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Summary   

This thesis is focused on the structural behaviour of high-rise buildings subjected 
to transversal loads expressed in terms of shears and torsional moments. As 
horizontal reinforcement, the resistant skeleton of the construction can be 
composed by different vertical bracings, such as shear walls, braced frames and 
thin-walled open section profiles, having constant or variable geometrical 
properties along the height. In this way, most of the traditional structural schemes 
can be modelled, from moment resisting frames up to outrigger and tubular 
systems. In particular, an entire chapter is addressed to the case of thin-walled 
open section shear walls which are defined by a coupled flexural-torsional 
behaviour, as described by Vlasov’s theory of the sectorial areas. 
 From the analytical point of view, the three-dimensional formulation proposed 
by Al. Carpinteri and An. Carpinteri (1985) is considered and extended in order to 
perform dynamic analyses and encompass innovative structural solutions which 
can twist and taper from the bottom to the top of the building. 
 Such approach is based on the hypothesis of in-plane infinitely rigid floors 
which assure the connection between the vertical bracings and, consequently, 
reduce the number of degrees of freedom being only three for each level. By 
means of it, relevant design information such as the floor displacements, the 
external load distribution between the structural components, the internal actions, 
the free vibrations as well as the mode shapes can be quickly obtained. 
 The clearness and the conciseness of the matrix formulation allow to devise a 
simple computer program which, starting from basic information as the building 
geometry, the number and type of vertical stiffening, the material properties and 
the intensity of the external forces, provides essential results for preliminary 
designs. 
 



 



IX 

Sommario 

Questa tesi analizza il comportamento strutturale di edifici di notevole altezza 
sottoposti ad azioni trasversali, quali azioni taglianti e momenti torcenti. Il 
corrispondente rinforzo strutturale può essere rappresentato da diversi sistemi di 
controventamento, come le pareti di taglio, i telai controventati ed i profili a 
sezione sottile aperta, aventi proprietà geometriche costanti o variabili lungo 
l’altezza dell’edificio. In questo modo, può essere presa in considerazione la 
maggior parte degli schemi tradizionali impiegati in questo ambito: dai telai 
momento-resistenti fino agli schemi a trave-cappello e quelli tubolari. In 
particolare, viene dedicato un intero capitolo al caso delle travi a sezione sottile 
aperta, caratterizzate da un comportamento misto che associa le deformazioni 
flessionali a quelle torsionali, così come descritto dalla teoria delle aree settoriali o 
teoria di Vlasov. 
 Dal punto di vista analitico, viene ripresa ed ampliata la formulazione 
tridimensionale proposta da Al. Carpinteri e An. Carpinteri (1985) per poter 
svolgere analisi dinamiche ed includere soluzioni strutturali innovative che 
ruotano e si rastremano dalla base fino alla sommità della costruzione. 
 Tale metodo è basato sull’ipotesi di piani infinitamente rigidi che assicurano il 
mutuo collegamento fra i rinforzi verticali e riducono il numero di gradi di libertà 
ai soli spostamenti di piano. Inoltre, dalla sua applicazione, possono essere 
ricavate informazioni progettuali di grande interesse, come la deformata, la 
ripartizione del carico esterno fra le singole componenti del sistema resistente, le 
azioni interne, le frequenze proprie e le deformate modali. 
 La chiarezza e la concisione della formulazione matriciale facilitano 
l’ideazione di un semplice programma di calcolo che, a partire da informazioni 
basilari quali la geometria della costruzione, il numero ed il tipo di controventi, le 
proprietà del materiale e l’intensità delle azioni, fornisce risultati indispensabili per 
progettazioni preliminari. 
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 1 

Chapter 1 

Horizontal Stiffening in the Design of Tall 
Buildings 

1.1 Introduction 

Tall buildings have always been the symbol of supremacy of the nations engaged 
in their construction. Since its first appearance, this architectural typology has met 
approval in the public eye. Especially from a scientific point of view, it is become 
an appealing challenge for the designers focused on the interpretation of its 
structural behaviour. 
 Originally, high-rise structures were an American prerogative; nowadays they 
represent a worldwide architectural phenomenon, even for those countries 
regarded as less advanced, which however are demonstrating a fast industrial 
growth. As a matter of fact, most of the last super-tall buildings are located far 
from the United States: China, Korea, India and Malaysia, characterised by a 
considerable economic capability and technological progress, represent an evident 
proof of this current trend. Nevertheless, even if the geographical location of the 
last constructions is changed, the human attempt of overcoming the limits already 
achieved is still the main reason which keeps alive the interest in this field. 
Thereby, further goals in terms of achievable heights and unconventional shapes 
are expected in the next future. 
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Figure 1.1 – Monadnock Building in Chicago (1981, USA).  

 
 Historically, the appearance of tall buildings was due to the Industrial 
Revolution, at the end of the nineteenth century. In the construction field the 
technical evolution permitted to have available advanced materials and equipment 
which were indispensable for the realization of tall structures. From this point of 
view, the invention of the lift facilitated the evolution of these buildings as well as, 
in this period, a decisive transition was the use of those materials considered, until 
then, far from the scope of the constructors, being absent their corresponding 
production technology. In particular, the presence of steel in the structural skeleton 
involved a series of benefits, such as an increased construction speed, the 
availability of various shapes, the possible reuse, the high ratio between resistance 
and weight and a reduce degree of uncertainty about the material properties, which 
contributed to change the conceptual design of the constructions. 
 Initially the early reason of growing in height was commercial, having to 
compensate for the lack of space and natural light in a urban densely populated 
land [111]. 
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Figure 1.2– Braced frame structures. 

 
 However the higher the building, the more sensitive it became to lateral actions 
coming from wind and earthquakes. Without lateral stiffeners, the dimensions of 
the structural elements increased so that they couldn’t be longer a satisfactory 
solution from an architectural point of view. In addition, it constituted a limit on 
the evolution in height of these revolutionary constructions. The 17-storey (64m) 
Monadnock Building in Chicago, being an impressive structure in which the 
resistant mechanism relies on heavy masonry walls, is even now the symbol of this 
issue [112]. 
 For this purpose, the conventional load-bearing systems were substituted by 
new technologies which reduced the dimensions of the structural members and 
guaranteed the global stability of the building. The first result was a steel frame 
structure, which exploited the resistant properties of the material to reach an 
adequate stiffness, without compromising the architectural demands. This 
typology was followed by other systems designed to absorb and distribute the load 
according to their own stiffness. At this stage moment resisting frames, braced 
frames, shear walls and interactive frame ˗ shear wall combinations appeared [34, 
58]. 

1.2 Structural Behaviour of Frames and Shear Walls 

The moment resisting frames are constituted by beams and columns devised to 
absorb the loads coming from the slab. The latter is usually outlined as an 
horizontal rigid diaphragm which transfers vertical and lateral loads to the 
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structural skeleton. In the absence of specific bracings, all the horizontal stiffness 
is based on the flexural and shear resistance of the network of beams and columns, 
being the joints designed as perfectly rigid. 
 The choice of this typology is due to the fact that the horizontal forces are not 
predominant if compared to the vertical ones. Otherwise, this entails an excessive 
increase of the dimensions of the structural component. In addition, pure rigid 
frames become not efficient for building higher than about thirty storeys, because 
the corresponding shear deformation determines too large drifts. To avoid these 
effects, further bracings, such as diagonal members between consecutive floors, 
are added to the previous scheme. In this way the flexural moment acting in the 
beams and columns decreases and the shear is absorbed as axial load by the 
diagonal elements so that the global behaviour becomes similar to that of a 
cantilever system. This is the case of braced frames in which the diagonal 
reinforcements contribute to the horizontal resistance by means of their axial 
stiffness (Fig. 1.2).  
 These steel configurations symbolise the turning point in the height race which 
started in the early twentieth century. The first structure showing a steel skeleton 
was the Park Row Building in New York, which reached 30 storeys in 1899, but 
the most popular among all was the Empire State Building, with its 102 storeys 
above ground in 1931.  
 Even though the heights of the buildings were already outstanding, due to the 
lack of innovative technologies and advanced analysis techniques, such reinforced 
solutions were realised through an excessive use of structural materials 
determining anyway over-designed constructions. Later on, a different approach 
was undertaken: the vertical behaviour was supposed to be separated from the 
horizontal one and specific structural elements able to absorb the entire horizontal 
load were devised: this was the case of the shear walls. The latter are cantilevers 
developing from the ground to the top of the building and, usually, characterised 
by thin-walled open sections which also allow to house stairwells or lift shafts. 
These structures are also known as core walls and can be specifically designed 
with particular cross sections or coupled with other walls to reproduce a resultant 
system with a final stiffness exceeding the sum of the individual components. 
 The previous schemes can be adopted together to increase the global horizontal 
stiffness of the building and to reduce the lateral sway, which represents one of the 
most restrictive conditions coming from the legislation for this type of 
construction. Thus shear wall – frame interaction system became a very popular 
scheme, which captured the attention of the scientific community in 1970s. 
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Figure 1.3 – Floor plan showing the location of some shear walls. 

 

 

 (a) (b) 
Figure 1.4 – Model of an interactive frame ˗ shear wall combination: natural deformations 
of the components (a) and effect of their combination (b). 

 
 The effectiveness of this solution is due to the different deformation which 
characterises the frame with respect to the shear wall. In presence of horizontal 
actions, the former is mainly subjected to shear deformations, whereas the latter to 
flexural ones. In this way, in the bottom part of the building, the shear wall 
sustains the frame, whereas, in the top part, the frame restrains the shear wall, thus 
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reducing the global deformation of the resistant system (Fig. 1.4). This 
sophisticated configuration can be applied for building up to 70 storeys in height. 
 From a structural point of view, in order to design each component of the 
scheme, it is necessary to identify the amount of external load which is carried by 
each single element. To this purpose, taking into account the model of Fig. 1.4, a 
simplified approach hypothesizes that the connections between the members are 
defined by rigid trusses, so that the congruence of the horizontal displacements at 
each floor is satisfied. If F represents the external load vector and X the redundant 
unknowns defining the forces transmitted through the trusses, due to compatibility 
conditions the following expression can be written: 

 ���F − X� = �	X (1.1) 

where C1 and C2 are the compliance matrices of the shear wall and frame 
respectively. 
 Defining C as the sum of the matrices C1 and C2, the numerical solution of Eqn 
(1.1) is 

 X = �
���F (1.2) 

which permits to evaluate the internal load distribution (Fig. 1.4b) and, thereby, to 
develop a preliminary design of the components of the horizontal resistant system. 

1.3 Outrigger Systems and Tube Systems 

Later, designers supposed that the building could be treated in a holistic manner 
and, therefore, analysed as a three-dimensional body rather than as a series of 
planar systems. This outlook gave rise to various other models which increased the 
lateral resistance without an excessive use of structural materials. As a 
consequence, the traditional analyses were gradually replaced by global 
approaches. 
 The structure was considered as a vertical cantilever or a system of cantilevers 
on the ground, having all the required lateral stiffness allocated to the perimeter of 
the building. This shrewdness aimed to increase the structural depth of lateral 
load-resisting elements and, thereby, their resistant contribution. 
 According to these outlooks and depending on the height of the construction, 
several solutions, such as outrigger, framed-tube, bundled-tube and tube-in-tube 
systems were realised (Fig. 1.5, 1.6). 
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Figure 1.5 – Typologies of horizontal stiffeners. 

 

 Originally outrigger systems were employed in the sailing ship in order to 
increase the stability and the strength of the masts subjected to wind forces. From 
this point of view, a tall building could be considered analogous to the mast of a 
ship in presence of further elements similar in behaviour to the spreaders and 
stays. Thus, the engineers understood that it was possible to couple the internal 
core of the building with the exterior columns and realise the same scheme 
adopted to strengthen the ships (Fig. 1.7). 
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Figure 1.6 – Typologies of tube and innovative systems. 

 

 

Figure 1.7 – Scheme of the outrigger system. 
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Figure 1.8 – Structural behaviour of an outrigger system; comparison in terms of moment 
diagram between systems with or without outrigger bracings. 

 
 It is evident that they are primarily conceived to reduce the global deformation 
of the building, caused by the flexural behaviour of the resistant core. This is 
achieved by reducing the overturning moment of the cantilever scheme and by 
transferring the reduced moment to the outer members through extremely rigid 
horizontal beams connected to the core at specific levels. When horizontal loading 
acts on the structure, the rotation of the core is reduced by the axial force that 
arises in the external columns, in particular tensile force in the windward columns 
and compressive force in the leeward ones (Fig. 1.8). 
 Roughly speaking, the resistant system can be idealised as a moment resisting 
spring which tends to induce a reversal of curvature in the bending behaviour of 
the cantilever scheme. In addition, including deep spandrel girders, which work as 
belts surrounding the entire building, it is possible to mobilise also the other 
peripheral columns to assist in restraining the outriggers, providing an 
improvement up to 25-30 per cent in stiffness. In order to have the outrigger and 
belt girder adequately stiff in flexure and shear, they often present a vertical 
extension which covers at least one or two storeys. Consequently, because of the 
obstruction caused by them, the corresponding levels are inevitably reduced to 
technical levels (Fig. 1.9). 
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Figure 1.9 – Scheme of belt trusses working in connection with the outrigger system. 

 
 This structural typology can be easily inserted in the resistant skeleton of the 
building without excessively altering the original architectural shape according to 
two main schemes: in the first one, the core is located between the column lines 
with the outriggers extending on both sides (Fig. 1.8); in the second, the core is on 
one side of the building connected to the columns of the other side by means of 
horizontal cantilevers. 
 This solution can be employed with a single outrigger, usually located at the 
top of the building to maximise the restraining effect, or with some outriggers, 
disposed at different levels of the building. The choice depends on the needs of 
reducing the pure flexural behaviour of the original structure. 
 Many super tall buildings have been realised following this structural typology: 
among all, Place Victoria Office Tower (Montreal, 1965) and First Wisconsin 
Centre (Milwaukee, 1973, Fig. 1.10) can be mentioned. 
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Figure 1.10 – The U.S. Bank Centre in Milwaukee (1973, USA): example of a tall 
building restrained by two outrigger systems. 

 
 From the design point of view, an approximate method for a preliminary 
analysis can be adopted to evaluate of the optimum location of an outrigger and, 
thus, achieve the minimum total lateral sway of a tall building of height H. 
 The approach is based on some assumptions and some compatibility 
conditions: the material is linear elastic, the external columns are only subjected to 
axial forces, the outriggers are rigidly connected to the core and the latter is 
perfectly constrained to the ground; the rotations of the core have to match with 
those related to the corresponding outriggers placed at the same levels. 
 For the purpose, the deflection of the inner core, considered as a simple 
cantilever subjected first to the horizontal external actions q and, then, to the 
restraining effect due to the outrigger, is computed. The latter can be considered as 
the effect of a moment-resisting spring, whose stiffness depends on its vertical 
location. 
 The compatibility equation related to the rotation at the level (z = H - x) is: 

 ϑ� − ϑ��� = ϑ� (1.3) 

in which ϑq is the rotation of the cantilever at z = (H – x) due to the external 
actions, whereas ϑs(x) is the rotation at the same level, due to the rotational spring, 
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with the negative sign because it acts in the opposite direction; finally ϑx is the 
rotation of the global system at z = (H - x). 
 Eqn (1.3) can be written in the following explicit form: 

 
�
��� �H

� − x�� − ��
�� �H − x� = ��

��
 (1.4) 

being  
- q, the distributed external action;  
- EI, the flexural rigidity of the inner core;  
- H, the height of the building;  
- x, the unknown vertical position of the outrigger, from the top;  
- Mx, the resisting moment due to the rotational spring;  
- Kx, the spring stiffness obtained by means of the axial rigidity EA of the 

extreme columns as EAd2/[2(H-x)] 
- d, the relative distance between the external columns. 

 Once the moment Mx is acquired from Eqn (1.4), the top drift of the building 
can be computed  taking into account the effects of the external action and the 
moment Mx by means of the Superposition Principle. Since the first contribution is 
constant, the procedure which aims to minimise the lateral sway of the building is 
turned into the attempt of maximising the negative top deflection caused only by 
the rotational spring. The latter is then differentiated with respect to x and equated 
to zero to define the best location of the outrigger. 

 y� = ��
	�� �H

	 − x	� (1.5) 

 
�����
�� = 0 (1.6) 

 The extension of the solution in the case of two or more outriggers can be 
obtained following the same methodology. Taranath [111] provides a summary 
graph, related to a 46-storey building, for the case of two contemporary outriggers 
systems. In Fig. 1.11 some design curves are reported, in order to identify the top 
displacement of a building in which the outrigger systems are arranged. The 
information that can be acquired are given in a non-dimensional form, so that they 
can be extended to consider different types of internal resistant core. In the y axis 
there is the number of the level to which the outrigger is associated, whereas in x 
axis the ratio between the top drifts related to the global resistant scheme and the 
one free from outrigger systems. 
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Figure 1.11 – Curves for the evaluation of the best location of two outrigger systems. 

 
 The continuous curve represents the case of only one outrigger, whose location 
varies along the height. If the latter is zero, the value of top drift coincides with the 
one related to the case of pure cantilever. In addition, it is evident that the 
optimum position of the single reinforcement is about 60 per cent of the entire 
height. On the contrary, the other curves represent the cases of two outriggers: 
once the upper one is fixed (defined by the circled number), the corresponding 
curve defines the value of the top drift as the lower is moved in the storeys 
immediately below. In this way, it becomes possible to identify the best 
configuration of two outrigger systems in order to have the minimum lateral sway 
of the building. For instance, if the upper reinforcement is posed at the 36th level 
and the lower at the 23rd level, the building shows only 17 per cent of the top 
displacement if compared to the case of pure cantilever behaviour. This result 
proves the effectiveness of this kind of structural solution, if employed in a high-
rise building. 
 The idea of entrusting the horizontal resistance to the components constituting 
the perimeter of the building induced the engineers to a breakthrough in the design 
of the structural skeleton. If the stiffening is located along the perimeter of the 
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building, the corresponding lever arm increases to such an extent that the structure 
becomes much stiffer than the previous cases, thereby allowing to reach 
unimaginable heights. In this way the structure tends to behave as an equivalent 
huge hollow tube cantilevering out of the ground. This solution, known as framed 
tube, directly derives from the frame concept. Indeed, it is characterised by closely 
spaced columns and deep spandrel beams rigidly connected together and smeared 
on the perimeter of the construction. The final result is a single three-dimensional 
tube element, which represents the most economical and yet safe and serviceable 
system for the design of buildings with over 50-60 storeys [33, 37, 65]. 
 The earliest application of the tubular notion is related to the designer Fazlur 
Khan that conceived the 43-storey DeWitt-Chestnut Apartment Building 
(Chicago) in 1965. 
 At present most of the super-tall buildings are built according to the tubular 
concept: the 100-storey John Hancock Building (Chicago, 1969), the 110-storey 
Sears Towers (Chicago, 1973) and the 110-storey World Trade Centre Towers 
(New York, 1973, destroyed by a terrorist attack in 2001) are glaring proof of this 
construction typology. 
 From the structural point of view, the building can be assimilated to a 
cantilever whose bending behaviour is associated with the axial forces absorbed by 
the columns of the tube’s windward and leeward faces. If the mesh of columns and 
spandrel beams is adequately dense, the latter can be treated as a continuous wall 
element. In this way the building can be easily reduced to a vertical hollow beam, 
whose stiffness depends on the geometrical inertia of the global cross section. 
Columns arranged in facades transverse to the wind direction operate as 
compression and tension flanges of the box beam, whereas the rest as webs. 
 The distribution of the stresses is supposed to follow the assumption of plane 
sections, as proposed in the Euler-Bernoulli hypothesis. This construction 
typology allows to create diversified shapes manipulating the plan form without 
altering the structural efficiency. Nevertheless, due to architectural reasons, a 
highly dense mesh of beams and columns is in contrast with the need of natural 
light in the inner spaces. On the other hand, the increase of the openings causes the 
structure to behave as a thin-walled beam, in which the shear stresses and shear 
deformations are decisively much larger than in a solid beam. The corresponding 
effect is the distortion of the cross section, which entails the annulment of the 
hypothesis of plane sections. As a consequence, the classical theory of bending is 
no longer applicable and the intensity of the actions in the columns are no longer 
proportional to the distance from the neutral axis of the section. A careful analysis 
of the problem shows a non-linear trend of the stresses, which are lower in centre 
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of the flanges, but higher near the corners. This phenomenon is known as shear lag 
and plays a decisive rule in the design of tubular schemes. Just for this reason the 
frame tube system is considered inefficient over 60 storeys. A further evolution of 
the tubular concept overcomes this problem. Braced tubes are devised by means of 
the addition of external diagonal elements which contribute to stiff the whole 
structure. Thanks to this solution, the exterior columns can be widely spaced as 
well as the sizes of spandrel beams and columns can be smaller, permitting to 
adopt larger window openings. In this case the shear stresses, which represent the 
main cause of the shear lag of frame tubes, are absorbed by the huge diagonals 
which almost annul the shear deformation through their axial stiffness, allowing a 
pure flexural behaviour of the building. In this way the engineers are allowed to 
reconsider the Euler-Bernoulli hypothesis of plane sections, being the trend of the 
stresses almost linear. One of the most famous braced tubes is the 100-storeys 
John Hancock Center in Chicago, in which the diagonals are clearly shown in the 
facades and placed at 45° angles to each other, forming enormous X braces on 
each side. 
 Another structural configuration which implements the tubular scheme is 
represented by the bundled tube. This solution was adopted to improve the 
horizontal resistance of super-tall buildings and to renew the architectural shapes 
of these constructions. A cellular or bundled tube building consists of two or more 
independent tubes, which operate together to the structural stability of the entire 
building. Since the bundled tube is derived by the connection of individual tubes, 
it is possible to model a variety of architectural configurations by simply 
terminating the tubes at different levels. This solution gives the idea that the 
structure is climbing towards the sky, causing at the same time the astonishment of 
the viewers. This expedient also allows to design super tall structures without an 
excessive increase of the base area, which would be necessary in presence of 
frame tube scheme. 
 It is obvious that, in the design of each tube, the shear lag has to be taken into 
account, even if, in a global analysis, its effect seems to be somewhat reduced. 
Furthermore other advantages are provided by this configuration. In presence of 
tubes of different heights, there is firstly a remarkable reduction of the masses 
from the ground to the top which influences the dynamic behaviour, being the 
arisen inertia forces decisively smaller as the highest floors are considered; 
secondly, the lateral sway due to the wind is also reduced, in virtue of less exposed 
surface areas. This configuration is greatly appreciated and, to this day, one of the 
most esteemed is Sears Tower, an outstanding 110-storey building, which was the 
world’s tallest building from 1973 to 1998. 
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Figure 1.12 – Sear Tower in Chicago (1973, USA). 

 
 Its resistant system is composed by nine square tubes each having a different 
height. Four main cross sections define its external profile: the first shows all the 
tubes connected each other; the second loses two corner tubes, as the third case, in 
which other two corner tubes disappear. Finally only two tubular elements reach 
the total height of the building (Fig. 1.12). 
 The structural efficiency of bundled tubes can be further improved. The braced 
tube scheme can be proposed for each single tube, especially in the presence of 
different shapes, such as rectangular, triangular or hexagonal. This choice forces 
the structures to behave as an integral body with respect to the external actions 
and, therefore, loss of structural integrity disappears. 
 Finally, with the aim of increasing the global stiffness of the building, the 
external tube system can be connected to an internal core, which participates to 
resist part of the lateral load. This is the case of tube-in-tube systems, where the 
core itself can be made up of a solid tube, a braced tube or a framed tube and can 
be considered as an internal protection against unexpected impacts due to human 
errors or terrorist attacks. Therefore, it is evident that the tubular concept offers 
several opportunities to the designers, being a flexible solution able to satisfy most 
of the innovative architectural shapes and guarantee both stiffness and stability. It 
is not by chance that the current tallest building in the world is Burj Khalifa, a 
bundled tube structure of 830 meters, built in Dubai (Saudi Arabia) in 2010. 
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1.4 Innovative Structural Solutions 

Only recently, next to economics, municipal regulations and politics, aesthetics 
has got a leading role in the planning and design of high-rise buildings. Changes in 
the structural form are supported by the emerging architectural trends in design 
and the developments in structural analysis techniques, made possible by the 
advent of high-speed digital computers. 
 One of the most known results of this tendency is the diagrid system, which 
confirms the breakthrough in the idea of tall building. This term is derived by the 
union of the words diagonal and grid. The first is associated to the effectiveness of 
diagonal elements with respect to the horizontal stiffening of frames as well as 
tubular schemes. In effect, such configurations allow to reduce the global shear 
deformation of the structure exploiting primarily the axial forces arisen in the 
diagonal members, which are much less troubling from the design point of view. 
 The term grid refers to the base idea of the tubular schemes, that is the ability 
to smear most of the horizontal resistance on the external perimeter of the 
building. The result is a mesh, completely surrounding the building, constituted by 
only diagonal elements arranged in a triangulated pattern and able to absorb the 
total horizontal action. 
 However, if compared to conventional braced configurations, the outstanding 
originality introduced by diagrid systems is the absence of vertical elements. This 
means that the mesh is designed to carry, at the same time, gravity loads and 
lateral actions. Furthermore, even if the structural importance of diagonal bracings 
has always been acknowledged, most of times they have been hidden within the 
structure in order to avoid interfering with the building aesthetics. On the contrary, 
diagrid structures have shown the architectural potentialities of the diagonals, 
which have become an innovative feature of tall buildings. It suffices to say that 
their triangulated configuration uniformly arranged on the entire façade enables to 
model groundbreaking shapes, which contribute to characterise the hosting 
communities. An example is the 30 St Mary Axe (London, 2004), a 41-storey 
building defined by a curved form which earns it the name of “the Gherkin”. Such 
construction demonstrates that current architecture has forsaken prismatic forms, 
to embrace curved ones. 
 In the early phases of the design process, two main information are needed to 
model an elementary scheme for a diagrid structure: the optimum angle of the 
diagonals and a preliminary assessment of the area constituting the structural grid. 
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Figure 1.13 – Axial deformation of diagonal bracings due to horizontal displacement and 
rotation of the braced frame. 

