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3D	Face	Recognition:	an	automatic	strategy	based	on	
geometrical	descriptors	and	landmarks 

	
Enrico	Vezzetti,	Federica	Marcolin1,	Giulia	Fracastoro 
Department	of	Management	and	Production	Engineering 

Politecnico	di	Torino,	Italy 
	
	
Abstract 
	
In	the	last	decades,	several	three‐dimensional	face	recognition	algorithms	have	been	thought,	
designed,	 and	 assessed.	 What	 they	 have	 in	 common	 can	 be	 hardly	 said,	 as	 they	 differ	 in	
theoretical	 background,	 tools,	 and	 method.	 Here	 we	 propose	 a	 new	 3D	 face	 recognition	
algorithm,	entirely	developed	 in	Matlab®,	whose	 framework	 totally	 comes	 from	Differential	
Geometry.	Firstly,	17	soft‐tissue	landmarks	are	automatically	extracted	relying	on	geometrical	
properties	of	facial	shape.	We	made	use	of	derivatives,	coefficients	of	the	fundamental	forms,	
principal,	mean,	and	Gaussian	curvatures,	and	shape	and	curvedness	 indexes.	Then,	a	 set	of	
geodesic	and	Euclidean	distances,	together	with	nose	volume	and	ratios	between	geodesic	and	
Euclidean	distances,	has	been	computed	and	summed	in	a	final	score,	used	to	compare	faces.	
The	 highest	 contribution	 of	 this	 work,	 we	 believe,	 is	 that	 its	 theoretical	 substratum	 is	
Differential	Geometry	with	its	various	descriptors,	which	is	something	totally	new	in	the	field. 
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1	Introduction 
	
