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1 Introduction

Inverse sampling schemes are frequently applied in retrospective epidemiology studies
when the event of interest is rare. Inverse sampling (also called negative binomial
sampling) refers to situations where one samples binary data until one has observed a
fixed number of the event of interest. The sample size is a random variable, which
impacts the (conditional) distributions of some of the test statistics and estimates.

Research on inverse sampling schemes has a long history. Haldane (Haldane (1945b)
and Haldane (1945a)) describes a haematological experiment which investigates the oc-
currence of a rare type of red blood cells, and derives the expected value and variance
of the corresponding estimates under inverse sampling. Steyn (see Steyn (1959)) de-
scribes an experiment where two binary variables are measured jointly and sampling
is complete when a fixed number of joint failures is observed. He derives the correct
distribution of the χ2-test for association under such a sampling scheme. This work is
extended by Rudolph to a multinomial experiment (see Rudolph (1967)).

In the 1990’s, Lui developed methods to compare two groups based on binary end-
points and inverse sampling (Lui (1995), Lui (1996), Lui (1997), and Lui (2000)). More
recently, different exact and asymptotic methods to compare risk ratios or risk differ-
ences across two treatment groups with inverse sampling have been discussed (Tian
et al. (2008), Tang & Tian (2009), and Tang & Tian (2010)). This work is further
improved by Röhmel (see Röhmel (2010)).

An example of a recent epidemiological study which compares conventional and in-
dependent inverse sampling is published by Aggarwal & Pandey (2010). This study
explores the prevalence of lepracy in two different areas of India. The authors conclude
that ”the cost of data collection was more in conventional sampling as compared to
inverse sampling”, acknowledging that the precision of the estimator obtained in the
conventional sampling area was better. Another example is the design of a cytogenetic
study discussed in Moreno et al. (2002). This paper also compares independent inverse
with conventional sampling to conclude that inverse sampling ”could save 24% of the
fixed sample size”.

All these authors consider the case of two groups and independent inverse sampling.
With such a scheme, the number of cases is fixed separately for each treatment group.
Sampling ends in any given treatment group if the target number of cases has been ob-
served for that group. Independent inverse sampling is applied in retrospective experi-
ments, where the sample sizes of both groups can vary considerably, if the underlying
event rates differ. Hence, such a scheme is not feasible in a prospective randomized
clinical trial under double blind conditions.
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In such a prospective randomized trial one needs to assign patients to both groups
throughout the entire study period. This can be achieved by fixing the total number of
cases across both treatment groups when designing the trial. Recruitment of patients
ends when the target number of overall cases has been observed, regardless of the
treatment group. The random sample sizes in both groups will be of comparable size,
even if the underlying event rates differ across the groups. We refer to such a scheme
as inverse sampling to distinguish it from independent inverse sampling.

To illustrate the difference, consider the 2× 2-table

event no event total
placebo R0 Q0 N0

active R1 Q1 N1

total R Q N

summarizing the results of a corresponding trial. With conventional sampling, N0

and N1 are fixed by design, and R0 and R1 are the random variables which contain
the relevant information about the treatment difference. With independent inverse
sampling, R0 and R1 are fixed by design, and N0 and N1 are random variables which
contain the relevant information about the treatment difference. In this paper, we
consider the situation where only R is fixed by design. We show that R1 and (Q1, N)
are the (independent) random variables of interest under inverse sampling, and derive
the corresponding exact and asymptotic distributions.

Inverse sampling is not very common in the context of clinical trials. Chan & Bohidar
(1998) mention an example of a pivotal trial to develop a new vaccine. In their example,
incidence rates are low and large sample sizes would be required with conventional
sampling. Alternatively, sampling is done until a specified number of cases is observed.
Chan & Bohidar (1998) conclude that such a design ”avoids the situation where the
anticipated power is not achieved because the number of cases that occurs by the study
completion is fewer than expected”. In Bolland & Whitehead (2000), an example
from safety monitoring is discussed, where only the relevant adverse events (cardiac
arrests and all cause deaths) are reported to a drug safety monitoring committee. The
committee only has access to these cases, but not to the other patient data for reasons
of blinding. The corresponding safety interim analyses are then purely based on the
cases, and are analogous to the analyses discussed in this paper.

Our motivating example is similar to the example in Chan & Bohidar (1998): a clinical
trial with small incidence rates, designed to run until a fixed number of cases is observed
rather than fixing the sample size. In this paper we discuss the consequences of such
a sampling scheme on statistical inference, including interim analyses, and we explain
the differences to and advantages over conventional sampling designs.
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Our paper is organized as follows. In the next section we present the motivating exam-
ple. Then we introduce the model and the necessary notation. Section 4 is devoted to
exact inference under inverse sampling: the unconditional distributions of the relevant
test statistics differ from those under conventional sampling, which allows us to present
a simple exact alternative to Fisher’s exact test. Exact interim analyses are discussed
in section 5. In section 6 we show that the asymptotic distributions of many relevant
test statistics (like the log odds ratio) and estimators are identical under inverse and
conventional sampling. We also provide an asymptotic argument to show that our al-
ternative exact test has similar power as compared to the usual tests for small incidence
rates. In the last section we discuss the advantages of inverse sampling for particular
situations with very small incidence rates. Proofs are deferred to the appendix.

2 Motivating Example

In cataract surgery one often observes an undesired side effect, endophthalmitis. This
serious ocular infection occurs in approximately 0.1% of the patients. There is reason
to believe that intracameral injection of an antibiotic may reduce this rate to 0.05%.
In order to test this hypothesis, a trial with active treatment (the antibiotic) and a
placebo control is planned, with the primary endpoint being presence or absence of the
ocular infection.

Since the anticipated event rate is very low, inverse sampling is considered. The target
number of cases r is to be selected to achieve a power of 1−β = 0.9 when comparing the
treatment arms, assuming event rates of 0.1% and 0.05%, a type I error of α = 0.025,
and a one-sided test. Unequal allocation of patients to the treatment groups is also
considered.

Even with such a set-up, the expected sample size is in the order of 100,000 to 120,000
patients. This is a huge investment, and hence the sponsor is interested in performing
a number of interim analyses to stop the trial early, either for success, for futility, or
for both. Also, the observed placebo rates may be lower in a controlled clinical trial as
compared to usual clinical practice, again posing a challenge for the overall sample size,
and the interim analyses are designed to provide an early indication of this problem.

In this paper we describe the statistical aspects of designing such a trial. We provide
an alternative and simpler test than Fisher’s exact test, and we describe simple ap-
proaches to perform the interim analyses based on the ideas of stochastic curtailment,
as described in Lan et al. (1982).
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3 Statistical Model and Notation

Let’s begin with the underlying sampling model. For each subject k one observes a pair
(Zk, Yk) of binary random variables. The first component describes the randomization
to placebo (Zk = 0) or treatment (Zk = 1). The second component describes absence
(Yk = 0) or presence (Yk = 1) of the event of interest. The trial ends once r cases
(= events) have been observed, so that the corresponding overall sample size N is a
random variable.

The variables Zk are binary random variables with Prob{Zk = 1} = q, where q ∈]0, 1[
is the probability to be randomized to the treatment group 1. The variables Yk are also
binary with Prob{Yk = 1} = qp1 + (1 − q)p0 =: π, where pl = Prob{Yk = 1|Zk = l}
denotes the probability of experiencing endophthalmitis under treatment (l = 1) or
placebo (l = 0).

The primary objective of the trial is to demonstrate that active treatment prevents the
adverse event of interest as compared to placebo. The corresponding testing problem
is

H0 : p1 ≥ p0 versus H1 : p1 < p0 . (1)

With λ := p1
p0

one can also state the hypotheses in terms of the parameter λ:

H0 : λ ≥ 1 versus H1 : λ < 1 . (2)

Note that the parameter π = π(λ, p0) defined in the previous section depends both on
λ and p0.

Throughout this paper we use bold letters x to indicate column vectors. The corre-
sponding row vector is denoted as xT . Φ denotes the distribution function of a standard
normal distribution N (0, 1), and uα = Φ−1(α) denotes the corresponding critical value.

The notation
P−→ and

D−→ stand for convergence in probability and convergence in
distribution, respectively.

4 Exact Inference

The results of a two-group comparison with binary endpoints are usually summarized in
a 2× 2-table like the one given in the introduction. It is important to note that inverse
sampling alters the distributions for the variables R0, R1, Q0, and Q1, as compared to
conventional sampling. This is shown in this section under general alternatives, not just
under p0 = p1. Moreover, N , N0, and N1 are random variables under inverse sampling,
and we derive their distributions.
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Theorem 4.1 Under inverse sampling, with R = r fixed by design, the density of the
joint distribution of (R1, Q1, N) is

Prob{R1 = r1, Q1 = q1, N = n}

=

(
n− 1

n− r

)(
r

r1

)(
n− r
q1

)
ρr11 (1− ρ1)r−r1ρq12 (1− ρ2)n−r−q1πr(1− π)n−r ,

where

ρ1 =
λq

λq + 1− q
and ρ2 = q

1− λp0

1− (λq + 1− q)p0

(3)

are functions of q and λ, or q, λ, and p0 respectively.

The proof of this theorem can be found in the appendix. The next corollary follows
directly from Theorem 4.1.