 
 In the first case, the optimum angle can be acquired comparing the 
requirements of the shear strength with the ones related to the bending strength. In 
the latter case, the value which allows to carry gravity loads and offers the 
adequate bending stiffness is obviously 90 degrees. This solution is insufficient for 
the shear resistance, as shown by frames without diagonal bracings. In order to 
find the best angle for the shear deformation, a simple scheme of a braced frame, 
reported in Fig. 1.13, facilitates the evaluation. Due to the horizontal displacement 
u caused by a force F, the diagonals are subjected to axial deformations and, 
therefore, internal actions Fd arise equilibrating the external force. 

 2F� cos ϑ = F (1.7) 

 In a linear elastic domain, the force Fd is related to the axial deformation εd by 
means of the cross section A and Young’s modulus E. In addition, εd is function of 
the horizontal displacement u and the geometrical characteristics of the model. By 
substituting these information in the previous equilibrium equation, a relationship 
between the external action F and the corresponding horizontal displacement u is 
obtained. 

 F� = EAε� (1.8) 

 ε� = # $%&
�' ()&⁄ � =

# $%& ()&
'  (1.9) 

 F = �
' �sin 2ϑ cos ϑEA�u = k'u (1.10) 
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Figure 1.14 – Optimum value of the angle of inclination of the diagonal elements. 

 
 The optimum value of ϑ can be deduced plotting the function kh, which 
represents the horizontal stiffening of the model. As it can be seen from Fig. 1.14, 
the optimum ϑ corresponds to about 35°. Since diagrid structures have to resist to 
both shear and bending actions, it is expected that the angle of the diagonal 
constituting the external mesh will fall between 90° and 35°. Furthermore, it will 
be dependent on the geometrical properties of the building: for short buildings 
having low aspect ratio (height/width), the shear behaviour is dominant and ϑ will 
move downwards, whereas, for tall buildings with high aspect ratio, the behaviour 
will be purely flexural and the angle will be close to 90°. 
 These findings can be confirmed by an example regarding a building with an 
aspect ratio of 6.7, being the height equal to 240 m and the width to 36 m. In this 
case two main scheme are modelled: one is constituted by an external mesh 
together with four corner columns; the other shows only the mesh without any 
vertical components. In each scheme the inclination of the diagonals is modified 
according to seven configurations, as shown in Fig. 1.15. A static analysis is 
performed considering the same horizontal actions for all the cases. The results in 
terms of top displacements are carried out in Fig. 1.16 and 1.17. In the first model, 
where the corner columns are employed, the analysis demonstrates that the lateral 
stiffness is not too sensitive to angle in the region of 63°. Therefore, the 
inclinations between 53° and 69° can be equally taken into account. In the second 
model, since no vertical elements are present, the diagonals have to carry, at the 
same time, both gravity and horizontal loads. The corresponding effect is the 
upward shift of the optimum value of ϑ, with an average value of about 70°. 
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Figure 1.15 – Different schemes of diagrid structures in terms of angle of inclination of 
the diagonal bracings. 

 

 

Figure 1.16 – Top displacement of a tall building stiffened by an external mesh constituted 
by vertical and diagonal elements: effect of the inclination of the diagonals on the results. 

 
 Another important point of a preliminary design is the evaluation of the amount 
of area in the diagonals of the mesh. For this purpose the building can be divided 
into modules which define single diagrid patterns. Depending on the direction of 
the load, the faces, in which the structural elements are considered subjected to 
only axial forces, act as webs or flanges. 
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Figure 1.17 – Top displacement of a tall building stiffened by an external mesh constituted 
by diagonal elements: effect of the inclination of the diagonals on the results. 

 
 With respect to Fig. 1.18, a relation between the external actions and the 
corresponding displacements can be acquired. Taking into account the scheme of 
Fig. 1.13, the following relations can be written:  

 V = k0u (1.11) 

 M = k�β (1.12) 

where 

 k0 = 23456�75
cos ϑ	8N: (1.13) 

 k� = 345;�	75
B	 sinϑ	8N= (1.14) 

 The terms Nw and Nf represent the number of diagonals belonging to the webs 
and flanges respectively. Once the external load is defined as well as the 
maximum displacements are derived from the limits imposed by legislation, the 
approximate value of area of the diagonals can be obtained: 

 A�: = >75
	?6�$%&@#

 (1.15) 

 A=: = 	�75
?;�A@ ()&@B

 (1.16) 
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Figure 1.18 – Scheme of a diagrid structure for a preliminary design of the diagonals. 

 
 The expressions (1.15) and (1.16) have to be applied to both the principal 
directions of load, in order to evaluate the upper board value related to the areas.  
These information can be employed in the phases of the conceptual design, to 
identify the preliminary geometrical characteristics of the structure according to 
the architectural requirements. 
 Nowadays other lateral load resisting systems, such as space trusses, which are 
modified braced tube with diagonals connecting the exterior to the interior, super-
frames, in which mega-columns are realised as components of braced frames, and 
exoskeleton structures, which have the horizontal resistance placed outside the 
building line, are gaining ground. 
 Nevertheless, it is evident that developments regarding the design of high-rise 
and irregular buildings are described by a continuously evolving process. The 
interference coming from the new architectural trends is leading the building 
design towards solutions which have to optimise the structural skeleton with 
respect to the exterior shapes, such as aerodynamic, twisted, tapered, tilted or even 
free ones. 
 As a matter of fact, all over the world, some bizarre shapes have already been 
commissioned and, in some cases, just built: for instance, the HSB Turning Torso, 
a twisted skyscraper of 54 storeys in Malmo (Sweden), and the 66-storey London 
Bridge Tower, also known as Shard of Glass, a pyramidal shaped building now the 
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tallest structure in Europe, are very appreciated. In addition, many futuristic 
projects have already been proposed: among all the Millennium Tower by Sir 
Norman Foster, which is a 170-storey tower reaching 840 meters of height, and 
the Kingdom Tower, which should be over 1 km high, can be remembered. 
 For the future, it is expected that the already achieved limits will feed the 
pursuit of new heights and unconventional shapes and, therefore, it will probably 
determine improvements in technology of structural systems and materials.  
 Even if the increase of the complexity of the forms is balanced by powerful 
computers and several multi-function Finite Element (FE) software, the choice of 
an appropriate model able to thoroughly identify the key parameters governing the 
response of the structure as well as the force flow acting within the stiffening 
members remains crucial. On the one hand, FE programs can evaluate the 
construction in its entirety, reaching high degree of accuracy. They can model any 
detail, giving the idea that nothing gets lost. 
 Nevertheless this skill can hide some drawbacks [61, 103]. During the design 
stage, it’s very difficult to assess the resistant contributions coming from different 
stiffeners as well as handle an enormous amount of data. In effect, especially 
during the phase of evolution of the concept, the former could cause time-
consuming misunderstandings; the latter could be easily a source for errors. 
Moreover, the great number of input and output data does not support a clear 
explanation of the structural mechanism and does not allow the designers to 
identify the distribution of the external forces among the stiffening members. 
 On the other hand, based on some carefully chosen hypotheses, simplified 
procedures could represent a valid alternative in the early stage of conceptual 
design being characterised by some advantages, such as a faster data preparation 
and a more transparent method of analysis, which can make the process less liable 
to unexpected errors. In addition, unlike FE simulations, the limited degree of 
accuracy is balanced by the capability to provide a comprehensive picture of the 
structural behaviour and to gain knowledge of the key parameters governing the 
response of the building. 
 In any case, being reciprocally complementary instruments, both approaches 
can lend support to the engineer’s judgment. While, in the early stages, 
approximate methods evaluate the basic characteristics of the project, in the final 
ones, FE models can conduct a more thorough computation.  
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Chapter 2 

The load Distribution Matrix between Vertical 
Bracings 

2.1 Introduction 

In most buildings the horizontal resistant system consists of different elements 
which can vary one to another according to their specific stiffness properties. The 
use of in-parallel members is a structural solution which immediately appeared as 
a simple way of increasing the horizontal stiffening of high-rise structures. From 
the design point of view, many researches were developed to identify the 
distribution of the external forces among the internal bracings. 
 The earliest models, dating back to 1960’s and 1970’s, were provided for the 
preliminary design of tall buildings, in particular to offer approximate and quick 
approaches that were at engineers’ disposal. In some cases, design curves were 
proposed in order to address the structural solutions towards the best ones for the 
specific loading case. At that time the comparison between analytical methods and 
those relying on digital computers started to appear. Nevertheless, the drawbacks 
of the analytical approaches were related to the fact that they could be applied to 
restricted cases, defined by simple structural combinations. As a matter of fact, in 
most cases planar configurations were studied and only one degree of freedom per 
storey was considered. 
 The formulations conceived in this field were based on the following 
fundamental hypotheses: 



26 S. Cammarano – Static and Dynamic Analysis of High-Rise Buildings 

- the structural material is homogeneous, isotropic and obeys Hooke’s law; 
- the floor slabs are rigid in their own plane but their out-of-plane rigidity is 

neglected;  
- only static and conservative loads are taken into account in the analysis; 
- for transversal analysis, the axial deformation of the structural elements due 

to gravity loads is considered negligible. 
 The earliest methods took into account the case of shear-wall versus frame 
interaction. Related to this scheme, the approaches by Khan and Sbarounis [64], 
Coull and Irwin [34], Heidebrecht and Stafford Smith [58, 59], Haris [56] and 
Mortelmans et al. [84] can be mentioned. 
 The papers by Khan and Sbarouinis represent the first effort to this study. Coull 
and Irwin proposed a simple coefficient method for the assessment of the load 
distribution in three-dimensional structures stiffened by shear walls; Heidebrecht 
and Stafford Smith devised an approximate method of analysis of open section 
shear walls subjected to torsional actions as well as a simple hand method for the 
static and dynamic analysis of uniform and non-uniform structure consisting in 
frames coupled with shear walls, both defined by planar loading and deformation; 
Haris focused his attention on the matrix approach for the determination of the 
load distribution matrix related to in-parallel planar frames. Furthermore his paper 
was one of the first which included the torsional behaviour in the analysis. Finally 
Mortelmans, also followed the way traced by Haris and proposed an approximate 
method for the combined bending and twisting of high-rise buildings under wind 
loading. He reduced the problem to the solution of a linear system of four 
equations with four unknowns, from which the bending and twisting moments in 
any element of the structure could be acquired, regardless the number of floors but 
with an high degree of accuracy. 
 Other approaches followed, most of which were based on the continuum 
medium technique. This method permitted to take into account the elements which 
connect the vertical bracings at the floor levels. The base idea was to replace the 
effective connection by continuously shear forces, which produced a stiffening 
effect on the behaviour of the global system. Rosman [95, 96] was the pioneer of 
this approach. In effect he was the first to analyse shear walls with openings which 
could be treated as distinct walls characterised by a global stiffening due to rigid 
connecting beams. After him, Beck [9] extended the formulation taking into 
consideration the axial deformation of the walls and offered simplified formulas 
for the determination of the redundant unknowns arising in the connecting 
elements. 
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 The continuum medium technique was followed by other works: among all, the 
papers by Schwaighofer [98], Coull and Choudhury [31], Qadeer and Stafford 
Smith [90] can be pointed out. Later, Stamato and Mancini [102], Gluck and 
Krauss [54] used the same technique to analyse three-dimensional problems 
concerning frames and walls. 
 The evolution of the construction typologies due to the search for greater 
heights as well as the development of innovative architectural shapes, involved the 
conception of different formulations. The first results were represented by Khan 
[65], Coull and Bose [37], who dealt with tubular structures. The same research 
was further extended to other structural issues, as the case of Hoenderkamp and 
Snijder [60], who focused on the structural effects of flexible connections, while 
Lee et al. [71] proposed an analytical method for the design of outrigger systems. 
 In some cases, the approaches were derived from different research areas, 
however proving to be adequate for the analysis of tall constructions. Developed 
for framed-tube systems, the stringer-shear panel method by Connor and Poungare 
[30] was derived from aeronautics. Modelling the resistant skeleton as a stringer-
shear panel assembly in which the stringers were supposed to carry only axial 
loads without bending stiffness and the panels were defined by shear rigidity 
without axial or bending strength, the building could be reduced to stringers on 
any side and shear panels in between. 
 In another case, a core tube could be analysed as an equivalent rod, in which 
the effects of the bending and shear deformation as well as shear lag and torsion 
were taken into account. Closed-form solutions were acquired for the deflection, 
shear lag and torsional angle, by means of the elastic theory by Takabatake and 
Matsuoka [107, 108]. 
 Other methods, starting from aerospace engineering, imagined to subdivide the 
structure into substructures and to operate as the case of Finite Element (FE) 
approach, in which the substructures were considered as super-elements. The first 
focused on this methodology were Leung [72], Leung and Wong [73], Wong and 
Lau [125], followed, more recently, by Kim and Lee [66] and Steenbergen and 
Blaauwendraad [103].  
 A further formulation was proposed by Pekau et al. [86, 87], by means of their 
approach, called Finite Storey Method (FSM). The global behaviour of the 
construction could be reduced to the nodal displacements obtained from the 
analysis of two-storey substructures. The main advantage was a reduced number 
of nodes so that the computational time of the method proved to be very short; in 
addition, both frames and shear walls, in a single scheme or composed to represent 
tube-in-tube configurations, could be considered. 
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 As it can be seen, many formulations can be employed for the static analysis of 
a tall building; however, most of them are characterised by a deep lack of 
generality, which impedes to analyse different structural typologies and, above all, 
tends to reduce a three-dimensional examination to a planar problem. In this way, 
it is evident that they become inappropriate, especially in the case of very complex 
shapes, which cannot be grossly simplified. 

2.2 A Synthetic Three-Dimensional Approach 

In line with the mentioned formulations, a more general semi-analytical approach 
is here described. It is a three-dimensional method, directly derived from the 
papers by Carpinteri et al. [24, 25], in which only three degrees of freedom per 
storey are taken into account. This choice allows to study, at the same time, the 
bending and the torsional behaviour of the structure. 
 The approach proves to be general, since it is possible to consider any type of 
vertical bracings, from simple frames to free-shaped tube systems. Furthermore, it 
is defined by the following benefits: firstly, the load distribution matrix, which 
defines the amount of external force absorbed by each structural element 
according to its own stiffness and its position in the building plan, can be 
evaluated; secondly, an easy identification of the structural parameters on which 
the horizontal behaviour of the building depends can be performed; finally, the 
formulation proves to be extremely clear and concise, limiting in this way the risk 
of unexpected errors and guaranteeing, in presence of very complex structures, 
very short times of modelling and analysis, if compared to FE programs. 
 Starting from the previously mentioned hypotheses, a N-storey building is 
considered having M vertical bracings, each defined by an arbitrary position in the 
floor plan. The right-handed system XYZ defines the global coordinate system of 
the problem. Since the slabs, which interconnect the bracings each other, are 
considered infinitely rigid in their plane, the degrees of freedom of the problem 
can be represented by the transversal displacements of the floors: in particular, two 
translations ξ and η directed according to the X and Y direction and the 
transversal rotation ϑ, for each storey. In the same way, the external load applied 
to the building is expressed by the 3N-vector f, in which 2N shears px, py and N 
torsional moments m are included (Fig. 2.1). 

 f = �pm� = �p�p	m
 (2.1) 
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Figure 2.1 – Scheme of a tall building stiffened by M vertical bracings and subjected to 
transversal actions. 

 

 
Figure 2.2 – Global and local coordinate systems. The Z-axis completes the right-handed 
global system XYZ and Zi

* completes the right-handed local system X i
*Y i

*Z i
*. 

 
 For the i-th bracing the right-handed system Xi

*Yi
*Zi

* represents its local 
coordinate system.  
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Figure 2.3 – Internal loadings fi transmitted to the i-th bracing in the global coordinate 
system (a); degrees of freedom of the i-th bracing in the local coordinate system Xi

*Y i
*Z i

*, 
axonometry and top view (b). Note that the highest floor is indicated with 1 and the lowest 
with N. 

 
 The 3N-load vector fi

* and the 3N-displacement vector δi
* describe the amount 

of external load absorbed by the i-th element and its transversal displacements 
respectively, both in the local coordinate system (Fig. 2.2). 
 The loading vector fi

* can be reduced to fi, which refers to the global coordinate 
system XYZ, by means of the following expressions: 

 p�∗ = �p� (2.2) 

 m�∗ = m� − ψ� ∧ p� ∙ u� (2.3) 

 f� = �p�m�� (2.4) 

where the superscript * indicates that the coordinate system is the local one.  
 The term Ni represents the orthogonal matrix from the system XY to the system 
Xi

*Yi
*; ψi is the coordinate vector of the origin of the local system in the global 

one; uz is, instead, the unit vector associated to the Z direction.  
 The orthogonal matrix Ni can be represented by means of the angle ϕ between 
the Y axis and the Yi

* axis (Fig. 2.2): 

 � = � ���φ ���φ−���φ ���φ� (2.5) 
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in which each term is a diagonal N×N sub-matrix. 

 ���φ = �cosφ 0 00 … 00 0 cosφ" (2.6) 

 Eqns (2.2) and (2.3) can be re-written in the following matrix form 

 f�∗ = #�f� (2.7) 

 The matrix Ai gathers the information regarding the reciprocal rotation between 
the local and global coordinate systems and the location of the i-th bracing in the 
global system XY: 

 #� = � � $−u� ∧ ψ� % � (2.8) 

where I is the identity matrix and 0 the null matrix. The component −u� ∧ ψ�, 
valid for each floor, is a relation obtained from Eqn (2.3) exploiting the fact that 
the scalar triple product is invariant under any cyclic permutation of its terms. For 
the sake of simplicity, in order to take into account the N floors of the structure, 
this vector product can be written as a final 2N×N matrix Ci composed by two 
diagonal sub-matrices containing the coordinates (xi; yi) of the origin of the local 
system Xi

*Yi
*. 

 −u� ∧ ψ� = − & ı̅ ȷ ̅ k+0 0 1x� y� 0& = −/−y� x�0 = −1�2 (2.9) 

 Thus the final expression for the matrix Ai is: 

 #� = � � $−1�2 % � (2.10) 

 In the same way, the vector δi
*, constituted by 2N translations ξi

*, ηi
* and N 

rotations ϑi
*, can be connected with the same one, referred to the global coordinate 

system δi, by means of the synthetic N×N matrix Bi: 

 δ�∗ = 4�δ� (2.11) 

 Since the following relationships are valid for the displacements: 

 5ξ�∗η�∗8 = � 5ξ�η�8 (2.12) 
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 ϑ�∗ = ϑ� (2.13) 

the matrix Bi is similar to the matrix Ai, in which the term Ci
T is reduced to a null 

matrix. 

 4� = :� $$ %; (2.14) 

 A relation between fi
* and δi

* is well-known by means of the condensed 
stiffness matrix ki

*, referred to the local coordinate system: 

 f�∗ = <�∗δ�∗ (2.15) 

 Substituting Eqns (2.7) and (2.11) into Eqn (2.15), the load vector fi turns out 
to be connected with the displacement vector δi through a product of matrices, 
which identifies the stiffness matrix ki of the i-th bracing in the global coordinate 
system XY. 

 f� = =#�>?<�∗4�@δ� = <�δ� (2.16) 

 Exploiting the presence of in-plane rigid slabs, the transversal displacements of 
each element can be computed considering only the three generalised floor 
displacements ξ, η and ϑ. This is performed through the matrix Ti, which takes 
into account the location of the bracing in the floor plan by means of the 
coordinates (xi; yi).  
 If we consider the equation which describes the rigid displacements of a point 
P with respect to another point O, the following vector expression is derived: 

 dB = dC + ϑk+ ∧ EP − OH (2.17) 

which, in expanded form, becomes 

 �uBvB� = �uCvC� + :0 −ϑϑ 0 ; �xB − xCyB − yC� (2.18) 

 If the point P represents the origin of the local coordinate system, whereas O 
the origin of the global one, Eqn (2.17) can be re-written as 

 d� = d + ϑk+ ∧ ψ� (2.19) 

 The translation in X direction of Eqn (2.19) is computed by means of the unit 
vector ux: 

 u� = u + ϑk+ ∧ ψ� ⋅ u� (2.20) 
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 Exploiting the properties of the scalar triple product, Eqn (2.20) becomes 

 u� = u + ψ� ∧ u� ⋅ ϑk+ (2.21) 

 In the same way, the translation in Y direction is 

 v� = v + ψ� ∧ u	 ⋅ ϑk+ (2.22) 

 As in the case of Eqn (2.9), it is possible to define a final matrix containing the 
vector products of Eqns (2.21) and (2.22), which assumes the same form of the 
aforementioned matrix Ci. 

 d� = d + �ψ� ∧ u�ψ� ∧ u	� ϑk+ (2.23) 

 The expansion of Eqn (2.23) to consider N floors gives rise to 

 �ψ� ∧ u�ψ� ∧ u	� = :−y�x� ; = 1� (2.24) 

and, therefore, the 3N×3N matrix Ti is easily acquired. 

 δ� = :% 1�$ % ; δ = K�δ (2.25) 

 The substitution of Eqn (2.25) in (2.16) allows to identify the stiffness matrix 
of the i-th bracing, referred to the global coordinate system XYZ and to the 
generalised floor displacements ξ, η and ϑ: 

 f� = =#�>?<�∗4�K�@δ = <̅�δ (2.26) 

 For the global equilibrium, the external load f applied to the structure is equal 
to the sum of the M vectors fi. In this way a relationship between the external load 
and the floor displacements is obtained and the global stiffness matrix of the 
structure is computed. By means of this matrix, once the external load is defined, 
the displacements of the structure are acquired, from which information regarding 
each single bracing can be deduced. 

 f = ∑ f�M�N? = ∑ =#�>?<�∗4�K�@δM�N? = ∑ <̅�M�N? δ = Oδ (2.27) 

and, therefore, 

 δ = O>?f (2.28) 
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Figure 2.4 – Horizontal stiffening in tall buildings: a 3D frame and a planar braced frame. 

 

   

Figure 2.5 – Horizontal stiffening in tall buildings: shear walls with constant section and 
tapering profiles. 

 
 Recalling Eqn (2.26) and comparing it with Eqn (2.28), an equation connecting 
the vector f with fi allows to define the amount of the external load absorbed by 
the i-th vertical stiffening: 

 δ = O>?f = <̅�>?f� (2.29) 

 f� = <̅�O>?f = =#�>?<�∗4�K�@O>?f = P�f (2.30) 

 The load distribution matrix Ri, obtained from Eqn (2.30), demonstrates that 
each bracing is subjected to a load which is directly proportional to the external 
load f and to its own stiffness matrix ki

*, but inversely proportional to the global 
stiffness matrix K, as the case of in-parallel bracings in a plane problem. Once the 
generalised displacement vector δ is known, recalling Eqns (2.11), (2.15) and 
(2.25), the displacements and the corresponding forces related to the i-th bracing, 
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in its local coordinate system, can be computed. Consequently, since the loads 
applied to each element are clearly identified, a preliminary design can be easily 
performed. 

 δ�∗ = 4�K�O>?f (2.31) 

 f�∗ = <�∗4�K�O>?f (2.32) 

 Eqn (2.32) solves the problem of the external loading distribution between the 
resistant elements employed to stiffen a three-dimensional tall building. Such 
formulation proves to be general and can be adopted with any kind of structural 
elements, provided that their own condensed stiffness matrix ki

* is known. 
Therefore most of the common horizontal stiffeners, such as frames, braced 
frames, shear walls and tube-systems can be easily implemented in this static 
formulation (Fig. 2.4, 2.5). 

2.3 Stiffness Matrix of Frames and Braced Frames 

 
Figure 2.6 – Scheme for the computation of the stiffness matrix of a cantilever beam. 

 
Particular attention is focused on the computation of the stiffness matrix of a frame 
structure. Before deeply analysing this topic, the procedure which allows to define 
the condensed stiffness matrix of a vertical cantilever is proposed, according to the 
method proposed by Pozzati [88]. 
 Let us consider a shear wall subjected to concentrated horizontal forces Fi (Fig. 
2.6). 
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Figure 2.7 – Components of the stiffness matrix of a beam. 

 
 Each inter-floor segment, whose dimension is constant and equal to h, is 
defined by the corresponding stiffness matrix kj, which refers to the horizontal 
displacements (α1, …, αN) and rotations (αN+1, …, α2N) (Fig. 2.7). 

 <Q = RSTUV W 12 −12−12 12−6h 6h−6h 6h 				−6h −6h6h 6h4h] 2h]2h] 4h] ^ (2.33) 

 The global stiffness matrix of shear wall can be obtained expanding and adding 
the contributions of all the segments. Therefore, in the case of a 3-storey shear 
wall having constant geometrical dimensions, the global stiffness matrix is: 

 O = RSUV
_̀̀
`̀a
12 −12 0−12 24 −120 −12 24−6h 6h 0−6h 0 6h0 −6h 0

					
−6h −6h 06h 0 −6h0 6h 04h] 2h] 			02h] 8h] 2h]0 2h] 8h] cdd

dde (2.34) 

 The latter can be written highlighting some terms: 

 F = Oδ → �Fh0 � = �<hh <hi<ih <ii� 5δhδi8 (2.35) 

in which δd and δr stand for horizontal displacements and rotations respectively. 
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Figure 2.8 – Equivalence between a frame with rigid connections and a shear wall. 

 

 From Eqn (2.35) the condensed stiffness matrix K* of the shear wall can be 
obtained and the relationship between actions and horizontal displacements can be 
acquired: 

 O∗ = <hh − <hi<ii>?<ih (2.36) 

 Fh = O∗δh = E<hh − <hi<ii>?<ihHδh (2.37) 

 In the case of a frame with rigid connections, the previous formulation can be 
used if we consider that the rotations of the nodes belonging to the same floor are 
equal each other. This assumption can be considered true in presence of infinitely 
rigid floors, when the frame shows a perfectly shear type behaviour; otherwise, it 
describes only an approximate behaviour. Following this hypothesis, the rotational 
resistance due to each bay is given by 6EJb/L for each node, being Jb and L the 
second moment of inertia and the length of the horizontal beam respectively. The 
contributions of all the bays can be added together and considered as the effect of 
a rotational spring applied to the corresponding floor. 
 Therefore, recalling Eqn (2.35), its effect can be directly included in the main 
diagonal of the sub-matrix krr. On the other hand, excluding the bays, the frame 
can be easily treated as a shear wall in which the resistance of each segment is 
equal to the sum of the resistances of the corresponding columns. 
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Figure 2.9 – Scheme of a braced frame with a single diagonal element. 

