POLITECNICO DI TORINO
Repository ISTITUZIONALE

Architecture Strategies for Cyber-Foraging: Preliminary Results from a Systematic Literature Review

Original

Architecture Strategies for Cyber-Foraging: Preliminary Results from a Systematic Literature Review / Lewis, G. A,;
Lago, P.; Procaccianti, Giuseppe. - ELETTRONICO. - 8627:(2014), pp. 154-169. (Intervento presentato al convegno
Software Architecture tenutosi a Vienna nel 26-30 August 2014) [10.1007/978-3-319-09970-5_15].

Availability:
This version is available at: 11583/2561760 since:

Publisher:
Springer

Published
DOI:10.1007/978-3-319-09970-5_15

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 May 2024

Architecture Strategies for Cyber-Foraging:
Preliminary Results from a Systematic
Literature Review

Grace A. Lewis"'? and Patricia Lago?

! Carnegie Mellon Software Engineering Institute, USA
2 VU University Amsterdam, The Netherlands
glewis@sei.cmu.edu
p.lago@vu.nl

Abstract. Mobile devices have become for many the preferred way of
interacting with the Internet, social media and the enterprise. However,
mobile devices still do not have the computing power and battery life
that will allow them to perform effectively over long periods of time
or for executing applications that require extensive communication or
computation, or low latency. Cyber-foraging is a technique to enable
mobile devices to extend their computing power and storage by offloading
computation or data to more powerful servers located in the cloud or in
single-hop proximity. This paper presents the preliminary results of a
systematic literature review (SLR) on architectures that support cyber-
foraging. The preliminary results show that this is an area with many
opportunities for research that will enable cyber-foraging solutions to
become widely adopted as a way to support the mobile applications of
the present and the future.

1 Introduction

Mobile Cloud Computing (MCC) refers to the combination of mobile devices and
cloud computing in which cloud resources perform computing-intensive tasks and
store massive amounts of data. Increased mobile device capabilities, combined
with better network coverage and speeds, have enabled MCC such that mobile
devices have become for many the preferred form for interacting with the In-
ternet, social media, and the enterprise. However, mobile devices still offer less
computational power than conventional desktop or server computers, and limited
battery life remains a problem especially for computation- and communication-
intensive applications.

Cyber-foraging is an area of work within MCC that leverages external re-
sources (i.e., cloud servers or local servers called surrogates) to augment the
computation and storage capabilities of resource-limited mobile devices while
extending their battery life. There are two main forms of cyber-foraging. One
is computation offload, which is the offload of expensive computation in order
to extend battery life and increase computational capability. The second is data

staging to improve data transfers between mobile devices and the cloud by tem-
porarily staging data in transit.

The goal of this paper is to present the preliminary results of a Systematic
Literature Review (SLR) to discover software architecture solutions that sup-
port cyber-foraging and set the stage for future and necessary research in this
area. Section 2 presents a very brief summary of the SLR elements. Section 3
presents the analysis of the identified primary studies using a categorization of
achitecture decisions that are relevant for cyber-foraging systems. A summary
of the observations and findings from the primary studies is presented in Section
4. Section 5 presents related work. Finally, Section 6 presents conclusions and
the next steps in our research.

2 Research Method

To identify work related to architectures for cyber-foraging an SLR was con-
ducted following the guidelines proposed in [1] and [2]. The research question was
stated as "What software architecture and design strategies for cyber-foraging
from mobile devices can be identified in the literature?” The main data source
was Google Scholar and snowballing was used to complement the set of pri-
mary studies. Due to page limitations, the details related to inclusion and exclu-
sion criteria, search string used, search string validation, results of the multiple
search rounds, and threats to validity can be found at http://www.cs.vu.nl/
~patricia/Patricia_Lago/Shared_files/SLR-ArchCyberForaging.pdf. A set
of 57 primary studies was identified 2 Table 1 shows the computation offload sys-
tems found in the primary studies and Table 2 shows the data staging systems.

