
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Real Time Distributed Approach to Collision Avoidance for Industrial Manipulators / Fenucci, Alba; Indri, Marina;
Romanelli, F.. - ELETTRONICO. - (2014). (Intervento presentato al convegno 2014 IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA 2014) tenutosi a Barcelona (Spain) nel 16-19 Settembre 2014).

Original

A Real Time Distributed Approach to Collision Avoidance for Industrial Manipulators

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2565550 since:

IEEE - INST ELECTRICAL ELECTRONICS ENGINEERS INC

A Real Time Distributed Approach to Collision Avoidance
for Industrial Manipulators

Alba Fenucci, Marina Indri
Dipartimento di Automatica e Informatica,

Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

alba.fenucci@studenti.polito.it
marina.indri@polito.it

Fabrizio Romanelli
Research & Development group in Motion

and Control of Comau Robotics
Via Rivalta 30, 10095 Grugliasco, Italy

fabrizio.romanelli@comau.com

Abstract

Robot interaction with the surrounding environment is
an important and newsworthy problem in the context of
industrial and service robotics. Collision avoidance gives
the robot the ability to avoid contacts with objects around
it, but most of the industrial controls implementing col-
lision avoidance checks only the robot Tool Center Point
(TCP) over the objects in the cell, without taking into ac-
count the shape of the tool, mounted on the robot flange.
In this paper a novel approach is proposed, based on an
accurate 3D simulation of the robotic cell. A distributed
real time computing approach has been chosen to avoid
any overloading of the robot controller. The simulator and
the client application are implemented in a personal com-
puter, connected via a TCP-IP socket to the robot con-
troller, which hosts and manages the anti-collision poli-
cies, based on a proper speed override control. The real
time effectiveness of the proposed approach has been con-
firmed by experimental tests, carried out for a real indus-
trial setup in two different scenarios.

1. Introduction

Industrial robots give an important contribution to the
competitiveness of modern industries. They are asked to
accomplish their tasks in a workspace containing obsta-
cles as fast as possible or with minimal energy consump-
tion, while preserving a strong autonomy. The capabil-
ity of managing changes in the environment [17] would
represent an important step toward a real autonomy of
the robot behavior. Different technological challenges
somehow limited until now the robots functionality out-
side rigidly structured environments. In the real industrial
context the robot is asked to perform complex tasks while
moving in a crowded environment. In most of the cases
there are both static and dynamic obstacles [18], such as
other robots or other moving parts inside the cell, as de-
picted in Figure 1.

The interested reader can find details about the current

Figure 1: Example of a crowded industrial environment.

state of the art of collision avoidance in industrial contexts
in literature, e.g., in [6], [7], [10], and [21], and about
generic collision avoidance paradigms in [3] and [13]. An
interesting solution towards an actual robot-environment
interaction has been proposed in [16], where hybrid con-
trol techniques for static and dynamic environments have
been developed, but with a limited validity, since only the
Tool Center Point (TCP) of the robot was considered for
collision avoidance, without taking into account its com-
plex geometry and shape. Although this method was ap-
plied on a real-time system, it has the drawback of not
being suitable for complex industrial applications, which
require a control system able to cope with sophisticated
shapes.

In this paper an effective approach to collision avoid-
ance for industrial manipulators is developed, starting
from an accurate 3D model of the entire robotic cell, in
order to formulate a new paradigm able to face the lack of
complex geometry management that characterizes other
approaches. Several techniques from computer graphics
[1], [5], [11], [12], and [19] have been analyzed to com-
pute the minimum distance between 3D objects. In par-
ticular two 3D creation/modeling tools seemed to be the
most promising ones, Blender [8] and V-REP by Cop-
pelia Robotics [9]. The V-REP platform was finally cho-
sen for different reasons, as discussed in the next sec-