 
 In the case of a 3-storey frame with a constant floor height (Fig. 2.8), the 
corresponding stiffness matrix can be defined by two components: the first one is 
related to the columns, whereas the second to the bays: 

 O = <j + <k (2.38) 

 The matrix kc can be written taking into account Eqn (2.34): 

 <j = =∑RSl,n@UV
_̀̀
`̀a
12 −12 0−12 24 −120 −12 24−6h 6h 0−6h 0 6h0 −6h 0

					
−6h −6h 06h 0 −6h0 6h 04h] 2h] 			02h] 8h] 2h]0 2h] 8h] cdd

dde (2.39) 

 On the contrary, the matrix kb is a null matrix with the exception of the 
component krr which is given by: 

 <k = �$ $$ <ii� → <ii = okpq 0 00 kp] 00 0 kp?r (2.40) 

 Finally, exploiting Eqn (2.36), the condensed stiffness matrix of the frame is 
obtained. 
 The same formulation can be extended in order to encompass braced frames by 
considering the effects of the resistant diagonals. 
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Figure 2.10 – Model of a braced frame equivalent to a shear wall. 

 
 Defining EA as the axial rigidity of the diagonal elements, only bracings in 
tension are assumed to be engaged in the analysis. The simplified scheme of Fig. 
2.9, showing the deformed configuration of a braced frame stiffened by a single 
diagonal element, helps to identify a further resistant contribution.  
 Due to the displacement δ of the frame, the diagonal bracing is subjected to an 
axial deformation, which is a function of the angle α. As a result, an axial force 
arises in the element: 

 Nh = t Ru√wxyzx cos α| δ (2.41) 

 The horizontal component of this force constitutes the resistant contribution of 
the diagonal bracing with regard to the lateral displacement of the frame. 

 F = : Ru√wxyzx Ecos αH]; δ = khδ (2.42) 

 Therefore, the structural scheme proposed by Pozzati (Fig. 2.8) can be 
modified, adding to each floor a fictitious horizontal spring whose stiffness is the 
sum of the terms kd related to the diagonals connected to the floor (Fig. 2.10). 
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 This resistant contribution can be directly added to the coefficients of the main 
diagonal of the sub-matrix kdd previously described in Eqn (2.35). 
 In the case of diagonals which refer to Q non-consecutive floors, it is better to 
define a reduced Q×Q stiffness matrix, which only represents the contribution of 
the diagonal bracings. The latter, adequately expanded to N-dimension, can be 
added to the N×N stiffness matrix of the corresponding simple frame and, then, 
included in the general formulation [27]. 

2.4 Numerical Example 

The capability of the analytical method is highlighted by the execution of a 
numerical example on a high-rise building, loaded by transversal static actions.  
 A 40-storey building, whose horizontal resistance is provided by three open 
section shear walls reaching an height of 200 meters, is considered. Their 
dimensions and geometrical properties are shown respectively in Fig. 2.11 and in 
Table 2.1. 

Table 2.1 – Geometrical properties of the shear walls. 
Element N. 1 2 3 

Ix [m
4] 483.45 19.22 71.18 

Iy [m
4] 80.76 176.40 469.99 

Iω [m6] 3611.67 487.50 1997.06 
Jt [m

4] 0.54 0.31 1.29 
xs [m] -15.21 0.00 16.45 
ys [m] 3.43 -13.79 6.97 
α [°] -32.45 0.00 -8.69 

 
 The structural material is concrete, whose mechanical properties are an elastic 
modulus and Poisson’s ratio equal to 30000 MPa and 0.18 respectively. 
 The loading is defined by concentrated transversal actions applied to the floors, 
according to the global coordinate system XYZ (Fig. 2.11). 
 In particular, along the X direction a resultant force of 99 kN for each floor is 
considered, whereas in Y direction it becomes equal to 104 kN. In this specific 
case a clockwise torsional moment of 183.5 kNm is taken into account. 
 This structural scheme is modelled through both the present method and a 
computer program implementing the Finite Element method. 
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Figure 2.11 – Internal core system of a tall building constituted by thin-walled open 
section shear walls (measures in metres).  

 

 

Figure 2.12 – Comparison between the analytical and FE method in terms of 
displacements of the building. 

 
 The results with which the comparison is performed are expressed in terms of 
displacements, in particular translations and rotations of the floors according to the 
global coordinate system XYZ. The corresponding curves are reported in Fig. 
2.12. It is self-evident the outstanding convergence of the aforementioned 
methods, which confirms the usability of the analytical method at least in the first 
phases of the design process. 
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Figure 2.13 – Load distribution between the components of the core system in terms of 
shears in X and Y direction and torque. 

 

 

Figure 2.14 – Bimoment action in the shear walls constituting the core system. 

 
 Unlike FE simulations, the load distribution between the stiffening elements 
can be easily computed. In this way, it is possible to identify the percentage of 
action absorbed by each bracing and, consequently, to evaluate the intensity of the 
arisen internal forces, such as shears and torsional moment (Fig. 2.13). 
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Figure 2.15 – Comparison of the stress state due to bending and warping of the walls. 

 
 In the case of thin-walled open section shear walls, which follow the Vlasov’s 
theory of the sectorial areas, the analytical method also allows to define the trend 
of the bimoment action, which is known as the cause of the warping deformation 
of this type of sections when subjected to torsional loads. 
 The main effect of this uncommon internal action is the development of an 
additional state of stresses defined by normal and tangential components. Their 
intensity can be, in some cases, comparable to the one derived by pure flexural 
behaviour. Therefore, since the latter can affect the structural behaviour of the 
entire building, the evaluation of the bimoment action during the design process 
has to be performed. In Fig. 2.14 the curves of bimoment related to each shear 
wall are shown, whereas in Fig. 2.15 information regarding the additional stress 
state in terms of normal components are reported. In the latter figure, a comparison 
with the stress state caused by the pure bending behaviour is highlighted and it can 
be seen that, in some cases, the bimoment action determines an increase in tension 
of about 20-30 per cent [17].  
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Chapter 3 

Thin-Walled Open Section Profiles as Vertical 
Stiffening 

3.1 Introduction 

In the design of tall buildings the horizontal actions become predominant if 
compared to the vertical ones. In effect, due to gravity loading, the geometrical 
dimensions of the resistant members increase from the top to the bottom 
proportionally to the height of the structure. If we consider a regular construction, 
each floor is similar to the others and, therefore, the corresponding vertical actions 
can be considered constant for each level. On the contrary, when horizontal forces 
are considered, in the absence of specific resistant systems, the actions developed 
in the structural skeleton increase as the third power of the total height, implying 
an unreasonable growth of the structural dimensions. For this reason, over specific 
heights, it is compulsory to analyse the vertical behaviour separately from the 
horizontal one. 
 As described in Chapter 1, most of the resistant solutions, appeared since the 
70’, employed vertical elements arranged as cantilevers constrained at the base 
and designed to absorb the total horizontal force coming from earthquakes and 
wind. These members, commonly known as shear walls, can be freely located in 
the plan of the structure and used with or without other vertical bracings to obtain 
an adequate stability without an excessive supply of structural material. Besides, 
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just for these reasons, it became very popular for those constructions whose 
maximum height was lower than seventy floors. 
 These bracings can be constituted by steel braced frames or concrete walls, 
both with different sectional shapes. In the case of not excessive heights, they can 
be represented by a simple plane element whose resistance is proportional to the 
maximum dimension of the section. For greater heights, they are designed to 
behave as three-dimensional elements, having an appropriate bending resistance in 
two principal directions as well as a good torsional stiffness, giving rise to thin-
walled hollow or open section walls. 
 The sectional shape, the number of vertical bracings and their location in the 
floor plan are chosen in order to absorb almost the total twisting action applied to 
the structure and, at the same time, to house the stairwells or the lift shafts, which 
are indispensable in a tall structure. 
 Unlike hollow sections, in presence of torsional actions, thin-walled open 
sections elements reveal a particular behaviour, which is far from the common 
one. In effect, once the torsional deformations take place, the section twists around 
its shear centre but, at the same time, does not remain plane, since it can undergoes 
different longitudinal extension causing the out-of-plane distortion or warping of 
the section. As a consequence, a further longitudinal stress state, absent in the 
theory of pure torsion, develops in the thickness of the section. Therefore, in the 
analysis of this type of structures, Saint Venant’s theory and Euler-Bernoulli’s 
hypothesis of plane sections prove to be inadequate to describe their structural 
behaviour. 
 Due to their wide versatility, thin-walled open section beams draw engineers’ 
attention. Originally their application was united to the development of aeroplane 
structures, since these elements perfectly met the requirements of weight-saving, 
however offering an adequate stiffness. 
 Only later their purpose was extended to cover structural functions in the 
building and bridge design. The analytical approach related to these profiles 
started about a century ago, but most of the developments in this area were 
accomplished in more recent times, about fifty years ago, by means of the methods 
proposed by S.P. Timoshenko [114] and V.Z. Vlasov [119]. Both of them focused 
the attention on the identification of an exhaustive theory which, even if 
approximate, was able to describe the structural behaviour of thin-walled open 
section profiles. Actually, Vlasov was the one who led a meticulous study on this 
topic, whose goals were even recognised by Timoshenko himself. Such thorough 
work was then synthesised in his book Thin-walled elastic beams, which remains a 
milestone in the scientific literature. 
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3.2 Vlasov’s Theory of Sectorial Areas 

V.Z. Vlasov devoted an entire lifetime of scientific activity to the theory of thin-
walled structures. The author started his research by devising an approximate 
formulation for the analysis of shell structures. It was based on a variational 
approach which allowed to reduce the partial differential equations describing the 
problem to a system of ordinary equations, which were type familiar to those 
employed in the common theory of structures. Such method was adopted for the 
analysis of shells and hipped systems of open and closed sections. However, the 
flexibility of his method permitted to extend the dissertation to consider thin-
walled open section elements and to obtain a comprehensive treatise on the 
problem of their flexural-torsional instability and vibrations. 
 Hereinafter a complete summary of the method is proposed, from which the 
analytical approach for the evaluation of the structural behaviour of thin-walled 
open section shear walls used to stiffen horizontally a tall building has been 
derived. 
 
 Thin-walled open section profiles can be considered as long prismatic shells, in 
which their three main dimensions are all of different order of magnitude: the 
thickness δ is small if compared with any characteristic dimension d of the cross 
section as well as the cross sectional dimensions are small if compared with the 
length l of the shell; the following proportions define this typology: 

 
�� ≤ 0.1 

�� ≤ 0.1 (3.1) 

 In the theory the author refers to the middle surface, as the surface lying 
midway through the plates constituting the beam, the generators, as the lines 
parallel to the beam axis and lying on the middle surface, and the profile line, as 
the intersection of the middle surface with a plane normal to the generators. In this 
way, an orthogonal coordinate system can be derived, since each point of the cross 
section can be found by means of two coordinates: z is the one along the generator 
and s along the profile line. 
 Two main geometrical hypotheses are at the base of Vlasov’s theory: 

• the section is considered rigid and, therefore, its shape is undeformable; 
• the shear deformations of the middle surface, that are due to the change of 

the right angle between the generators and the profile line, are assumed to 
vanish. 



48 S. Cammarano – Static and Dynamic Analysis of High-Rise Buildings 

 

Figure 3.1 – Cantilever I-beam subjected to a concentrated load on one of its flanges. 

 
 Let us consider the case of a cantilever I-beam subjected to a concentrated load 
on one of its flanges (Fig. 3.1). Exploiting the Superposition Principle, this load 
can be reduced to the sum of two different loading cases: one is purely flexural 
and can be studied by the law of plane sections; the other is defined as flexural 
torsion, since the extreme flanges are forced to bend in opposite directions in their 
own plane as a result of the torsion induced by the specific loading case. This 
means that the section does not remain plane and normal stresses appear in 
addition to the tangential ones. These additional stresses give rise to a generalized 
longitudinal force, called bimoment action, which is directly connected with the 
warping of the section and consists of two bending moments, each acting on one 
flange, having the same magnitude but opposite sign. 
 In the case of solid beams, this self-equilibrated action has a local character and 
its effect rapidly falls off with increasing distance from the point of application of 
the load. On the contrary, in the case of thin-walled open section beams, the 
warping stresses fall off slowly as much as the walls are thin. The intensity of this 
stress state cannot be neglected for these profiles and the application of Saint 
Venant’s theory could lead to gross errors in the design process. As a matter of 
fact, this particular behaviour demonstrates that the torsion can take place not only 
under the action of transversal torsional loads, but even under the action of 
longitudinal forces if these cause the development of the bimoment action. 
 For an adequate analysis of these profiles, the need of a theory, able to take into 
account the out-of-plane distortion of the sections, is evident. 
 Let’s consider a free shaped thin-walled open section beam, located in a 
generic coordinate system, in which the Z axis is parallel to the longitudinal axis, 
or centroidal axis, of the beam (Fig. 3.2). Defined a specific cross section at z = 
const., X and Y axes complete the right-handed coordinate system XYZ. Each 
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point of the profile line can be determined by using the coordinates (x, y) or the 
sectional coordinate s. 
 With the aim of defining the equations which govern the structural behaviour 
of thin-walled profiles, it is assumed that the beam is subjected to some 
deformations. As a result of these, each point of the section is characterised by a 
new position in the general coordinate system XYZ.  
 According to the first geometrical hypothesis, the beam is deformed, but the 
shape of the section remains unchanged. Therefore, it behaves as a perfectly rigid 
body, whose position can be evaluated by means of only three independent 
variables corresponding to three transversal displacements: two translations of a 
chosen point A connected to the profile, which are ξ in X direction and η in Y 
direction, and the rotation ϑ of the section.  
 The transversal displacements ξM and ηM of any point M(x; y) belonging to the 
cross section can be determined through the well-known expressions: 

 ξ	 = ξ − �y − y��ϑ η	 = η + �x − x��ϑ (3.2) 

in which (xA; yA) are the coordinates of the point A in the XYZ system. 
 The full displacement of M can be described by a vector, whose components 
are: the longitudinal displacement u, defined positive if it increases as the 
coordinate z; the transversal tangential displacement v, directed long the tangent t 
to the profile line and considered positive if it increases as the sectional coordinate 
s; and, finally, the transversal normal displacement w, whose positive direction n 
is defined by the fact that u, v and w must represent a right-handed coordinate 
system (Fig. 3.2). 
 If α is the angle between the positive direction of the X axis and the positive 
direction of the tangential axis t, the transversal displacements v and w, related to 
the generic point M(z, s), can be computed by means of the projections of ξM and 
ηM on the tangent t or the normal n: 

 v�z, s� = ξ	 cos α + η	 sin α (3.3) 

 w�z, s� = η	 cosα − ξ	 sin α (3.4) 

 By substituting Eqns (3.2) in Eqn (3.3) and (3.4), the following expression are 
obtained: 

 v�z, s� = ξ cos α + η sinα + ϑ��x − x�� sinα − �y − y�� cos α� (3.5) 

 w�z, s� = −ξ sinα + η cos α + ϑ��x − x�� cos α + �y − y�� sinα� (3.6) 
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Figure 3.2 – Thin-walled open section in a right-handed coordinate system. 

 

 

Figure 3.3 – Computation of the sectorial coordinate ω. 

 
 Starting from Eqns (3.5) and (3.6), the lengths of the perpendiculars h(s) and 
d(s) from the point A to the tangent and normal respectively of the profile line at 
M can be highlighted: 

 h�s� = �x − x�� sinα − �y − y�� cosα (3.7) 

 d�s� = �x − x�� cos α + �y − y�� sin α (3.8) 

 The longitudinal displacement component u can be acquired by exploiting the 
second hypothesis of Vlasov’s theory, according to which the shear deformations 
of the middle surface are considered negligible in the analysis. Therefore, if γ is 
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the shear strain representing the variation of the angle between the lines s = const. 
and z = const.: 

 γ = #$#% + #&#' = 0 (3.9) 

 Since the expression of v is known, the analytical expression of u is derived by 
integration. 

 u�z, s� = ζ�z� − * #&#' ds%+  (3.10) 

 
#&#' ds = ξ,�z� cos α�s� ds + η,�z� sinα�s� ds + ϑ,�z�h�s�ds (3.11) 

 Taking into account the following relationships: 

 cos α ds = dx  

 sin αds = dy  

 hds = dω (3.12) 

the equation of u is clearly obtained: 

 u�z, s� = ζ�z� − ξ,�z�x�s� − η,�z�y�s� − ϑ,�z�ω�s� (3.13) 

 The term ζ(z) is an arbitrary function, depending only on z, which describes an 
uniform longitudinal displacement of the entire section; dω is twice the area of the 
elementary triangle whose base is the infinitesimal length ds and whose height is 
the distance h, defined by (3.7). Therefore, ω(s) is twice the area enclosed between 
the arc M0-M and the construction lines which connect the point A with the points 
M0(s = 0) and M(s). This term is defined as sectorial area or sectorial coordinate, 
whereas A is the sectorial pole and M0 the sectorial origin (Fig. 3.3). 
 Observing Eqn (3.13), it can be seen that the longitudinal component u is 
composed by four terms. The first three are well-known, since they are related to 
Saint Venant’s theory and arise as result of extension and bending in the XZ and 
YZ planes. This means that, due to these terms, the sections deforms but remains 
plane. 
 The component, which describes the warping of the section, is totally 
expressed by the fourth term and, in particular, ϑ, can be considered as an 
amplitude, whereas . as the shape of the warped section at z = const. 
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Figure 3.4 – Components of the tangential stress state. 

 
 Once the displacement field is acquired, by differentiating u with respect to the 
variable z, it is possible to obtain the expression of the longitudinal deformation ε: 

 ε = #$#' = ε�z, s� = ζ,�z� − ξ,,�z�x�s� − η,,�z�y�s� − ϑ,,�z�ω�s� (3.14) 

 From Eqn (3.14) it is clear that the hypothesis of uniform torsion, according to 
which the angle of twist per unit length should be constant, fails. 
 Eqn (3.14) does not fully determine the strain ε, since the functions ζ, ξ, η and 
ϑ are unknown. To overcome this problem, it is necessary to use the static 
conditions, or conditions of equilibrium for an elastic body which undergoes a 
definite deformation. In this case, in effect, internal forces arise in the beam and, 
in particular, the author considers only two types of stresses: normal stresses, 
acting in the direction of the generators, and tangential stresses, in the direction of 
the tangent to the profile line; on the contrary, the tangential stresses acting 
perpendicularly to the profile are assumed to vanish. 
 The normal stresses are supposed to be constant over the thickness of the beam, 
whereas the tangential stresses vary according to a linear law. The latter can be 
considered as the sum of two components: the first is given by the constant 
average value of the stresses, the second takes into account the difference between 
the linear and the constant distribution of the stresses (Fig. 3.4). In addition, the 
former are function of the variables z and s, the latter is only dependent on z. 
 Therefore, according to these hypotheses, the second component can be 
referred to the torsional moments considered in the theory of the pure torsion, that 
is, to a resultant torque Mz given by the product of the derivative of the angle of 
rotation and the torsional rigidity GJt. 
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Figure 3.5 – Longitudinal equilibrium of an infinitesimal strip of beam. 

 
 Taking into account the Hooke’s law, the stress field is directly derived from 
the strain field. If we consider two perpendicular directions, that are longitudinal 
and transversal, the relative extensions of the beam can be computed by means of 
the corresponding normal stresses: 

 ε = 01 �σ − νσ0� (3.15) 

 ε0 = 01 �σ0 − νσ� (3.16) 

in which the subscript 1 indicates the transversal direction and the term ν is 
Poisson’s ratio. 
 In accordance with the second geometrical hypothesis, the deformation ε1 of 
the contour is null and, consequently, the strain ε can be highlighted. 

 σ0 = νσ (3.17) 

 ε = 04561 σ ≅ 81 (3.18) 

 Substituting Eqn (3.14) in Eqn (3.18) the general law for the distribution of the 
normal stresses is:  

 σ�z, s� = E�ζ, − ξ,,x − η,,y − ϑ,,ω� (3.19) 
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 This expression demonstrates that normal stresses can appear not only in 
presence of uniform extension and bending of the beam, represented by the first 
three terms, but also as a result of the torsion of the cross section. In the theory of 
pure torsion, this specific contribution is usually assumed to vanish. 
 The equation which describes the tangential stresses characterised by a constant 
average distribution can be obtained considering the longitudinal equilibrium of an 
elementary part of beam whose dimensions are the length dz, the width ds and the 
thickness δ (Fig. 3.5). 

 �dσ�δds + �dτ�δdz + q'dsdz = 0 (3.20) 

being qz a longitudinal distributed external force. 
 Dividing Eqn (3.20) by dsdz and integrating with respect to the variable s, the 
expression of the tangential stresses is found. 

 
�#8��#' + �#=��#% + q' = 0 (3.21) 

 τ�z, s� = 0� >T+�z� − * q'ds%+ − * #8#' δds%+ @ (3.22) 

 The term T0 is an arbitrary function of z and can be computed setting s = 0. In 
this case, in effect, we obtain: 

 T+�z� = τ�z, 0�δ (3.23) 

which means that T0 is the shear force per unit length of beam acting on the 
longitudinal section s = 0. 
 The substitution of Eqn (3.19) in (3.22) gives rise to: 

 τ�z, s� = 0� AT+�z� − * q'ds%+ − EBζ,, * dA%+ − ξ,,, * xdA%+ − η,,, * ydA%+ +  

 −ϑ,,, * ωdA%+ DE (3.24) 

 The latter can be re-written in a synthetic form if the following expressions are 
used, among which, in addition to the well-known static moments, the sectorial 
static moment Sω appears: 

 * dA%+ = A�s� * xdA%+ = SG�s� 
 * ydA%+ = SH�s� * ωdA%+ = SI�s� (3.25) 
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Figure 3.6 - Equilibrium of a strip of beam subjected to transversal loads. 

 
 Moreover, in the hypothesis that the distributed force qz and the shear force per 
unit length T0 are null, Eqn (3.24) becomes: 

 τ�J, K� = 1� Aζ,,A�K� − ξ,,,SG�K� − η,,,SH�K� − ϑ,,,SI�K�E (3.26) 

 A careful examination of this expression reveals that the first term is due to the 
external action represented by longitudinal shear forces applied to the lateral edges 
of the beam; the second and third are related to the well-known formulation 
proposed by Jourawsky for the computation of the tangential stresses in presence 
of bending, whereas the last term describes a constant distribution of tangential 
stresses over the thickness as effect of the non-uniform torsion. 
 As it can be seen, both the equations describing the normal and the tangential 
stresses are expressed in terms of the unknowns ζ, ξ, η and ϑ. Such displacements 
are computed applying the equilibrium conditions. To this aim, a strip of beam, 
included between the cross sections at z = const. and z+dz = const., is considered 
(Fig. 3.6). 
 The actions applied to the strip are: 

- the normal and tangential stresses and the torsional moment Mz related to 
the section at z = const.; 
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- the same just mentioned, increased by a certain value proportional to the 
differential dz, related to the section at z+dz = const.; 

- the distributed transversal loads qx and qy, acting along the X and Y 
direction respectively. 

 If S represents the whole curve of the profile line, the equilibrium equations are 
defined as  

 ∑ = 0M → * #8#' δdzdsO = 0   

 ∑ = 0P → * #=#' cos α δdzdsO + qHdz = 0  

 ∑ = 0Q → * #=#' sinα δdzdsO + qGdz = 0  

 ∑ = 0	R → * #=#' δdz��x − x�� sinα − �y − y�� cos α�dsO +  

 +mdz + #	T#' dz = 0 (3.27) 

 The last equation, which describes the null resultant moment with respect to an 
arbitrary point A(xA; yA), is composed by the following contributions: the first 
represents the effect of the shear stresses defined by a constant distribution over 
the thickness of the section; the second is function of the external distributed 
actions; the third depends on the torsional moments which are proportional to the 
torsional rigidity GJt. 
 Exploiting the expressions (3.12) and integrating by parts the last three 
equations, Eqns (3.27) become: 

 * #8#' dAO = 0   

 
#=#' xδU+O − * x ##% >#=#'δ@ dsO + qH = 0  

 
#=#' yδU+O − * y ##% >#=#'δ@ dsO + qG = 0  

 
#=#'ωδU+O − * ω ##% >#=#'δ@ dsO +m+ #	T#' = 0 (3.28) 

 For the equilibrium, since no external forces are applied to the lateral edges of 
the beam, the first terms of the Eqns (3.28b, c, d) are equal to zero. 
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 If the partial derivatives with respect to z and s are interchanged and the Eqns 
(3.19) and (3.21) are considered, the following expressions can be derived: 

 
#8#' dA = E�ζ,, − ξ,,,x − η,,,y − ϑ,,,ω�dA (3.29)  

 
##' >#=#% δ@ ds = ##' >− #8#' δ@ ds = −EBζ,,, − ξVWx − ηVWy − ϑVWωDdA (3.30) 

 
#	T#' = GJZϑ,, (3.31)  

 Consequently, if the substitution of the previous equations in the system (3.28) 
is performed, the final system of the equilibrium equations is obtained. 