Automated	 human	 face	 recognition	 (FR)	 is	 a	 non‐trivial	 computer	 vision	 problem	 of	
considerable	 practical	 significance.	 It	 has	 applications	 including	 automated	 secured	 access,	
automatic	 surveillance,	 forensic	 analysis,	 fast	 retrieval	 of	 records	 from	 databases	 in	 police	
departments,	 automatic	 identification	of	patients	 in	hospitals,	 checking	 for	 fraud	or	 identity	
theft,	and	human‐computer	interaction	(Gupta	et	al.	2010). 
	 Literature	 on	 FR	 is	 wide	 and	 various.	 We	 have	 selected	 among	 the	 numerous	
contributions	the	most	significant	ones	that,	similarly	to	us,	work	in	3D	with	facial	landmarks	
and/or	possibly	employ	geometrical	concepts	to	the	algorithm.	Gupta	et	al.	(2010)	proposed	
the	 new	 Anthroface	 3D	 recognition	 algorithm	 after	 automatically	 detecting	 10	 landmarks	
through	the	support	of	Gaussian	and	mean	curvatures.	The	algorithm	compares	123	distances	
among	 a	 set	 of	 Euclidean	 and	 geodesic	 ones,	 performing	 significantly	 better	 than	 the	well‐
known	 eigensurfaces,	 fishersurfaces,	 and	 Iterative	 Closest	 Point	 (ICP)	 algorithms.	 In	 many	
points	 this	method	 is	 close	 to	 ours,	 although	 our	 landmarking	 procedures	 totally	 relies	 on	
geometrical	background.	Zhao	et	al.	(2010)	used	their	Statistical	Facial	Feature	Model	(SFAM)	
to	 perform	 facial	 Action	Unit	 (AU)	 recognition.	 SFAM	 is	 a	 partial	 3D	 face	morphable	model	
containing	both	global	variations	 in	 landmark	configuration	(morphology)	and	 local	ones	 in	
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terms	 of	 texture	 and	 shape	 around	 each	 landmark.	 19	 landmarks	 were	 here	 considered.	
Similarly	 to	 us,	 the	 Shape	 Index	 proposed	 by	 Koenderink	 and	 Van	 Doorn	 (1992)	 was	
computed	 to	 describe	 local	 surface	 properties.	 Also	 Passalis	 et	 al.	 (2011)	 used	 the	 Shape	
Index,	 that,	 together	with	Spin	 Images,	was	employed	 to	support	automatic	 landmarking.	 In	
particular,	in	this	work	a	new	3D	FR	method	is	proposed	that	uses	facial	symmetry	to	handle	
pose	variations.	Then,	an	Annotated	Face	Model	is	registered	and	fitted	to	the	scan.	The	result	
is	 a	 pose‐invariant	 "geometry	 image".	 İnan	 and	 Halici	 (2012)	 proposed	 a	 3D	 FR	 approach	
based	 on	 local	 shape	 descriptors	 to	 discriminate	 three‐dimensional	 face	 scans	 of	 different	
individuals.	Uniformly	resampled	3D	face	data	are	used	to	generate	Shape	Index,	curvedness,	
Gaussian	 and	 mean	 curvature	 values	 on	 each	 point	 of	 the	 data.	 Hence,	 they	 obtained	 bi‐
dimensional	 matrices	 of	 these	 descriptors	 representing	 three‐dimensional	 geometry	
information. 
	 Following	 Bronstein	 et	 al.'s	 (2005[a];	 2005[b];	 2006)	 idea	 that	 different	 facial	
expressions	 of	 the	 same	 person	 are	 isometrics,	 namely	 geodesic	 distances	 between	 facial	
reference	points	are	equal	for	all	emotional	expressions	of	the	same	person,	other	researchers	
worked	 with	 geodesic	 distances	 as	 features	 to	 be	 compared	 between	 faces	 to	 perform	 FR.	
Berretti	et	al.	(2006;	2010)	proposed	a	3D	FR	solution	in	presence	of	expression	variations.	3D	
face	models	 are	 represented	 by	 identifying	 the	 iso‐surfaces	 originated	 by	 the	 set	 of	 points	
which	 are	 at	 the	 same	 geodesic	 distance	 from	 the	 nose	 tip.	 The	 iso‐geodesics	 and	 their	
relationships	 are	 then	 described	 by	 developing	 through	 the	 modeling	 technique	 of	 three‐
dimensional	 Weighted	 Walkthroughs	 (3DWWs)	 capable	 to	 quantitatively	 represent	 spatial	
relationships	 between	 3D	 surfaces.	 Similarly,	 Feng	 et	 al.	 (2007)	 presented	 a	 3D	 face	
representation	 and	 recognition	 approach.	 3D	 face	 is	 represented	 by	 a	 set	 of	 level	 curves	 of	
geodesic	 function	 starting	 from	 the	 nose	 tip,	 which	 is	 invariant	 under	 isometric	
transformation	 of	 the	 surfaces.	 Ouji	 et	 al.	 (2007)	 presented	 a	 FR	 approach	 based	 on	
dimensional	 surface	matching.	 The	 presented	matching	 algorithm	 relies	 on	 ICP	 that	 rigidly	
aligns	facial	surfaces	and	perfectly	provides	the	posture	of	the	presented	probe	model.	Then,	
the	 similarity	 metric	 consists	 in	 computing	 geodesic	 maps	 on	 the	 overlapped	 parts	 of	 the	
aligned	 surfaces.	Mpiperis	 et	 al.	 (2007)	 proposed	 a	 geodesic	 polar	 parameterization	 of	 the	
facial	surface	aimed	at	3D	FR.	Face	matching	is	performed	with	surface	attributes	defined	on	
the	 geodesic	 plane.	 Li	 and	 Zhang	 (2007;	 2009)	 investigated	 the	 use	 of	 multiple	 intrinsic	
geometric	attributes,	such	as	angles,	geodesic	distances,	and	curvatures,	for	3D	FR.	Geodesic	
distances,	 and	 Gaussian	 and	 mean	 curvatures	 are	 then	 employed	 as	 descriptors	 for	 faces.	
Jahanbin	et	al.	 (2011)	 introduced	a	multimodal	 framework	 for	 FR	based	on	 local	 attributes	
calculated	from	range	and	portrait	image	pairs.	They	applied	statistical	feature	analysis	to	2D	
and	 3D	 Gabor,	 and	 Euclidean	 and	 geodesic	 anthropometric	 feature	 sets	 to	 select	 the	 most	
discriminative	features	while	discarding	redundancies. 
	
The	 paper	 is	 structured	 as	 follows.	 Section	 2	 deals	 with	 methodology:	 section	 2.1	 is	 the	
landmarking	phase;	in	sections	2.2‐2.4	geodesic	and	Euclidean	distances	between	landmarks,	
and	 other	 extracted	 features	 are	 presented;	 sections	 2.5	 and	 2.6	 concern	 evaluation	 of	
geometrical	features	and	final	score	for	matching,	respectively.	Results	are	exposed	in	Section	
3.	Then,	some	conclusion	are	drawn,	and,	after	references,	an	appendix	is	added	to	figure	out	
the	geometrical	background	of	the	work. 
	
	
2	Method 
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where 	is	the	value	of	the	distance	di	 in	a	shell	of	the	j‐th	person	with	a	non‐neutral	facial	
expression	and 	is	the	value	of	the	distance	di	 	 in	the	shell	with	neutral	expression	of	the	
same	person.	Using	 the	mean	 values	 ,	we	have	 classified	 the	 28	distances	 in	 four	 classes.	
Each	class	corresponds	to	a	different	value	of	β	included	in	the	range	[0,	0.5],	and	in	each	class	
there	are	seven	distances.	In	Table	3,	the	different	classes	are	shown. 
	