Corollary 4.2 Under inverse sampling, the marginal distribution of R1 is binomial
with parameters r and ρ1, denoted by R1 ∼ B(r, ρ1). Moreover, R1 and (Q1, N) are
independent, and the conditional distribution of Q1 given N is a binomial distribution
with parameters N − r and ρ2. The marginal distribution of N is negative binomial
with parameters r and π, e.g. N ∼ NB(r, π). Such a distribution has a density

Prob{N = n} =

(
n− 1

r − 1

)
πr(1− π)n−r ∀ n ≥ r , (4)

expected value r/π, and variance equal to r(1−π)/π2. Finally, the marginal distribution

of Q1 is also negative binomial with parameters r and ρ3 = 1 − q(1−λp0)
q+p0−qp0 . In this case

we use the alternative representation of a negative binomial density, namely

Prob{Q1 = q1} =

(
q1 + r − 1

q1

)
ρr3(1− ρ3)n−r ∀ q1 ≥ 0 . (5)

Note that the situation under inverse sampling is very different from conventional sam-
pling, where R1 and R0 would be independent binomial B(N1, p1) and B(N0, p0) distri-
butions. Under inverse sampling, R0 = r −R1, whereas R1 and Q1 are independent.

An immediate consequence of Theorem 4.1 is that one can simplify simulations. Since
the (conditional) distributions of the sufficient statistics N , Q1, and R1 are known under
both under H0 and under H1, one can simulate them directly, rather than having to
simulate the patient level data (Z1, Y1), . . . , (ZN , YN). To do this, fix the parameter
values q, λ, and p0. Obtain π, ρ1, and ρ2. Then generate N from a negative binomial
NB(r, π) distribution and R1 and Q1 from the corresponding binomial distributions
B(r, ρ1) and B(N − r, ρ2). All other relevant statistics such as N1 = R1 + Q1, N0, etc.
can be obtained from the triplets (N,R1, Q1).
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Under conventional sampling (with n0, n1, and n = n0 + n1 fixed by design) and
very small event rates, one would use Fisher’s exact test to compare the two treatment
groups. This test would use the fact that the conditional distribution of the test statistic
R1, given R = R0 + R1 and Q, is hypergeometric under H0. The next corollary (again
an immediate consequence of Theorem 4.1) shows that this is also true under inverse
sampling.

Corollary 4.3 Under inverse sampling, the conditional distribution of R1 given N =
Q + r and N1 is an extended hypergeometric distribution with parameter κ = λ 1−p0

1−λp0
and density

Prob{R1 = r1|N1 = n1, N = n} =

(
n1

r1

)(
n− n1

r − r1

)
κr1Cr , (6)

where

C−1
r =

min(r,n1)∑
ρ=max(0,n1−n+r)

(
n1

ρ

)(
n− n1

r − ρ

)
κρ . (7)

Under H0 : λ = 1 this extended hypergeometric distribution simplifies to a hypergeo-
metric distribution.

Corollary 4.3 shows that Fisher’s exact test is a valid test under inverse sampling as
well. It rejects H0 if R1 ≤ cN,N1,r,α, with the critical value cN,N1,r,α being determined
from the hypergeometric distribution.

4.1 An Alternative to Fisher’s Exact Test

Under inverse sampling there is a simple alternative to Fisher’s exact test: one can use
the test statistic R1 and the binomial distribution derived in Theorem 4.1. This test
rejects H0 if R1 ≤ cr,α, with the critical value cr,α being determined from the B(r, q)
distribution. This is possible since λ < 1(= 1, > 1) is equivalent to ρ1 < q(= q,> q), so
that one can replace the testing problems (1) or (2) by

H0 : ρ1 ≥ q versus H1 : ρ1 < q . (8)

This resulting test is effectively an unconditional test. Its distribution depends solely
on r and q, which are known at the design stage of the trial, and not upon N and N1.
Hence, from a planning perspective, this test is more convenient than Fisher’s exact
test. We will discuss this further in Section 5.

Note that the conditional and the unconditional distributions for R1 are very close
for very small proportions p0 and p1 since we then expect rather large values of N

July 31, 2014 Version 1.0 8



Inference in Clinical Trials with Small Event Rates under Inverse Sampling Heimann et al.

and N1. Hence N1

N
will be very close to q, implying that the probabilities from the

binomial B(r, ρ1) distribution and those from an extended hypergeometric distribution
are very close. This in turn implies cN,N1,r,α ≈ cr,α, and that the power functions are
approximately the same. More details can be found in the appendix.

Of course, one could also use Q1 as a test statistic for H0, because Q1 (which condi-
tionally on N follows a B(N − r, ρ2) distribution) also carries information about the
original parameters p0 and λ: here λ < 1(= 1, > 1) is equivalent ρ2 > q(= q,< q).

Given that R1 and Q1 are independent, it is also possible to combine R1 and Q1 into a
test which is more powerful than a test based on R1 (or Q1) alone. How much power is
lost when using the unconditional test based on R1? In Section 6 we show that the loss
of information associated with neglecting the information in Q1 is small in our case,
when the proportions p0 and p1 are very small.

5 Interim Analyses Using Exact Distributions

In this section we show how to obtain simple formulae for interim stopping rules or the
probability for early stopping based on the exact unconditional B(r, ρ1) distribution
of the test statistic R1. The simplicity of the unconditional test based on R1 proves
to be very useful in deriving these stopping rules. In contrast, the exact conditional
hypergeometric distribution of the test statistic R1 would not lead to such simple rules.
We use stochastic curtailment here (see Lan et al. (1982)), but other approaches (see
for example Jennison & Turnbull (1999), section 12.1.2) could also be used.

With inverse sampling, an interim analysis can be conducted after the first s < r cases
have been observed. Using stochastic curtailment, one can stop early to reject H0 if the
conditional probability to reject H0 after r cases, given the observed data after s cases,
is large enough (larger than some γ ≥ 1

2
). More formally, one stops early and declares

success if

Probρ1(1)=q{R1 ≤ cr,αγ|R1[s]} ≥ γ . (9)

Here, R1[s] denotes the number of cases in the active treatment group amongst the
first s cases in the study, and R1[r−s] denotes the number of cases in the active treat-
ment amongst the second r − s cases. R1[r−s] follows a B(r − s, ρ1) distribution and is
independent of R1[s]. Note that R1 = R1[s] +R1[r−s].

The significance level at the final analysis has to be set to αγ in order to control the
overall type I error by α, see Lan et al. (1982). The probability in (9) is evaluated under
H0, i.e. under ρ1(1) = q or equivalently λ = 1.
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In our specific case, the early stopping rule (9) can be simplified to

cr,αγ−R1[s]∑
ν=0

(
r − s
ν

)
qν(1− q)r−s−ν ≥ γ , (10)

because of Theorem 4.1 and the independence of R1[s] and R1[r−s].

The probability to stop early for success (which is a function of ρ1) can be obtained as

cr,αγ−br−s,γ∑
ν=0

(
s

ν

)
ρν1(1− ρ1)s−ν , (11)

where br−s,γ is the smallest value such that Probρ1=q{R1[r−s] ≤ br−s,γ} ≥ γ. Since R1[r−s]
has a B(r − s, ρ1) distribution, one can obtain br−s,γ as

br−s,γ = argminb

{
b∑

ν=0

(
r − s
ν

)
qν(1− q)r−s−ν ≥ γ

}
. (12)

Simple expressions to define a stopping rule for futility can also be obtained when using
the binomial distribution of the test statistic R1. Following the ideas in Lan et al.
(1982), one may stop early for futility if

Probρ1(λ){R1 ≤ cr,αγ|R1[s]} ≤ κ , (13)

with 0 ≤ κ ≤ 1
2
. Here the probability is evaluated under the alternative hypothesis,

for example under the parameter λ = 0.5 ⇔ ρ1(0.5) used for sample size calculations.
Note that (13) assumes that one may stop early for futility and efficacy (with stopping
boundary γ). If one only wants to stop early for futility, but not for efficacy, then choose
γ = 1 in (13).

The stopping rule (13) can be evaluated using the binomial distribution of R1[r−s] and
the independence of R1[s] and R1[r−s], just as shown in (10). Moreover, if dr−s,κ is defined
to be the largest value such that Probρ1(0.5){R1[r−s] ≤ dr−s,κ} ≤ κ, one can calculate the
probability to stop early for futility as

s∑
ν=cr,αγ−dr−s,κ

(
s

ν

)
ρν1(1− ρ1)s−ν . (14)

Note that a value dr−s,κ with Probρ1(0.5){R1[r−s] ≤ dr−s,κ} ≤ κ may not exist (i.e. if
Probρ1(0.5){R1[r−s] = 0} > κ). In that case dr−s,κ doesn’t exist for any s′ > s, and the
probability to stop early for futility is 1 for all s′ ≥ s.

It is well known that interim analyses for futility decrease the power of the test, and
that one has to adjust the required number of cases accordingly. This can be done by
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using β
1−κ instead of β when calculating the required number of cases (see Lan et al.

(1982)).

In practice one often wants to conduct several interim analyses. For example, one
may want to conduct a sequence of J interim analyses, each of these after a predefined
number of sj cases (s1 < s2 < ...sJ < r) have been observed in the trial. In our
setting, one may even want to conduct an interim analysis after each observed case.
The formulae derived above are valid in this case as well, regardless of the number
of interim analyses. The quantities cr,αγ − br−s,γ, s = 1, . . . , r − 1, serve as stopping
boundaries for efficacy, and correspondingly cr,αγ − dr−s,κ serve as stopping boundaries
for futility. An interim outcome where R1[s] lies between these two boundaries would
lead to continuation of the trial.