 EBζ,,A − ξ,,,SG − η,,,SH − ϑ,,,SID = 0   

 −EBζ,,,SG − ξVWIG − ηVWIHG − ϑVWIIGD = qH  

 −EBζ,,,SH − ξVWIHG − ηVWIH − ϑVWIIHD = qG  

 −EBζ,,,SI − ξVWIIG − ηVWIIH − ϑVWIID − GJZϑ,, = m (3.32) 

where the sectorial characteristics of the section are defined as 

 * ωdAO = SI * ω\dAO = II  

 * ωxdAO = IIG * ωydAO = IIH (3.33) 

 In addition to the sectorial static moment, the sectorial moment of inertia Iω and 
the sectorial products of inertia Iωy and Iωx appear. 
 The system (3.32) of differential equilibrium equations is synthetic and allows 
to compute the four unknowns of the analytical problem. Nevertheless it proves to 
be complicated and especially complex to be solved. Observing the coefficients of 
the unknowns, it is evident that the system is dependent on the arbitrary functions 
x(s), y(s) and ω(s). In the described procedure, generic information regarding the 
coordinate system XYZ, the sectorial pole and the sectorial origin have been 
indicated. Therefore, with the aim of simplifying the system (3.32), it is possible 
to choose a reference system which causes the vanishing of the following 
integrals: 

 SG = * xdAO = 0 SH = * ydAO = 0  
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 IHG = * xydAO = 0 (3.34) 

 SI = * ωdAO = 0  IIG = * ωxdAO = 0 

 IIH = * ωydAO = 0 (3.35) 

 The conditions (3.34) can be immediately fulfilled if the coordinate system 
XYZ is modified so that its axes become the central axes of the section. As regard 
the conditions (3.35), the choice of a particular sectorial pole and a particular 
sectorial origin, which determines the annulment of the integrals, is not 
straightforward. 

3.2.1 Definition of the Principal Sectorial Origin 
If we consider the thin-walled open section of Fig. 3.7, we can define the sectorial 
coordinate ω taking into account the sectorial pole and the sectorial origin, on 
which the numerical value of ω depends: 

 ω = ω]�s0; s� (3.36) 

being the point B the sectorial pole and s1 its sectorial origin on the section. 
 If a point s0 of the section is considered, the expression (3.36) can be re-written 
as the sum of two contributions of area: 

 ω]�s0; s� = ω]�s0; s+� + ω]�s+; s� (3.37) 

in which the first term of the sum is numerically defined, being s1 and s0 known, 
whereas the second one depends on the variable s. 
 The following hypotheses can be established: 

• the origin s0 is such that the corresponding diagram of the sectorial coordinate ω]�s+; K� is defined by a sectorial static moment Sω(s0) equal to zero; 
• the origin s1 is such that the corresponding diagram of the sectorial coordinate ω]�s0; K� is defined by a sectorial moment Sω(s1) different from zero. 

 Taking into account Eqn (3.37), the expression of the sectorial static moment 
related to the origin s0 is 

 SI�s+� = * ω]� �s+; s�dA = * ω]�s0; s�dA� − * ω]�s0; s+�dA� = 0  

  (3.38) 
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Figure 3.7 – Identification of the principal sectorial origin with respect to the pole B. 

 
 Since the term ω]�s0; s+� is a constant unknown, it can be directly computed 
from Eqn (3.38). 

 ω]�s0; s+� = * ω]�s0; s�dA� A_ = SI�s0� A⁄  (3.39) 

 Therefore, the following assumption can be expressed: once a generic sectorial 
pole B and a generic sectorial origin s1 are defined for the computation of the 
sectorial characteristics of the section, Eqn (3.39) substituted in Eqn (3.37) allows 
to find the diagram of the sectorial coordinate ωB whose sectorial origin s0 is 
principal and, thereby, the corresponding sectorial static moment is null. This 
specific diagram is called the principal diagram referred to pole B.  
 From a graphic point of view, we can operate in this way: once the diagram of 
a generic sectorial coordinate is drawn, in order to find the diagram to which a null 
sectorial static moment corresponds, it is necessary to deduct from the original 
diagram the constant value given by the ratio between the sectorial static moment 
related to the original diagram and the total area of the section. Once the diagram 
has been modified, it is easy to recognise the point of the section which represents 
the principal sectorial origin, related to the arbitrarily chosen sectorial pole. In Fig. 
3.8 an example of this simple process is shown. 
 Moreover, if we apply Eqns (3.37) and (3.39) in the definition of the other 
sectorial characteristics (Eqns 3.35), we find out simple equations that permit the 
calculation of the sectorial moment of inertia and the sectorial products of inertia 
related to the principal sectorial origin starting from those related to the generic 
sectorial origin. 
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Figure 3.8 – Computation of the principal sectorial diagram for a U-shaped section: 
generic diagram ωB(s1) (a) and principal diagram ωB(s0) (b). 

 
 As regard the sectorial moment of inertia, exploiting Eqn (3.39) we obtain: 

 II�s+� = * ω]\�s+; s�dA�  (3.40) 

 II�s+� = * ω]\�s0; s�dA� + * ω]\�s0; s+�dA� +  

 −2* ω]�s0; s+�ω]�s0; s�dA�   (3.41) 

 II�s+� = II�s0� − ω]\�s0; s+�A (3.42) 

 In the same way, as regard the sectorial products of inertia, 

 IIH�s+� = * ω]�s+; s�ydA� = * ω]�s0; s�ydA� +  

 −ω]�s0; s+� * ydA�   (3.43) 

 IIG�s+� = * ω]�s+; s�xdA� = * ω]�s0; s�xdA� +  

 −ω]�s0; s+� * xdA�   (3.44) 

 IIH�s+� = IIH�s0� − ω]�s0; s+�ybA (3.45) 

 IIG�s+� = IIG�s0� − ω]�s0; s+�xbA (3.46) 
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where the following relations have been used: 

 * ydA� = ybA  

 * xdA� = xbA  

 The expressions (3.42), (3.45) and (3.46) are valid for any arbitrarily chosen 
sectorial pole. 
 Finally, observing the relations (3.45) and (3.46), it can be seen that, in the 
hypothesis of a centroidal coordinate system, the sectorial products of inertia are 
independent from the sectorial origin. 

3.2.2 Definition of the Principal Sectorial Pole 

Considering the section of Fig. 3.9, the sectorial coordinate ω having the point A 
as the sectorial pole can be computed by means of Eqns (3.7) and (3.12): 

 dω� = >�x − x�� �G�% − �y − y�� �H�%@ ds = �x − x��dy − �y − y��dx (3.47) 

 The same expression referred to another point B becomes: 

 dω] = �x − x]�dy − �y − y]�dx (3.48) 

 Developing the subtraction between the previous differential expressions and 
integrating, we obtain a relation between ωA and ωB: 

 ω� = ωc + �y� − y]�x − �x� − x]�y + C (3.49) 

 The integration constant C depends on the sectorial origin of the two sectorial 
coordinates. Assuming, therefore, the generic point s0, whose coordinates are (x0; 
y0), as the origin of both ωA and ωB, the numerical value of C is easily determined: 

 C = �x� − x]�y+ − �y� − y]�x+ (3.50) 

 Thereby, Eqn (3.49) becomes: 

 ω� = ωc + �y� − y]��x − x+� − �x� − x]��y − y+� (3.51) 

or, in a synthetic form, 

 ω� = ωc + αGx − αHy + α (3.52) 

being 
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Figure 3.9 – Sectorial calculus with respect to two different sectorial poles A and B. 

 

 αG = �y� − y]�  

 αH = �x� − x]�  

 α = �x� − x]�y+ − �y� − y]�x+  

 Now, the expression (3.52) can be used to define the sectorial moment of 
inertia and the sectorial products of inertia related to the sectorial pole A. 

 IIe = * ω�\dA� = * Bωc + αGx − αHy + αD\dA�   

 IIG� = * ω�xdA� = * Bωc + αGx − αHy + αDxdA�   

 IIH� = * ω�ydA� = * Bωc + αGx − αHy + αDydA�  (3.53) 

 If we define the principal sectorial pole as the pole which determines the 
annulment of the sectorial products of inertia, through the last two equations of the 
system (3.53) it is possible to calculate its geometrical coordinates. For the sake of 
simplicity, a central coordinate system is established for the calculation: 

 IIGe = IIG] + αGIG − αHIHG + αSG  

 IIHe = IIH] + αGIHG − αHIH + αSH  
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which, according to the particular coordinate system and the hypothesis on the 
point A, are reduced to  

 IIGe = IIG] + αGIG = 0 (3.54)  

 IIHe = IIH] − αHIH = 0 (3.55) 

 The geometrical coordinates of the principal pole A can be directly computed, 
since they are the only unknowns of the problem. In addition, it must be noticed 
that Eqns (3.54) and (3.55) are valid for any generic sectorial pole B and do not 
depend on the position of the sectorial origin on the section. 
 If the arbitrary pole B is posed in the centroid of the section, the computation of 
the coordinates of A is further simplified:  

 y� = − IIG] IG⁄  (3.56) 

 x� = IIH] IH⁄  (3.57) 

 As it can be seen, the principal sectorial pole is a special point, whose position 
depends only on the geometrical dimensions of the cross section, in contrast to the 
principal sectorial origin, which depends on the arbitrary sectorial pole.  
 If an axis of symmetry exists, the principal pole lies on this axis; moreover, the 
intersection point between this axis and the profile line of the section 
unequivocally defines the corresponding principal sectorial origin. 
 For a beam of constant section, the principal sectorial pole coincides with the 
shear centre of the section. This means that, through Eqns (3.56) and (3.57), the 
coordinates of the shear centre of a thin-walled open section can be easily 
acquired. 
 
 Starting from these findings, the following corollaries can be expressed: 
- in a centroidal coordinate system, the principal sectorial diagram whose 

reference pole is the shear centre C (xc; yc) can be directly computed knowing 
the principal sectorial diagram whose reference pole is the centroid G of the 
section: 

 ωf = ωb + ygx − xgy (3.58) 

- in a central coordinate system, the sectorial characteristics related to the 
principal sectorial diagram whose reference pole is the shear centre C (xc; yc) 
are related to those derived from the principal sectorial diagram whose 
reference pole is the centroid G of the section: 
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 IIh = IIi + yg\IGjxg\IH + 2ygIIGi − 2xgIIHi  

 IIGh = IIGi + ygIG = 0  

 IIHh = IIHi − xgIH = 0 (3.59)  

- in a generic coordinate system, the positions of the principal sectorial pole 
and its corresponding principal sectorial origin can be obtained solving the 
following system of three equations, in which B is a generic sectorial pole 
and the terms α, αx and αy are the unknowns of the problem: 

 SIe = * ω�dA� = * Bωc + αGx − αHy + αDdA� = 0  

 IIG� = * ω�xdA� = * Bωc + αGx − αHy + αDxdA� = 0  

 IIH� = * ω�ydA� = * Bωc + αGx − αHy + αDydA� = 0 

Once the unknowns are computed, exploiting Eqn (3.52) the principal 
diagram ωA can be constructed, from which the position of the principal 
sectorial origin can be deduced. In addition, this procedure demonstrates that 
the sectorial products of inertia whose reference pole is the shear centre are 
null only if the corresponding sectorial origin is the principal one for that 
pole. On the contrary, if the coordinate system is centroidal, regardless the 
sectorial origin, the sectorial products of inertia whose reference pole is the 
shear centre are always null, as demonstrated by Eqns (3.54) and (3.55). 

3.2.3 Numerical Example 
In this section a numerical example regarding the computation of the sectorial 
properties of a thin-walled open section is proposed and described in depth. To 
this aim, let us consider the section shown in Fig. 3.10, which represents a typical 
shape for shear walls constituting the horizontal resistant skeleton of a tall 
building. 
 The computation starts with the hypothesis that the geometrical properties of 
the section are known and referred to the central axes of the section. For clearness, 
the numerical details are reported in Table 3.1. 
 The first step of the procedure is the choice of an arbitrary sectorial pole and an 
arbitrary sectorial origin. Since the coordinate system is central, for the sake of 
simplicity, the centroid is considered as sectorial pole and the free end of the 
section as sectorial origin. 
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Figure 3.10 – Thin-walled open section in a central coordinate system (a); scheme for the 
sectorial calculus: the dimensions are referred to the profile line of the section (b). 

 
Table 3.1 – Geometrical properties of the thin-walled open section beam. 

A [m2] Ix [m
4] Iy [m

4] Jt [m
4] 

6.14 38.8 30.5 0.189 
 
 Now, chosen the positive sense of the ray which connects the pole to the points 
of the section, the diagram of the coordinate ωG can be easily computed according 
to Eqn (3.47). Then the sectorial static moment can be defined and, consequently, 
exploiting Eqns (3.37) and (3.39) the principal diagram related to the pole G, that 
is ωG, is obtained. In Fig. 3.11 these passages are shown for clearness. 

 SIi = * ωbdA� = 174.9	mo   

 ωb�s0; s+� = SIi A⁄ = 28.48	m\  

 ωb = ωb −ωb�s0; s+�  

 The next step is the evaluation of other sectorial properties, such as the 
sectorial moment of inertia Iω, the sectorial products of inertia Iωy and Iωx 
according to the relations (3.33). 

 IIi = * ωb\dA� = 1538.8	ms  

	 IIGi = * ωbxdA� = 0	mt	 IIHi = * ωbydA� = −219	mt	 	
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Figure 3.11 – Generic sectorial diagram ωG and principal sectorial diagram ωG, both 
referred to the centroid supposed to be the sectorial pole. 

 

 

Figure 3.12 – Principal sectorial diagram referred to the shear centre supposed to be the 
sectorial pole. 

 
 The term Iωy is null since the diagram of the variables ωG and x are such that 
their product is null over the entire cross-section; whereas the term Iωx is different 
from zero and, in particular, equal to -219 m5. As a consequence, the coordinates 
of the shear centre of the section are acquired through Eqns (3.56) and (3.57): 
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Figure 3.13 – Diagrams of the variables x and y. 

 

 yf = −IIGi IG⁄ = − +u+.t = 0	m  

 xf = IIHi IH⁄ = − \0vuw.w = −5.64	m  

 Once the location of the shear centre in known, the corresponding sectorial 
characteristics can be defined.  
 The principal diagram of the coordinate ωC is computed through the application 
of Eqn (3.58), in which the principal diagram ωG is used. In Fig. 3.12 the result of 
this equation over the entire cross-section is shown. 
 Finally, exploiting the system (3.59), the sectorial properties related to the 
shear centre and to the principal sectorial origin are: 

 IIh = IIi + yg\IGjxg\IH + 2ygIIGi − 2xgIIHi 

 = 1538.8 + 5.64\�38.8� − 2�−5.64��−219� = 302.7	ms 

 IIGh = IIGi + ygIG = 0 + 0�30.5� = 0	mt 

 IIHh = IIHi − xgIH = −219 + 5.64�38.8� = 0	mt 

 Detailed information for the calculation of the sectorial properties are reported 
for clearness hereinafter. In particular, the procedure can be performed employing 
the Table 3.2 of the product integrals and referring to the diagrams of the variables 
x, y and ωG indicated in Fig. 3.11 and 3.13. 
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Table 3.2 – Product integral table for * F0�x�F\�x�dxz+ . 

 
 

 SIi = 0.305 >0\ �4.56��1.37� + t.w\ �4.56 + 21.35� + 

 + t.w\ �21.35 + 35.6� + t.w\ �35.6 + 52.4� + 0.u{\ �52.4 + 57�@ = 174.9	mo	 	
	 IIi = 2�0.305� >t.ws B2�7.1\� + 2�23.9\� + 2�7.1��23.9�D +	
	 + 0.u{s B2�23.9\� + 2�28.48\� + 2�23.9��28.48�D + 0u �7.1�\ |t.w\ }@ = 1538.8	ms  	
 IIHi = 2�0.305� 
 >0.u{s ~−2�23.9� |t.w\ } − 2�28.48��1.5� − �23.9��1.5� − �28.48� |t.w\ }� + 

 − 0u |t.w\ }\ �7.1� − |t.w\ }\ �7.1 + 23.9�� = −219	mt 
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3.2.4 Differential Equilibrium Equations in Principal Directions 
The system of equations (3.32) can be strongly simplified operating some sharp 
choices: in effect, if a central coordinate system is considered, as well as the 
sectorial pole coincides with the shear centre of the section and the corresponding 
sectorial origin is principal, the conditions (3.34) and (3.35) are all immediately 
satisfied. This means that the system (3.32) is reduced to four independent 
equilibrium equations: 	 ζ,,AE = 0	 		 EIGξVW = qH		 EIHηVW = qG	 	
	 EIIϑVW − GJZϑ,, = m	 (3.60)	
 Choosing the opportune boundary conditions, the system can be solved and the 
functions ζ, ξ, η and ϑ can be determined. From these, the normal and tangential 
stresses and, consequently, the corresponding internal actions can be found. 
Taking into account Eqn (3.19), the latter are given by: 

	 N = * σdA� = EAζ,	 	
	 MG = * σxdA� = EIGξ,,	 	
	 MH = −* σydA� = −EIHη,,	 	
	 B = * σωdA� = −EIIϑ,,	 (3.61)	
	 The fourth equation describes a new static term which is defined as bimoment 
action and represents a generalised balanced force system composed by two 
bending moments, each having the same magnitude but opposite sign. 
 The substitution of the expressions (3.61) in (3.19) gives an equation which 
connects the normal stresses with the corresponding internal actions: 

	 σ = �� − 	�V� x + 	�V� y + ]V�ω	 (3.62)	
 The first three contributions derive from the classical theory of strength of 
materials and are based on the hypothesis of plane sections; the fourth describes 
the normal stresses arisen in the beam due to the out-of-plane warping of the 
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section. As it can be seen, this term is similar to those derived from the bending: in 
effect, it is directly proportional to the action and to the corresponding variable 
function and inversely proportional to a coefficient of inertia. 
 Similarly the internal actions connected to the tangential stresses are: 

	 TH = * τδ cos α ds� = * τδdx� 	 	
	 TG = * τδ sinα ds� = * τδdy� 	 	
	 M'I = * τδhds� = * τδdω� 	 (3.63)	
	 Substituting Eqn (3.26) in the system (3.63) and considering, from the 
integration by parts, that:	
 * SHdx� = 0 * SHdω� = 0  

	 * SIdx� = 0	 	
 * SGdy� = 0 * SGdω� = 0  

	 * SIdy� = 0	 	
 * SGdx� = −IG * SHdy� = −IH  

	 * SIdω� = −II	 (3.64)	
the following relationships are obtained: 	 TH = −EIGξ,,,		 TG = −EIHη,,,	  	 M'I = −EIIϑ,,,	 (3.65) 

 As the case of normal stresses, an equation which connects the tangential 
stresses with the internal transversal actions can be highlighted: 

	 τ = − 1� ���V� SG�K� + ��V� SH�K� + 	T�V� SI�K��	 (3.66)	
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 Again, the first two terms are the same proposed by Jourawsky in the theory of 
plane sections, whereas the last one, having a similar expression, is derived from 
the theory of the sectorial areas. 
 Comparing Eqns (3.65) with Eqns (3.61), it is possible to connect the 
longitudinal actions with the transversal ones. In this way the complete formal 
analogy between the well-known bending formulation and the flexural-torsional 
one is confirmed: 

 TH = −MG,  TG = MH,  M'I = B, (3.67) 

 Observing Eqn (3.67c) it is evident that the section is, actually, subjected to 
two types of torsional actions, resulting from the fact that the tangential stresses 
are subdivided into two different components, as shown in Fig. 3.4. Therefore, the 
total resistant torsional moment is finally given by the sum of two separated 
contributions: 	 MM = M' +M'I = GIZϑ, − EIIϑ,,,	 (3.68)	
3.3 Experimental Investigation on Warping Deformation 

The analytical formulation proposed by Vlasov, known as the theory of the 
sectorial areas, is rarely used when thin-walled open section beams are taken into 
account. Nevertheless, even though in the literature many papers, focused on the 
structural behaviour of these elements, have been published, to the author's best 
knowledge, none proposed a specific experimental technique to evaluate first-hand 
their particular out-of-plane distortion, when subjected to torsional actions. In 
order to verify the theory of the sectorial areas, in the present section an 
experiment regarding a thin-walled open section profile subjected to flexural and 
torsional loads is performed. For this purpose, a steel beam showing a U profile 
has been realised. With the aim of an optical device, suitable for precision 
measurements, the warping deformation of the section, as a consequence of the 
application to different levels of concentrated torsional actions, can be defined. 
 The evaluation of the effectiveness of the analytical formulation consists in the 
comparison of the results obtained experimentally with those coming from two 
different methods: the first implements the equation of Vlasov’s theory, whereas 
the second relies on the Finite Element method. 
 First, a brief summary of the main passages of the analytical formulation which 
allows to define the stiffness matrix of thin-walled open section beams subjected 
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to transversal loads is provided below. Finally, the main phases of the 
experimental test are described. 

3.3.1 Stiffness Matrix for Thin-Walled Open Section Beams 
The warping deformation is an unusual distortion which characterises thin-walled 
open section beams. This phenomenon, usually neglected for most of structural 
elements, appears in presence of transversal loads, in particular if they cause 
torsional effects. 
 Let’s consider a linear-elastic isotropic and homogeneous beam having a thin 
walled open section in a right-handed reference system OXYZ (Fig. 3.14). Let ξ, η 
and ζ be the translations of the origin O along the directions X, Y and Z 
respectively and ϑ the rotation of the section. 
 In a general loading case, the equilibrium equations of the beam are expressed 
by: 	 EBζ,,A − ξ,,,SG − η,,,SH − ϑ,,,SID = q'		 −EBζ,,,SG − ξVWIG − ηVWIHG − ϑVWIIGD = qH	 	
	 −EBζ,,,SH − ξVWIHG − ηVWIH − ϑVWIIHD = qG	 	
	 −EBζ,,,SI − ξVWIIG − ηVWIIH − ϑVWIID − GJZϑ,, = m	 (3.69)	
which can be simplified applying the conditions described in Section 3.2.4. 
 Therefore, the system (3.69) turns into 	 EAζ,, = q'		 EIGξVW = qH	 	
	 EIHηVW = qG	 	
	 EIIϑVW − GJZϑ,, = m	 (3.70) 

 The equations, initially coupled each other through the variables ξ, η, ζ and ϑ, 
are now independent. In Eqn (3.70d) the term which refers to Saint Venant’s 
theory is, for now, disregarded. Its contribution will be added later, in the final 
expression which defines the stiffness matrix of the element. 
 If the system of external forces is only represented by transversal actions, Eqn 
(3.70a) can be neglected. 
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Figure 3.14 – Thin-walled open section beam in a right-handed coordinate system. 

 
 The remaining equations can be organised in a matrix form through the 
following vectors of the displacements δ and the actions q: 

 δ = �ξηϑ� q = �qHqGm� (3.71) 

	 E�δVW = q	 (3.72)	
in which I is a diagonal 3×3 matrix whose diagonal coefficients are expressed by 
Iy, Ix and Iω, being all the other elements equal to zero. 
 Since I is symmetrical and positive definite until the geometry of the section is 
such that the corresponding sectorial moment of inertia Iω is different from zero, it 
is possible to invert the expression (3.72) in order to highlight the vector of 
displacements δ. 
 If the actions are not represented by forces distributed along the beam, but 
concentrated in correspondence to N specific sections (Fig. 3.15a), Eqn (3.72) 
remains valid in each segment circumscribed by these sections and shows the 
following form: 	 δ,,, = −�40 F E⁄ 	 (3.73)	
where the relation between the vectors q and F is given by: 
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Figure 3.15 – Thin-walled open section beam subjected to concentrated transversal actions 
applied to specific sections (a); scheme for the continuity conditions between different 
sections (b). 

 

	 q = − ##� F = − ##��FHFGMM
�	 (3.74)	

 The transversal displacements ξ, η and ϑ are acquired integrating Eqn (3.73) in 
each domain where the expression is defined and introducing the adequate 
boundary conditions. Such conditions are subdivided in continuity and global 
conditions. 
 The continuity conditions for the j-th section ( j = 2,…, N) are: 	 δ�	���40/� = δ�	���/�j0	 	
	 δ,�	���40/� = δ,�	���/�j0	 (3.75)	
	 δ,,�	���40/� = δ,,�	���/�j0	 	
	 E�δ,,,�	���40/� = E�δ,,,�	���/�j0 + F�	��	 (3.76)	
in which the first two are kinematic, whereas the last are equilibrium conditions 
(Fig. 3.15b). 
 If the beam is constrained as a cantilever beam, the global conditions for the 
free edge ( j = 1) are given by the equilibrium conditions: 
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	 δ,,�	1� = 0	 		 δ,,,�	1� = −�40 F�1� E⁄ 	 (3.77)	
whereas, for the opposite edge ( j = N+1), two kinematic conditions are 
considered: 	 δ�	N + 1� = 0	 		 δ,�N + 	1� = 0	 (3.78)	
 For the sake of simplicity, the transversal displacements of the sections are 
reported in a single 3N vector δ, in which the translations along the X axis, then 
those along the Y axis and, finally, the rotations are posed. Similarly, a global 3N 
vector F containing N shear forces Fx, N shear forces Fy and, finally, N torque 
moments MZ is assembled.  
 By means of the procedure of integration previously mentioned, it is possible to 
obtain a relationship between δ and F through the compliance matrix C or its 
inverse, the stiffness matrix k. 

 δ = �F = �40F (3.79) 

 Finally the torsional contribution coming from Saint Venant’s theory, which is 
proportional to the torsional inertia Jt, is added to the torsional component of the 
calculated stiffness matrix. 
 Once the external actions are known, by means of Eqn (3.79), it is possible to 
obtain the displacements of the corresponding sections in terms of ξ, η and ϑ. 
Then, differentiating the latter with respect to the coordinate z and exploiting the 
last component of Eqn (3.13), the axial displacements which define the warping of 
the section are deduced, according to the theory of the sectorial areas. 
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3.3.2 Experimental Investigation 

 

Figure 3.16 – Scheme of the test on a thin-walled U-shaped section steel beam. 

 

 

Figure 3.17 – Geometrical properties of the thin-walled steel profiles. 

 
Specific experimental investigations for the evaluation of the effective out-of-
plane deformation of thin-walled open section beams subjected to torsional actions 
are almost absent in the literature of the past fifty years. 
 Therefore, the contribution described below proves to be particularly 
innovative for the structural analysis of these profiles. 
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Figure 3.18 – Application of the external concentrated loads. 

 

   
 (a) (b) 
Figure 3.19 – Picture of the little steel frame, applied to the extreme L-shaped profile, to 
which the laser is connected (a); scheme of the reflection of the laser (b). 

 
 The evaluation of the warping deformation is performed by means of an 
experimental test on a 1.6 m long steel beam, constrained as an horizontal 
cantilever. The cross section is defined by a thin-walled U profile (Fig. 3.16). 
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Figure 3.20 – Location of the optical device and the ruler which allows the measurement 
of the warping of the section. 