Class  Value	of	β Distances 
1  0 PN‐SN,	SN‐ALA,	IE‐OE,	OE‐EX
2  0.167 EN‐ALA,	IE‐IE,	EX‐IE,	OE‐EN
3  0.33 PN‐ALA,	N‐IE,	IE‐EN,	EX‐EN
4  0.5 PN‐N,	PN‐EN,	N‐EN,	EN‐EN

Table	3	Classification	of	the	distances	with	the	corresponding	β	value. 

	
After	having	computed	α	and	β,	we	combined	them	in	order	to	obtain	the	coefficient 
	

0.5
2

 

	
where	 and	 are	 the	 α	 coefficients	 of	 the	 two	 landmarks	 of	 distance	 di.	 The	 formula	 is	
defined	in	such	a	way	that	all	the	coefficients	 range	from	about	0.5	to	1.5.	Each	 represent	
the	 weight	 for	 which	 we	 have	 to	 multiply	 the	 corresponding	 distance	 di.	 Then,	 the	 total	
difference	between	the	geodesic	distances	of	two	faces	is	computed	with	the	l1	norm	as 
	

∨ 

	
where	 N	 is	 the	 number	 of	 geodesic	 distances	 used	 and	 ,	 are	 respectively	 the	 i‐th	
geodesic	distance	of	face	1	and	the	i‐th	geodesic	distance	of	face	2. 
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between‐class	variance	to	within‐class	variance,	where	each	person	 is	considered	as	a	class.	
We	can	express	this	ratio	as 
	

1
∈

, 

	
where	c	is	the	number	of	classes	(in	this	case,	subjects),	 is	the	set	of	feature	values	for	class	
i,	 is	the	size	of	 ,	 is	the	mean	of	 and	m	is	the	total	mean	of	the	feature	over	all	classes.	
Higher	are	 the	values	of	 this	 criterion,	more	discriminating	 is	 the	power.	Table	4	 shows	 the	
features	 presented	 above,	 organized	 from	 best	 discrimination	 to	worst.	We	 have	 evaluated	
these	ratios	using	a	subset	of	our	database.	The	usefulness	of	a	feature	in	discrimination	is	by	
nature	a	function	of	the	particular	dataset	considered.		 
	

Feature  Between/within	cluster	variation
Ratio	EN‐EN  25.24 

Geodesic	distances  12.65 
Volume	of	the	nose  8.35 
Euclidean	distances  7.51 

Shape	Index  4.52 
Ratio	PN‐N  3.84 

Ratio	ALA‐ALA  3.41 
Table	 4	 Ratio	 of	 between‐cluster	 variance	 to	 within‐cluster	 variance	 for	 each	 feature,	 ordered	 from	 best	 discrimination	
between	subjects	to	worst. 

	
2.6	Evaluating	final	match	score 
	
In	order	to	obtain	a	final	match	score	between	two	faces,	we	rescaled	all	the	scores	obtained	
by	the	comparison	of	each	geometrical	feature	described	above.	Rescaling	has	been	performed	
by	multiplying	 each	 distance	 for	 a	weight,	 so	 that	 all	 the	 distances	 have	 the	 same	 order	 of	
magnitude.	The	geometrical	 features	used	 to	perform	recognition	are	also	called	 'matchers'.	
Then,	 for	 the	 final	 match	 score	 we	 used	 the	 Simple‐Sum	 (SS),	 one	 of	 the	 most	 common	
technique	of	biometric	 fusion	(Snelick	2005).	So,	 the	 final	score	of	 the	comparison	of	shell	 i	
with	a	neutral	face	is	computed	as 
	

 

	
where	 represents	 the	rescaled	score	for	matcher	s	and	N	 is	 the	total	number	of	marchers.	
Then,	the	recognition	is	performed	identifying	the	neutral	shell	that	minimizes	the	score	 . 
	
	
3	Results 
	
The	algorithm	was	tested	on	a	set	of	217	faces	that	we	obtained	through	the	3D	laser	scanner	
Minolta	Vivid	910,	plus	a	set	of	27	faces	taken	from	the	public	Bosphorus	database.	In	Figure	
14	three	faces	of	this	database	are	shown.	
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Fig.	14	Three	faces	of	the	Bosphorus	dataset,	performing	anger,	disgust,	and	happy	expressions,	respectively.	

