a
loop

Figure 10: Pareon GUI with an iteration histogram
of a loop

number of times it has been executed and how much time
took each execution (grouped in time bins). The time bins
can be explored further as shown in Figure 10 for bin #25
to look for specific patterns as follows. If there are multi-
ple spikes with few iterations per invocation, the speedup
is limited by the parallelization overhead of the loops with
few iterations. One spike with many iterations per invo-
cation generally benefits from parallelization. Loops with
non-constant body execution time may benefit most from a
dynamic scheduling to avoid workload imbalanced.

2.3 OpenStream: OpenMP extension for data-
flow and stream parallelism

OpenStream5 is a stream programming language, designed
as an incremental extension to the OpenMP parallel pro-
gramming language [21]. It allows expressing arbitrary task-
level data flow dependence patterns through compiler an-
notations (pragmas) that dynamically generate a streaming
program. The language supports nested task creation, mod-
ular composition, variable and unbounded sets of producer-
s/consumers, and first-class streams. These features allow
translating high-level parallel programming patterns into ef-
ficient data-flow code. OpenStream is provided as a tightly
integrated collection of compilation, code generation, and
concurrent runtime algorithms for task-level parallel pro-
gramming, particularly effective on embedded multicores.

Data-flow execution is essential to reduce energy consump-
tion, one of the primary focuses of the PHARAON project,
by reducing the severity of the memory wall in two com-
plementary ways: (1) thread-level data flow naturally hides

5OpenStream project http://www.di.ens.fr/OpenStream

Figure 11: Speed-up comparison between Open-
Stream (solid) and StarSs (dashed) for block-sparse
matrix LU factorization.

Figure 12: Speed-up comparison OpenStream and
StarSs

latency and (2) decoupled producer-consumer pipelines fa-
vor on-chip communication, bypassing global memory. Fur-
thermore, OpenStream exceeds the performance of state-
of-the-art parallel programming environments like StarSs.
Figure 11 shows comparatively that OpenStream speedups
against sequential execution (solid) exceed those of StarSs
(dashed) for a block-sparse matrix LU factorization on a
dual-socket AMD Opteron Magny-Cours 6164HE machine
with 2×12 cores at 1.7 GHz due to its optimized runtime for
low-overhead synchronization and work-stealing scheduling
that improves on Chase and Lev’s concurrent doubly-ended
queue. It has been ported to x86 and ARM architectures,
the latter being optimized for its weak memory model lever-
aging on recent progress in memory consistency formaliza-
tion as a first proof of the relaxed double-ended queue [17].
Figure 12) shows that the optimized ARM code generally
outperforms the original sequentially consistent Chase–Lev
in a variety of benchmarks, including a selection of standard
fine-grained task-parallel computations.

OpenStream efficiently addresses another critical concurrent
data structure for parallel languages and embedded mul-
tiprocessors, the single-producer, single-consumer (SPSC)
FIFO queues. These may arise from a variety of parallel
design patterns and from the distribution of Kahn process
networks over multiprocessor architectures. With WeakRB
[17] we focus on portability and correctness through concur-
rent implementation in C11 and performance through ad-
vanced caching and batching extensions, relaxed hypotheses
on memory ordering, and leveraging the low-level atomics
in C11 with relaxed memory consistency. We validate its
portability and performance on 3 architectures with diverse



Figure 13: Comparison between MCRB and
WeakRB on Cortex A9

hardware memory models, including 2 embedded platforms.
Figure 13 shows how WeakRB outperforms one of the state
of the art algorithms, MCRB [18], sustaining close-to peak
throughput in core-to-core streaming communications.

2.4 Tool support: interface and automation
ParTools toolset is made of several free software projects
integrated under the control of the IDE [16].

The parallelization flow described in Section 2 starts with
the compilation of the sequential code using the partools-

cc (a gcc-compatible wrapper for the C-to-C compiler that
performs the code instrumentations needed for run-time pro-
filing and tracing) and linked with the run-time tracing li-
brary using the partools-ld wrapper (a GNU linker wrap-
per). It is then run using a data set relevant for the appli-
cation. These steps require minimal changes to make-based
projects and can be fully automated. The profile data col-
lected during the execution of the instrumented program is
saved in the project and is read by the graph viewer when
started by the IDE.