 
 On the upper flange, at distance of 0.16 m each other, some little beams, having 
L-shaped section and conveniently altered for the application of the transversal 
actions, are welded. The geometrical dimensions of the structural components are 
reported in Fig. 3.17. 
 The applied loads are represented by masses, each of 3.08 kg, located at 0.23 m 
far from the shear centre of the U-shaped section. In this way, at the same time, 
shear forces and anticlockwise torsional moments are produced (Fig. 3.18).  
 The rigid constraint of the cantilever scheme is realised at one of the edges of 
the beam by means of welding on a steel plate, which is in turn bolted to a fixed 
system (Fig. 3.16, plate A). 
 The system for detecting the axial displacements defining the warping of the 
section is constituted by three main components. The first is a little steel frame 
which is connected, through bolts, to the L-shaped section beam posed at the free 
edge of the examined U-shaped section beam. The second is a laser, rigidly 
connected to the steel frame, whose ray is directed to the free edge of the bottom 
flange of the U-shaped profile (Fig. 3.19a). The last is a spherical mirror, 
characterised by specific geometrical properties adequate for precision 
measurements, which is placed where the ray meets the bottom flange of the main 
beam. According to this configuration, the ray of the laser is reflected on the inner 
side of the upper flange of the U-shaped section beam, where a ruler is pasted (Fig. 
3.19b-3.20). 
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Figure 3.21 – Relative displacement s between the laser (A→A’) and the mirror (B→B’). 

 

 
Figure 3.22 – Amplification of s due to the geometrical characteristics of the spherical 
mirror. 

 
 Because of the concentrated torsional moments, the section twists around its 
shear centre, undergoing, at the same time, a distortion out of its own plane. This 
deformation can be expressed by the system of axial displacements of the points 
constituting the section, once the pure flexural deformations are removed. 
 Experimentally, it may be evaluated considering the relative axial displacement 
of two symmetrical points of the section: the application point of the laser and the 
one of the mirror (Fig. 3.21). 
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 (a) (b) 
Figure 3.23 – Different loading conditions: loading (a) and unloading (b) phase. 

 

 
Figure 3.24 – Measurement of the displacement s’ during the loading phase: the white 
dots represent the consecutive positions of the reflected ray on the ruler. 

 
 Exploiting the geometrical properties of the mirror, as a consequence of the 
displacement s of the incident ray, it is possible to detect, on the upper flange of 
the U-shaped section, the displacement s’ related to the reflected ray. Because of 
the curvature of the mirror, the term s’ represents an amplification of s and, 
therefore, its measurement becomes much easier (Fig. 3.22). In this case, the 
geometrical characteristics of the mirror are such that the amplification factor, that 
is the ratio between s’ and s, is about 12. 
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Table 3.3 – Comparison between analytical and FE method. 

 

 
 The experimental analysis was performed varying the loading condition: in a 
first phase the L-shaped section beams were progressively loaded from z = 0.48 m 
to z = 1.44 m, being z = 0 m the constrained edge of the beam; then, the unloading 
process was conducted following the same order (Fig. 3.23). 
 In Fig. 3.24 the experimental results, which describe the amplified 
displacement s’ related to the loading phase, are reported. It is evident that the use 
of the optical device facilitates the detection of the warping displacements which 
are, otherwise, invisible to the naked eye. 
 The same structure was, finally, examined in a Finite Element (FE) program in 
order to verify the effectiveness of the analytical method in the individuation of 
the structural behaviour of thin-walled open section beams. In this case, the steel 
U-shaped section beam was modelled by means of thin shell elements. In Table 
3.3 the numerical comparison between the analytical and the FE method is shown 
and a good convergence can be acknowledged, since the main difference is about 
4%. 
 Similarly, the same correspondence can be noticed comparing the numerical 
results with experimental ones: in Fig. 3.25 normalised values of the axial 
displacement s are reported taking into account every single loading condition, 
during both the loading and unloading process. 
 Since Vlasov’s theory proves to reach enough accuracy, until the material is 
linear elastic, the proposed analytical formulation can be easily extended to 
consider beams with greater dimensions, as the case of thin-walled open section 
bracings which are usually employed to stiffen horizontally tall buildings [19]. 
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 (a) 

 
 (b) 
Figure 3.25 – Comparison of the results in terms of normalised values of the axial 
displacement s, during the loading (a) and unloading (b) process. 

3.4 Capurso’s Approach for Tall Building Design 

In the design of tall buildings, the structural contribution for horizontal actions can 
be considered predominant if compared to the requirements coming from the 
vertical resistance. As regard medium-high building, one of the most popular 
solutions employed to absorb the horizontal load is the shear wall scheme. 
 Since these bracings often house lift shafts or stairwells, some openings are 
needed along the vertical profile in order to allow the accessibility of the internal 
spaces of the building. This means that most of times they can be treated as thin-
walled open section cantilevers. Nevertheless, in these cases the following 
assumptions must be formulated: 

• each thin plate obeys to Euler-Bernoulli hypothesis of plane sections; 
• the torsional rigidity of each plate derived from Saint Venant’s theory can be 

considered negligible; 
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• the stiffening effects due to rigid connecting beams, located along the cut edge, 
are neglected. 

 The third assumption is, actually, very strong and tends to underestimate the 
transversal stiffness of the global structure. With the increase of the building 
height and, therefore, the increase of the number of floors, the stiffening effect 
caused by the connecting beams is such that the torsional behaviour of the whole 
element is halfway between the cases of closed and open section, determining a 
completely different deformation of the structure. 
 The first hypothesis is in line with Vlasov’s theory, since it involves that the 
longitudinal fibres remain orthogonal to the transversal ones and, therefore, the 
shearing strain γzs is null. Similarly, the second assumption asserts that, in the 
design of vertical bracings characterised by thin-walled open sections, the stiffness 
contribution related to the sectorial rigidity EIω is much larger than the one 
associated to Saint Venant’s theory, which is proportional to the torsional rigidity 
GJt. 
 According to the previous hypotheses, the analytical formulation proposed by 
Vlasov can be adopted to evaluate the structural behaviour of a tall building 
stiffened by a single thin-walled open section cantilever [23]. 
 In a generic coordinate system, the attention is focused on the case in which 
only the transversal concentrated actions Tx, Ty and MZ are considered. For the 
computation of the sectorial characteristics, the origin of the right-handed system 
XYZ coincides with the sectorial pole, whereas the sectorial origin on the profile 
line is generic. 
 Supposing to disregard the axial force in the vertical bracing, the following 
systems of transversal and longitudinal equilibrium equations can be written: 

 EBζ,,SG − ξ,,,IG − η,,,IHG − ϑ,,,IIGD = TH  

 EBζ,,SH − ξ,,,IHG − η,,,IH − ϑ,,,IIHD = TG  

 EBζ,,SI − ξ,,,IIG − η,,,IIH − ϑ,,,IID = −M'I (3.80) 

 EBζ,A − ξ,,SG − η,,SH − ϑ,,SID = N = 0  

 EBζ,SG − ξ,,IG − η,,IHG − ϑ,,IIGD = MG  

 EBζ,SH − ξ,,IHG − η,,IH − ϑ,,IIHD = MH  

 EBζ,SI − ξ,,IIG − η,,IIH − ϑ,,IID = B (3.81) 
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 Eqn (3.81a) allows to highlight the term ζ’:  

 ζ, = ξ,, O�� + η,, O�� + ϑ,, O��  (3.82) 

 In this expression the first two terms hide the geometrical coordinates of the 
centroid of the section, whereas the third one gives information about the diagram 
of the sectorial coordinate ω. In effect, considering the expression (3.39), it 
represents the constant value which, subtracted to the original diagram, gives rise 
to the principal one related to the initially chosen sectorial pole. Consequently, 
Eqn (3.82) becomes: 

 ζ, = ξ,,xb + η,,yb + ϑ,,ω+ (3.83) 

 The substitution of Eqn (3.83) in the last three equations of the system (3.81) 
permits to define new expressions of the longitudinal actions. 

 −EBξ,,JG + η,,JHG + ϑ,,JIGD = MG  

 −EBξ,,JHG + η,,JH + ϑ,,JIHD = MH  

 −EBξ,,JIG + η,,JIH + ϑ,,JID = B (3.84) 

where: 

 JG = IG − Axb\  JH = IH − Ayb\   

 JHG = IHG − Axbyb  (3.85) 

 JI = II − Aω+\ JIG = IIG − Axbω+  

 JIH = IIH − Aybω+ (3.86) 

 Eqns (3.85) represent the implementation of Huygens-Steiner theorem, which 
transfers the system XYZ from the generic origin to the centroid of the section; 
similarly, Eqns (3.86), previously shown as Eqns (3.42), (3.45) and (3.46), 
describe new sectorial properties, for which the principal sectorial diagram is 
considered. 
 The expressions (3.85) and (3.86) also affect the system (3.80), which turns 
into: 

 −EBξ,,,JG + η,,,JHG + ϑ,,,JIGD = TH  

 −EBξ,,,JHG + η,,,JH + ϑ,,,JIHD = TG  
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 −EBξ,,,JIG + η,,,JIH + ϑ,,,JID = M'I (3.87) 

 If the matrix of inertia J and the vectors δ, M and T are introduced: 

 � = � JG JHG JIGJHG JH JIHJIG JIH JI � (3.88) 

 δ = �ξηϑ� M = �MGMHB � T = � THTGM'I
� (3.89) 

it is possible to write the systems (3.84) and (3.87) in a synthetic form: 

 M = −E�δ,, T = −E�δ,,, (3.90) 

 Since the matrix of inertia is symmetrical and positive definite until the 
geometry of the section is such that the moment Iω is different from zero, it is 
possible to invert it and obtain a relationship between the vector δ,,, and the 
concentrated actions T. 

 δ,,, = − 01 �40T (3.91) 

 The analytical solution which gives the transversal displacements of the section 
is acquired integrating the Eqn (3.91) through the boundary conditions at the base 
and at the top of the cantilever. 
 At the constrained end (z = 0): 

 δ = 0 δ, = 0 (3.92) 

whereas, at the top end (z = l): 

 δ,, = 0 (3.93) 

 Once ξ, η and ϑ are known, exploiting Eqn (3.83), the uniform axial 
displacement ζ can be computed, taking into account that the corresponding 
boundary condition requires: 

 ζ�J = 0� = 0 (3.94) 

from which we obtain: 

 ζ = ξ,xb + η,yb + ϑ,ω+ (3.95) 
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Figure 3.26 - Shear walls constituted by thin plates converging in a single point. 

 
 Finally, the displacement components u, v and w can be easily derived from 
Eqns (3.5), (3.6) and (3.13), whereas the internal stress state is given by Eqns 
(3.19) and (3.26). 
 This analytical formulation cannot be applied in presence of specific sections 
for which the matrix of inertia becomes singular. These are the cases of shear 
walls constituted by a single thin rectangular plate or many thin plates converging 
in a single point, as shown in Fig. 3.26. In the first case, in effect, one of the two 
moment of inertia Jx, Jy and the sectorial moment Jω become null; in the second 
case, only Jω is equal to zero. Therefore, in both cases, the matrix J cannot be 
inverted and the equation (3.90b) cannot be solved. 

3.4.1 Distribution of the External Actions between Vertical Bracings in Tall 
Buildings 

The described formulation is extended to consider the case of N vertical 
cantilevers which represent the horizontal resistant skeleton of a tall building 
subjected to transversal actions applied to the floors according to the global 
coordinate system XYZ (Fig. 3.27). The vertical bracings are connected each other 
by means of in-plane rigid slabs, whose out-of-plane rigidity can be considered 
negligible. 
 The unknown variables of the problem are the floor displacements, identified 
by the translations ξ and η in X and Y direction respectively, and the torsional 
rotation ϑ. 
 If Ti indicates the vector of the transversal actions absorbed by the i-th 
cantilever, by virtue of Eqn (3.90b): 

 T� = −E��δ,,, (3.96) 

where the matrix Ji contains the moments of inertia referred to the centroid of the 
section and to the principal sectorial origin; δ,,, gathers the derivatives of the floor 
displacements ξ, η and ϑ. 
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Figure 3.27 – Floor plan of a tall building stiffened by various vertical bracings. 

 
 If T is the vector of the external loads, the equilibrium condition imposes: 

 T = ∑ T����0 = −EB∑ �����0 Dδ,,, (3.97) 

 Therefore, the combination of N cantilevers behaves as a single cantilever 
whose matrix of inertia is given by the sum of the N matrices related to the single 
cantilevers. 

 ∑ �����0 = � (3.98) 

 δ,,, = − 01 �40T (3.99) 

 Eqn (3.99) can be solved following the procedure previously described for the 
case of a single vertical bracing. 
 Once the floor displacements are known, by means of Eqns (3.2) the 
displacements of each cantilever can be deduced and information regarding the 
stress state can be obtained. 
 Finally, it is interesting to observe the relation between the vector Ti of the i-th 
cantilever and the global vector T: 

 T� = ���40T (3.100) 

 It is evident that each bracing is subjected to an amount of the external load 
proportional to its own inertia, but inversely proportional to the inertia of the 
global system, just like Chapter 2 highlights. 
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3.5 The Stiffening Effect due to Lintel Beams 

In multi-storey buildings, open section shear walls are normally used as an 
economical solution which provides the required lateral stability against wind and 
earthquakes and the possibility of housing stairwells and lift shafts. To this aim, 
they are often rigidly connected, at each floor, to some structural elements, such as 
lintel beams or slabs. This configuration can be analysed as the case of a tubular 
element perforated by a series of regular openings along the height. In this scheme, 
the discrete horizontal components located along the longitudinal cut of the profile 
determine a considerable increase of its torsional stiffness and, thereby, the 
structural behaviour of the element can be completely different, halfway between 
the case of closed section beams and the case of open section beams. Therefore, in 
the design process the evaluation of the interchanged actions between the vertical 
bracings and the structural components of the floors becomes indispensable to 
identify the actual behaviour of the global resistant system. 
 Many authors dealt with this issue. In effect, the first papers started analysing 
coupled planar shear walls connected each other by means of rigid horizontal 
elements. The pioneers of these studies were H. Beck [9] and R. Rosman [90], 
which proposed a method, called the continuum medium technique, on which 
several further papers relied for similar problems. The principle of the method is to 
replace the effect of individual beams or slabs, which interconnect the walls at 
each floor, by continuously distributed shear forces, that concur to stiffen the 
structure. In this way, the system of shear walls can be idealised as a single shear 
flexural cantilever characterised by a stiffness greater than the sum of its single 
components. Two simple hypotheses are at the base of this method: 

- the points of contra-flexure are assumed to be at mid-span of the 
connecting beams, as long as the cross sections of the walls are such that 
the difference in rigidity is quite negligible: 

- the sections of the walls remain plane after the deformation, whereas it 
does not happen if the whole cross section of the resultant cantilever is 
considered; 

- the connecting beams show a pure flexural behaviour, being axially 
absolutely rigid. 

 According to this approach, many papers were derived. As regard the analysis 
of coupled planar shear walls connected through rigid lintel beams, the papers by 
Schwaighofer [98], Coull and Choudhury [31], Coull and Puri [32], Capuani et al. 
[20-22] can be mentioned. In the same way, for the evaluation of the stiffening 
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effect due to out-of-plane rigid slabs, the first approach, based on the finite 
difference method, was proposed in the paper by Qadeer and Stafford Smith [90]. 
 Then, experimental studies focused on the determination of the effective 
bending stiffness of floor slabs coupling shear walls followed, as shown in the 
papers by Coull and Hag [36], Schwaighofer and Collins [99]. Finally, other 
works, proposed by Coull and Chee [38-40], exploited Finite Element analysis to 
evaluate the stresses arisen in slabs as effect of the rigid connection with planar 
shear walls. In this way they provided a design procedure for checking against 
punching shear failure in slabs. 
 A complete mathematical analogy exists between laterally loaded coupled 
planar shear walls and shafts constituted by open section shear walls subjected to 
torsional actions. In effect, the same hypotheses can be considered valid in this 
case. Rosman [96] himself proposed a synthetic method for the analysis of 
concrete shafts constituted by three-dimensional thin-walled elements and Michael 
[81] obtained a synthetic differential equation for the torsional coupling of core 
walls connected by floor beams between the tips of the flanges, whose general 
solution was confirmed by published test values. 
 The extension of the theory to a complete three-dimensional continuous 
method, focusing on prismatic and non-prismatic elements arranged 
asymmetrically in the floor plan, was later performed by Gluck [53], whereas 
Heidebrecht and Swift [57] based their analysis on the matrix stiffness method. 
 Only later, Tso and Biswas [117] added to the previous formulations the 
possibility of taking into account also the axial deformations of the walls, whereas, 
through the application of the transfer matrix method, Liauw and Leung [74] 
formulated an approach able to consider the possible changes, at different storeys, 
of wall thickness, storey height, loading and depth of the connecting beams. 
 After the seventies, from an analytical point of view, this issue was totally 
abandoned, because of the developments of Finite Element methods, which, 
supported by advanced technology, became popular for structural analyses. Very 
few works appeared: among all, the last ones, implementing the continuous 
connection method, were proposed by Wdowicki and Wdowicka [123, 124] for the 
evaluation of the stress state in non-planar asymmetric shear wall structures having 
stepwise changes in cross-section. 
 Most of the mentioned papers offer simplified and convenient methods for 
hand calculations; nevertheless, even though able to consider several details of the 
possible structural configuration, they prove to be unsuitable to be inserted in a 
global formulation for the analysis of complex tall buildings whose horizontal 
resistant system is composed by various vertical bracings. 
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Figure 3.28 – Shear wall stiffened by uniformly spaced lintel beams (a); the discrete 
system of lintel beams reduced to a continuum of equivalent mechanical properties (b). 

 
 A simplified approach which can be easily considered for the definition of the 
stiffness matrix of core walls stiffened by lintel beams or out-of-plane rigid slabs 
is hereinafter proposed.  
 For the sake of simplicity, a single thin-walled open section shear wall is taken 
into account for the analysis. Along the cut edge some lintel beams of rectangular 
section are arranged as horizontal elements connecting the extremities of the open 
section (Fig. 3.28). 
 The main effect due to the horizontal braces is the increase of the rigidity of the 
shear wall when subjected to torsion. From this point of view, this configuration 
moves away from the theory of open sections and gets closed to the one related to 
hollow sections. 
 Also for these elements, the hypotheses proposed by Vlasov and Rosman are 
supposed to be valid. In addition, the horizontal braces are considered deformable 
in their plane and their structural behaviour depends on their flexural 
deformations. 
 If the shear wall is stiffened by n discrete lintel beams, it is necessary to solve a 
system of n compatibility equations in which the unknowns are defined by n 
transversal forces developed in the beams. Unfortunately, this procedure turns out 
to be not suitable for the proposed aim. 
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Figure 3.29 - Longitudinal distributed shear loads r(z) absorbed by the equivalent 
continuum. 

 

 
Figure 3.30 – Effect of a single lintel beam on a thin-walled open section beam. 

 
 In the case of tall buildings, the storey height is such that the lintel beams 
corresponding to the floors are closely spaced along the shear wall. Therefore, the 
resultant system can be reduced to a composite spatial system constituted by the 
thin-walled shear wall and a plate equivalent in its mechanical properties to the 
transversal connections and able to sustain only shear stresses. 
 The stiffening effect of the plate can easily envisaged by cutting it 
longitudinally where the flexural moment is supposed to vanish and simulating the 
presence of longitudinal distributed shear loads r(z) applied to the sides of the cut 
with opposite direction. These actions do not produce any bending moment on the 
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vertical cantilever and the resultant axial force is equal to zero. On the contrary, 
only bimoment action is produced, since the two equal and opposite forces cause 
the warping of the cross-section of the shear wall (Fig. 3.29). 
 With the aim of identifying this stiffening contribution, let us consider the 
structural resistance of a single lintel beam defined by a rectangular section. Due 
to the warping of the section, the extremities of the horizontal beam undergo the 
same deformations, but with opposite sign: a transversal displacement and a plane 
rotation (Fig. 3.30). If we consider the extreme points A and B of the section, their 
vertical displacements due to the warping can be computed taking into account 
Eqn (3.13). 

 w� = −ω�ϑ, (3.101) 

 w] = −ω]ϑ, (3.102) 

 The rotations can be obtained after the computation of the same vertical 
displacements related to the points A′ and B′, which correspond to the sides of the 
imaginary cut. 

 φ� = B�R�4�RD�z \⁄ � = �b + e�ϑ, (3.103) 

 φ] = B�¡�4�¡D�z \⁄ � = �b + e�ϑ, (3.104) 

being L the length of the lintel beam, b and e the characteristic dimensions of the 
open section. 
 Because of these displacements, the lintel beam is subjected to an internal shear 
force of constant value R, which is given by: 

 R = 0\1V£z¤ �ω] −ω� + L�b + e��ϑ, (3.105) 

 For the case shown in Fig. 3.30, the term included in the square brackets can be 
simplified according to the following relationship, which takes into account the 
area A enclosed by the profile line of the channel: 

 �ω] −ω� + L�b + e�� = 2A (3.106) 

 If the beam is considered cut in mid-span, a relative displacement between A′ 
and B′ occurs. Therefore, this implies that, in order to restore the continuity of the 
beam, a couple of forces R has to be applied to both sides of the cut. 
 According to the theory of sectorial areas, the bimoment action produced by 
any axial force applied to the section is the negative product of the force and the 
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sectorial coordinate ω of the point to which the force itself is applied. This means 
that, due to the couple of forces R, a resultant bimoment action is produced: 

 B = −R�ω]� −ω��� (3.107) 

in which 

 ω�� = ω� − �¦j§�z\  (3.108) 

 ω]� = ω] + �¦j§�z\  (3.109) 

 Consequently, a relationship between the bimoment action and the first 
derivative of the twist angle is acquired and a stiffness coefficient which takes into 
account the presence of the lintel beam can be highlighted: 

 B = − ow1V£z¤ A\ϑ, = −kϑ, (3.110) 

 k = ow1V£z¤ A\ (3.111) 

 These findings can be used to consider the global system of lintel beams 
connected to the open section shear wall. 
 According to the hypothesis of a plate having equivalent mechanical properties, 
if the spacing of the lintel beams is uniform, the concentrated forces R related to 
the single beam and applied to the sides of the cut can be transformed into two 
loads r(z) uniformly distributed along the sides of the longitudinal continuum cut 
(Fig. 3.29). 

 r�J� = R h⁄ = \o1V£ªz¤ Aϑ, = «\�ªϑ, (3.112) 

 The infinitesimal loads r(z)dz produce a resultant infinitesimal bimoment 
action, which is given by: 

 ¬B = −r¬J�ω]� −ω��� (3.113) 

from which we obtain: 

 −r�ω]� −ω��� = ¬B ¬J⁄  (3.114) 

 Exploiting Eqn (3.67c) and differentiating Eqn (3.113) with respect to z, a 
distributed torsional action is computed. 

 ∗ = r,�ω]� −ω��� = ow1V£ªz¤ A\ϑ,, (3.115) 



94 S. Cammarano – Static and Dynamic Analysis of High-Rise Buildings 

 
Figure 3.31 – Coupled shear walls constituting a symmetrical shaft. 

 
 This contribution can directly inserted in the differential equilibrium equation 
related to the angle of rotation ϑ (Eqn 3.60d): 

 EIIϑVW − GJZϑ,, = m+m∗ (3.116) 

 Substituting Eqn (3.115) in (3.116) and gathering the coefficients of the second 
derivative of ϑ, a new differential equilibrium equation is obtained, in which the 
inertia Jt is increased because of the presence of lintel beams closely spaced along 
the cut edge of the open section shear wall. 

 EIIϑVW − GJZ∗ϑ,, = m (3.117) 

 JZ∗ = JZ + vsV£�0j¯�ªz¤ A\ (3.118) 

 The expression (3.118) proves to be very convenient for practical use. In effect, 
regardless of the approach considered for the structural analysis of the shear wall, 
the stiffening effect caused by rigid lintel beams can be taken into account simply 
computing the increased inertia Jt

* instead of the original one Jt. In addition, the 
same approach can be implemented for the analysis of coupled open section shear 
walls constituting a symmetrical shaft. According to this configuration, the flanges 
of the walls are connected each other by means of rigid beams. Referring to Fig. 
3.31, the previous expressions can be used taking into account that the 
simplification (3.106) is no more valid. 
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 Finally, if the stiffening effect is caused by out-of-plane rigid slabs, the 
proposed formulation remains valid, since their contribution is reduced to the 
definition of the corresponding stiffness term k of Eqn (3.111). The latter can be 
found in literature, most of times acquired through experimental tests. Otherwise, 
it can be obtained analytically, as the case of Vlasov, who considered slabs acting 
as flat plates in torsion. In this way he defined the following expression: 

 k = ¦�1Z¤s�0j¯� (3.119) 

where b and d are the slab dimensions, whereas t is the corresponding thickness. 
 Another convenient approach, based on experimental analyses, is to consider 
an equivalent lintel beam and determine its corresponding geometrical dimensions 
in order to simulate the stiffening effect of the real slab. 

3.5.1 Numerical Example 

 

Figure 3.32 – Floor plan of a 15-storey building stiffened by an internal core tube. 
Dimensions in metres. 

Table 3.4 - Geometrical properties of the core tube. Within brackets the properties 
changed due to the stiffening effect of the lintel beams. 

Ix [m
4] Iy [m

4] Iω [m6] Jt [m
4] xC [m] yC [m] 

30.5 38.8 302.7 0.189 (2.75) 0 5.64 



96 S. Cammarano – Static and Dynamic Analysis of High-Rise Buildings 

 

   
 (a) (b) 
Figure 3.33 – Core tube system modelled in the FE program without (a) and with (b) rigid 
lintel beams. 