tion, and especially because it includes a versatile Mesh-
Mesh distance calculator module. A distributed real time
computing approach (see e.g., [20], [22], and [23]) has
been chosen to avoid any overloading of the robot con-
troller, implementing the simulator and the client appli-
cation in a personal computer, connected via a TCP-IP
socket to the robot controller, which hosts and manages
the anti-collision policies. The proposed procedure, which
is mainly based on proper policies of speed override con-
trol, can be applied to different manipulators and/or to var-
ious configurations of the robotic cell, possibly including
more robots simultaneously working inside it. In partic-
ular, two scenarios have been considered for the experi-
mental tests: a redundant 7-dof robot prototype moving
in presence of a static obstacle that must be bypassed,
and two Comau 6-dof industrial manipulators (a SMART5
SIX and a SMART NS12) cooperatively working in a cell.

The paper is organized as follows. An overview of the
proposed collision avoidance approach is given in Section
2, while Section 3 is devoted to its software architecture,
including the Virtual 3D model, the client application and
the robot control unit, hosting the speed override policies
for collision avoidance. The effectiveness of the proposed
approach is experimentally tested in Section 4 in the two
considered scenarios. Section 5 draws some final conclu-
sions and highlights the potentialities of the proposed plat-
form for future developments.

2. Overview of the collision avoidance ap-
proach

The goal of the proposed approach is to avoid any colli-
sion between a robot and other (static or dynamic) objects
in the cell, by adequately modifying the robot speed over-
ride on the basis of the minimum distance between any
part of the robot and any element in the cell. A key point
is given by the capability of correctly and efficiently de-
termining such a minimum distance. A possible, simpli-
fied solution would consist in modeling the robot, the tool,
and the items in the cell by composing simple solids, like
spheres, cylinders and boxes. But in this way all the mod-
eled objects would be bigger than the real corresponding
ones, and moreover the results thus obtained would be in-
accurate, because the solids could not perfectly model all
the objects in the scene. The first element of the proposed
approach is then given by an accurate virtual replica of
the status of the cell, developed in the V-REP simulator,
where distances between complex objects in the robotic
cell can be correctly computed. V-REP [9], which is gen-
erally used for factory automation simulations, allows an
accurate modeling of the robot and of the entire cell, in-
cluding objects of different, complex shapes. It has been
chosen for various reasons: it is supported from several
programming languages (C/C++, Python, Java, Matlab),
it does not require strong computational resources for a
complex simulation, it can simulate more robots simul-
taneously, and it is an open source software with free li-
cense for educational purposes, but most of all it includes

a Mesh-Mesh distance calculator module that allows fast
minimum distance calculations between any shape (con-
vex, concave, open, closed, etc.) in the scene.

The architecture of the proposed approach includes,
besides the 3D simulator, a client application module and
the robot controller (Figure 2).

Figure 2: Hardware/software architecture.

The client application is the module that manages the
data exchange between the simulator and the unit con-
troller, so to update the virtual robot configuration coher-
ently with the joint position values acquired from the real
robot. The robot controller is used for motion planning
and control of the robot, the acquisition in absolute refer-
ence of the axes positions, and the generation of the ref-
erences to the drive modules. The controller implements,
too, the speed override control policies for collision avoid-
ance. Two different anti-collision policies have been im-
plemented in order to define the so called warning zone,
which surrounds the robot and is used to detect the risk of
a possible collision, and consequently apply the proposed
speed override control laws. As discussed in Section 3.3,
the width of such a warning zone can be constant or de-
pending on the characteristics of the robot motion.