5.1 Motivating Example Continued

Let us return to our motivating example. In order to achieve a power of 1−β = 0.9 with
a type I error of α = 0.025 and a one-sided test, r = 94 cases are required. This assumes
that there are event rates of 0.1% for placebo and 0.05% under active treatment (i.e.
λ = 0.5), and a randomization proportion of q = 0.6 in favor of the active treatment.
The required number of cases r when no interim analysis is planned is displayed as a
function of λ in the upper left graph of Figure 1 (solid red points).

Now assume that we want to conduct an interim analysis after every case, using the
interim stopping rule (9) with γ = 0.8, say. The corresponding required number of
cases is also shown in the upper left graph of Figure 1 (blue squares). For the case of a
clinically relevant effect of λ = 0.5, the graph shows that the required number of cases
is also r = 94 when interim analyses (with γ = 0.8) are planned. This is due to the
discreteness of the underlying binomial distribution.

This effect becomes even clearer when one displays the required number of cases r as a
function of γ, as is done in the upper right graph of Figure 1. This graph is calculated
assuming a relevant effect of λ = 0.5. It presents the number of cases both when no
interim analysis for futility is to be conducted (blue diamonds), as well if an interim
analysis for futility (κ = 0.2, green points) is planned. Again these numbers are exact
calculations using the binomial distribution.

In the case when only interim analyses for efficacy, but no interim analysis for futility
are planned, one can see from this graph that the required number of cases is r = 94,
as long as γ ≥ 0.78. For these values of γ, there are no extra costs in terms of power
or number of cases required when including an interim analysis for efficacy. This effect
also comes into play if one includes an interim analysis for futility (κ = 0.2), but now
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Figure 1: Upper Left: Required overall number of cases r as a function of λ for α = 0.025, 1−β = 0.9,
q = 0.6, with (γ = 0.8) and without an interim analysis for efficacy. Upper right: Required overall
number of cases r as a function of γ for α = 0.025, 1 − β = 0.9, q = 0.6, and λ = 0.5, with (κ = 0.2)
and without an interim analysis for futility. Lower left: Stopping boundaries for efficacy and futility
(r = 94, α = 0.025, q = 0.6, γ = 0.8, and κ = 0.2). Lower right: Probability to stop early for either
futility (assuming λ = 1) or for early success (assuming λ = 0.5), as a function of the number of cases
s at the interim analysis; exact calculations with r = 94, α = 0.025, q = 0.6, γ = 0.8 and κ = 0.2.
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only as long as γ ≥ 0.93.

One can quite generally exploit the discrete nature of the test statistic to optimize the
choice of the parameter γ. The exact boundary can be determined from the nominal
level of the test (α = 0.025 in our case) and the actual level of the test (≈ 0.0193 with
r = 94 in our example) as 0.025γ = 0.0193, which is more or less equal to γ = 0.77372.

In the lower right graph of Figure 1 we present the operating characteristics of the
procedure with r = 94 when adding interim analysis for both efficacy and futility. We
have chosen γ = 0.8 as the criterion to stop for early success, and κ = 0.2 as the
criterion to stop early for futility. Both probabilities are obtained as functions of the
number of cases s required to do the interim analysis. The probability to stop early
for futility (red circles) is evaluated assuming λ = 1. The probability to stop early for
success (blue squares) is evaluated assuming λ = 0.5. One can see that it makes little
sense to conduct an interim analysis with less than 30 cases (i.e. s < 30), because the
probabilities to stop early are close to zero. A 20% chance to stop early for futility can
be achieved with s = 40 cases at the interim analysis. One needs to wait for 57 cases
in order to have a 20% chance to stop early for success.

The lower left graph of Figure 1 displays the corresponding stopping boundaries, under
the same scenario (r = 94, λ = 0.8, κ = 0.2, α = 0.025) as before. The stopping
boundaries cr,αγ − dr−s,κ for futility (red circles) and cr,αγ − br−s,γ for efficacy (blue
squares) are shown.

6 Asymptotic Inference

In this section we explore the asymptotic distributions of estimators and test statistics
under inverse sampling. In the first part we show that the standard estimators known
from conventional sampling are valid estimators under inverse sampling as well. For
example, under conventional sampling p1 would be estimated by p̂1 = R1

n1
. Under inverse

sampling, N1 = R1 + Q1 is a random number, but it turns out that p̂1 = R1

N1
is still

a consistent estimator of p1, and this estimator is asymptotically normally distributed
with mean 0 and variance p1(1− p1) as in the conventional case. In the second part of
this section we demonstrate that the potential power loss associated with the binomial
estimator based on R1, disregarding the information on λ contained in (Q1, N), is
minimal for small values of p0.

Under inverse sampling, r is fixed by design rather than the sample size. Asymptotic
results are obtained for increasing values of r.
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Lemma 6.1 Under inverse sampling with r →∞ we obtain

(
1

r
R1,

1

r
Q1,

1

r
N)

P−→
r→∞

(ρ1,
1− π
π

ρ2,
1

π
) . (15)

The notation
P−→

r→∞
stands for convergence in probability.

This lemma follows from the weak law of large numbers. For details we refer to the
appendix.

Theorem 6.2 Under the conditions of Lemma 6.1 we have

√
r


1
r
R1 − ρ1

1
r
Q1 − 1−π

π
ρ2

1
r
N − 1

π

 D−→
r→∞

N (03,Σ) , (16)

where 03 = (0, 0, 0)T is a three-dimensional column vector with all entries equal to zero,
and where

Σ =

 ρ1(1− ρ1) 0 0

0 1−π
π2 [πρ2(1− ρ2) + ρ2

2] 1−π
π2 ρ2

0 1−π
π2 ρ2

1−π
π2

 . (17)

The notation
D−→

r→∞
stands for convergence in distribution.

The proof of the theorem is provided in the appendix.

As an immediate consequence of lemma 6.1 we obtain p̂1
P−→

r→∞
p1, i.e. the consistency of

the conventional maximum likelihood estimator. Moreover, with a little bit of algebra
one can directly derive √

N1(p̂1 − p1)
D−→

r→∞
N (0, p1(1− p1)) (18)

from Theorem 6.2. Hence, the asymptotic tests and confidence intervals for p1 which
one would use under conventional sampling are valid under inverse sampling as well.
Also, the usual asymptotic confidence interval for the risk difference p1−p0 known from
conventional sampling can be used under inverse sampling.

The odds ratio θ = p1(1−p0)
(1−p1)p0

= ρ1(1−ρ2)
(1−ρ1)ρ2

can be estimated as

θ̂ =
R1(N − r −Q1)

(r −R1)Q1

. (19)
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Corollary 6.3 Under inverse sampling, θ̂ and log(θ̂) are consistent estimators for θ
and log θ (a direct consequence of Lemma 6.1). Theorem 6.2 and the delta method imply

√
r
(

log(θ̂)− log(θ)
)

D−→
r→∞

N (0, σ2
IS) . (20)

The asymptotic variance σ2
IS equals

σ2
IS =

1

ρ1(1− ρ1)
+

π

1− π
1

ρ2(1− ρ2)
(21)

(see Lemma 6.1, (20), and (21)), and can be estimated consistently by σ̂2
IS = r

R1
+ r

Q1
+

r
r−R1

+ r
N−r−Q1

. This implies that the usual confidence interval

log(θ̂)± u1−α/2

√
1

R1

+
1

Q1

+
1

r −R1

+
1

N − r −Q1

(22)

is valid under inverse sampling.

The corollary follows directly from Theorem 6.2, using a Taylor expansion for
√
r(log(θ̂)−

log(θ)). Note that under conventional sampling, the asymptotic limiting distribution is
a normal distribution with mean 0 and variance σ2

CS = 1
qp1(1−p1)

+ 1
(1−q)p0(1−p0)

, which

can be estimated by σ̂2
CS = N

r
σ̂2
IS, with σ̂2 as defined in the corollary.

We now return to a question raised at the end of section 4, where we propose to use the
binomially distributed test statistic R1 for inference about H0 : λ = 1. As a matter of
fact, the independent test statistics R1 and (Q1, N) both carry information about the
parameter λ. Hence, in order to optimally exploit the data, one would need to use a
test statistics which uses both R1 and (Q1, N). How much ”information” do we loose
if we base inference just on R1? In order to answer this question, we now look at the
asymptotic distribution of R1 and Q1 under contiguous alternatives.

Theorem 6.4 Let R̄1 = 1
r
R1 and Q̄1 = 1

N−rQ1. Define a sequence λr = 1 − t√
r

of

contiguous alternatives. Then
√
r(R̄1−q)√
R̄1(1−R̄1)

√
N−r(Q̄1−q)√
Q̄1(1−Q̄1)

 D(λr)−→
r→∞

N

((
−
√

1− p0 t∆
√
p0 t∆

)
,

(
1 0

0 1

))
(23)

holds, where ∆ =
√

q(1−q)
1−p0 , and where

D(λr)−→ indicates that the result holds under the

assumption that the sequence (p0, λr) are the true parameters. Moreover, for the log
odds ratio we can show

√
r

log(θ̂)

σ̂IS

D(λr)−→
r→∞

N (−t∆ , 1) . (24)
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The proof is sketched in the appendix.