ParTools modular structure allows to easily integrate data
from external tools, for example from the Pareon analysis
tool as shown in the PHARAON parallelization flow in Sec-
tion 2. The energy estimations from the Pareon toolset are
displayed on the DDG to allow the developer to start the
exploration for best parallelization opportunities in terms of
execution speed-up and energy consumption reduction by
focusing on: (1) folds that account for important parts of
program execution, starting by unfolding the main() fold
(see Figure 4) and (2) on important data flows that are
highlighted in the DDG by prominent arrows. The high exe-
cution folds can be good candidates to data-parallelization,
e.g., using OpenMP. At the same time, if these folds are

connected by important data transfers, they may be good
candidates for task-parallelization, e.g., using OpenStream.

Furthermore, the input and output data dependencies for
the folds considered for parallelization can be analyzed us-
ing the detailed data dependency view shown in Figure 6.
This view emphasizes the direction of the dependency (read
or write), what source statements produce and consume it,
where the variables holding them were declared, and if there
are hidden data dependencies (e.g., on global data) that are
not visible at the level in the call stack considered for par-
allelization.

3. EXPERIMENTAL EVALUATION
3.1 Comparative use test
To illustrate the benefits of the PHARAON toolset flow in
this respect, we present the results of a comparative use
test. Its purpose is to show how the use of the toolset
helps relatively inexperienced users to more effectively par-
allelize a previously unknown legacy application. We used
students from a second year course for the electronics en-
gineering master (5th year overall) that covers modelling
languages, such as SystemC, Esterel and Kahn Process net-
works, and the associated synthesis and verification algo-
rithms and tools. The course does not teach specifically
how to parallelize software, the students had only used the
SystemC language to model multiple threads communicat-
ing via signals (i.e., using the Moore synchronous reactive
model). They were also exposed to the concept of Kahn
Process Networks, but had never written code using this
computation model. Hence, the students entered the exper-
iment without any knowledge of writing parallel software.

The test assignment was to analyze and parallelize three
real-life use cases: an MJPEG encoder, a ray tracing algo-
rithm, and a cascade of two FIR filters. The groups were
partitioned in two sets, of which one was required to use
only standard code analysis and development tools (such as
gprof and OpenMP parallelization pragmas) and its results
were used as baseline to assess the effects of using the toolset.
The other set was required to use the PHARAON toolset in
addition to the standard tools of the first set and its results
were evaluated against the results of the first set separately,
for each parallelization candidate program.

The students were requested to spend at most a couple of
days on the parallelization. Only 9 groups out of 11 com-
pleted the assignment and the results of the test are summa-
rized in Figure 14. The X axis lists the test cases as follows:
“mjpeg” is an MJPEG encoding algorithm with an acyclic
data dependency graph at the top level; “FIR” is a couple
of cascaded FIR filters; “raytracer” is a ray tracing applica-
tion with a well known top-level data parallelism. The tools
used for the parallelization are: only standard development
and analysis tools for “no toolset” and both standard and
the PHARAON toolset for “toolset”. The Y axis shows the
time (in hours) needed to complete the various phases of the
parallelization assignment, and the speedup obtained on a 4
core Intel architecture.

The graph indicates: the training time to get acquainted
with the tools; the time to perform the first parallelization
(discover parallelism, analyze the data dependencies, write
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Figure 14: Results of the test of the toolset use for parallelization.

the parallel code using OpenMP pragmas, and debug the
results so that the execution was correct); the time to further
optimize the parallelized code to improve the speedup; and
the final speedup to sequential execution.

The results of the “mjpeg” test show that using the toolset
considerably reduced the parallelization time, but at the cost
of more training time. Additionally, more time invested to
learn the toolset appears to pay off by reducing the paral-
lelization time later. The final speedup results are similar,
with some variability that does not appear to depend on the
use of the toolset. The“FIR”test shows that the group using
the toolset was the only one obtaining any speedup. Learn-
ing how to use the toolset in this case took a long time. Also
for the “raytracer” test, the use of the toolset reduced the
parallelization time at the cost of more training time. The
use of the toolset lead to slightly better speedup than with-
out. However, neither group obtained a functionally correct
parallelization since they missed some of the data dependen-
cies due to the incompleteness of their code analysis. Up to
a point this is unavoidable because of the“optimistic”, trace-
based, manual parallelization approach used. However, this
prompted us to extended the toolset after the experiment
with the capability to insert the data dependencies as com-
ments in the source code as shown in Figure 7.

3.2 Stereo vision use case
Stereo vision applications infer 3D scene geometry from two
images with different viewpoints by calculating a dense dis-
parity or depth map from a pair of images under known cam-
era configuration. The parallelization flow of the PHARAON
toolset described in Section 2 was used on the application
code as presented in Section 2.4.