One of the most peculiar and innovative aspect of the
proposed paradigm is its distributed processing approach.
The simulator and the client application are not imple-
mented in the robot controller, but they run in a sepa-
rate, external processor, thus avoiding the centralization
of all the computational burden into a single entity. For
this reason all the calculations relative to the evaluation
of the minimum distance from the elements in the cell
are executed by the personal computer (having an Intel
i7 2.5 GHz processor, a RAM memory of 4 GB and a
500 GB HD), whereas the robot motion and control are
managed by the robot controller. In this way the greater
computational power of the external PC can be fully ex-
ploited, avoiding any risk of overloading the robot con-
troller. Thanks to its distributed structure, the proposed
approach can be applied to manage cells including mul-
tiple robots, working simultaneously, independently or in
collaboration. In addition, the client application allows
the user to include a different robot inside the cell quite
easily. The flexibility in making the changes is made pos-
sible thanks to the previous development of the 3D models
of the possible, various robots. The physical connection
among the controller and the application is via TCP-IP
socket, as well as the connection between the client ap-
plication and the simulator. At this stage of development

the software client application and the simulator run in a
Windows-based not embedded operating system, obtain-
ing good results, as illustrated in the next sections. The
development of the client application and of the simula-
tor in a Linux-based system has been developed in a non-
real-time context, and a full development for the real-time
context is in progress.

3. Software architecture

In this section the main software components of the ar-
chitecture sketched in Figure 2 are detailed: the virtual 3D
simulator, the client application, the robot controller unit
and the communication protocol. The avoidance collision
policies, implemented in the controller, are also described.

3.1. Virtual 3D simulator
The main module of the architecture is the simulator,

which allows an accurate simulation of the real cell and
evaluates at each time instant the minimum distance value
between the robot and any other item in the cell. The sim-
ulator has a distributed structure, so that each model can
be controlled through an embedded script or an API called
by a remote client. The simulated scene is made-up of
different scripts written in LUA: the base script task is de-
voted to execute the client application, the other scripts
are related to the models of the items introduced into the
scene. Each model has its own script that allows it to ex-
change data with the client application. After the creation
of the cell and the beginning of the simulation, the sim-
ulator receives the joint position values of each robot as
inputs (more than one robot could be present in the cell);
while the simulation goes on, the joint values are continu-
ously updated and the virtual robots consequently update
their configuration. Using its devoted Mesh-Mesh mod-
ule, the simulator computes the minimum distance be-
tween each robot in the cell and any element inside it, so
to determine the overall distance minimum value (i.e., for
which part of which robot in the cell a collision would
be going to happen). The Cartesian position of the robot
point corresponding to the minimum distance situation is
returned by the simulator and transmitted to the client ap-
plication. Thanks to this information, it is possible to
know which link of the robot is involved in the upcoming
collision, and hence properly modify its speed override, as
discussed in Section 3.3.

3.2. Client application
The client application is written in C++ using the APIs

from V-REP; this is the core of the software architec-
ture and it is responsible for the management of the in-
formation exchanged between the Virtual 3D simulator
and the C5G controller. In order to accomplish this task,
the C++ application is provided with two separate clients:
the first one manages the connection with the C5G con-
troller through TCP-IP sockets, the second one establishes
a socket communication with V-REP, so to reduce delay
and network load to a great extent. The client application

is also demanded to find which robot link corresponds to
the minimum distance measured and to acquire the veloc-
ity signal of this link for all the robots in the cell. The
results of all such computations are sent to the controller.

3.3. Robot control unit and speed override control
In this approach, the controller has two main tasks: (i)

to supply to the simulator the positions of all the joints
of each robot in the cell, and (ii) to take decisions about
possible collisions.

The exchange of messages between the controller and
the application is accomplished through a protocol based
on bidirectional communication, where a client sends a
message and the server always answers to that message.
The exchanged messages, which are treated as ASCII
strings, are:

• the joint position request of all the controlled robots;

• for each robot the minimum distance measured from
an external object, the corresponding link and its ve-
locity.