 
To highlight the effectiveness of the proposed method, a well-known example 
proposed in the paper by Taranath and Stafford Smith [110] and, then, resumed by 
Pekau et al. [87] is here modelled. It is the case of a core tube, constituted by a 
thin-walled open section beam, subjected to an horizontal action which causes, at 
the same time, bending and torsion of the building, since the shear centre does not 
coincide with the centroid of the structural system. 
 The analysis is performed through the formulation described in the previous 
section and by means of a computer software implementing the Finite Element 
method. 
 The scheme of the 15-storey building having a square plan is shown in Fig. 
3.32. The structural material is defined by the following mechanical properties: 
Young’s modulus equal to E = 2.76 × 104 MPa and Poisson’s ratio ν = 0.15. The 
storey height is h = 3.81 m, corresponding to a total height H = 57.15 m. The 
geometrical parameters of the resistant cantilever are given in Table 3.4. 
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Figure 3.34 – Comparison in terms of torsional rotations between the present method and 
FE method, with (LB) or without the stiffening effect due to rigid lintel beams. 

 

 
Figure 3.35 – Trend of the bimoment action with (LB) or without the stiffening effect due 
to rigid lintel beams. 

 
 In the analysis the effect of rigid lintel beam connecting the free ends of the cut 
edge of the open section is taken into account. From a geometrical point of view, 
these beams are characterised by a depth of 0.457 m and a width equal to the 
thickness of the shear wall. 
 The structure is subjected to a distributed horizontal load in X direction whose 
intensity is 1.197 kN/m2; it corresponds to a resultant action, passing through the 
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geometrical centroid of the core tube, equal to 69.5 kN for each floor, with the 
exception of the top floor, where the value is halved. 
 In Fig. 3.34 the results in terms of torsional rotations are highlighted. As it can 
be seen, the analytical method is very closed to FE approach for both examined 
configurations. 
 The change in the structural behaviour of the building due to the stiffening 
effect of rigid lintel beams is self-evident. The curve related to the stiffer case 
proves to be very different in shape from the other case and, moreover, we can 
assume that it gets closer to the case of a thin-walled cantilever defined by an 
hollow section. 
 In the same way, as a consequence of the reinforcement, also the bimoment 
action, which is not clearly obtainable from the FE program, is strongly affected, 
as shown in Fig. 3.35. The presence of the lintel beams determines the appearance 
of concentrated resistant bimoment actions which oppose to the one generated by 
the external load. 
 The achieved results, consistent with those indicated by Taranath and Pekau, 
underline that, in the design process, the presence of stiffening elements, such as 
lintel beams or slabs, has to be taken into consideration for a correct analysis even 
if approximate, since the structural behaviour of the entire building can be totally 
different from the case where no reinforcement is contemplated. 
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Chapter 4 

Conceptual Design of Unconventionally Shaped 
Structures 

4.1 Introduction 

The constructions of the last years showed an evolution of the architectural shape 
of tall buildings. At the beginning, the parameter which classified the exceptional 
nature of these constructions was the height. Therefore, for many decades, a race 
for greater structures arose, inevitably conditioning the appearance of the 
buildings. In this phase, designers often preferred to model the external casing in 
order to exhibit innovative structural skeletons; in other cases the external shell 
was conceived to cover them. In any case, the structural component always 
represented one of the main factors able to lead the design of high-rise 
constructions. 
 Only recently, aesthetics has acquired a prime role, undermining the previous 
which has been adapted to it. The evolution caused by the emerging architectural 
trends in design and the developments in structural analysis techniques, due to the 
advent of high-speed digital computers, has led to the current state, in which the 
structural component has to be in the service of non-conventional forms. 
 The scale of skyscrapers is such that their architectural expression turns out to 
be very significant for the urban context in which they are located. Therefore, a 
deep study on the aesthetic adequacy of the external form with respect to the 
existing constructions is compulsory from the point of view of public opinion and 
municipal regulations. The impact on the building aesthetics can often depend on 
the structural solution employed to stiffen the construction, primarily against 
horizontal loads: in effect, some systems show an environmental impact more 
decisive than others. 
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 In braced frames, if the diagonal bracings are inserted within local systems, 
such as inner cores, their effect on the aesthetics is absent and the external casing 
can be modelled according to the requirements of the district. 
 On the contrary, outrigger systems, which exploit the perimeter columns in 
combination with huge belt trusses to reach the stiffness required by the 
legislation, are visually cumbersome since they cause a structural domination in 
the expression of the buildings; in effect, in these cases, very intimate cooperation 
between architects and engineers is required for the final solution. 
 

 

Figure 4.1 – Shanghai World Financial Centre (492 m). 

 
 It is possible to conclude that, when the height is a dominant design factor, the 
construction geometry imposes the external shape of the building. Outrigger and 
tube systems are included in this field, since most of the horizontal resistant 
contribution is located along the perimeter of the structure and, therefore, it is 
almost impossible to hide their aesthetic effect. 
 Often architects exploit these configurations to model futuristic forms, such as 
the case of bundled tubes, which give the idea that the structure grows up to the 
sky. 
 On the contrary, when the structural solutions are adapted to architectural 
projects, the aesthetics prevails, as the case of diagrid structures, and curved forms 
replace prismatic ones. 
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 (a) (b) 
Figure 4.2 – HSB Turning Torso (a) and London Bridge Tower (b). 

 
 Another factor which, recently, has influenced the external casing of the 
structure is the aerodynamics. This trend develops from the need of reducing the 
horizontal wind forces in super-tall buildings. Therefore, chamfered and rounded 
corners are designed as well as streamlined and tapered forms, with openings 
through the building and notches: an example of this ides is the Shanghai World 
Financial Centre, being a tapered building which employs a large through-building 
opening in its top part (Fig. 4.1). Further advantages of this choice are the 
reduction of the along-wing response as well as the across-wind vibration of the 
building caused by vortex shedding. 
 This logic has determined the appearance of twisting and tilting shapes with 
discontinuities and multi-planar facades that are characterising the urban skylines 
all over the world. In particular, twisting forms, developed in these last years as a 
reaction to boxed ones of the modern architecture, provide an improvement in the 
dynamic response of the building, since the vortex shedding is still reduced, 
although, from the structural point of view, they represent a disadvantageous 
solution. In effect, if we consider a square solid section, its moment of inertia is 
the same for any angle of twist considered, but, if a twisting building constituted 
by frames is taken into account, its lateral stiffness is quite reduced if compared to 
the corresponding related to the straight form. 
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 The last evolution of curved shapes is represented by free form building, for 
which a geometrical law along the height is missing. For these cases, however, it 
is clear that the conception is possible only thanks to the developments of 
sophisticated computer software which enhance the capabilities of the structural 
analyses. 
 Nowadays, all over the world, some bizarre shapes have been commissioned 
and, in some cases, already built. Glaring examples are the HSB Turning Torso, a 
twisted skyscraper of 54 storeys (190 m) in Malmo (Sweden), and the 66-storey 
(308 m) London Bridge Tower, also known as Shard of Glass, which is a 
pyramidal shaped building, now the tallest structure in Europe (Fig. 4.2). 
 The emerging complexity of the forms can be balanced by powerful computers 
and innovative Finite Element (FE) software; nevertheless, in the phase of 
preliminary design, in which several resistant configurations are examined, the use 
of approximate methods can support the engineers and address their judgement on 
the choice of the better structural solution. In effect, they would allow to clearly 
identify the key parameters governing the response of the structure as well as the 
force flow acting within the stiffening members of the resistant skeleton. 
 For this purpose, in this chapter numerical procedures for the computation of 
the stiffness matrix of vertical bracings employed in tall buildings, whose 
geometry varies along the height, are proposed. Unusually shaped structures, such 
as tapered or twisted buildings, are considered in the analyses. In order to evaluate 
the effectiveness and the suppleness of the method, comparisons with other 
approaches derived from the literature and numerical examples regarding new 
architectural trends are carried out. 

4.2 Stiffness Matrix for Bracings with Variable Cross-Section 

The computation of the stiffness matrix of vertical bracings having prismatic 
shapes is well-known in literature. The corresponding analytical method can be 
easily implemented in a computer program to evaluate the contribution of the main 
resistant elements to the horizontal strengthening of high-rise buildings.  
 If new architectural trends are taken into account, which require, in some cases, 
bracings with variable cross-section, the evaluation of their stiffening effect 
becomes more complex. This situation can be met when the structural component 
contributes to the external shape of the building casing: in particular, it is the case 
of tube systems which allow to freely model a three-dimensional body, still 
remaining the main load bearing system. 
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 To this aim, appropriate methods able to analyse stiffeners having innovative 
geometry are proposed below, focusing the attention on tapered and twisted 
bracings, having closed or open sections. 

4.2.1 Tapered and Twisted Bracings (Warping Negligible) 

 

 (a) (b) 
Figure 4.3 – Evaluation of the terms belonging to the compliance matrix of the shear wall 
(a); schemes for the computation of the displacement D22 (b). 

 
Because of the nature of the problem and the type of structure involved which can 
be easily assimilated to a planar shear wall for each principal direction of inertia, 
it’s advantageous, for a practical point of view, to consider its plane behaviour and 
compute the floor displacements starting from the applied loads. 
 It’s well-known that a unitary force applied to the i-th level gives rise to 
displacements of all the levels: these values constitute the i-th column of the 
compliance matrix of the stiffener. 
 In the case of 2-storey shear wall, the coefficients of the compliance matrix D 
are: 

 D�� = �����	� D
� = D�� + �����
�	�    

 D�
 = D
� D

 = �����	� + �����
�	� + �����
�	� + ������	� + �����	� (4.1) 

being hi and Ji the storey height and the moment of inertia of the i-th level (from 
bottom to top) respectively (Fig. 4.3a). 
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Figure 4.4 – Multi-storey shear wall having different geometrical characteristics for each 
floor. 

 
 Since some geometrical characteristics related to the two levels of the shear 
wall have been considered different each other, for the definition of the term D22 
it’s more convenient to take into consideration two structural schemes: scheme 1 
shows, for the specific load condition, the first floor constrained; scheme 2, free 
from additional constraints, shows at the first level the resultant system of forces 
due to the initial loading case (Fig. 4.3b). The first four components of the term 
D22 concern the scheme 2: the first two describe the displacement of the first level, 
while the third and fourth are the consequent rigid displacements of the second 
level. The last term of D22 is related to the scheme 1 and represents the 
displacement of the second level being the first one constrained.  
 This procedure can be easily extended to consider N floors, each having its 
own storey height hi and its own moment of inertia Ji (Fig. 4.4). 
 The generalised term Dij (with j ≤ i), representing the displacement of the i-th 
level due to the application of a unitary force to the j-th level, can be evaluated 
through a recursive process. 
 For a given load condition applied to the j-th level, the resultant system of 
forces at the first level is estimated. Then, the displacement of the i-th level for this 
load case is deduced: 
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�����	� + ���������
�	� + � ���
�	� + ���������	� � �l� − l�� (4.2) 

 The same computation is repeated considering the resultant system of forces at 
the k-th level (k = 2, 3, .., j). A complete expression of Dij is given by the sum of 
all contributions. 

 D�� = ∑ ∑ � �����	� + ���������
�	� + � ���
�	� + ���������	� � �l� − l�����������  (4.3) 

 By means of the Eqn (4.3) the computation of the lower triangular part of the 
N×N matrix D is executed. Exploiting its symmetry, as proved by Betti’s theorem, 
the upper triangular part is completed.  
 The same method can be extended to assess its torsional behaviour. In this 
case, neglecting the warping of the section, the generic term of the N×N torsional 
compliance matrix Dϑ is expressed by means of the torsional moment of inertia Jt 
and the shear modulus G. 

 D ,�� = ∑ ∑ ��"	#���������  (4.4) 

 The last step is the evaluation of the 3N×3N stiffness matrix $∗ of the generic 
bracing, in its own coordinate system. Its structure is block diagonal, constituted 
by the 2N×2N stiffness matrix related to the local displacements u and v, $&∗ , and 
the N×N stiffness matrix related to the rotation, $ ∗ . Each of them is obtained by 
inverting the corresponding compliance matrix. 

 $&∗ = �$'∗ (( $)∗ � (4.5) 

 $∗ = �$&∗ (( $ ∗ � (4.6) 

 In the case of twisted bracings, the structure of the stiffness matrix is no longer 
block diagonal, since the sub-matrix $&∗  becomes full. 
 The computation of its components follows the same approach used for tapered 
structures, taking into account the increasing rotation of the sections from the 
ground to the top. 
 Referring to the case of a 2-storey shear wall, a principal coordinate system for 
each floor is defined, so that the system XY is related to the ground level while the 
system (X*Y*)i is related to the i-th level. 
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 (a) (b) 
Figure 4.5 – Model of a twisted bracing, each level showing its own local coordinate 
system (X*Y*)i (a); scheme for the definition of the local components of the external forces 
and flexural moments (b). 

 
 According to this arrangement, all the coordinate systems show the same origin 
(Fig. 4.5). With regards to the first level, let F�∗ be the 2-vector representing the 
shear-loading along the principal axes of the local coordinate system (X*Y*)1 and F� the 2-vector representing the shear-loading along the axes of the coordinate 
system XY, so that: 

 F�∗ = +F',�F),�, = � cos α� sin α�−sin α� cos α�� +F3,�F4,�, = 5�F� (4.7) 

where N1 represents the orthogonal matrix from the system XY to the local system 
(X*Y*)1 and α1 is the rotation angle between the Y axis of the ground level and Y�∗ 
axis of the first level. Likewise, the displacement vector δ�∗  related to the local 
coordinate system (X*Y*)1 is connected with the displacement vector δ1 related to 
the coordinate system XY through the same matrix N1. The local displacements of 
the first floor due to forces placed at the same level along the local axes are 
expressed by means of the principal moments of inertia, as follows: 

 δ',�� = ����	8 F',� δ),�� = ����	9 F),� (4.8) 
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 Taking into account the expression (4.7) for the actions and that corresponding 
to the displacements, the Eqns (4.8), referred to the coordinate system XY, are 
given by: 

 δ3,�� = : ����	8 cos α�
 + ����	9 sin α�
; F3,� + 

  + <: ����	8 − ����	9; cos α� sin α�= F4,�  

 δ4,�� = <: ����	8 − ����	9; cos α� sin α�= F3,� +  
  + : ����	8 sin α�
 + ����	9 cos α�
; F4,� (4.9) 

which, in a concise form, become: 

 δ3,�� = D3,��F3,� + D34,��F4,�  

 δ4,�� = D34,��F3,� + D4,��F4,� (4.10)  

 In the same manner, the rigid displacements of the second floor due to the same 
load condition, in the coordinate system (X*Y*)1, are defined as: 

 δ',
� = δ',�� + ��
�	8 F',� = : ����	8 + ��
�	8; F',�  

 δ),
� = δ),�� + ��
�	9 F),� = : ����	9 + ��
�	9; F),� (4.11)  

and, with regards to the coordinate system of the ground level, as: 

 δ3,
� = <: ����	8 + ��
�	8; cos α�
 + : ����	9 + ��
�	9; sin α�
= F3,� +  

  + <: ����	8 + ��
�	8; cos α� sin α� − : ����	9 + ��
�	9; cos α� sin α�= F4,�  
 δ4,
� = <: ����	8 + ��
�	8; cos α� sin α� − : ����	9 + ��
�	9; cos α� sin α�= F3,� +  
  + <: ����	8 + ��
�	8; sin α�
 + : ����	9 + ��
�	9; cos α�
= F4,� (4.12) 

 Their synthetic form is expressed as follows: 

 δ3,
� = D3,
�F3,� + D34,
�F4,�  
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 δ4,
� = D34,
�F3,� + D4,
�F4,� (4.13)  

 As regards the displacements δ2 due to the loading F2, it’s convenient to 
consider three different contributions. The first two, related to the coordinate 
system (X*Y*)1, depend on the resultant system of forces at the first level: a shear-

loading F
���
 equal in modulus to F2 and a 2-vector M(1), representing the flexural 

moments, equal to F2h. The last contribution refers to the coordinate system 
(X*Y*)2 and describes the displacement of the second floor due to F2 having 
considered the first level constrained. It should be noted that the aforementioned 
actions are referred to the coordinate system of the ground level. 

 The terms related to the shear-loading F
���
 are defined by the Eqns (4.11), by 

means of the components Fx,2 and Fy,2 applied to the first floor. 

 δ',
� :F
���; = : ����	8 + ��
�	8; F3,
 cos α� + F4,
 sin α��  

 δ),
� :F
���; = : ����	9 + ��
�	9; −F3,
 sin α� + F4,
 cos α�� (4.14) 

 The bending contribution of the force F2 at the first level is expressed by the 
components My and Mx, from which the local flexural moments Mv and Mu can be 
defined.    

 M) = M4 cos α� + M3 sin α� = hF3,
 cos α� + F4,
 sin α��  

 M' = −M4 sin α� + M3 cos α� = h−F3,
 sin α� + F4,
 cos α�� (4.15) 

 Therefore, with respect to the system (X*Y*)1, the local displacements of the 
second level due to applied moments Mv and Mu at the first level are easily 
computed: 

 δ',
�M���� = : ��
�	8 + ���	8; M) = : ��
�	8 + ���	8; F3,
 cos α� + F4,
 sin α��  

 δ),
�M���� = : ��
�	9 + ���	9; M' = : ��
�	9 + ���	9; −F3,
 sin α� + F4,
 cos α�� 

  (4.16) 

 The last contribution, which considers the first floor constrained, is given by 
the Eqns (4.8) through the rotation angle α2 between the Y axis of the ground level 
and the Y
∗ axis of the second level. 
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 δ',

�F
� = ����	8 F',
 = ����	8 F3,
 cos α
 + F4,
 sin α
�  

 δ),

�F
� = ����	9 F),
 = ����	9 −F3,
 sin α
 + F4,
 cos α
� (4.17) 

 Thus, the components of the displacement vector δ2 in the coordinate system 
XY are defined by means of the coefficients Dx,22, Dy,22 and Dxy,22: 

 δ3,

 = D3,

F3,
 + D34,

F4,
  

 δ4,

 = D34,

F3,
 + D4,

F4,
 (4.18) 

where 

 D3,

 = : ����	8 + 2 ���	8; cos α�
 + : ����	8; cos α

 + : ����	9 + 2 ���	9; sin α�
 + 

  + : ����	9; sin α

  

 D4,

 = : ����	8 + 2 ���	8; sin α�
 + : ����	8; sin α

 + : ����	9 + 2 ���	9; cos α�
 + 

  + : ����	9; cos α

  

 D34,

 = <: ����	8 + 2 ���	8; − : ����	9 + 2 ���	9;= cos α� sin α� +   

  + <: ����	8; − : ����	9;= cos α
 sin α
  (4.19) 

 As a result, the compliance matrix related to the displacements can be 
assembled and, by inversion, gives rise to the stiffness matrix, whose coefficients 
are referred to the coordinate system of the ground level. In this case, the full 
stiffness matrix is composed by four 2×2 sub-matrices. 
 Considering N floors, the same matrix is hence composed by four N×N sub-
matrices: 

 $&∗ = B $3∗ $34∗$34∗ $4∗ C (4.20) 

 A general procedure for a N-storey structure assimilated to a three-dimensional 
shear wall that tapers and twists at the same time along the height can be 
developed. Therefore, the displacement of the i-th level, in X direction, due to the 
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loading vector Fj = {Fx,j Fy,j} applied to the j-th level, is defined by two 
contributions Dx,ij and Dxy,ij: D3,�� = ∑ ∑ +� �����	8,� + ���������
�	8,� + � ���
�	8,� + ���������	8,� � �l� − l��� cos α�
 +��������   

 + � �����	9,� + ���������
�	9,� + � ���
�	9,� + ���������	9,� � �l� − l��� sin α�
,  

D34,�� = ∑ ∑ +� �����	8,� + ���������
�	8,� + � ���
�	8,� + ���������	8,� � �l� − l��� +��������   

 − � �����	9,� + ���������
�	9,� + � ���
�	9,� + ���������	9,� � �l� − l���, cos α� sin α�  

In the same way, the generic term Dy,ij is given by the following expression: 

D4,�� = ∑ ∑ +� �����	8,� + ���������
�	8,� + � ���
�	8,� + ���������	8,� � �l� − l��� sin α�
 +��������   

 + � �����	9,� + ���������
�	9,� + � ���
�	9,� + ���������	9,� � �l� − l��� cos α�
, (4.21) 

 By means of the Eqns (4.21), the computation of the lower triangular part of 
the 2N×2N matrix D of the displacements is executed. Due to the symmetry, the 
upper triangular part is completed. Once defined, by inversion, the 2N×2N sub-
matrix $&∗ , according to the Eqn (4.6), the complete 3N×3N stiffness matrix k* is 
obtained. 
 In order to evaluate the effectiveness of the Eqns (4.3) and (4.21), two 
comparisons regarding tapered and twisted beams are performed. 
 In the first case, a thin-walled hollow section cantilever is analysed through a 
Finite Element program, in which the structure is modelled by means of thin shell 
elements. Information concerning the geometrical dimensions and the mechanical 
properties are shown in Fig. 4.6a, whereas the results in terms of transversal 
displacements are highlighted in Table 4.1. 
 In the second case, the transversal displacements of a twisted beam are 
acquired from the paper by Zupan and Saje [129]. The scheme of the model as 
well as the geometrical and mechanical properties are indicated in Fig. 4.6b; Table 
4.2 reports the comparison of the acquired results. 
 In both cases, subdividing the beams in 40-50 sub-elements, Eqns (4.3) and 
(4.21) lead to solutions with an adequate degree of accuracy. Besides, such 
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segmentation proves to be plausible in high-rise buildings, being the number of 
floors equal or, at most, greater. 
 

 
Figure 4.6 – Tapered hollow (a) and twisted double symmetrical (b) section cantilever. 
 
Table 4.1 – Free end displacement of a tapered cantilever. 

 
 
Table 4.2 – Free end displacement of a twisted cantilever. 
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4.2.2 Tapered Bracings (Warping Prevalent) 

 

Figure 4.7 – Thin-walled open section bracing, which tapers with respect to the centroidal 
axis. 

 
A numerical procedure for the definition of the stiffness matrix of tapered thin-
walled open section bracings in their local coordinate system is now derived. For 
these structures, the process of tapering refers to a vertical axis passing through the 
barycentre of the section. Since the centroid and the shear centre do not coincide, 
the location of the latter varies section by section (Fig. 4.7). 
 As in the previous cases, the expression of the stiffness matrix k* is obtained by 
the inversion of the 3N×3N compliance matrix D. 
 For this purpose, the computation of the coefficients of the above matrix is 
executed by means of the Principle of Virtual Work, in which the contribution of 
the bimoment action is considered: 

 1�E� ∙ η�H� = I �M�E� J�K��L + B�E� N�K��LO� PQR  (4.22) 

where the apex f stands for the fictional system of internal forces and r for the real 
system of displacements. 
 The proposed method is based on the assumptions that the shear effects on very 
slender structures are negligible and the bimoment action is evaluated supposing 
the torsional rigidity GJt equal to zero. 
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Figure 4.8 – Local coordinate system for a tapered thin-walled open section bracing. 

 

 

Figure 4.9 – Main diagrams for the computation of the compliance matrix of a 2-storey 
bracing. 

 
 By means of the Eqn (4.22), further coefficients arise, so that D becomes a full 
matrix. This means that the torsional behaviour is connected to the flexural one, as 
well as the forces acting along a principal direction give rise also to displacements 
in the other direction. This behaviour is due to the variation of location of the 
shear centre along the longitudinal axis, which consequently affects the definition 
of the resultant actions on the generic level. 
 For the analysis, we suppose to apply the local coordinate system to the shear 
centre of the ground level. The actions, applied to the generic floor according to 
this coordinate system, show an eccentricity compared to the shear centre of the 
same level. This scheme involves further torsional actions on the generic section, 
which have to be taken into account in the study (Fig. 4.8). In this way, each local 
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force, at the same time, causes displacements in its principal direction, according 
to the flexural behaviour, rotations, due to the additional torsional component, and 
displacements in the other principal direction, derived from the contribution of the 
bimoment action. 
 For the case of a 2-storey shear wall, the diagrams of flexural moment and 
bimoment which are taken into account as the contribution of the real system of 
displacements in Eqn (4.22) are reported in Fig. 4.9. The same diagrams, in which 
the generic action is substituted by a unitary load, allow to identify the 
contribution of the fictional system of forces. Thus, after performing the 
calculations, the generic expression for the compliance matrix is 

 S = T S3 S34 S3 S34U S4 S4 S3 U S4 U S 
V (4.23) 

in which only Dx, Dy and Dϑ are symmetrical sub-matrices. In addition, it should 
be noted that the sub-matrices belonging to the lower triangular part of D are 
related to those of the upper part by means of the transpose operation. 
 Once obtained the stiffness matrix by the inversion of (4.23), the last step 
focuses on the addition of the component related to the torsional rigidity GJt, 
previously neglected. It can be easily computed through the Eqn (4.4), which 
defines the corresponding compliance matrix. Then it is inverted and added to the 
N×N sub-matrix related to the rotations. In this way the expression of the matrix 
k* for tapered thin-walled open section bracings is completed. 
 

Table 4.3 – Geometrical and mechanical properties of the U-shaped profile. 

L [cm] E [kg/cm2] G [kg/cm2] Iω [m6] Jt [m
4] 

Mz 
[kgcm] 

40 2100000 805000 
314 (min) 

11059.2 (max) 
5.48 (min) 

11.14 (max) 
300 

 
 In order to evaluate the capabilities of the method, the practical example 
computed by Eisenberger [47] for the analysis of tapered thin-walled open section 
profiles is performed. 
 In Fig. 4.10 the scheme of the beam as well as the dimensions of the extreme 
sections are reported. The geometrical and mechanical properties are indicated in 
Table 4.3. 
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Figure 4.10 – Tapered open section cantilever subjected to torque [47]. 
 

Table 4.4 – Free end rotation [rad] of a tapered thin-walled open section cantilever. 

 

 
 The loading case considered by the author was very simple, being defined by a 
torque applied to the free end of the cantilever beam. The comparison of the 
results in terms of rotation of the free end of the cantilever are highlighted in Table 
4.4. In particular, in addition to the solutions acquired through the present method, 
the table includes the results obtained subdividing the beam in sub-elements of 
equal length, each having constant geometrical properties. In this case, for each 
element, the equation of torsional equilibrium related to thin-walled open section 
beams [119] is solved analytically, employing the following boundary conditions: 
rotation and its derivative equal to zero at the clamped end; bimoment action equal 
to zero at the free end; continuity conditions for the rotation, its derivative and the 
bimoment action at the intermediate sections. As it can be seen observing the table 
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of results, the degree of accuracy of the proposed approach is good, if the 
procedure is applied to the case of high-rise buildings, being the per cent error 
lower than 7%. 