3 Analysis of Primary Studies

Defining an architecture for a system that uses cyber-foraging to enhance the
computing power of mobile devices requires making decisions on where, when
and what to offload, from the perspective of the mobile device. The systems from
the primary studies were analyzed to obtain the answers to these questions.

3.1 Where to Offload

In cyber-foraging, computation or data is offloaded to resources with greater
computing power. These resources are located in either single-hop or multi-hop
proximity of mobile devices.

Most of the systems in the studies (16/60 or 27%) offload to only Prozimate
Disconnected resources, which are surrogates located in single-hop proximity of

3 The total of primary studies is 57 but the total of systems analyzed is 52 for com-
putation offload and 8 for data staging for a total of 60 systems because two of the
computation offload studies present two different systems and one study presents
systems for both computation offload and data staging.

the mobile device that can operate without being connected to a cloud resource.
This is expected because of the advantages of lower latency and battery con-
sumption that come from using WiFi or short-range radio instead of broadband
wireless (e.g., 3G/4G) [60]. These systems therefore assume that the surrogate
can function stand-alone and offload computation is pre-provisioned (i.e., at sys-
tem deployment time) or provisioned at runtime from the mobile devices them-
selves. However, many of these systems could be adapted to work with remote
cloud servers or any addressable offload target but would lose the advantage of
lower latency due to proximity.

Table 1: Computation Offload Systems in Primary Studies

What
System Where | When Granularity Payload
E g sl |g 2|
£ 18 |8 < f::o Z|g 52| 5
JEREE AFPEEEE:
A=A TR L EE P
L3 |0 © =g [Elelg|gE oIR8
AOI2E 2228 g EIE|8] 88| elel7|E
|oIZ| 7| glEl & El=a8 E:.SQQE
AEEE R EEEEEEE EREEE
A < | EIO < O A A< Al O
mHealthMon [3] XX X X
Mobile Agents [4] X|X X X
Clone-to-Clone (C2C) [5] X X X X
Chroma [6] X X X X
Collaborative Applications [7] X X X XX
Computation and
Compilation Offload [8] X X X X
Cloud Media Services [9] Xl X X X
Roam [10] X|X|X X XIX| X
CloneCloud [11] X X |X X
MAUI [12] X[XX X X
Kahawai [12] X X X X
HPC-as-a-Service [13] X X [X X X
OpenCL-Enabled Kernels [14] | X | |X|X X X X
Real Options Analysis [15] X | XX X X
3DMA [106] XX X X
Spectra [17] X X X X
AlfredO [18] XX X XX
Collective Surrogates [19] Xl | X X X
Grid-Enhanced Mobile
Devices [20] X X X
Cloudlets [21] X X X[X| |X
Virtual Phone [22] Xl X X X
Single-Server Offloading [23] X X X X
Cloud Operating System [23] X X X X| X
Android Extensions [24] Xl 1 X X X

Continued on next page

Table 1 — Continued from previous page

What
System Where |When Granularity Payload

Prox .Disconnected
| Prox. Connected

>| 4| | 4| Remote

ol Rl Kl Kl el

Runtime Decision

~| Always Offload
Process
Function
Component

>| Service
Application
Computation
Partitioning Algo.

| 4| 4| | | K| <] 4| 4| K| 4| Parameters

Application State
Device Context
Source Location
Setup Instructions
Continuous Data

ThinAV [25)

Cuckoo [26]

ThinkAir [27]

MACS [28]

Scavenger [29]

AMCO [30]

MCo [31]

PowerSense [32]

AIDE [33]

Application Virtualization [34]
PARM [35]

Resource Furnishing System [36]
Cloud Personal Assistant [37]
SOME [38]