The proposed anti-collision policies are based on robot
speed override control laws to be applied when the risk
of a collision is detected, i.e., when the robot minimum
distance d from any obstacle is smaller than a safe thresh-
old value dmax. Two different anti-collision policies have
been formulated, both based on the definition of a proper
warning zone surrounding the robot, characterized by two
limits: the upper bound dmax and the lower bound dmin.
The basic idea of the policies is that if dmin < d < dmax,
the velocity must be adequately reduced, because other-
wise a collision is probably going to happen, whereas if
d < dmin the robot must be stopped as soon as possible.
In the first proposed anti-collision policy the width of the
warning zone is constant, i.e., dmax and dmin are con-
stant, and the speed override is uniformly changed inside
it according to the following equation:

vok =


vok−1 ·

d− dmin

dmax − dmin
if dmin < d < dmax

vok−1 if d ≥ dmax

0 if d ≤ dmin

(1)
where vok is the speed override of the robot at the k-
th time instant. If the distance is smaller than the lower
bound of the warning zone, the robot immediately changes
its state to the HOLD mode, in which its motion is stopped
as soon as possible. It must be underlined that only in
case of approaching an obstacle a speed change is applied,
by checking the link velocity considered in the measure-
ment of the distance. If the robot is moving away from
the obstacle, its speed is multiplied by a constant, to avoid
any unnecessary slow down. dmax is chosen based on
the stopping distance of the robot, considering its highest
speed and acceleration; on the other hand, dmin represents
a cushion distance in millimeters from the collision area.

A modified version of the speed override control has
been proposed considering the width of the warning zone

as a function of the characteristics of the motion of link
i involved in the collision risk; in particular in this sec-
ond policy the upper bound dmax varies according to the
following equation:

dmax =

{ vi
2ai

+
viai
2ji

if dmax ≥ d̄

d̄ if dmax < d̄
(2)

where vi is the velocity of the considered link, ai is its
acceleration, ji is its jerk, and d̄ is the minimum value al-
lowed for dmax for safety reasons (in order to guarantee
a proper stopping space in any case). The speed over-
ride reduction has still a linear progression as in (1), but
the width of the warning zone varies, and in particular a
higher reduction of the robot velocity is imposed, when
the link involved in the risk of a collision is moving very
quickly. In this way, as the link velocity increases, the
warning zone grows in order to take into account that a
wider stopping space is needed.

3.4. Communication protocol
Three main phases can be distinguished into the com-

munication flow among the architecture components pre-
viously described (as sketched in Figure 3): (i) initializa-
tion, (ii) collision avoidance management, and (iii) termi-
nation.

In the first phase, after the creation of the virtual cell
and the simulation start, the main script launches the client
application executable. The first task of the C++ applica-
tion is then the connection to the two servers (i.e., Virtual
3D and C5G Controller).

The second phase is relative to the key point of the
whole process, i.e., the collision avoidance procedure. In
this phase the client application interrogates the controller
about the joint position values of all the robots in the cell;
after receiving these data, the application accordingly up-
dates the virtual robots configuration. The Virtual 3D sim-
ulator sends out to the client application the minimum dis-
tance found between each robot and any element in the en-
vironment, and the data relative to the corresponding link.
The communication between the Virtual 3D simulator and
the client application is based on creation and deletion of
signals, using a persistent global buffer. In order to ensure
the synchronicity between the application and the simu-
lator, and the update of the data, the simulator looks for
the minimum distance and sends out a new message only
when all the other signals with the same name are not ac-
tive. On the other hand, the application deletes the signal
when it receives a new joint position from the controller.
The signals are created according to the number of robots
instantiated on the scene to be managed: this task is per-
formed by each robot model script involved in the scene.
The application finally sends to the robot controller the
minimum distance value, the link number and its veloc-
ity for the application of the collision avoidance policies
described in Section 3.3.

The last phase of the communication flow occurs when
the simulation ends: the client application closes all the

Figure 3: Communication flows.

communications to the servers and terminates its execu-
tion.