4.3 Numerical Examples 

 

Figure 4.11 – Presumed floor plan of the HSB Turning Torso (dimensions in metres). 

 
The developed numerical procedures can be easily adapted to the analytical 
method proposed in Chapter 2 which allows to analyse the load distribution of 
external actions in tall buildings, stiffened by different types of vertical bracings. 
 In order to highlight the adaptability of the Eqns (4.21) and (4.22), two 
numerical examples which take into account high-rise buildings stiffened by 
twisted or tapered bracings are performed. Both of them are theoretical since any 
structural details have not been provided by the project managers. 
 The first model concerns the 54-storey HSB Turning Torso, design by 
Calatrava in Malmo (Sweden). It is a twisted skyscraper reaching 190 m of height 
with a rotation from the base to the top of 90 degrees (Fig. 4.2a). 
 It is assumed that the lateral stiffening relies on two concentric bracings: the 
innermost element exhibits a circular hollow section which tapers upwards by 
reducing its thickness from 2.5 to 0.4 m; the outermost has a mono symmetrical 
section which twists anticlockwise around its shear centre. Since the latter does not 
coincide with the barycentre, further torsional actions are expected in the 
computation. 
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Table 4.5 – Cross-section properties of the bracings constituting the HSB Turning Torso. 

 
 
 It is assumed that both the cantilevers are made of concrete, whose Young’s 
modulus is 4.5×104 and 2.5×104 MPa for the circular and mono symmetrical 
section respectively, whereas Poisson’s ratio is 0.18 for both. The influence of 
creep and shrinkage is not taken into account in the analysis. The member cross-
section properties are given in Fig. 4.11 and Table 4.5. 
 Concerning the load, only wind actions are considered according to the 
formulas indicated by the Italian Technical Regulations [82], which follow the 
same method contained in Eurocode 1 [48]. Therefore, the wind action can be 
reduced to a system of concentrated static loads, applied to the barycentre of the 
pressure distribution. The size, shape and dynamic properties of the building as 
well as the region and the altitude of the location affect the computation of the 
intensity of the action. For the sake of simplicity, none of the mentioned properties 
has been considered. Therefore, a wind pressure equal to 390.62 N/m2 has been 
adopted. The resultant system of forces acting along the principal directions is 
reported in Fig. 4.12. 
 The results of the analysis are presented in Fig. 4.13 and 4.14. As regards Fig. 
4.13a and 4.13b, the displacements along the principal directions of the coordinate 
system are reported, whereas Fig. 4.13c shows the rotations at the floor levels. 
 Similarly, in Fig. 4.14 the load distribution of the external actions between the 
stiffeners highlights the resistant contribution of the twisted element compared to 
the tapered one. In particular, the former plays a predominant role in the top part 
of the building, whereas, in the bottom part, the latter constitutes the main 
horizontal stiffening. 
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 (a) (b) 
 

 
  (c) 
Figure 4.12 – Wind actions applied to the floors: shear forces along the X (a) and Y (b) 
direction and torque (c). 
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 (a) (b) 

 

  (c) 
Figure 4.13 – Displacements of the floors in the global coordinate system: translation in X 
(a) and Y (b) direction and rotation (c). 

 
 It should be noted a discontinuity next to the constraint due to the different law 
of variation which characterises the bracings. Such difference leads to an exchange 
of high interaction forces in the bottom part of the building, which modifies the 
trend of the shear. 
 The second numerical example is focused on the analysis of a conical structure 
conceived by Norman Foster in 1989 for the city of Tokyo (Japan). The 
Millennium Tower is an high-rise building composed by 170 storeys, which 
correspond to a total height of 840 metres (Fig. 4.15). 
 The present model is imaginary, because only a preliminary design has been 
performed until now. Therefore no details on the floor layout or on the horizontal 
stiffening has been found. Consequently the following structural choices as well as 
geometrical properties can represent a valid proposal for its practical construction. 
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 (a) (b) 
 

 

  (c) 
Figure 4.14 – Loading distribution between the tapered and twisted element: shear in X (a) 
and Y (b) direction and torsional moment (c). 

 
 The proposed horizontal stiffening is composed by seven thin-walled open 
section shear walls which taper upwards, until the 170th floor (Fig. 4.16). 
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Figure 4.15 – Millennium Tower by Sir Norman Foster (www.fosterandpartners.com). 

 

 

Figure 4.16 – Hypothetical scheme of the horizontal stiffening for the Millennium Tower: 
the structural members taper upwards, each having its own tapering law, and reach 
different heights. 
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Figure 4.17 – Hypothetical scheme of the horizontal stiffening for the Millennium Tower: 
global coordinate system XY (a) and geometrical dimensions of the cross-sections at the 
ground floor (in metres) (b). 

 

  

Figure 4.18 – External load condition for the Millennium Tower: shear actions in X and Y 
direction. 
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Table 4.6 – Cross-section properties of the thin-walled open section bracings related to the 
Millennium Tower. 

 
 

 In particular, the inner section reaches the top level with a dimensional 
reduction of 80 per cent, whereas the others, defined by different heights 
corresponding to the 50th, 60th, 70th, 80th, 90th and 100th floor, show a reduction of 
40 per cent. Nevertheless, in all cases the thickness of the walls remains constant. 
 Further details characterise the model: for the case of ‘C’-shaped bracings, the 
same top section has been considered; for the inner bracing, between the 130th and 
170th floor, the initial section has been reduced to a cross-shaped one. 
 The levels, which correspond to a structural discontinuity, are shown in Fig. 
4.16; the geometrical dimensions of the cross-sections are reported in Table 4.6 
and Fig. 4.17. In this case, the material properties are described by Young’s 
modulus equal to 5.0×104 MPa for the ‘C’-shaped bracings and 7.0×104 MPa for 
the inner element; Poisson’s ratio for the entire structural skeleton is 0.18. The 
creep and shrinkage effects are excluded from the analysis. The same load 
condition is taken into account for this numerical example, with a wind pressure of 
390.62 N/m2 applied to the lateral surface of the building. The resultant system of 
concentrated horizontal loads, acting along the principal directions of the global 
coordinate system, is shown in Fig. 4.18. The results concerning the displacements 
along the principal directions of the global coordinate system are highlighted in 
Fig. 4.19, whereas Fig. 4.20 reports the load distribution between the main 
horizontal members. 
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Figure 4.19 – Displacements of the Millennium Tower in X and Y direction. 

 

   

Figure 4.20 – Loading distribution between the inner (Sw N.1) and the ‘C’-shaped 
bracings (Sw N.2-7): shear trend in X and Y direction. 

 
 A clear difference between the two principal directions is observed with respect 
to the shear distribution: on the one hand, the flexural stiffness of the inner section 
along the Y axis is so large that the contribution of the ‘C’-shaped bracings is 
almost negligible; on the other hand, with regard to the X axis, remarkable 
discontinuities are evident due to the different heights of the ‘C’-shaped elements. 
In effect, along this direction, since the latter exhibit a flexural stiffness quite 
comparable to that of the inner member, high interaction forces arise allowing the 
‘C’-shaped sections to absorb, in the bottom part of the building, about 25 per cent 
of the total shear. 
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 These findings may suggest to the designer the possibility of considering 
further structural arrangements or different solutions, such as outrigger systems or 
tubular elements, in order to avoid to concentrate most of the load on a single huge 
bracing. 
 In summary, the previous figures demonstrate the capabilities of the analytical 
method in the evaluation of the gross displacements as well as in the detection of 
the distribution of the external forces between the main horizontal bracings which 
concur to stiffen high-rise buildings. 
 The method can be used to find out the optimal configuration of the structural 
members, which allow to achieve the best performance in presence of static wind 
loads. As a matter of fact, the choice of different heights with respect to the ‘C’-
shaped elements has been driven by the need of reducing the displacements, 
without compromising the living space of the floors. 
 Thus, analytical methods prove to be adequate in the early stage of the 
conceptual design of so complex constructions. With the qualities of a quick data 
preparation and a more transparent evaluation of the results, they can play a prime 
role in support of the designer’s judgment. 
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Chapter 5 

Dynamic Analysis: Evaluation of Free 
Vibrations and Mode Shapes 

5.1 Introduction 

Tall buildings differ from short buildings in terms of the actions which are 
predominant for the global resistance of the construction. In the case of short 
buildings, the geometrical dimensions of the structural components are determined 
evaluating the intensity of the vertical actions; on the contrary, the higher the 
building, the more sensitive it becomes to lateral actions coming from wind and 
earthquakes [111]. 
 As described in Chapter 1, when the total height exceeds 30-40 storeys, tubular 
systems are usually employed, but, within 70 storeys, core wall structures are also 
designed to participate to the horizontal resistance, since they provide the adequate 
lateral stiffness with a relatively low amount of construction material. Such 
elements are present in tall buildings in the form of stairwells or shafts or in 
addition to other shear wall systems, as a service ducts. The corresponding 
geometrical dimensions as well as the location in the floor plan are designed, at the 
same time, to absorb part of the vertical actions and transfer the horizontal actions 
from the superstructure to the foundation. 
 Usually these resistant systems are constituted by thin-walled open section 
bracings, isolated in different position of the floor plan or connected together, with 
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rigid lintel beams, to realise a single element more resistant than the sum of its 
single components. 
 In the design process, particular attention is focused on the determination of the 
principal axes of the resistant skeleton. In effect, if the central axes of the whole 
building coincides with the ones related to the resistant skeleton, lateral loads can 
be assumed to act through these axes and the building is supposed to behave as a 
cantilever structure, exclusively subjected to flexure along its principal directions 
and torsion. On the contrary, when the axes of the building do not coincide with 
those of the horizontal resistant system, combined bending and torsion occur. 
Indeed, this is the effect that arises in presence of asymmetrical core wall structure 
if its shear centre is far from the centroid of the building floor. In these 
circumstances, the response of the building to lateral actions becomes torsionally 
coupled and three-dimensional analyses are needed. 
 Even if, nowadays, most of the structural investigations are conducted by 
means of Finite Element (FE) methods, with the aim of obtaining a preliminary 
assessment of the dynamic behaviour of such structures, simplified analytical 
procedures can represent a valid tool for the evaluation of the main parameters 
which govern the dynamic response of the building. 
 In addition, being based on some chosen hypotheses, they guarantee reduced 
times of modelling and analysis as well as a good accuracy of the results, if 
compared to the ones obtained using FE programs. 
 The investigation can be directed considering two different configurations: the 
dynamic analysis of a single core wall, which depends on its own mass, or the 
total resistant skeleton of the building, where the contribution of mass is just due 
to the presence of the floors. In both cases, the coupling between flexural and 
torsional behaviour must be taken into account. In the first case, in effect, the 
centre of mass, which coincides - by definition - with the centroid of the section, is 
far from the shear centre and, therefore, since the resultant inertial forces are 
eccentric with respect to the shear centre, torsional actions are combined with 
flexural ones. In the second case, thin-walled open section bracings are coupled 
with other structural reinforcements to constitute a single resistant skeleton. 
 The mass considered in the dynamic analysis is concentrated in the building 
floors, whereas the one related to the vertical bracings is assumed negligible.  
 For the examination of these two configurations simplified procedures are 
reported below. The unknown variables are expressed in terms of transversal 
displacements of the section, in the case of a single core wall, or related to the 
building floors, in the case of a system of vertical bracings. 
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5.2 Coupling and Uncoupling Behaviour 

From the analytical point of view, the evaluation of the dynamic response of thin-
walled open section profiles caught the attention of many researchers of the last 
century. In the early 1970s, Timoshenko [115] synthetically resumed the last 
findings about the coupled flexural and torsional vibrations of beams defined by 
sections in which the centroid did not coincide with the shear centre. He reported 
the exact analytical solution in the case of simply supported beams, highlighting 
that, in the case of different end conditions, the solution of the differential 
equations became more complicated and, therefore, it was necessary to refer to 
approximate values by using energy methods. This was confirmed by Garland 
[49], who analysed in 1940 the case of a cantilever beam exploiting the Rayleigh-
Ritz method. In his paper he reported a diagram showing the variation of the 
natural frequencies of the beam with respect to some geometrical properties of the 
section. Nevertheless, he himself recognised that the analytical solutions indicated 
in the paper were approximate and did not allow to obtain the frequencies for 
modes of high order, whereas the ones related to the modes of lower order 
exhibited a reduced accuracy. 
 The drawback could be overtaken if additional terms in the expressions of the 
displacement unknowns were considered. But this meant an extra labour of 
computation, that was implausible for that time. 
 In the same direction, the papers by Gere [51, 52] extended the analysis to 
consider thin-walled profiles without any symmetry, with various end conditions. 
In this case, in the equilibrium equations the warping rigidity was inserted. Design 
curves were again proposed for each end condition analysed. 
 Further simplified approaches based on Vlasov’s theory and Wagner-Kappus’s 
theory were proposed by Bishop et al. [10, 11]. The first attempts for the exact 
determination of coupled bending and torsion vibration characteristics were 
conducted by Dokumaci [44], who undoubtedly filled a significant gap in 
understanding of the structural dynamics of thin-walled opens section profiles. 
 The method, later extended by Bishop [12] taking into account also the 
warping of the section, was focused on the analysis of the typology of the roots of 
the characteristic equation, to which the problem could be reduced. Once defined 
the typology of the roots, the displacement unknowns could be represented by real 
functions with which any end condition could be associated. 
 Later, Yaman [126] extended this formulation to analyse the forced vibrations 
of these beams through the application of the wave propagation approach.  
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 Approaches based on FE methods dealt with the shape functions which 
included the effect of cross-sectional warping: Zhang [128], Chen [29] and Hu et 
al. [62] derived mass and stiffness matrices, considering also the contribution of 
the rotary inertia. 
 The effects caused by the shear flexibility, neglected in Vlasov’s theory, the 
rotatory inertia as well as the presence of variable cross-sectional properties were 
examined in depth by Ambrosini et al. [3] by means of the state variable approach. 
This method was later employed for the dynamic analysis of a thin-walled 
reinforced concrete core, designed to resist to lateral loads [4]. 
 Finally, Tanaka and Bercin [109] resumed the exact formulation proposed by 
Dokumaci and Bishop and devised, using the computer algebra system 
Mathematica, a compact program able to implement and solve the governing 
differential equations describing the coupled bending and torsional vibrations of 
uniform beams having no cross sectional symmetry. 
 In order to highlight the clearness and the effectiveness of the analytical 
method proposed by Dokumaci, a brief summary of the main passages is reported 
below. Furthermore, some practical examples are proposed to evaluate the 
correctness of the results obtained by a compact program, which implements the 
aforementioned analytical procedure and to verify the degree of accuracy through 
the comparison of the results with a FE program. 

5.2.1 Analytical Procedure 
In Fig. 5.1 typical thin-walled open sections, defined by double, single and no 
symmetry, are shown. In the last two cases, due to their geometrical properties, the 
centroid G and the shear centre C do not coincide and, therefore, the 
corresponding relative distance, in the dynamic phase, causes coupling between 
bending and torsion. When bending vibrations in two perpendicular directions are 
coupled with the torsional ones, that is in presence of no symmetry, we refer to the 
case of triple coupling; on the contrary, if the section shows an axis of symmetry, 
the bending in this direction remains independent from the other vibrations, which 
are coupled instead. This is the case of double coupling. Finally, in the case of a 
doubly symmetrical section, each vibration is independent from the others and, 
thereby, the corresponding differential equations can be treated separately. 
 Considering a section free from axis of symmetry (Fig. 5.2), as described in 
Chapter 3, opportune choices of the coordinate systems can conduct to the 
following system of equilibrium equations for a beam subjected to distributed 
transversal actions: 
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Figure 5.1 – Thin-walled open sections: double symmetry (a), single symmetry (b), no 
symmetry (c). 

 

 

Figure 5.2 – Thin-walled open section beam subjected to distributed transversal actions. 

  EI�ξ�� = q
 
 EI
η�� = q�  
 EI�ϑ�� − GJ�ϑ�� = m (5.1) 

 Let’s suppose that the beam, free from external actions, begins to vibrate. Due 
to its own mass, some inertial forces arise and oppose the transversal movements 
of the sections (Fig. 5.3). 
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Figure 5.3 – Inertial forces arising as a consequence of the vibration of the beam. 

 
 Defining the displacements of the centroid in terms of those related to the shear 
centre and differentiating twice with respect to the time t, the accelerations of the 
sections are computed:  ξ� = ξ − y�ϑ  η� = η + x�ϑ (5.2) 
 ξ�� = ��

��� �ξ − y�ϑ� 
 η� � = ��

��� �η + x�ϑ� (5.3) 
 The inertial forces in X and Y direction can be obtained exploiting the 
expressions of the accelerations of the centroid and considering the area A and the 
mass density ρ [kg/m3]: 

 f
 = −ρA ��
��� �ξ − y�ϑ� (5.4) 

 f� = −ρA ��
��� �ξ − y�ϑ� (5.5) 

 The whole rotational inertial force is expressed taking into account the polar 
moment of inertia IP about the barycentre and the eccentricities of the force fx and 
fy with respect to the shear centre: 
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 f" = −ρI# ��
��� �ϑ� + $ρA ��

��� �ξ − y�ϑ�% y� − $ρA ��
��� �η + x�ϑ�% x� (5.6) 

 Due to D’Alembert’s Principle, the inertial forces can be considered as static 
forces and, therefore, they can be added to the expressions (5.1): 

 EI�ξ�� + ρA ��
��� �ξ − y�ϑ� = 0 

 EI
η�� + ρA ��
��� �ξ − y�ϑ� = 0 

 EI�ϑ�� − GJ�ϑ�� + ρI� ��
��� �ϑ� − ρAy� ��

��� �ξ� + ρAx� ��
��� �η� = 0 (5.7) 

where I0 is the polar moment of inertia about the shear centre. 
 As it can be seen, the equilibrium equations are coupled each other due to the 
presence of the eccentricities x0 and y0. If the section is defined by an horizontal 
axis of symmetry, the term y0 is null and the first equation becomes independent. 
In the same way, if the section is doubly symmetrical, both the eccentricities are 
null and the vibrations develop separately. 
 A hypothesis of solution of the system (5.7) requires to write the displacement 
unknowns ξ, η, ϑ as a product of a function of the spatial coordinate z and a 
function of the temporal one t: the former represents the deformation shape of the 
beam, whereas the latter the angular frequency of its free vibration.  ξ = Ζ�(�T�*�  η = Η�(�T�*�  ϑ = Θ�(�T�*� (5.8) 
 Replacing the previous expressions in the system (5.7), it is possible to adopt 
the method of separation of the variables. Therefore, an identity between the 
variables dependent on t and those dependent on z is acquired. Since the values of 
t and z are arbitrary, the identity is always made possible if and only if both the 
members are equal to a constant, here represented by the term (-pn

2). 

 -�./01
23�4/5�67� = 8�8 = −p:;  

 -�<=01
23�=5
67� = 8�8 = −p:;  

 -�>7014��?7@@
2�4�6753�6/43
6=� = 8�8 = −p:; (5.9) 
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 From the system (5.9) a differential equation related to the variable t is 
obtained, whose solution is well-known and depends on the initial conditions of 
the problem:  T� + p:;T = 0 (5.10)  TA�*� = AA cos�pA*� + BA sin�pA*� (5.11) 
where the argument pn of the trigonometric functions represents the angular 
frequency of the free vibration of the beam. 
 If we refer to the equations related to the variable z, the system (5.7) becomes:  EI�Z�� + ρAp:;�−Z + y�Θ� = 0 
 EI
H�� + ρAp:;�H + x�Θ� = 0  EI�Θ�� − GJ�Θ�� − ρI�p:;Θ + ρAp:;�y�Z − x�H� = 0 (5.12) 

 Exploiting the following expressions, the system (5.12) can be re-written in a 
synthetic form. 

 D = K K(L  λ� = �N?-�> λ� = 2�6OP�-�>   
 α� = 23OP�-�.  α
 = 23OP�-�<  α� = 23
6OP�-�>   
 β� = 23�6OP�-�.  β
 = 23
6OP�-�<  β� = 23�6OP�-�>   
 SDT − α�UZ + β�Θ = 0 
 �DT − α
�H − β
Θ = 0  �DT − λ�D; − λ��Θ + β�Z − α�H = 0 (5.13) 

 Setting the determinant of the above system equal to zero conducts to an 
ordinary differential equation of 12th order for each spatial function Z, H or Θ, 
which is given by: 

 det YDT − α� 0 β�0 DT − α
 −β
β� −α� DT − λ�D; − λ�
Z = 0 

 �D[; + a[D[� + a;D] + a^D_ + aTDT + a`D; + a_�F = 0 (5.14) 
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in which:  a[ = −λ� a; = −λ� − α
 − α� 
 a^ = λ�Sα
 + α�U aT = −β�β� + λ�Sα
 + α�U + α
α� − α�β
 
 a` = −α
α�λ� a_ = α
β�β� − α
α�λ� + α�α�β
 
and F denotes Z, H or Θ. 
 Taking for the spatial unknowns a solution similar to Cerz and introducing a 
new variable s = r2, Eqn (5.14) becomes  s_ + a[s` + a;sT + a^s^ + aTs; + a`s + a_ = 0 (5.15) 

 Dokumaci and Bishop demonstrated that the six roots of the variable s are real, 
not null, different each other, three positive and three negative, all depending on 
the value of the angular frequency pn, which is still unknown.  
 As a consequence of s, the roots of the variable r are acquired, together with 
twelve integration constants for each transversal displacement. 
 Since the nature of the roots of s are known, the spatial variables Z, H and Θ 
can be written in the flowing form:  Z�(� = X[ cos�s[(� + X; sin�s[(� + X^ cos�s;(� + XT sin�s;(� +   X` cos�s^(� + X_ sin�s^(� + Xc cosh�sT(� + X] sinh�sT(� +   Xe cosh�s`(� + X[� sinh�s`(� + X[[ cosh�s_(� + X[; sinh�s_(�    H�(� = Y[ cos�s[(� + Y; sin�s[(� + Y^ cos�s;(� + YT sin�s;(� +   Y` cos�s^(� + Y_ sin�s^(� + Yc cosh�sT(� + Y] sinh�sT(� +   Ye cosh�s`(� + Y[� sinh�s`(� + Y[[ cosh�s_(� + Y[; sinh�s_(�    Θ�(� = R[ cos�s[(� + R; sin�s[(� + R^ cos�s;(� + RT sin�s;(� +   R` cos�s^(� + R_ sin�s^(� + Rc cosh�sT(� + R] sinh�sT(� +   Re cosh�s`(� + R[� sinh�s`(� + R[[ cosh�s_(� + R[; sinh�s_(� (5.16) 
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 The substitution of Z(z) and Θ(z) in Eqn (5.12a) allows to identify a 
relationship between the integration constants Xi and Ri: 

 Xh = i 4j.klm4n.o Rh (5.17) 
 In the same way, if H(z) and Θ(z) are inserted in Eqn (5.12b) a similar relation 
is found between Yi and Ri: 

 Yh = i j<klm4n<o Rh (5.18) 
 The expressions (5.17) and (5.18) involves that the remaining unknowns 
related to the integration constants are the terms Ri. The latter can be easily 
computed taking into account the boundary conditions of the beam. 
 For each end and for each transversal displacement, two boundary conditions 
can be identified. Therefore, twelve boundary conditions referred to the spatial 
variables Z, H and Θ allow to write twelve linear homogeneous equations, which 
may be gathered in the following matrix form:  pR = 0 (5.19) 
being R the vector of the unknowns Ri. 
 Nevertheless, since the coefficients of M depends on the unknown pn and the 
trivial solution R = 0 has to be avoided, the annulment of the determinant of the 
matrix M, that is the identification of specific values of pn which make the 
determinant singular, is imposed. 
 Once a value of pn is found, the six roots of s as well as the twelve roots of r are 
obtained and, exploiting the boundary conditions, by means of Eqns (5.17) and 
(5.18) the spatial functions Z, H and Θ are clearly derived. 
 Finally, the complete expressions of the transversal displacements ξ, η and ϑ 
can be written in terms of the infinite values of pn:  ξ = ∑ ZA�(�rAA cos�pA*� + BA sin�pA*�stAu[   η = ∑ HA�(�rAA cos�pA*� + BA sin�pA*�stAu[   ϑ = ∑ ΘA�(�rAA cos�pA*� + BA sin�pA*�stAu[  (5.20) 

 The characteristics of the method permit to consider any boundary condition. 
The latter can be static or kinematic. In general we can refer to clamped, hinged 
and free end conditions: 
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- clamped end: displacements and rotations are constrained; in particular also the 
warping of the section, which is proportional to the first derivative of ϑ, is 
impeded;  Z = 0 Z� = 0  H = 0 H� = 0  Θ = 0 Θ� = 0 

- hinged end: as kinematic conditions, the translations and the torsional rotation 
are prevented, whereas, as static conditions, the flexural moments and the 
bimoment, proportional to the second derivative of ϑ, are considered equal to 
zero;  Z = 0 Z�� = 0  H = 0 H�� = 0  Θ = 0 Θ�� = 0 

- free end: only static conditions are employed, since the flexural moments, the 
total torsional moment, the bimoment and the shears are null.  Z�� = 0 Z��� = 0  H�� = 0 H��� = 0  Θ�� = 0 GJ�Θ� − EI�Θ��� = 0 

5.2.2 Numerical Examples 
The analytical procedure is evaluated performing some examples regarding thin-
walled open section profiles defined by different end conditions. 
 The method is implemented with a program in Matlab environment and three 
cases, coming from the existing literature, are analysed. For each case, a 
comparison of results in terms of natural frequencies is carried out and a high 
accuracy is found. The practical examples are also modelled in a FE program in 
order to verify the effectiveness of the approach. 
 Three typologies of sections are examined in order to put the method on 
probation: the first case is defined by a double symmetry, the second one by a 
single symmetry and the last without symmetry. 
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• Doubly symmetrical section. 

 

Figure 5.4 – Doubly symmetrical I-section beam. 