One can directly obtain the asymptotic power functions from this result. For example,
λ < 1 implies ρ1 < 1, so that the asymptotic test based on R1 (referred to as the

”R-based” test) rejects H0 : λ ≥ 1 if
√
r(R̄1−q)√
R̄1(1−R̄1)

< uα. From (23) we derive the

corresponding asymptotic power function to be

Probλr

{ √
r(R̄1 − q)√
R̄1(1− R̄1)

< uα

}
−→
r→∞

Φ
(
uα +

√
1− p0 t∆

)
. (25)

Correspondingly, the asymptotic test based on Q1 (the ”Q-based” test) rejects H0 if√
N−r(Q̄1−q)√
Q̄1(1−Q̄1)

> u1−α. Its asymptotic power function equals Φ
(
uα +

√
p0 t∆

)
. The log

odds ratio test (the ”LOR-based” test) rejects H0 if
√
r log(θ̂)
σ̂IS

< uα, and its power

function equals Φ (uα + t∆ ).

These asymptotic power functions demonstrate that the loss in power between the
LOR-based test and the R-based test is negligible for small rates p0: the log odds ratio
test (which uses the entire information contained in R1 and (Q1, N)) provides very little
gain in power as compared to the the R-based test (based on R1 alone). Similarly, these
power functions show that a test based on (Q1, N) alone (the ”Q-based” test) contains
very little information about the parameter of interest λ.

Our theoretical results are confirmed in Figure 2, where we simulated the power of the
three asymptotic tests (R-based, Q-based, and LOR-based), and compared these with
the simulated power of the binomial test, which is based on R1 and its exact binomial
distribution. For small values of r (such as r = 10 in the top row) the asymptotic tests
do not necessarily control the type I error. Hence, the power of the R-based and the
LOR-based tests appears to be better than that of the binomial test, which however
fully controls the type I error and is even conservative. However, this is due to the
asymptotic tests not controlling the type I error. Also, the R-based test may have
better power than the LOR-based test in some scenarios, but largely because the type I
error control is more liberal for the R-based test in these scenarios. For larger values of
r (such as r = 30 in the bottom row) the asymptotic tests control the type I error well,
and hence the simulated power of the asymptotic (R-based) test and the binomial test
are indistinguishable. For the situation considered in this paper (i.e. with small values
of p0 = 0.01 as in the left column), the asymptotic Q-based test has no power, and the
simulated power of the R-based and the LOR-based tests are indistinguishable. For
large values of p0 (such as p0 = 0.5 as in the right column) the power of the Q-based
test is getting closer to that of the R-based test, and one can see that the LOR-based
test has more power than the R-based test.
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Figure 2: Simulated power functions based on 100,000 simulations for three asymptotic tests (based on

R1 (R-based), Q1 (Q-based), and log(θ̂) (LOR-based) as described in Theorem 6.4) and for the exact
test based on R1 using the binomial distribution; top row r = 10, bottom row r = 30, left column
p0 = 0.01, right column p0 = 0.5; all with α = 0.025.

July 31, 2014 Version 1.0 17



Inference in Clinical Trials with Small Event Rates under Inverse Sampling Heimann et al.

7 Inverse Versus Conventional Sampling

In this paper, we derived the exact unconditional distributions for a two-by-two table
under inverse sampling, both under the null-hypothesis as well as under alternatives.
These exact unconditional distributions differ from those obtained under conventional
sampling. The exact unconditional distribution of the test statistic R1 under inverse
sampling allowed us to obtain stopping boundaries for a sequential trial in a particularly
simple manner. Moreover, we can calculate the corresponding probabilities to stop
early for futility or for efficacy exactly. In contrast, under conventional sampling the
interim stopping boundaries are conditional, and stopping probabilities would have to
be evaluated via simulations.

We have also shown that the loss of power when basing inference solely on the exact
unconditional binomial distribution ofR1 is negligible in situations with very small event
rates. The corresponding theoretical result is confirmed via simulations, as shown in
Figure 2.

From a sample size perspective, there is not much difference between the two sampling
schemes. Under conventional sampling, the sample size for the log odds ratio test is

n∗ = σ2
CS∗

[uα+uβ ]2

log(θ∗)2
. The index ”*” emphasizes that the corresponding quantities depend

upon the relevant treatment effect λ∗ and the nuisance parameter p0∗. For the same

design scenario (i.e. λ∗ and p0∗) one needs r∗ = σ2
IS∗

[uα+uβ ]2

log(θ∗)2
cases under conventional

sampling. The expected sample size for this design scenario under inverse sampling is
Eλ∗,p0∗ [N |r∗] = r∗

π∗
, with π∗ = π(λ∗, p0∗). With a little bit of algebra one can show that

the expected sample size is equal to n∗ (see appendix).

The above comparison is valid under the assumption that the design scenario is the true
scenario. In order to fully understand the performance of the two designs, one needs to
compare the conventional sample size n∗ to the expected samples size Eλ,p0 [N |r∗] = r∗

π
from inverse sampling obtained under parameter values (λ, p0) different from the design

parameters (λ∗, p0∗). It is easy to see that
Eλ,p0 [N |r∗]

n∗
= π(λ∗,p0∗)

π(λ,p0)
. The average sample size

required under inverse sampling is smaller than the sample size n∗ under conventional

sampling for all values of (λ, p0) where π(λ∗,p0∗)
π(λ,p0)

< 1.

However, the smaller average sample size comes with a decrease in power as compared

to inverse sampling when π(λ∗,p0∗)
π(λ,p0)

< 1. This is confirmed from the simulated power

functions of the log odds ratio test under the two sampling schemes presented in Figure
3. The power functions correspond 90 cases (inverse sampling) and 127482 patients
(conventional sampling). These numbers were derived from the design scenario with
λ∗ = 0.5 and p0∗ = 0.001. The simulations were done with p0 = 0.001 and for different
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Figure 3: Simulated power function for the log-odds ratio test under inverse sampling (dashed green
line, r = 90 cases) and conventional sampling (dotted red line, n = 127482 patients), and for the
binomial test under inverse sampling (solid black line); 100,000 simulations.

values of λ. The power of the log odds ratio test under inverse sampling is smaller

when λ > λ∗ = 0.5, which is exactly the region where π(λ∗,p0∗)
π(λ,p0∗)

< 1. However, the

average sample size under inverse sampling is smaller than n∗ = 127482 in this region,
as discussed before.

From these asymptotic considerations one cannot see too much of a difference between
the two sampling schemes. The difference becomes more apparent if one looks at
the (simulated) sampling distributions of the log odds ratio ln(θ̂) under inverse and
conventional sampling, the corresponding variance estimators σ̂2

IS and σ̂2
CS, and the

test statistics
√
r ln(θ̂)
σ̂IS

and
√
n ln(θ̂)
σ̂CS

. One can see that the sampling distributions for
the test statistics are normally distributed. However, the sampling distributions of the
log-odds ratio ln(θ̂) and the variances differ between the two sampling schemes. They
vary around a common mean, but the sampling distributions under inverse sampling
are much more concentrated than their counterparts under inverse sampling. This is
demonstrated in Figure 4. There is an apparent difference in the sampling distributions
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of the standard errors
√
rσ̂IS and

√
Nσ̂CS, but no difference in the sampling distribution

of the estimators and the test statistics. This is due to the higher correlation between
estimator and standard error under inverse sampling, as demonstrated in Figure 5.

This stabilizing effect of inverse sampling is also obvious when performing Fisher’s exact
test. Under inverse sampling, the resulting tables will always include r cases. Under
conventional sampling, the observed number R may be small. This does not play a
role for asymptotic considerations or power calculations at the design stage, because
the chance to observe a small R is balanced by the possibility to observe a very large
number of cases R. But nevertheless, a study with a very small number of actual cases
is a very unfortunate outcome of such a large investment. We refer to Chan & Bohidar
(1998), page 1312, for a similar discussion.
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Figure 4: Sampling distributions based on 100,000 simulations for the log-odds ratio, the standard
error, and the LOR based test statistic under inverse (solid green line, 90cases and conventional
(dotted red line, 127482 patients). The underlying parameters are p0 = 0.001, λ = 0.5, and q = 0.6

July 31, 2014 Version 1.0 21



Inference in Clinical Trials with Small Event Rates under Inverse Sampling Heimann et al.

Figure 5: Sampling distributions based on 100,000 simulations the log-odds ratio (x-axis) versus the
standard error (y-axis) for conventional (left, 127482 patients) and inverse sampling (right, 90cases)
sampling. The underlying parameters are p0 = 0.001, λ = 0.5, and q = 0.6
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8 Appendix

8.1 Proofs and Derivations for Section 4

Proof of Theorem 4.1: Note that the k-th observation (Zk, Yk) can be regarded
as a multinomial random variable with four possible outcomes (0, 0), (0, 1), (1, 0), and
(1, 1). For any given ν define R(ν) =

∑ν
k=1 Yk, R(1ν) =

∑ν
k=1 ZkYk, Q(ν) =

∑ν
k=1(1−Yk),

Q(1ν) =
∑ν

k=1 Zk(1 − Yk), and N = minν{R(ν) = r}. Moreover, use R1 = R(N) and
Q1 = Q(N).