SmartVirtCloud [39] X
Odessa [40] X| X
Smartphone-Based Social
Sensing [41] X
MAPCloud [42] X
VM-Based Cloudlets [43] X X XX
IC-Cloud [44] X
SPADE [45)
Slingshot [46] X X X
Offloading Toolkit and
Service [47] X
Mobile Data Stream
Application Framework [48]
Heterogeneous Auto-
Offloading Framework [49]
Weblets [50]

DPartner [51] X
Elastic HTMLS5 [52] X

>
>

>[4l <] <

| <]

> X
ailallslls
>

>~
>
>~

Sikslkalks

>

>~
>~
Lol Kl el Kl

ol el kel ke
>

>

el e
>
>

>~
ol Kl Kl KT KB Ko I Kol Rl Ea s

ol Rl Rl KT Ko Ko
ol Rl Kl KT K Ka
XA [

The second largest set of systems in the studies (15/60 or 25%) offloads to
Remote resources, such as an enterprise cloud or data center. However, unless
connectivity to an enterprise cloud is necessary for the system to function, these
systems could also offload to proximate connected or disconnected nodes.

Table 2. Data Staging Systems in Primary Studies

What
System Where|When Data Type|Data Operations
&p
@ w0|.8
2 B |E|2
sl=| |8 219 |g]E
2]t K = 3 32 o8
28 |8 S8 e g~
Q| g A E |z 2 3L |T
AR oIz 218 == =g
= Q [} A=l ool al2
APIZIE 2 2|EE0 82|18 %
| S8 7 = L | 2 | <
S ERE R R e &
ngsfceacvsﬁigés S
Alaxlx < B/ &= O] »
Edge Proxy [53] X X X X
Mobile Information Access
Architecture for Occasionally-
Connected Computing [54] X X X X
Trusted and Unmanaged Data
Staging Surrogates [55] X X X X
Android Extensions [24] Xl | X X X
Telemedik [56] XX | X X X
Feel the World [57] X|IX|IX| | X X X
Large-Scale Mobile Crowdsensing [58]| |X X X X
Sonora [59] XIXIX| | X X X

Tied for the second largest set of systems in the studies (also 15/60 or 25%)
are those that offload to Remote or Proximate Disconnected resources. In gen-
eral, these systems have offload targets that can function stand-alone and are
accessible over an IP network, whether local or remote.

The next set of systems (7/60 or 12%) offloads to Remote or Proximate
Connected resources, which are surrogates located in single-hop proximity of
the mobile device that need to be connected at runtime to a cloud resource.
The offload targets in these systems need access to a cloud resource in order to
operate properly, whether to obtain the code to be offloaded, access application
data, or offload computation or data to other cloud resources (i.e., surrogate acts
as an intermediary).

Finally, five out of 60 systems (5/60 or 8%) offload to only Prozimate Con-
nected resources, and there are two data staging studies that can offload to all
three options (2/60 or 3%).

Most systems in the studies offload to a single known surrogate or cloud
resource. The reason is that the focus of the studies is on demonstrating the va-
lidity or efficiency of portions of the architecture, such as optimization engines or
partitioning algorithms, and not the operation of the full system. Some systems
include a component in the architecture to discover and select offload targets
based on (1) offload target broadcast, (2) a cloud directory service, (3) surrogate
managers that manage available surrogates, (4) local offload target lists, or (5)
an application or service directory.

3.2 When to Offload

In general, offloading is beneficial when large amounts of computation are needed
with relatively small amounts of communication [61].

For most of the systems in the studies (33/60 or 55%) offloading is a Runtime
Decision. The majority of these systems perform a runtime calculation (often
called a utility function) to determine whether it is better to execute locally
or to offload computation by comparing predicted local execution cost against
predicted remote execution cost. Local execution cost typically takes into con-
sideration the energy consumed by local execution as well as the local execution
time. Remote execution cost typically considers the energy consumed by com-
munication based on payload size and network conditions, the communication
time based on payload size and network conditions, and remote execution time.