 

 

Figure 5.5 – Mode shapes of the I-section beam with various end conditions: simply 
supported (a), cantilever (b), doubly constrained (c), constrained-hinged (d) and free ends 
(e). 

 
 The first case is represented by a I-section beam shown in Fig. 5.4, whose 
geometrical and mechanical properties are reported in Table 5.1. Various end 
conditions are taken into account and the results, reported in Table 5.2, are 
compared to the ones obtained through the exact solution proposed by 
Timoshenko [115]. In Fig. 5.5 the first three mode shapes of the beam for each end 
condition are highlighted. 
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Table 5.1 – Geometrical and mechanical properties of the I-section beam. 
E [N/m2] 2.1×1010 Ix [m

4] 5.33×10-3 Iω [m6] 2.67×10-5 
ν [−] 0.3 Iy [m

4] 1.35×10-4 ρ [kg/m3
] 2700 

L [m] 3 Jt [m
4] 1.34×10-5 I0 [m

4] 5.46×10-3 
 
Table 5.2 – Natural frequencies [Hz] of the beam according to various end conditions.  

Mode N. 
Simply supported Cantilever Doubly constrained 

X Dir. Y Dir. Rot. X Dir. Y Dir. Rot. X Dir. Y Dir. Rot. 

1 26.75 168.03 36.93 9.53 59.86 15.47 60.64 380.91 78.82 

2 107.00 672.12 139.18 59.72 375.14 80.30 167.15 1049.98 215.02 

3 240.75 1512.27 309.46 167.22 1050.40 216.60 327.69 2058.38 419.60 
 

Mode N. 
Constrained - Hinged Free ends 

X Dir. Y Dir. Rot. X Dir. Y Dir. Rot. 

1 41.79 262.50 55.39 60.64 380.91 15.69 

2 135.42 850.65 174.95 167.15 1049.98 83.53 

3 282.54 1774.82 362.38 327.69 2058.38 218.01 

 

• U-shaped section beam with one axis of symmetry. 

 

Figure 5.6 – U-shaped section beam having the Y axis as axis of symmetry. 
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Figure 5.7 – Schemes related to the first three mode shapes of the U-shaped section beam, 
in the case of simply supported end conditions. 

 

Table 5.3 – Geometrical and mechanical properties of the U-shaped section beam. 
E [N/m2] 6.89×1010 Ix [m

4] 2.77×10-9 Iω [m6] 8.61×10-14 
v [-] 0.316 Iy [m

4] 1.41×10-9 ρ [kg/m3] 2597 
L [m] 1.016 Jt [m

4] 5.42×10-12 I0 [m
4] 2.35×10-8 

 

Table 5.4 – Comparison in terms of natural frequencies [Hz] between the proposed 
method and a FE program. 

Mode 
N. 

Simply 
supported 

Cantilever 
Doubly 

constrained 
Constrained - 

Hinged 
Free ends Max Err. 

[%] 
FEM An. FEM An. FEM An. FEM An. FEM An. 

1 25.5 24.5 11.9 11.4 41.3 40.2 32.7 31.6 56.2 54.4 -4.2 

2 65.8 65.0 24.0 23.2 102.7 101.2 87.1 85.4 57.5 59.3 -3.5 

3 73.4 71.5 43.6 42.7 147.7 147.4 102.1 101.6 116.2 114.8 -2.6 

4 123.3 126.0 57.5 58.3 188.7 189.0 166.7 165.8 148.6 147.4 2.2 

5 146.3 144.7 109.1 107.4 254.7 266.0 181.8 187.6 198.4 198.4 4.5 

Err. [%] = (Analytical-FEM)/FEM×100 

Uncoupled (Y direction) 
       

 
 The geometry of the section of Fig. 5.6 is derived from the paper by Bishop et 
al. [10, 11]. Since an axis of symmetry is present, coupling between bending in X 
direction and torsion appears and, therefore, the corresponding natural frequencies 
coincide; on the contrary, the bending behaviour in Y direction is independent 
from the others. 
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 The geometrical and mechanical properties of the beam are described in Table 
5.3, whereas Table 5.4 reports the results in terms of the first three natural 
frequencies of the system. As regard the case of free ends, the results obtained by 
the implementation of the method in Matlab are perfectly comparable with those 
indicated first by Bishop [12] and, then, confirmed by Yaman [126]. 
 Furthermore, in order to evaluate the effectiveness of the method, a comparison 
with a FE program is proposed. As it can be seen in Table 5.4, the per cent error 
remains less than 5% for all the considered schemes. 
 In Fig. 5.7 a scheme of the transversal displacements related to the case of 
simply supported beam is shown for the first three natural frequencies. 
 

• Generic thin-walled open section beam without any axis of symmetry. 

 

Figure 5.8 – Generic section beam having no axis of symmetry. 

 
Table 5.5 – Geometrical and mechanical properties of the generic section beam. 

E [N/m2] 7×1010 Ix [m
4] 2.34×10-8 Iω [m6] 5.82×10-13 

ν [-] 0.35 Iy [m
4] 4.1×10-9 ρ [kg/m3] 2700 

L [m] 1 Jt [m
4] 5.21×10-11 I0 [m

4] 4.6×10-8 
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Figure 5.9 - Schemes related to the first three mode shapes of the generic section beam, in 
the case of simply supported end conditions. 

 

Table 5.6 – Comparison in terms of natural frequencies [Hz] between the proposed 
method and a FE program. 

Mode 
N. 

Simply 
supported 

Cantilever 
Doubly 

constrained 
Constrained - 

Hinged 
Free ends Max 

Err. 
[%] FEM An. FEM An. FEM An. FEM An. FEM An. 

1 51.53 47.78 19.21 18.13 87.37 82.03 69.50 65.06 70.04 71.26 -7.28 

2 66.41 64.38 30.56 30.26 130.27 127.54 93.21 90.49 114.81 107.19 -6.64 

3 155.55 146.07 59.98 61.20 211.18 202.31 181.87 172.45 147.29 143.44 -6.10 

4 160.53 161.69 102.59 99.49 342.37 347.70 242.23 247.34 244.21 232.95 -4.61 

5 229.56 225.33 133.49 132.20 347.71 355.25 285.56 282.91 356.25 352.91 2.17 

Error [%] = (Analytical-FEM)/FEM×100 

 
 Information regarding the geometry and the mechanical characteristics of the 
generic section beam can be found in the paper by Yaman [126] and Arpaci [7]. 
 The comparison with the results obtained by Yaman and Arpaci concerns the 
case of simply supported beam. All the other end conditions are verified through 
the definition of the model in a FE program. The results are reported in Table 5.6. 
 It is necessary to notice that the results indicated by Yaman and Arpaci are less 
accurate than those acquired by the present formulation. In effect, as the previous 
example, the per cent error related to the FE method proves to be very small, being 
not more than 8%. In Fig. 5.9 the scheme of the displacements of the section for 
the first three natural frequencies, in the case of simply supported beam, is 
highlighted. It is evident that the beam is subjected, at the same time, to bending in 
both principal directions and torsion. 
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5.3 Three-Dimensional Formulation for the Dynamics of Tall 
Buildings 

In this section, a semi-analytical formulation for the evaluation of the free 
vibrations of a three-dimensional tall building is proposed. The need of a 
preliminary assessment of the free vibrations of such constructions in the phase of 
conceptual design is essential, being these structures usually subjected to dynamic 
actions. It is well-known that vibrations are of interest for the structural design, 
but, especially, for the living comfort of the occupants. Therefore, as demonstrated 
by Stafford Smith and Crowe [100], Wang et al. [122] and Zalka [127], an 
evaluation, even if approximate, of the predominant modes of vibration is 
compulsory. 
 Several papers dealt with this kind of subject, relying on different formulations 
and considering various vertical elements as horizontal bracing. Among all, the 
papers by Pekau et al. [86, 87] are noteworthy. By means of this approach, called 
Finite Storey Method (FSM), the global behaviour of the building depends on the 
nodal displacements of two-storey substructures into which the whole construction 
is split. As a result, a reduced number of nodes are considered so that the 
computational time turns out to be very short. Furthermore, the formulation allows 
to consider both frames and shear walls, in a single scheme or composed to 
represent a tube-in-tube configuration. 
 For the dynamic analysis of coupled shear walls, the continuum medium 
technique is commonly used, because it permits to replace the discrete system of 
connecting beams with an homogeneous medium of equivalent properties. The 
application to high-rise structures can be found in Tso and Chan [116], Capuani et 
al. [22] and Swaddiwudhipong et al. [105]. The analysis of coupled open section 
shear walls connected each other by means of rigid lintel beams is treated in the 
papers by Mendelson and Baruch [78, 79], who examined in depth the response of 
non-symmetrical multi-storey structures with or without damping effect. The same 
subject was also studied by Meftah et al. [76] who applied the Galerkin technique 
to formulate an approximate handy method for the evaluation of the free vibrations 
of buildings braced by shear walls and open section elements. 
 In line with the mentioned formulations, the proposed method allows to 
consider as components of the building resistant core several types of bracings, 
such as frames, braced frames and shear walls, having doubly symmetrical or 
asymmetrical, hollow or open sections. It is directly derived from the papers by 
Carpinteri et al. [24-28], in which only static analyses are computed. 
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Figure 5.10 - Scheme of the j-th floor of a tall building stiffened by M vertical bracings in 
the global coordinate system XYZ. 

 
 The present approach shows some advantages if compared to other 
methodologies: first of all, the formulation is extremely clear and concise, limiting 
in this way the risk of unexpected errors; furthermore, it allows to model the 
resistant core as a three-dimensional body, avoiding to reduce it to a mere plane 
problem; finally, the number of nodes is reduced to only floor displacements, 
guaranteeing very short times of modelling and analysis, if compared to those of 
FE programs [18]. 

5.3.1 Semi-Analytical Approach 
The dynamic analysis is directly derived from the formulation proposed in Chapter 
2, since the mass of the building floors, along with the corresponding acceleration, 
appears in the global equilibrium equation (2.27). 
 Due to D’Alembert’s Principle, the inertial forces of the structure can be 
considered as static forces and, therefore, they can be added to (2.27). 
 Since only free vibrations and mode shapes are evaluated, in this formulation 
no external actions are taken into account as well as no forced ground motion is 
included in the analysis. 
 The dynamic forces are expressed in terms of the mass and the rotational 
inertia of the floors; on the contrary, the mass corresponding to the structural core 
is considered negligible and, therefore, it is not inserted in the equilibrium 
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expression. As a consequence, the load vector is represented by the product of a 
mass matrix and a vector containing the global accelerations of the building 
storeys. 
 Let the point Ci be the origin of the local coordinate system and, at the same 
time, the shear centre of the section of the i-th bracing; its transversal 
displacements can be written in terms of the global floor displacements ξ, η and ϑ 
through the following expressions in a right-handed system (Fig. 5.10):  ξvh = ξ − yhϑ ηvh = η + xhϑ (5.21) 
where (xi; yi) are the coordinates of Ci in the global coordinate system XYZ. 
 The equilibrium equation for the j-th floor in X direction is given by:  ∑ wk
,hz{ �u − yhΘ�}~hu[ + mzSξ�z − y�zϑ� zU = 0 (5.22) 
in which the following expressions are used: 
� k
,hz{  represents, for the j-th floor, the row of the local stiffness matrix of the i-

th bracing, conveniently rotated to be parallel to the global coordinate system; 
� u is the vector including the floor displacements ξi in X direction; 
� Θ is the vector including the N rotations ϑi of the floors; 
� mj is the mass of the j-th floor; 
� ymj is the coordinate, in Y direction, of the centre of mass of the j-th floor. 

 Eqn (5.22) can be extended to consider all the storeys of the building. The 
concise expression is reported below:  ∑ r�
h�u − yhΘ�s�hu[ + p

u� + p
�Θ� = 0 (5.23a) 
 Similarly, in Y direction, the global equilibrium is given by:  ∑ w��h�v + xhΘ�}�hu[ + p��v� + p��Θ� = 0 (5.23b) 
whereas, for the rotational equilibrium, the following equation can be written:  − ∑ r�
h�u − yhΘ�yhs�hu[ + ∑ w��h�v + xhΘ�xh}�hu[ +  
 +p
�u� + p��v� + p��Θ� = 0 (5.23c)  
 In Eqns (5.23) some stiffness and mass matrices are shown. In particular mass 
matrices include information regarding the mass, the coordinates of the centre of 
mass as well as the polar moment of inertia of the floors. The latter, referred to the 
global coordinate system, can be calculated by means of the mass density µ 
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[kg/m2], the geometrical polar moment of inertia IG, the radial coordinate r of the 
floor barycentre in the XYZ system and the floor area A:  I� = μ�I� + Ar;� (5.24)  
 p

 = p�� = �m[ 0 00 … 00 0 m�� p�� = �I�[ 0 00 … 00 0 I���  
 p
� = �−m[y�[ 0 00 … 00 0 −m�y��

� p�� = �m[x�[ 0 00 … 00 0 m�x��
� (5.25) 

 Further simplifications can be adopted in the definition of Eqns (5.23), through 
the following relations:  �

 = ∑ �
h�hu[  ��� = ∑ ��h�hu[   
 �
� = − ∑ �
h�hu[ yh ��� = ∑ ��hxh�hu[   
 ��� = ∑ �
hyh;�hu[ + ∑ ��hxh;�hu[  (5.26)  
 Therefore Eqns (5.23) become:  �

u + �
�Θ + p

u� + p
�Θ� = 0    ���v + ���Θ + p��v� + p��Θ� = 0   
 �
�u + ���v + ���Θ + p
�u� + p��v� + p��Θ� = 0 (5.27)  
 If the displacement vectors u, v and Θ are gathered together in the global 
displacement vector δ, Eqns (5.27) can be shown in a well-known and very 
synthetic form:  p� δ� + ��δ = 0 (5.28)  
in which the global mass and stiffness matrices are highlighted. 

 p� = Yp

 � p
�� p�� p��p
� p�� p��
Z (5.29)  
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 �� = Y�

 � �
�� ��� ����
� ��� ���
Z (5.30) 

 Depending on the position of the origin of the global coordinate system XYZ, 
the term ��, or p� , can be reduced to a block diagonal matrix, since the mixed sub-
matrices become null matrices. In particular, if the origin of the coordinate system 
coincides with the centre of rigidity of the building or the centre of mass of the 
floor, the expressions Kxϑ and Kyϑ or Mxϑ and Myϑ vanish respectively. In the first 
case, the sum of the products Kxiyi and Kyixi becomes equal to zero, whereas, in 
the second case, the coordinates (xmj; ymj) disappear. 
 The solution of Eqn (5.28) can be deduced supposing that the global 
displacement vector δ is given by the product of two terms: the first is a scalar 
depending on the time t; the other is a vector depending on the spatial coordinate z. 
The latter represents the deformed configuration of the building or its mode shape.  δ�(, *� = H�(�f�*� (5.31)  
 Substituting the expression (5.31) in Eqn (5.28) and pre-multiplying the 
obtained relation with the transpose of the vector H, it is possible to adopt the 
method of separation of the variables. Therefore an identity between the variables 
depending on t and those depending on z is acquired. Since the values of t and z 
are arbitrary, the identity is always made possible if and only if both members are 
equal to a constant, here represented by the term (p2).  H8p� Hf� + H8��Hf = 0 (5.32)  
 =���==�p� = = − ��� = p; (5.33)  
 From Eqn (5.33) two independent equations can be deduced, one related to the 
angular frequency of the free vibration, the other to the mode shapes of the 
building. 

 � f� + p;f = 0H8��� − p;p� �H = 0 (5.34)  
 The solution of Eqn (5.34a) is well-known and can be written in the following 
form:  f�*� = A cos�p*� + B sin�p*� (5.35)  
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where A and B are constants of integration, whose numerical value is found 
considering the initial conditions of the problem. 
 Eqn (5.34b) can be reduced to an eigenvalue problem, from which 3N 
eigenvalues p2 are extracted in order to define the natural frequencies p of the 
structural system. This is developed imposing that the determinant of ��� − p;p� � 
vanishes. Once a root p2 is obtained, it is substituted back into the original set of 
equations, in order to acquire the corresponding eigenvector or mode shape H of 
the system. At the end of the procedure, the displacement vector δ can be 
expressed in terms of all the roots p2; consequently, a 3N×3N matrix containing 
the eigenvectors and a 3N vector composed by the functions f(t) can be defined:  ��(� = rH[ … H^�s Φ8�*� = rf[ … f^�s (5.36)  δ�(, *� = ��(�Φ�*� (5.37)  
 Eqn (5.37) represents the solution of Eqn (5.28). By means of it, together with 
Eqns (2.11) and (2.25), the displacements of the i-th bracing δi

* can be derived. 
 The proposed semi-analytical formulation proves to be clear and concise so 
that errors of interpretation as well as calculation are absolutely minimised. In 
addition, the method demonstrates to take into account a very small number of 
degrees of freedom, ensuring competitive times of modelling and analysis. 
 In the next section two numerical examples highlight the flexibility and 
effectiveness of the proposed approach. 

5.3.2 Numerical Examples 
The free vibrations of a high-rise building are evaluated performing two numerical 
examples in which the horizontal resistance is provided by different types of 
vertical bracings. Some of them are characterised by thin-walled open sections 
and, therefore, are analysed by means of Vlasov’s theory of the sectorial areas 
[119]. The investigation is also performed through a computer program which 
implements the FE method. In this way, a comparison regarding the obtained 
results allows to appreciate the benefit provided by the semi-analytical 
formulation. 
 The model structure is a 60-storey building, defined by a square floor plan. The 
storey height is h = 5 m, corresponding to a total height H = 300 m. Each floor is 
0.5 m thick, with a mass density equal to 2.548 ton/m3 or 25 kN/m3, if the 
reference acceleration is 9.81 m/s2. The material constituting the resistant skeleton 
is concrete having Young’s modulus E = 3×104 MPa and Poisson’s ratio ν = 0.18. 
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Figure 5.11 - Regular (a) and not regular (b) floor plan of the high-rise building. 

 
Table 5.7 - Regular floor plan: geometrical properties of the stiffening elements. 

Element type External Tube Internal Core 

Description 
Square hollow 

section 
Open 

section N.1 
Open 

section N.2 

Second moment Ix [m
4] 3600 72.9 72.9 

Second moment Iy [m
4] 3600 6.75 6.75 

Warping constant Iω [m6] - 72.9 72.9 

Torsional rigidity Jt [m
4] 5400 0.38 0.38 

Global coordinate xc of 
the shear centre [m] 

15 9.5 20.5 

Global coordinate yc of 
the shear centre [m] 

15 15 15 

 
 The stiffening elements show a constant section along the height and their 
contribution to the inertial forces, in the dynamic analysis, is considered 
negligible, as supposed in the previous formulation. 
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Figure 5.12 - Regular floor plan: mode shapes N. 1, 3 and 5. 

 
Table 5.8 - Regular floor plan: comparison of the results in terms of natural frequencies 
[Hz]. 

Mode N. Analytical FEM Error [%] Description 

1 0.1394 0.1372 1.56 
Flexural in 
X direction 

2 0.1419 0.1389 2.13 
Flexural in 
Y direction 

3 0.8736 0.7531 16.00 
Flexural in 
X direction 

4 0.8895 0.7692 15.64 
Flexural in 
Y direction 

5 1.2278 1.1583 6.00 Torsional 

Error [%] = (Analytical-FEM)/FEM ×100 
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Table 5.9 - Not regular floor plan: geometrical properties of the stiffening elements. 

Element type Shear walls Internal core 

Description 
L-shaped 

section N.1 
L-shaped 

section N.2 
Open 

section N.1 
Open 

section N.2 

Second moment Ix [m
4] 12.51 12.51 6.75 6.75 

Second moment Iy [m
4] 3.14 3.14 72.9 72.9 

Warping constant Iω [m6] - - 72.9 72.9 

Torsional rigidity Jt [m
4] 0.09 0.09 0.38 0.38 

Global coordinate xc of 
the shear centre [m] 

0 30 15 15 

Global coordinate yc of 
the shear centre [m] 

0 0 20 31 

Angle ϕ [°] 45 -45 0 0 

*The term ϕ is the angle between the central axes of the section and the global XY 
axes. 

 
 The floor plan of the first numerical example is shown in Fig. 5.11a. Its 
horizontal resistant system is composed by two devices: an external tube covering 
the perimeter of the building with an equivalent thickness of 0.2 m and an internal 
core, constituted by two profiles having thin-walled open sections. 
 For the specific structural configuration, the centre of mass coincides with the 
centre of rigidity, involving the uncoupling between flexural and torsional 
behaviour. 
 The geometrical characteristics of the shear walls are reported in Table 5.7 as 
well as the comparison in terms of natural frequencies between the proposed and 
the FE method are highlighted in Table 5.8 and Fig. 5.12. 
 As it can be seen, the per cent errors concerning the mode shapes N.1, 2, 5 just 
reach 6%, while, for the second order flexural mode shapes N.3 and N.4, they 
increase up to 16%. The latter is caused, in the FE program, by the shear lag which 
affects the tube systems, inducing a non-linear distribution of the stresses in the 
walls, as underlined in [111]. This corresponds to a lower global stiffness and a 
lower natural frequency. 
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Table 5.10 – Not regular floor plan: comparison of the results in terms of natural 
frequencies [Hz]. 

Mode N. Analytical FEM Error [%] Description 

1 0.0125 0.0149 -15.96 
Uncoupled 

flexural in Y 
direction 

2 0.0239 0.0250 -4.62 
Torsional and 
flexural in X 

direction 

3 0.0447 0.0455 -1.56 
Torsional and 
flexural in X 

direction 

4 0.0785 0.0816 -3.90 
Uncoupled 

flexural in Y 
direction 

5 0.1360 0.1364 -0.29 
Bending in X 
direction and 

torsion 

Error [%] = (Analytical-FEM)/FEM ×100 

 
 In the second case, the stiffening system is formed by an eccentric core, similar 
to the previous one, and two angular L-shaped section elements, which develop 
from the ground to the top of the building (Fig. 5.11b). 
 Due to this structural configuration, the centre of mass is about 9 m far from 
the centre of rigidity, determining the coupling of flexural and torsional 
deformations. 
 Tables 5.9 and 5.10 summarise the information regarding the geometrical 
properties of the shear walls and the natural frequencies acquired by the semi-
analytical and the FE method. 
 Also in this case, only the first five frequencies are reported (Fig. 5.13). With 
the exception of the first frequency, corresponding to a flexural deformation in Y 
direction, the results show a high accuracy of the proposed approach, since the per 
cent errors are lower than 5%. On the contrary, the error related to the first natural 
frequency is clearly due to a local stiffening effect caused by the out-of-plane 
rigidity of the floors in the FE program (Fig. 5.14). 
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Figure 5.13 - Not regular floor plan: mode shapes N. 1-5. 

 

Figure 5.14 - Mode shape N. 1: detail of the local stiffening effect caused by the out-of-
plane rigidity of the slabs. 

 
 In effect, as shown in [26], the latter reduces the relative vertical displacements 
of the open section shear walls, producing, at the same time, the increase of the 
global stiffness and, therefore, the growth of the corresponding natural frequency. 
 The proof is given by the second order flexural mode shape in Y direction, 
where a reduction of the local stiffening effect is observed and the corresponding 
per cent error between the approaches decreases.  
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Chapter 6                                                      

Conclusions 

In the design of high-rise buildings, the role of the vertical bracings, devised to 
carry the horizontal actions coming from wind and earthquakes, is a crucial factor 
which usually governs the structural and architectural choices of the professionals. 
 In the preliminary phase of the process, sophisticated tools, such as Finite 
Element programs, are widely used because of their high level of accuracy as well 
as their usability, also in presence of very complex structures. Actually, they can 
also hide some drawbacks: as the complexity increases, they make the process 
more and more expensive and the displayed results demand a substantial degree of 
experience to be understood. On the contrary, a simplified analytical formulation 
can help the engineer find, under specific hypotheses, a clear solution from which 
more thorough computations can start. 
 In this thesis, a synthetic three-dimensional approach, adoptable for static and 
dynamic analyses and aimed for the evaluation of the structural behaviour of tall 
buildings stiffened by different types of vertical bracings, is proposed. The 
structural typologies, considered as independent components of the whole resistant 
skeleton, are represented by shear walls, frames, braced frames and thin-walled 
open section profiles, whose stiffening contribution is evaluated according to 
Vlasov’s theory of sectorial areas. In this last case, an entire chapter is devoted to 
their particular behaviour, being one of the most employed bracings in tall 
constructions; their unusual deformation, called warping deformation, is carefully 
studied and even an experimental test is performed in order to measure, for the 
first time, its effect on slender beams subjected to torsion. 
 Due to the leading role acquired by the aesthetics in the design of the modern 
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high-rise buildings, such as the case of 30 St. Mary Axe (London) and Turning 
Torso (Malmo), special attention is paid to twisting and tapering structures and, in 
particular, synthetic expressions are proposed for the definition of their 
corresponding stiffness matrices. In this way, the original approach can be 
extended to consider also curved shapes apart from the traditional ones. 
 The characteristics of the approach allow the professional to devise a simple 
computer program aimed to perform preliminary analyses for the evaluation of the 
structural behaviour of a tall construction subjected to transversal loads and 
stiffened by various vertical bracings. Starting from basic information, such as the 
geometry of the building, the number and the typology of the horizontal 
reinforcements, the properties of the material and the intensity of the loads, 
substantial data can be acquired: the deformed shaped of the entire system, the 
distribution of the loads between the components of the resistant skeleton, the free 
vibrations, the modal shapes and the internal actions described by Saint Venant 
and Vlasov’s theories. 
 Ultimately, the semi-analytical method proves to be an adequate support to the 
designer’s judgement as well as can be considered as a complementary tool for 
more advanced approaches during the preliminary phases: thanks to the reduced 
number of degrees of freedom, the data preparation and the modelling time are 
definitely faster and clearer and the corresponding analysis can evolve more 
transparently, thus making the process less liable to unexpected errors. 
 Therefore, the design community has to become aware of the possibility to rely 
on both advanced and simplified formulations, since they are aimed to two 
different levels of the structural investigation: in the early stages, approximate 
methods can help to quickly identify the key parameters of the project, whereas, 
during the final ones, Finite Element programs allow to perform detailed analyses 
by means of more thorough computations. 
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