Since the N -th observation is an event, we either have (ZN , YN) = (1, 1) with probability
qp1 (case I), or (ZN , YN) = (0, 1) with probability (1−q)p0 (case II). In both cases there
are
(
N−1
N−r

)
ways to position the N−r patients without the event amongst the first N−1

observations. Furthermore, in both cases there are then
(
N−r
Q1

)
ways to position the Q1

patients from the active treatment group without the event amongst all N − r patients
without the event. Each such positioning has probability (q(1 − p1))Q1((1 − q)(1 −
p0))N−r−Q1 .

In case I, there are
(
r−1
R1−1

)
ways to position the remaining R1 − 1 actively treated

patients with events amongst the first r−1 events, and such positioning has probability
(qp1)R1−1((1 − q)p0)r−R1 . In case II, there are

(
r−1
R1

)
ways to position the R1 actively

treated patients with event between the first r − 1 positive responses, and each such
positioning has probability (qp1)R1((1− q)p0)r−1−R1 .

Overall, the above implies

Prob{R1 = r1, Q1 = q1, N = n}

= qp1

(
n− 1

n− r

)(
n− r
q1

)(
r − 1

r1 − 1

)
(q(1− p1))q1((1− q)(1− p0))n−r−q1(qp1)r1−1((1− q)p0)r−r1

+ (1− q)p0

(
n− 1

n− r

)(
n− r
q1

)(
r − 1

r1

)
(q(1− p1))q1((1− q)(1− p0))n−r−q1(qp1)r1((1− q)p0)r−1−r1

=

(
n− 1

n− r

)(
n− r
q1

)(
r

r1

)
(q(1− p1))q1((1− q)(1− p0))n−r−q1(qp1)r1((1− q)p0)r−r1 .

Use ρ1 = qp1
π

, ρ2 = q(1−p1)
1−π , and some additional algebra to finalize the proof.

Proof of Corollary 4.2: From Theorem 4.1 we immediately conclude the indepen-
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dence of R1 and (Q1, N). Hence

Prob{Q1 = q1, N = n} =

(
n− 1

n− r

)(
n− r
q1

)
ρq12 (1− ρ2)n−r−q1πr(1− π)n−r . (26)

With this we get

Prob{N = n} =
n−r∑
q1=0

Prob{Q1 = q1, N = n}

=
n−r∑
q1=0

(
n− 1

n− r

)(
n− r
q1

)
ρq12 (1− ρ2)n−r−q1πr(1− π)n−r

=

(
n− 1

n− r

)
πr(1− π)n−r ,

which proves the well known fact that N has a negative binomial distribution. Next,

Prob{Q1 = q1} =
∞∑
n=r

Prob{Q1 = q1, N = n} =
∞∑

n=r+q1

Prob{Q1 = q1, N = n}

=
∞∑

n=r+q1

(
n− 1

n− r

)(
n− r
q1

)
ρq12 (1− ρ2)n−r−q1πr(1− π)n−r

=
∞∑

n=r+q1

(
n− 1

n− r

)(
n− r
q1

)(
q(1− λp0)

1− π

)q1 ((1− q)(1− p0)

1− π

)n−r−q1
πr(1− π)n−r

=

(
q1 + r − 1

q1

)
(q(1− λp0))q1

∞∑
n=r+q1

(
n− 1

q1 + r − 1

)
πr((1− q)(1− p0))n−r−q1

=

(
q1 + r − 1

q1

)(
q(1− λp0)

q + p0 − qp0

)q1 ( π

q + p0 − qp0

)r
∞∑

n=r+q1

(
n− 1

q1 + r − 1

)
(q + p0 − qp0)q1+r((1− q − p0 + qp0))n−r−q1

=

(
q1 + r − 1

q1

)(
q(1− λp0)

q + p0 − qp0

)q1 (
1− q(1− λp0)

q + p0 − qp0

)r
.
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Poof of Corollary 4.3: First we show

ρr11 (1− ρ1)r−r1ρq12 (1− ρ2)n−r−q1πr(1− π)n−r

= (qp1)r1((1− q)p0)r−r1(q(1− p1))q1((1− q)(1− p0))n−r−q1

= qr1+q1pr11 (1− p1)q1(1− q)n−r1−q1pr−r10 (1− p0)n−r−q1

= qn1(1− q)n−n1pr0(1− p0)n−r
(

1− p1

1− p0

)n1
(
p1

p0

· 1− p0

1− p1

)r1
= qn1(1− q)n−n1pr0(1− p0)n−r

(
1− p1

1− p0

)n1

[κ(λ)]r1

using (3) and κ(λ) = λ 1−p0
1−λp0 . Next, remember that R = r was fixed by design, and use

the above chain of equalities to obtain

Prob{R1 = r1|N1 = n1, N = n}

=
Prob{R1 = r1, N1 = n1, N = n}

Prob{N1 = n1, N = n}

=
Prob{R1 = r1, Q1 = n1 − r1, N = n}∑min(r,n1)

ρ=max(0,n1−n+r) Prob{R1 = ρ,Q1 = n1 − ρ,N = n}

=

(
r
r1

)(
n− r
n1 − r1

)
[κ(λ)]r1

∑min(r,n1)
ρ=max(0,n1−n+r)

(
r
ρ

)(
n− r
n1 − ρ

)
[κ(λ)]ρ

=

(
n1

r1

)(
n− n1

r − r1

)
[κ(λ)]r1

∑min(r,n1)
ρ=max(0,n1−n+r)

(
n1

ρ

)(
n− n1

r − ρ

)
[κ(λ)]ρ

=

(
n1

r1

)(
n− n1

r − r1

)
[κ(λ)]r1Cr(λ) ,

which completes the proof.

Derivation of cN,N1,r,α ≈ cr,α:
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First, note that

(
n1

r1

)(
n− n1

r − r1

)
(κ(λ))r1

∑r
ρ=0

(
n1

ρ

)(
n− n1

r − ρ

)
(κ(λ))ρ

=

 n1

r1

 n− n1

r − r1


 n
r

 (κ(λ))r1

∑r
ρ=0

 n1

ρ

 n− n1

r − ρ


 n
r

 (κ(λ))ρ

This implies

(
n1

r1

)(
n− n1

r − r1

)
(κ(λ))r1

∑r
ρ=0

(
n1

ρ

)(
n− n1

r − ρ

)
(κ(λ))ρ

=

 r
r1

 n− r
n1 − r1


 n
n1

 (κ(λ))r1

∑r
ρ=0

 r
ρ

 n− r
n1 − ρ


 n
n1

 (κ(λ))ρ

.

Now, for very small p0 and p1 we expect very large N and N1, so that N1

N
≈ N1−1

N−2
≈

· · · ≈ N1−r1
N−r ≈ q. This implies(

n− r
n1 − ρ

)
/

(
n
n1

)
≈ qρ(1− q)r−ρ (27)

for all ρ ≤ r1, and hence(
n1

r1

)(
n− n1

r − r1

)
(κ(λ))r1

∑r
ρ=0

(
n1

ρ

)(
n− n1

r − ρ

)
(κ(λ))ρ

≈

(
r
r1

)
qr1(1− q)r−r1(κ(λ))r1

∑r
ρ=0

(
r
ρ

)
qρ(1− q)r−ρ(κ(λ))ρ

. (28)

Next, observe that

(κ(λ))ρ =

[
p1

p0

1− p0

1− p1

]ρ
≈
[
p1

p0

]ρ
=
[p1

π

]ρ [p0

π

]r−ρ [ π
p0

]r
. (29)

In the above equation we have again made use of the fact that we have very small p0 and
p1, which implies that 1− p0 ≈ 1 and 1− p1 ≈ 1. With this in mind, and remembering
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ρ1(λ) = qp1
π

and 1− ρ1(λ) = (1−q)p0
π

, we can now conclude(
n1

r1

)(
n− n1

r − r1

)
(κ(λ))r1

∑r
ρ=0

(
n1

ρ

)(
n− n1

r − ρ

)
(κ(λ))ρ

≈

(
r
r1

)
ρ1(λ)r1(1− ρ1(λ))r−r1

∑r
ρ=0

(
r
ρ

)
ρ1(λ)ρ(1− ρ1(λ))r−ρ

. (30)

Since
r∑

ρ=0

(
r
ρ

)
ρ1(λ)ρ(1− ρ1(λ))r−ρ = 1 , (31)

we have shown that for very small p0 and p1 we get(
n1

r1

)(
n− n1

r − r1

)
(κ(λ))r1

∑r
ρ=0

(
n1

ρ

)(
n− n1

r − ρ

)
(κ(λ))ρ

≈
(

r
r1

)
ρ1(λ)r1(1− ρ1(λ))r−r1 . (32)

Note that one can always derive (32) as an exact equality via integration for this type of
sampling scheme with R = r fixed, not just with very small p0 and p1. The approximate
calculation presented in this section is only valid for very small p0 and p1.

8.2 Proofs and Derivations for Section 6

In this section we will derive basic asymptotic results under inverse sampling. The
proofs are based on a simple fact: the basic 2× 2 table

event no event total
placebo R0 Q0 N0

active R1 Q1 N1

total r Q N

which summarizes the results of our study with a fixed number of r cases can be obtained
as the sum of ν = 1, . . . , r independent tables

event no event total
placebo R0[1],ν Q0[1],ν N0[1],ν

active R1[1],ν Q1[1],ν N1[1],ν

total 1 Q[1],ν N[1],ν

The table corresponding to ν = 1 represents the data which have accumulated until
the first case was observed. The table corresponding to ν = 2 corresponds to the data
accumulated between the first and the second case, and so on.
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The relevant vector (R1, Q1, N) of observations from the overall table can be expressed
as a sum of independent vectors

(R1, Q1, N) =
r∑

ν=1

(R1[1],ν , Q1[1],ν , N[1],ν) . (33)

From theorem 4.1 we can immediately derive that the random variables R1[1],ν are
B(1, ρ1) and independent of (Q1[1],ν , N[1],ν). The random variables N[1],ν are NB(1, π),
and the Q1[1],ν are distributed as a B(N[1],ν − 1, ρ2) distribution (conditionally given
N[1],ν). For a definition of π = qp1 + (1− q)p0, ρ1, and ρ2, see Section 3, and (3).