Unfolding the highest level of abstraction shown in Figure 4
revealed that the fold of function process() call holds al-
most all program execution. Unfolding this one shows that
function process_disp() folds 99.85% of program execu-
tion. Unfolding it reveals visually right away that three folds
hold most of the execution load, as can be seen in the center
of Figure 15: computeMatches() 53.11% (top), computeDis-
parity() 22.61% (bottom), and mean() 17.61% (right). We
also notice that the data dependencies between these are
not very strong suggesting that these folds may be suited
for data-parallelism. In the corresponding source code, we
find out that in fold computeMatches() the function com-

Figure 15: Unfold of folds main() 100% → process()

100% → process_disp() 99.85% for the stereo vi-
sion application shows three parallelization candi-
dates: computeMatches() 53.11% (top), computeDispar-
ity() 22.61% (bottom), and mean() 17.61% (right).



puteMatchingDisparity() is called twice within the body
of the innermost of two nested loops, as shown in Listing 3
(without the leading pragma).

Listing 3: Contents of computeMatches() fold
#pragma omp parallel for
for (u_can=1; u_can<D_can_width; u_can++) {
...
for (v_can=1; v_can<D_can_height; v_can++) {
...
d=computeMatchingDisparity(&pu,&pv, ...
if (d>=0) {
...
computeMatchingDisparity(&pdif,&pv, ...
...

}
}

}

Analyzing the data dependency view, the loop histogram
and the source code we deduce that the two calls to com-

puteMatchingDisparity() are independent and that the it-
erations of the outer loop do not show major unbalances.
Thus, its execution can be sliced and executed in parallel
using the OpenMP pragma shown on top of Listing 3.

A similar analysis shows that the best parallelization for the
other two candidates in Figure 15 (computeDisparity() and
mean()) can be where they are called in process_disp(), as
shown in Listing 4 for the former.

Listing 4: Call of computeDisparity() function
computeDisparity(p_support,tri_1, ...
computeDisparity(p_support,tri_2, ...

Dependency analysis shows that the two calls are indepen-
dent and can be executed in parallel as shown in Listing 5:

Listing 5: Parallelization of computeDisparity() call
#pragma omp parallel sections
{
#pragma omp section
{
computeDisparity(p_support,tri_1, ...

}
#pragma omp section
{
computeDisparity(p_support,tri_2, ...

}
}

The call to mean() is analyzed and parallelized analogously.

The speedup of these parallelizations was measured on the
target architecture composed of two Intel i5 cores running at
1.20GHz (i5-3230M) processing a set of images of 1024×768
pixels. The results are reported in Table 1 and show the
effectiveness of the analysis using the PHARAON toolset to
find good parallelization opportunities.

OpenStream parallelizations followed similar patterns (data-
parallel loop and parallel sections) since no inter-task de-
pendencies with streams looked promising. However, unlike
the OpenMP-based parallelization, OpenStream focused on
lower granularity parts of the code to leverage the efficiency
of its run-time. The results obtained are reported in Table 2.

Table 1: Speedup for the stereo vision application
on a 2 Intel i5 cores architecture using OpenMP.

Serial Parallel Speedup
[s] [s] [times]

3.4 1.9 ≈ 1.79

Table 2: Speedup for the stereo vision application
on an 8 cores Intel architecture using OpenStream.

Serial Parallel Speedup
[s] [s] [times]

4.06 1.16 ≈ 3.5

4. CONCLUSION
This work presents the toolset and techniques developed in
the PHARAON project with particular emphasis on the sup-
port for parallelization of legacy C code for multiprocessors
platforms. These implement a complete flow, from UML
modeling to final implementation, helping to reduce the de-
velopment time, to increase the performance and to reduce
the energy consumption.

The parallelization flow includes several tools. A perfor-
mance estimation tool (Pareon) is used to extract timing
and energy estimations for the code under analysis. The
parallelization tool (ParTools) performs execution profiling
and collects data dependencies program-wide at run-time.
These, along with performance estimations, are shown in an
interactive analysis interface at selectable levels of abstrac-
tion and analysis to help the developer decide on the best
parallelization techniques and opportunities. The support
for streaming-oriented parallelization is provided by Open-
Stream, an extension to the OpenMP standard.

The effectiveness of the parallelization toolset is demon-
strated on two practical cases. One is a use case, involving
unexperienced users, demonstrates the increment in paral-
lelization quality and reduction of parallelization time due to
the use of the toolset. The other demonstrates the use of the
toolset for the parallelization of a stereo vision application
of practical interest. The toolset helps to identify good par-
allelization candidates, at the proper level, and analyze their
data dependencies and execution timings to define the best
parallelization technique to achieve a significant speedup.
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