4. Experimental tests

The effectiveness of the proposed approach has been
experimentally validated in two different scenarios in the
RoboLAB, the new joint Comau-Politecnico di Torino
industrial robotics laboratory. The experimental setup,
whose structure is sketched in Figure 4, includes differ-
ent manipulators in the two scenarios, the Comau C5G
Controller and a personal computer, hosting the V-REP
simulator and the client application. Both scenarios re-
produce examples of real welding robot cells: in the first
one a redundant 7-dof robot prototype is moving in pres-
ence of a static obstacle (i.e., a panel), whereas in the sec-
ond one two 6-dof industrial manipulators have to move
very close to each other, in presence of a static obstacle,
too. In both cases the cell has been faithfully reproduced
in the virtual 3D simulator, perfectly modeling each in-
volved robots and the grating cell protection. Every ele-
ment in the scene is placed in the exact position with re-
spect to the real cell, so to have the measured distances in
the simulated environment as reliable as possible.

Figure 4: Experimental setup components.

The second element of the experimental setup is the
COMAU C5G robot controller (Figure 5). The C5G Con-
trol Unit features state-of-the-art processors to control the
trajectory and the periphery, the application software and
the user’s interface, in order to ensure the highest level of

performance of both areas. The processors work through a
real time VxWorks operating system. The processor con-
trolling the movements carries out in particular the fol-
lowing functions: (i) application of servo-adaptive algo-
rithms, with dynamic pattern calculated in real time for
all the links, based on the load, position speed and inertia
conditions; (ii) acceleration/deceleration modulation for
joint-like movements, to optimize the robot motor perfor-
mances in terms of speed; (iii) linear interpolation featur-
ing fly-path total programmability and constant speed; (iv)
circular interpolation featuring different orientation evolu-
tion possibilities; (v) possibility to control up to 16 axes:
(vi) management of interference regions, to control robot
TCP against predefined forbidden or monitored zones.

Figure 5: The Comau C5G controller unit.

The last element of the setup is the personal computer,
which manages the execution of the virtual 3D simulation
and the client application. The control unit is connected
with the robots inside the cell (allowing in particular data
acquisition from the joint encoders of each robot), and
with the personal computer via Ethernet TCP/IP, for the
exchange of messages about joint positions and minimum
distance values of the robots in the cell. The robots in-
volved in the experimental tests have been programmed
using the Comau PDL2 language, as in any standard in-
dustrial application.

The proposed anti-collision policies proposed in Sec-
tion 3.3 (i.e., with the width of the warning zone constant
or variable) have been applied to the considered scenarios,
imposing the following values to the warning zone param-
eters:

• dmin = 0.02 m and dmax = 0.45 m in the first anti-
collision policy (1)

• d̄ = 0.3 m as minimum value allowed for dmax in
(2) in the second anti-collision policy.

A preliminary test was performed, setting the robot
maximum speed override, to evaluate the communication
and computational times required for each obstacle avoid-
ance cycle, i.e., the time interval between the dispatch of
the robot joint request from the client application and the
acknowledgement of the minimum distance information
sent back by the controller. This cycle (sketched in Figure
6) can be divided into three main phases:

• communication/transmission between the client ap-
plication and the controller (robot position update)

• computation of the collision avoidance algorithms

• communication/transmission between the client ap-
plication and the controller (robot override modifica-
tion).

Figure 6: Communication and computational times.

The first phase lasts 16 ms on average, considering the
time interval between the robot joint request and the robot
joint response. The computation phase lasts about 13-14
ms on average, including also the exchange of messages
between the client application and the virtual 3D simula-
tor. The last phase of the cycle, i.e., the time interval be-
tween the dispatch of minimum distance and link velocity
to the controller and the client application receiving back
the acknowledgement from the controller, lasts 16 ms on
average.

The tests performed in each scenario are detailed in the
next subsections, where the achieved results are reported
and discussed.