Proof of Lemma 6.1: First use the conditional distribution of Q1[1],ν to establish

E[Q1[1],ν ] = E
[
E[Q1[1],ν |N[1],ν ]

]
= E[(N[1],ν − 1)ρ2] =

1− π
π

ρ2 , (34)

Var[Q1[1],ν ] =
1− π
π

ρ2(1− ρ2) + ρ2
2

1− π
π2

. (35)

Note that (35) follows from

E
[
(Q1[1],ν −

1− π
π

ρ2)2

]
= E

[
(Q1[1],ν − (N[1],ν − 1)ρ2)2

]
+ ρ2

2E
[
(N[1],ν −

1

π
)2

]
= E

[
E[(Q1[1],ν − (N[1],ν − 1)ρ2)2|N[1],ν ]

]
+ ρ2

2

1− π
π2

= E
[
(N[1],ν − 1)ρ2(1− ρ2)

]
+ ρ2

2

1− π
π2

=
1− π
π

ρ2(1− ρ2) + ρ2
2

1− π
π2

,

i.e. the variance of Q1 is the expectation of the conditional variance plus the variance
of the conditional expectation. In the above chain of equations we have used

E
[
(Q1[1],ν − (N[1],ν − 1)ρ2)ρ2(N[1],ν −

1

π
)

]
= 0 . (36)

Now, (35) and Tchebichev’s inequality (see Roussas (1997)) imply 1
r
Q1 − 1−π

π
ρ2

P−→
r→∞

0.

The other two statements 1
r
R1−ρ1

P−→
r→∞

0 and 1
r
N− 1

π

P−→
r→∞

0 can be shown analogously.

As an immediate consequence of Lemma (6.1) we get

R1

R1 +Q1

P−→
r→∞

p1 , (37)

which proves that the maximum likelihood estimator p̂1 = R1

R1+Q1
is consistent, and

1

r
N1

P−→
r→∞

1− q
π

. (38)
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Poof of Theorem 6.2: The asymptotic limits of the marginal distributions

1√
r

(N − 1

π
)
D−→

r→∞
N (0,

1− π
π2

) , (39)

1√
r

(R1 − ρ1)
D−→

r→∞
N (0, ρ1(1− ρ1) , (40)

and
1√
r

(Q1 −
1− π
π

ρ2)
D−→

r→∞
N (0,

1− π
π

ρ2(1− ρ2) + ρ2
2

1− π
π2

) (41)

are a direct consequence of the central limit theorem. The proof of (41) uses (35). With
a similar argument one can show

1√
r

r∑
ν=1

(Q1[1],ν − (N[1],ν − 1)ρ2)
D−→

r→∞
N (0,

1− π
π

ρ2(1− ρ2)) . (42)

To establish the joint distribution of the three quantities, we apply the Crámer-Wold
device (see Lehmann (1999)), using

E
[
(Q1[1],ν −

1− π
π

ρ2)(N[1],ν −
1

π
)

]
= E

[
(Q1[1],ν − (N[1],ν − 1)ρ2)(N[1],ν −

1

π
)

]
+ ρ2E

[
(N[1],ν −

1

π
)2

]
= ρ2E

[
(N[1],ν −

1

π
)2

]
=

1− π
π2

ρ2 ,

and

E
[
a(Q1[1],ν −

1− π
π

ρ2) + b(N[1],ν −
1

π
)

]2

= a2E
[
Q1[1],ν −

1− π
π

ρ2

]2

+ b2E
[
N[1],ν −

1

π

]2

+ abE
[
(Q1[1],ν −

1− π
π

ρ2)(N[1],ν −
1

π
)

]
= a2[

1− π
π

ρ2(1− ρ2) + ρ2
2

1− π
π2

)] + b2 1− π
π2

+ ab
1− π
π2

ρ2 .

Derivation of (18): First, simple algebra shows that
√
N1(p̂1 − p1) equals√

r

N1

[
(1− p1)

√
r(

1

r
(R1 − ρ1)− p1

√
r(

1

r
Q1 −

1− π
π

ρ2)

]
, (43)
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because

√
N1(p̂1 − p1) =

√
N1

r

√
r

[
R1

r
− ρ1

N1

r

+ p1

(
q
π
N1

r

− 1

)]

=

√
r

N1

√
r

[
R1

r
− ρ1 − p1

(
N1

r
− q

π

)]
=

√
r

N1

√
r

[
R1

r
− ρ1 − p1

(
R1

r
− ρ1 +

Q1

r
− q(1− p1)

π

)]
=

√
r

N1

[
(1− p1)

√
r

(
R1

r
− ρ1

)
− p1

√
r

(
Q1

r
− ρ2

1− π
π

)]
.

Now, Lemma 6.1, (38), (40), and (41) imply that the asymptotic limit distribution of√
N1(p̂1 − p1) is normal with mean 0 and variance

π

q

[
(1− p1)2ρ1(1− ρ1) + p2

1

1− π
π

ρ2(1− ρ2) + p2
1

1− π
π2

ρ2
2

]
(44)

Finally, the following chain of equalities then completes the proof:

π

q

[
(1− p1)2ρ1(1− ρ1) + p2

1

1− π
π

ρ2(1− ρ2) + p2
1

1− π
π2

ρ2
2

]
=

π

q

[
(1− p1)2p1p0q(1− q)

π2
+
p2

1(1− p1)(1− p0)q(1− q)
π(1− π)

+
1− π
π2

p2
1(1− p1)2q2

(1− π)2

]
= p1(1− p1)

[
(1− p1)p0(1− q)

π
+
p1(1− p0)(1− q)

1− π
+
p1(1− p1)q

π(1− π)

]
= p1(1− p1)

[
(1− p1)(1− ρ1) + p1(1− ρ2) + p1ρ2

1

π

]
= p1(1− p1)

[
1 + p1(ρ1 − ρ2)− ρ1 + p1ρ2

1

π

]
= p1(1− p1)

[
1 + p1

(1− π)p1q − π(1− p1)q + q(1− p1)

π(1− π)
− ρ1

]
= p1(1− p1)

[
1 + p1

q(1− π)

π(1− π)
− ρ1

]
= p1(1− p1)

Proof of Corollary 6.3: To start, consider a first order Taylor expansion
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√
r
(

log(θ̂)− log(θ)
)

=
√
r

(
log(

1

r
R1)− log(ρ1)

)
−
√
r

(
log(1− 1

r
R1)− log(1− ρ1)

)
−
√
r

(
log(

1

r
Q1)− log(ρ2)

)
+
√
r

(
log(

1

r
N − 1− 1

r
Q1)− log(1− ρ2)

)
=
√
r

(
log(

1

r
R1)− log(ρ1)

)
−
√
r

(
log(1− 1

r
R1)− log(1− ρ1)

)
−
√
r

(
log(

1

r
Q1)− log(

1− π
π

ρ2)

)
+
√
r

(
log(

1

r
N − 1− 1

r
Q1)− log(

1− π
π

(1− ρ2))

)
≈ 1

ρ1

√
r

(
1

r
R1 − ρ1

)
+

1

1− ρ1

√
r

(
1

r
R1 − ρ1

)
− π

(1− π)ρ2

√
r

(
1

r
Q1 −

1− π
π

ρ2

)
+

π

(1− π)(1− ρ2)

√
r

(
1

r
N − 1− 1− π

π

)
− π

(1− π)(1− ρ2)

√
r

(
1

r
Q1 −

1− π
π

ρ2

)

= (
1

ρ1(1− ρ1)
,− π

1− π
1

ρ2(1− ρ2)
,

π

(1− π)(1− ρ2)
)T
√
r


1
r
R1 − ρ1

1
r
Q1 − 1−π

π
ρ2

1
r
N − 1

π



=: ξT
√
r


1
r
R1 − ρ1

1
r
Q1 − 1−π

π
ρ2

1
r
N − 1

π


Now Theorem 6.2 implies

√
r
(
log(θ̂)− log(θ)

)
D−→

r→∞
N (0, ξTΣξ) (45)

with Σ defined as in (17). Simple algebra provides

ξTΣξ = ξT

 ρ1(1− ρ1) 0 0

0 1−π
π
ρ2(1− ρ2) 0

0 0 0

 ξ =
1

ρ1(1− ρ1)
+

π

1− π
1

ρ2(1− ρ2)
,

i.e. (21). The proof of (22) follows directly from Lemma 6.1.