	

Concerning	 the	 acquired	 faces,	 31	 people	 have	 been	 scanned	 performing	 seven	 facial	
expressions	each:	serious	(standard	expression),	anger,	disgust,	fear,	happiness,	sadness,	and	
surprise.	This	choice	relies	on	the	theory	of	“basic	emotions”	of	Ekman,	whose	studies	showed	
that	these	were	the	six	main	emotional	expressions	(Ekman,	1970;	Ekman	and	Keltner,	1997). 
The	 comparison	 process	 and	 its	 accurateness	 is	 obviously	 sensitive	 to	 which	 features	 we	
choose	 to	 represent	 the	 face.	 As	 we	 have	 shown	 above,	 there	 is	 wide	 variation	 in	 the	
discriminating	power	of	our	 features.	We	tested	 five	different	sets	of	 features.	The	basic	set,	
denoted	by	 I,	 includes	 the	 top	3	 features	of	Table	3:	 the	ratio	EN‐EN,	 the	geodesic	distances	
and	the	volume	of	the	nose.	The	other	four	sets	include	increasing	number	of	features	added	
in	 order	 of	 discriminating	 power:	 II	 includes	 the	 basic	 set	 plus	 the	 Euclidean	 distances,	 III	
includes	features	from	II	plus	the	Shape	Index,	IV	includes	features	from	III	plus	the	ratio	PN‐
N,	V	includes	features	from	IV	plus	the	ratio	ALA‐ALA. 
	 As	previously	said,	we	have	tested	our	algorithm	using	two	face	sets:	one	with	serious	
pose	 faces,	 31	 belonging	 to	 the	 faces	 acquired	 by	 us	 and	 7	 from	 the	 Bosphorus,	 that	
correspond	to	our	face	gallery,	and	one	with	186	plus	20	expression‐based	faces	of	the	same	
31	 plus	 7	 considered	 persons,	 respectively,	 that	 correspond	 to	 the	 probe	 set.	 Table	 5	 and	
Figure	15	 show,	 for	each	 feature	set	we	considered,	 the	percentage	of	 targets	 for	which	 the	
best	match	was	correct. 
	

Feature	set  Accurateness 
I  80.10% 
II  85.92% 
III  87.38% 
IV  88.84% 
V  90.29% 
Table	5	Accurateness	of	the	algorithm	with	the	different	feature	sets. 
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4	Conclusions 
	
This	 work	 is	 a	 totally	 Geometry‐based	 3D	 face	 recognition	 method.	 The	 first	 phase	 of	 the	
algorithm,	 entirely	 developed	 in	 Matlab®,	 consists	 in	 automatic	 landmarking,	 performed	
through	 application	 of	 Differential	 Geometry	 descriptors	 conditions.	 These	 descriptors	 are	
derivatives,	 coefficients	 of	 the	 fundamental	 forms,	 different	 types	 of	 curvatures,	 and	 Shape	
Index.	 After	 the	 landmarking	 phase,	 geodesic	 and	 Euclidean	 distances	 between	 landmarks,	
nose	 volume,	 and	 ratios	 between	 geodesic	 and	 Euclidean	 distances	 are	 computed	 and	
summed	to	obtain	a	final	score	to	be	compared	between	a	set	of	38	straight	faces	and	a	set	of	
206	 expression‐based	 faces	 of	 the	 same	 38	 people.	 Considering	 the	 best	 match,	 the	
accurateness	of	the	FR	algorithm	is	90.29%. 
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Appendix 
	
The	First	and	Second	Fundamental	Forms	are	used	to	measure	distance	on	surfaces	and	are	
defined	by 
	

2 , 
	

2 , 
	
respectively,	where	E,	F,	G,	e,	 f	 and	g	 are	 their	Coefficients.	 Curvatures	 are	used	 to	measure	
how	 a	 regular	 surface	 x	 bends	 in	 .	 If	D	 is	 the	 differential	 and	N	 is	 the	 normal	 plane	 of	 a	
surface,	 then	 the	 determinant	 of	 DN	 is	 the	 product	 of	 the	 Principal	
Curvatures,	and	the	trace	of	DN	is	the	negative	 of	the	sum	of	Principal	Curvatures.	In	
point	P,	the	determinant	of	 is	the	Gaussian	Curvature	K	of	x	at	P.	The	negative	of	half	of	the	
trace	of	DN	is	called	the	Mean	Curvature	H	of	x	at	P.	In	terms	of	the	principal	curvatures	can	be	
written 
	

, 
	

. 
	
Some	 definitions	 of	 these	 descriptors	 are	 given.	 These	 are	 the	 forms	 implemented	 in	 the	
algorithm: 
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