4.1 First scenario: presence of a static obstacle
In the first scenario a redundant 7-dof robot prototype,

with a maximum load of 7 kg, has to move near/around a
static obstacle, constituted by a panel of size 1.47 × 1.87
m, located at a distance of 0.45 m from the robot base.
Figure 7 shows the real cell and the simulated one in the
virtual 3D environment in this scenario.

Figure 7: Scenario with the 7-dof manipulator and a static
obstacle.

The complete video of the test (“Collision avoidance
approach for industrial manipulators: tests with a 7-
dof redundant robot and a static obstacle”) is available

in the “Video” section (“Industrial robotics” subsection)
of the website of the Robotics Research Group (RRG)
of Politecnico di Torino (http://www.polito.it/
labrob). Figure 8(a) reports the time-history of the min-
imum distance detected between the robot and the panel
during the execution of the assigned motion, whereas Fig-
ure 8(b) shows the corresponding time-history of the robot
speed override. Comparing the figures, it is possible to
note the saturation of the speed override to 100% (i.e.,
no reduction is applied to the planned velocity), when the
minimum distance detected is greater than the imposed
value of dmax (0.45 m).

(a) Minimum distance robot-obstacle detected

(b) Robot speed override applied

Figure 8: Tests in the first scenario: experimental results
with the first anti-collision policy.

When the second anti-collision policy is applied (Fig-
ures 9(a) and (b)), if the robot link speed and acceleration
are high, the warning zone increases its dimensions ac-
cording to (2) up to the limit value dmax. When the warn-
ing zone reaches this value, the algorithm acts exactly as
in the first anti-collision policy. If the minimum distance
from the obstacle falls inside the warning zone, the robot
speed override is decreased according to (1), as depicted
in Figure 9(b). Comparing Figures 8 and 9, the different
behavior of the two anti-collision policies can be appreci-
ated: in the last part of the robot motion for time t > 11
s, the second policy seems to be more conservative, since
the speed override value is sometimes smaller than 100%
in Figure 9(b), but actually during the first part of the mo-
tion, when the robot is closer to the obstacle, a smaller
velocity reduction is allowed by this policy (compare the
speed override values in Figures 8(b) and 9(b) in the time

(a) Minimum distance robot-obstacle (blue) and variation of
the upper limit dmax of the warning zone (magenta).

(b) Robot speed override applied

Figure 9: Tests in the first scenario: experimental results
with the second anti-collision policy.

interval between 1 and 5 s).

4.2 Second scenario: a multi-arm cell
The second scenario is relative to a multi-arm cell with

two Comau 6-dof industrial manipulators, a SMART5
SIX and a SMART5 NS12, with a maximum load at wrist
of 6 and 12 kg, respectively, and high repeatability (0.05
mm). In the carried out tests they have to move very close
to each other and near a static obstacle, constituted by a
robot wrist, having size 0.25 × 0.39 × 1.5 m, and located
at 0.64 m from the SMART NS12 base and at 0.41 m from
the SMART SIX base. The real cell and the simulated one
in the virtual 3D environment are shown in Figure 10.

Figure 10: Scenario with the multi-arm cell including two
robots and a static obstacle.

In this scenario, in which multiple risks of collision are
present (between each robot and the obstacle, and between
the robots themselves), the second, more effective anti-
collision policy has been directly applied. The complete
video of the the test (“Collision avoidance approach for
industrial manipulators: tests in a multi-arm cell with two
robots and a static obstacle”) is available also in this case
in the RRG website. Figures 11(a) and (b) show the time-
history of the minimum distance detected between each
robot and any obstacle in the cell, where the closest obsta-
cle during the motion can be given by the static element in
the cell (i.e., the robot wrist) as well as the other manip-
ulator. The corresponding time-history of the upper limit
dmax of the warning zone of each robot is also reported.

(a) Minimum distance Robot 1-obstacles (blue) and variation
of the upper limit dmax of its warning zone (magenta).