Proof of Theorem 6.4: First note that one can show

(
1

r
R1,

1

r
Q1,

1

r
N)

P(λr,p0)−→
r→∞

(q,
1− p0

p0

q,
1

p0

) . (46)

in exactly the same way as shown in the proof of Lemma 6.1. The notation
P(λr,p0)−→
r→∞

stands for convergence in probability when (λr, p0) are the true underlying parameters.
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Similarly, with obvious notation,

√
r


1
r
R1 − ρ1(λr)

1
r
Q1 − 1−π(λr,p0)

π(λr,p0)
ρ2(λr, p0)

1
r
N − 1

π(λr,p0)

 D(λr,p0)−→
r→∞

N (03,Σ0) , (47)

is a direct consequence of the central limit theorem, just like demonstrated in the proof
of Lemma 6.2. The matrix Σ0 is defined as

Σ0 =


q(1− q) 0 0

0 1−p0
p20

[p0q(1− q) + q2] 1−p0
p20
q

0 1−p0
p20
q 1−p0

p20

 . (48)

Define ξT = (0, 1,−q) to conclude

ξT
√
r


1
r
R1 − ρ1(λr)

1
r
Q1 − 1−π(λr,p0)

π(λr,p0)
ρ2(λr, p0)

1
r
N − 1

π(λr,p0)

 D(λr,p0)−→
r→∞

N (03, ξ
TΣ0ξ) = N (0,

1− p0

p2
0

[p0q(1−q)]) ,

(49)
and hence

√
r

[
1

r
Q1 −

1− π
π

ρ2 − (
1

r
N − 1− 1− π

π
)ρ2

]
D(λr,p0)−→
r→∞

N (0,
1− p0

p0

[q(1− q)]) , (50)

because of ρ2(λr, p0)
P(λr,p0)−→
r→∞

q.

Let’s move to the first marginal distribution of (23), namely

√
r

R̄1 − q√
R̄1(1− R̄1)

=
√
r

R̄1 − ρ1(λr)√
arR1(1− R̄1)

−
√
r
ρ1(1)− ρ1(λr)√
R̄1(1− R̄1)

. (51)

Formulae (46) and (47) imply that the first summand of the right hand side of (51)
converges in distribution to a standard normal distribution, and the second summand
converges in probability to

√
1− p0 t∆, both under the assumption that λr is the true

parameter sequence. We use

√
r
ρ1(1)− ρ1(λr)√
R̄1(1− R̄1)

=
√
r

q − ρ1(λr)√
R̄1(1− R̄1)

=
q(1− q)t

(1− tq√
r
)
√
R̄1(1− R̄1)

P (λr)−→
r→∞

t
√
q(1− q) ,

(52)

and ∆ =
√

q(1−q)
1−p0 to obtain the limit of the second summand, and to conclude

√
r(R̄1 − q)√
R̄1(1− R̄1)

D(λr)−→
r→∞

N (−
√

1− p0 t∆ , 1) . (53)
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Let’s turn to the second marginal distribution in (23), i.e.

√
N − r Q̄1 − q√

Q̄1(1− Q̄1)
, (54)

which is equivalent to

√
N − r Q̄1 − q√

Q̄1(1− Q̄1)
=
√
N − r Q̄1 − ρ2(λ, p0)√

Q̄1(1− Q̄1)
−
√
N − r q − ρ2(λ, p0)√

Q̄1(1− Q̄1)
. (55)

We have

√
N − r[Q̄1 − ρ2] =

√
r

N − r
√
r[

1

r
Q1 − (

1

r
N − 1)ρ2]

=

√
r

N − r
√
r

[
1

r
Q1 −

1− π
π

ρ2 − [
1

r
N − 1− 1− π

π
]ρ2

]
.

This,

Q̄1 =
r

N − r
Q1

r

P(λr,p0)−→
r→∞

= q , (56)

and (46) together with (50), imply

√
N − r Q̄1 − ρ2(λ, p0)√

Q̄1(1− Q̄1)

P(λr,p0)−→
r→∞

N (0, 1) . (57)

Note that (56) follows from (46). Statement (56) also implies

1
r
N − 1

Q̄1(1− Q̄1)

P(λr,p0)−→
r→∞

=
1− p0

p0q(1− q)
. (58)

Next,

√
N − r q − ρ2(λ, p0)√

Q̄1(1− Q̄1)
=

√
N − r
r

√
r
q − ρ2(λ, p0)√
Q̄1(1− Q̄1)

=

√
1
r
N − 1

Q̄1(1− Q̄1)

−q(1− q)tp0

1− p0 + qp0t√
r

P (λr)−→
r→∞

−√p0t∆

to conclude the proof of the second marginal distribution in (23), i.e.

√
r(Q̄1 − q)√
Q̄1(1− Q̄1)

D(λr)−→
r→∞

N (
√
p0 t∆ , 1) (59)

Asymptotic independence of the two marginal distributions follows from the Crámer-
Wold device (see Lehmann (1999)).
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Let’s ow turn to the proof of (24). A similar Taylor expansion as in the proof of
Corollary 6.3 yields

√
r
(

log(θ̂)− log(θ(λr, p0))
)
≈ ξr

T
√
r


1
r
R1 − ρ1(λr)

1
r
Q1 − 1−π(λr,p0)

π(λr,p0)
ρ2(λr, p0)

1
r
N − 1

π(λr,p0)

 (60)

with

ξr =

 ( 1
ρ1(λr)(1−ρ1(λr))

− π(λr,p0)
1−π(λr,p0)

1
ρ2(λr,p0)(1−ρ2(λr,p0))
π(λr,p0)

(1−π(λr,p0))(1−ρ2(λr,p0))
)

 P(λr)−→
r→∞

 1
q(1−q)

− p0
1−p0

1
q(1−q)

p0
1−p0

1
1−q

 . (61)

Hence (60), (61), and (47) imply

√
r
(

log(θ̂)− log(θ(λr, p0))
)
D(λr)−→
r→∞

N (0 ,
1

1− p0

· 1

q(1− q)
) . (62)

From (46) we conclude that

σ̂2 =
r

R1

+
r

Q1

+
r

r −R1

+
r

N − r −Q1

P(λr)−→
r→∞

1

q(1− q)
+

p0

1− p0

1

q(1− q)
, (63)

so that
√
r

log(θ̂)− log(θ(λr, p0))

σ̂

D(λr)−→
r→∞

N (0 , 1) . (64)

Next, a further Taylor expansion provides

√
r (log(θ(λr, p0))− log(θ)) =

1

q(1− q)
(ρ1(λr, p0)− q)− 1

q(1− q)
(ρ1(λr, p0)− q) + o(1)

(65)
This uses ρ1(1) = ρ2(1, p0) = q. By definition

√
r(ρ1(λr)− q) = −t q(1− q)

1− (1− qt√
r
)p0

−→
r→∞

−tq(1− q) (66)

and
√
r(ρ2(λr, p0)− q) = tp0

q(1− q)
1− qt√

r

−→
r→∞

t
p0

1− p0

q(1− q) , (67)

so that

√
r

log(θ(λr, p0))− log(θ)

σ̂

P(λr)−→
r→∞

−t

√
q(1− q)
1− p0

= −t∆ (68)

Now (65) and (68) imply (24), which concludes the proof of Theorem 6.4.
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In Theorem 6.4 we used the conditional distribution of Q1 given N to motivate the test
statistic 54. If we were to use the marginal distribution of Q1 as given in (5), then one
would need to use a test statistic like

√
r

(
1

r
Q1 −

1− ρ3(1, p0)

ρ3(1, p0)

)
(69)

This is a theoretical test statistic, since p0 is an unknown parameter and would need

to be replaced by an estimate. Now, since 1
r
N − 1− 1−π

π

P (λr)−→
r→∞

0, and since

1− ρ3

ρ3

=
1− π
π

ρ2 (70)

a practical estimate would be

√
r

(
1

r
Q1 − (

1

r
N − 1)ρ2(1, p0)

)
=
√
r

(
1

r
Q1 − (

1

r
N − 1)q

)
. (71)

The asymptotic distribution of this estimate is

√
r

(
1

r
Q1 − (

1

r
N − 1)ρ2(1, p0)

)
D(λr)−→
r→∞

N (tq(1− q), 1− p0

p0

[q(1− q)]) . (72)

This follows from

√
r

(
1

r
Q1 − (

1

r
N − 1)ρ2(1, p0)

)
=
√
r

(
1

r
Q1 −

1− π(λr, p0)

π(λr, p0)
ρ2(λr, p0)

)
−
√
r

(
(
1

r
N − 1− 1− π(λr, p0)

π(λr, p0)
)ρ2(λr, p0)

)
+
√
r

(
(
1

r
N − 1)(ρ2(λr, p0)− q)

)
From (46) we get

√
r

(
(
1

r
N − 1)(ρ2(λr, p0)− q)

)
P (λr)−→
r→∞

(
1− p0

p0

)(
tq(1− q)p0

1− p0

)
, (73)

and from (50) we conclude that the first summand converges to a normal distribution
with mean 0 and variance 1−p0

p0
[q(1−q)]). Overall, an appropriately standardized version√

r
σ̂2

(
1
r
Q1 − (1

r
N − 1)q

)
of our estimate is then asymptotically normally distributed

with variance 1 and mean
√
p0t∆.