(b) Minimum distance Robot 2-obstacles (blue) and variation
of the upper limit dmax of its warning zone (magenta).

Figure 11: Tests in the second scenario: experimental re-
sults with the second anti-collision policy.

In the time interval between 13 and 25 s the trends of
the minimum distance detected for the two robots are sim-
ilar, because they are moving very close to each other,
so that the minimum distance condition is referred to the
other robot. On the other hand, the two warning zones
have different width in the same interval, because the
value of dmax depends on the motion characteristics (ve-
locity, acceleration, jerk) of the specific link involved in
the minimum distance condition.

The efficiency of the applied policy is clearly shown
in Figures 12(a) and (b), where the behavior of the speed
override applied to each robot is reported: a rapid over-
ride increase is applied whenever possible to let each robot

move fast away from the warning zone.

(a) Speed override applied to Robot 1

(b) Speed override applied to Robot 2

Figure 12: Tests in the second scenario: experimental re-
sults with the second anti-collision policy.

5. Conclusions and future works

A fast and distributed method for collision avoidance
between robots and obstacles has been proposed in this
paper. The core of the approach is a new strategy to eval-
uate the distance between the robot and any obstacle in
its workspace, based on the accurate simulation of the
real cell. The computed distance is used to move the
robot at a reduced speed in case of an imminent colli-
sion. The reported results of the carried out experimental
tests have confirmed the real-time effectiveness and good
performances of the method. The proposed approach is
specifically oriented to the industrial application. In fact,
after the construction of the virtual replica of the cell (us-
ing available libraries of the robot models previously de-
veloped), the proposed paradigm can be applied achieving
excellent results in the manual programming mode, which
is used to execute movements requiring closeness to the
robot (e.g., point teaching, program verification or trou-
bleshooting operations). The approach makes such op-
erations safer, as it allows to prevent collisions between
the robot and the obstacles even if the movements are not
pre-programmed as in the manual mode, in which the ma-
nipulator can be operated only via the teach pendant.

Future works are devoted to the integration of the pro-
posed approach into the Comau C5G Open Controller [2].
This innovative control architecture allows the easy and

safe integration of an industrial robot with an external
common personal computer to enable access to the robot
control and interaction at different levels in the machine
control. The C5G Open Controller is the basis platform
for the development of prototypes and to test the devel-
oped applications on a fast real-time system. Moreover
the C5G Open architecture is particularly suited for host-
ing the ROS module in order to open the control also to
the ROS compliant sensors, drivers and other robotic plat-
forms as reported in [14] and [15], as shown in Figure 13.

Figure 13: The C5G Open Controller platform.

The very fast communication allowed (up to 400 µs)
thanks to the openPOWERLINK real-time communica-
tion protocol and the real-time feature of the operating
system (Linux real-time preemptive patch), makes such
a controller an ideal platform to develop real-time appli-
cations, as required for the full industrial implementation
of the proposed anti-collision approach.

References

[1] T. Akenine-Moller, E. Haines, and N. Hoffman. Real-Time
Rendering. A K Peters, Ltd, 2008.

[2] G. Antonelli, S. Chiaverini, V. Perna, and F. Romanelli.
A modular and task-oriented architecture for open con-
trol system: the evolution of C5G open towards high leve
programming. In IEEE 2010 Int. Conf. on Robotics and
Automation, Anchorage, Alaska, May 3 2010. Workshop
on Innovative Robot Control Architectures for Demanding
(Research) Applications.

[3] A. A. Ata and T. R. Myo. Collision-free trajectory plan-
ning for manipulators using generalized pattern search.
International Journal of Simulation Modelling (IJSIMM),
5:145–154, December 2006.

[4] J. Baumgartner and S. Schoegger. POWERLINK and real-
time linux: A perfect match for highest performance in
real applications. Twelfth Real-Time Linux Workshop, Oc-
tober 25-27 2010.