If one would just calculate the asymptotic distribution of the ideal test
√
r(1

r
Q1− 1−p0

p0
q)

under λr and p0, pretending one knew p0, then the asymptotic distribution would be a

normal distribution with variance 1 and mean
√
p0t
√

q(1−q)
1−p0 + q2

p0(1−p0)
. This of course

dominates the practical test.
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8.3 Sample Size and Asymptotic Relative Efficiency

Under inverse sampling, the log odds ratio test for H0 : λ ≥ 1 rejects if
√
r log(θ̂)

σ̂
< uα,

with σ̂2 = r
R1

+ r
Q1

+ r
r−R1

+ r
N−r−Q1

(see Lemma 6.3). The corresponding asymptotic

power function is equal to

Φ

(
uα −

√
r

log(θ)

σIS

)
(74)

where θ = θ(λ, p0) is a function of λ and p0, and σ2
IS is defined in (21). From this

one can immediately derive a formula for the required number of cases under inverse
sampling:

r = σ2
IS

[uα + uβ]2

[log(θ)]2
. (75)

Note that σ2
IS = σ2

IS(λ, p0) is also a a function of λ and p0.

Next, under conventional sampling we have

√
n
(

log(θ̂)− log(θ)
)
D(θ)−→
n→∞

N (0, σ2
CS) , (76)

where

σ2
CS =

1

qp1(1− p1)
+

1

(1− q)p0(1− p0)
(77)

is also a function of λ and p0. The above two statements are true because

log(θ̂) = log(
R1

R−R1

n−R−Q1

Q1

) = log

(
1
n1
R1(1− 1

n0
R0)

1
n0
R0(1− 1

n1
R1)

)
, (78)

so that a Taylor expansion along the same lines as before implies

√
n(log(θ̂)− log(θ)) =

1

p1(1− p1)

√
n(p̂1 − p1) +

1

p0(1− p0)

√
n(p̂0 − p0). (79)

From the standard central limit theorem we obtain (76) and (77).

Hence, under conventional sampling the log odds ratio test for H0 : λ ≥ 1 rejects if√
n log(θ̂)

σ̂CS
< uα, with σ̂2

CS = n
R1

+ n
n1−R1

+ n
R0

+ n
n0−R0

being the consistent estimator

for σ2
CS under conventional sampling. The corresponding asymptotic power function is

equal to

Φ

(
uα −

√
n

log(θ)

σCS

)
. (80)

From this one can immediately derive a formula for the required sample size under
conventional sampling:

n = σ2
CS

[uα + uβ]2

[log(θ)]2
. (81)
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Now assume that one wants to detect a relevant difference λ∗ = 0.5, say. We assume a
placebo incidence rate of p0∗ = 0.001, α = 0.025, and β = 0.1. Under inverse sampling,
applying formula (75), one gets

σ2
IS(λ∗, p0∗)

[uα + uβ]2

[log(θ(λ∗, p0∗))]2
≈ 89.23674 , (82)

so that the required number of cases is r∗ = 90. The corresponding expected sample
size (assuming λ∗ and p0∗ are the true underlying parameters) is

N∗ = Eλ∗,p0∗ [N |r∗] =
90

π(λ∗, p0∗)
≈ 128571.4 . (83)

Under conventional sampling one gets

σ2
CS(λ∗, p0∗)

[uα + uβ]2

[log(θ(λ∗, p0∗))]2
≈ 127481.1 , (84)

so that the required sample size is n∗ = 127482. At a first glance, this number differs
from the expected sample size under inverse sampling, namely 128571.4, but this is due
to rounding errors. More precisely,

Eλ∗,p0∗ [N |σ2
IS(λ∗, p0∗)

[uα + uβ]2

[log(θ(λ∗, p0∗))]2
] ≈ 89.23674

π(λ∗, p0∗)
= 127481.1 . (85)

Note that log(θ) = log(p1(1−p0)
p0(1−p1)

) = log(λp0(1−p0)
p0(1−λp0)

) log(ρ1(λ,p0)(1−ρ2(λ,p0))
ρ2(λ,p0)(1−ρ1(λ,p0))

) for all values of

(λ, p0). Moreover,
σ2
IS

πσ2
CS

= 1 holds for all values of λ and p0, which is why (84) and (85)

provide identical numbers.

The equality
σ2
IS

πσ2
CS

= 1 holds because of

σ2
CS =

(1− q)p0(1− p0) + qp1(1− p1)

q(1− q)p0(1− p0)p1(1− p1)
, (86)

σ2
IS

π
=
π(1− p1)(1− p0) + (1− π)p1p0

q(1− q)p0(1− p0)p1(1− p1)
, (87)

and because of

π(1− p1)(1− p0) + (1− π)p1p0 = (1− q)p0(1− p0) + qp1(1− p1) . (88)

We can define the relative efficiency of conventional to inverse sampling as the ratio
of the expected sample size under inverse sampling and the required sample size under
conventional sampling, i.e.

Eλ∗,p0∗ [N |r∗]
n∗

=
σ2
IS(λ∗, p0∗)

π(λ∗, p0∗)σ2
CS(λ∗, p0∗)

. (89)

July 31, 2014 Version 1.0 37



Inference in Clinical Trials with Small Event Rates under Inverse Sampling Heimann et al.

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ARE(,p0*) for different values of * and 
p0*=0.001 

lambda*=0.25

lambda*=0.5

lambda*=0.75

ARE=1

 

Figure 6: Relative efficiency as a function of λ for three different values of λ∗. Areas where the ARE
is below 1 indicate where inverse sampling is more efficient than conventional sampling.

As just shown, this equals 1. However, if the real value of λ and p0 deviates from the
values λ∗ = 0.5 and p0∗ = 0.001 which were used to obtain r∗ or n∗, then the relative
efficiency is

Eλ,p0 [N |r∗]
n∗

=
σ2
IS(λ∗, p0∗)

π(λ, p0)σ2
CS(λ∗, p0∗)

=
π(λ∗, p0∗)

π(λ, p0)
. (90)

This calculation is approximate and does not take the rounding of r∗ and n∗ to integer
(or even integer) values into account!

In Figure 6 we present the relative efficiency for p0∗ = 0.001 and three different values of

λ∗. One can see that the function λ→ π(λ∗,p0∗)
π(λ,p0∗)

is always below 1 for λ > λ∗, and above

one for λ < λ∗. This indicates that the expected sample size under inverse sampling is
smaller (larger) than the sample size under conventional sampling if the true parameter
λ is larger (smaller) than the value λ∗ used for sample size calculations.

In principle, it is good if the expected sample size under inverse sampling is less than the
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sample size under conventional sampling. Unfortunately, the smaller expected sample
size in certain regions of the parameter space goes along with a loss of power in the
same regions of the parameter space.

This point can be seen from the following argument. The power function for the log
odds ratio test under conventional sampling for a given n∗ can be approximated by

Φ

(
uα − [uα + uβ]

σCS(λ∗, p0∗)

σCS(λ, p0)

log(θ(λ, p0))

log(θ(λ∗, p0∗))

)
. (91)

Correspondingly, the power function for inverse sampling with r∗ fixed is approximately

Φ

(
uα − [uα + uβ]

σIS(λ∗, p0∗)

σIS(λ, p0)

log(θ(λ, p0))

log(θ(λ∗, p0∗))

)
. (92)

Given that
σ2
IS(λ, p0)

π(λ, p0)σ2
CS(λ, p0)

= 1 (93)

for all λ, p0, one can easily see that the power function of the log odds ratio test for
inverse sampling is approximately

Φ

(
uα − [uα + uβ]

π(λ∗, p0∗)

π(λ, p0)

σCS(λ∗, p0∗)

σCS(λ, p0)

log(θ(λ, p0))

log(θ(λ∗, p0∗))

)
. (94)

It differs from that under conventional sampling only by the factor

π(λ∗, p0∗)

π(λ, p0)
, (95)

This relates the improvement in relative efficiency to the corresponding loss in power.

Note that these are asymptotic calculations, and that we again did not take the rounding
into account (i.e. we treated r∗ and n∗ as real numbers, not as integers or even integers).

From these figures one can see the following: After we fix all the parameters for sample
size calculations, including the relevant effect λ∗ and the nuisance parameter p0∗, one can
calculate a sample size n∗ for conventional sampling, or the required number of cases r∗
for inverse sampling. The expected sample size for inverse sampling N∗ = Eλ∗,p0∗ [N |r∗]
and the sample size n∗ are the same, as long as one calculates the expected sample size
under inverse sampling using the parameters λ∗ and p0∗ used for sample size calculations,
and as long as one ingnores impression due to rounding. From this perspective there is
no difference between inverse and conventional sampling. However, the parameters λ∗
and p0∗ are design parameters, and do not necessarily reflect reality. If one calculates
the relative efficiency of inverse versus conventional sampling with fixed n∗ and r∗ under
general parameter values λ and p0, then we start to see differences, because the sample

July 31, 2014 Version 1.0 39



Inference in Clinical Trials with Small Event Rates under Inverse Sampling Heimann et al.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,001 0,002 0,003

Contour lines for (*,p0*)/(,p0)  

with *=0.5 and p0*=0.001 

ratio = 1

ratio = 4

ratio = 2

ratio = 0.5

ratio = 0.25

 

p0 

Figure 7: Relative efficiency as a function of p0 and λ for three values of p0∗ and λ∗ = 0.5. Areas where
the ARE is below 1 indicate where inverse sampling is more efficient than conventional sampling.

size n∗ is fixed, whilst the expected sample size Eλ,p0 [N |r∗] is dependent on the true
parameter values. If the true λ is smaller than the relevant effect λ∗, then the relative
efficiency of inverse versus conventional sampling is smaller than 1, indicating less cost
for inverse sampling. However, this comes with a decrease in power.

Contour lines for the ratio π(λ∗,p0∗)
π(λ,p0)

are presented in Figure 7.
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