[5] W. J. Bouma and G. Vanecek. Collision detection and
analysis in a physically based simulation. Technical Re-
port 91-055, Computer Science Technical Reports, Purdue
University, USA, 1991.

[6] R. A. Brooks. Planning collision free motions for pick and
place operations. Massachusetts Institute of Technology -
Artificial Intelligence Laboratory, May 1983.

[7] A. De Luca and F. Flacco. Integrated control for pHRI:
Collision avoidance, detection, reaction and collaboration.
In The Fourth IEEE RAS/EMBS, Roma, Italy, June 24-27
2012. International Conference on Biomedical Robotics
and Biomechatronics.

[8] G. C. Fisher. Blender 3D Basics. Packt publishing, June
2012.

[9] M. Freese, S. Singh, F. Ozaki, and N. Matsuhira. Virtual
robot experimentation platform v-rep: A versatile 3d robot
simulator. In Simulation, Modeling, and Programming for
Autonomous Robots, pages 51–62, Darmstadt, Germany,
November 15-18 2010. Second International Conference
SIMPAR 2010.

[10] M. Gerdts. Path planning and collision avoidance for
robots. Numerical algebra, Control and Optimization,
2(3):437–463, September 2012.

[11] E. G. Gilbert, D. W. Johnson, and S. S. Keerth. A
fast procedure for computing the distance between com-
plex objects in three-dimensional space. IEEE Journal of
Robotics and Automation, 4(2), April 1988.

[12] D. Knott and D. K. Pai. Collision and interference detec-
tion in real-time using graphics hardware. Proceedings of
Graphics Interface 2003, pages 73–80, May 2003.

[13] I. Memon, F. A. Mangi, and D. A. Jamro. Collision avoid-
ance of intelligent service robot for industrial security sys-
tem. IJCSI International Journal of Computer Science Is-
sues, 10(3), March 2013.

[14] M. Quigley, B. Gerkey, K. Conley, K. Faust, T. Foote,
J. Leibs, E. Berger, R. Wheeler, and A. Ng. ROS: an
open-source robot operating system. In IEEE Int. Conf.
on Robotics and Automation, volume 3, Kobe, Japan, May
12-17 2009. ICRA Workshop on open source software.

[15] B. Rhoden, K. Klues, A. Waterman, D. Zhu, and
E. Brewer. ROS: A scalable operating system for par-
allel applications on many-core architectures. Research
supported by Microsoft Award #024263 and Intel Award
#024894.

[16] F. Romanelli. Hybrid control techniques for static and
dynamic environments: a step towards robot-environment
interaction. In Robot Manipulators New Achievements.
Aleksandar Lazinica and Hiroyuki Kawai (Ed.), InTech,
2010.

[17] F. Romanelli. Advanced methods for robot-environment
interaction towards an industrial robot aware of its volume.
Journal of Robotics, 2011:12, 2011.

[18] F. Romanelli and F. Tampalini. A control algorithm for the
management of multiple dynamical geometrical areas for
industrial manipulators. In Proc. of the RAAD 2008. 17th
Int. Workshop in Alpe-Adria-Danube Region, September
15-17 2008.

[19] J. O. Rourke. Computational Geometry in C. Cambridge
University Press, October 13 1998.

[20] D. C. Schmidt, A. Gokhale, R. E. Schantz, and J. P. Loy-
all. Middleware r&d challenges for distributed real-time
and embedded systems. SIGBED Rev., pages 6–12, April
2004.

[21] C. A. Shaffer and G. M. Herb. A real-time robot arm col-
lision avoidance system. IEEE Transactions on Robotics
and Automation, 8(2), April 1992.

[22] J. A. Stankovic. Real-time and embedded systems. ACM
Computing Surveys, 28(1), March 1996.

[23] O. Wulf, J. Kiszka, and B. Wagner. A compact software
framework for distributed real-time computing. Fifth Real-
Time Linux Workshop, November 09-11 2003.