The systems that perform runtime calculations require developer input or
static profiling to obtain the initial values or models that are used in the calcu-
lation, such as required compute cycles, payload size based on input and output
parameters, and required energy for execution and communication. Other pa-
rameters such as current network conditions or load of the mobile device and
offload target are obtained at runtime. In addition, some systems use runtime
profiling to collect data at runtime to adjust the initial values. The goal is to
obtain more realistic values based on actual execution data.

The rest of the systems in the studies (27/60 or 45%) Always Offload com-
putation or data. For computation offload systems, the parts of the system that
are considered computation-intensive, or that simply cannot run on a mobile
device, are pre-determined and executed on offload targets. All the data staging
systems fall in this category, which is expected, because by definition the idea is
for the mobile device to send and receive data to and from an enterprise cloud,
either directly or via a surrogate. The decision-making process is not whether it
is efficient or not to stage data but when is the right time to do so.

3.3 What to Offload

What to offload involves two architecture decisions, but these are different for
computation offload and data staging systems.

Computation Offload Systems For computation offload, one decision has to
do with the Granularity of the computation that is offloaded to the surrogate or
cloud resource and another has to do with the Payload that is sent from the client
to the surrogate or cloud resource in order to execute the offloaded computation.
Although these seem like low-level decisions, they have architecture implications
because they determine the components that are needed on the client and the
offload target.

All the systems in the studies have an offload client that runs on the mobile
device and an offload server that runs on the offload target to coordinate the
offload operation. The majority of the systems are designed such that the ap-
plications at runtime are not aware that computation is being offloaded. What

changes between systems based on granularity are the development, build and
runtime dependencies between the offload client and target, as well as the amount
of state synchronization to guarantee the correct execution of applications.

For Granulairity, most systems offload at the Component, Class, Module, or
Task level (27/52 or 52%). The type of element that is offloaded varies greatly
between systems, but in general they are software elements that execute in-
side specific containers or runtime environments such as Java Virtual Machines
(JVMs), OGSi platforms, or custom-built environments that enable migration
between local and remote execution. The advantage of offloading at this level of
granularity is that for the most part these are self-contained elements, meaning
that they store their own state. Once an element is offloaded there is no need to
synchronize state with the local device unless the execution is returning to the
local device. However, except for the systems that rely on more standard envi-
ronments, such as JVMs and OGSi platforms, there are very tight dependencies
between the mobile execution environment and the execution environment on
the offload target, which creates limitations in terms of programming languages
and increases the effort required for application reuse because of the need to use
specific libraries and constructs to enable computation offload.

The second largest set of systems offloads Functions, Methods, or Operations
(11/52 or 21%). In many of these systems, developers manually mark the func-
tions that they consider offloadable. In addition to the same types of constraints
and requirements for applications and offload targets outlined for the first set of
systems, the challenge for these types of system is guaranteeing fidelity of results,
which means that executing locally or remotely should produce the same results.
Functions, methods and operations are part of a larger programming constructs
such as classes or programs that maintain state at runtime, typically expressed
as class attributes or global variables. This means that the system has to syn-
chronize state such that it is the same locally and remotely, either periodically
or sending it as an additional input/output of the offload operation.

Systems that offload full Applications, Programs or Servers of a client/server
application represent the third largest set of systems in the studies (7/52 or 31%).
The advantage of offloading at this level of granularity is that execution environ-
ments are much more generic, such as virtual machines or application servers.
This also increases application reuse because servers do not have to be adapted
to run on mobile devices. Clients are very thin and perform the functionality
that cannot be offloaded, such as user interface and sensor operations. However,
the rest of the computation is always offloaded, regardless of whether it would
be more efficient or not to be executed on the mobile device.

The fourth largest set of systems in the studies offload Services (6/52 or 12%).
Services in these studies are coarse-grained capabilities accessed via standard-
ize interfaces that have been identified by system developers as computation-
intensive. These systems do not have the requirements or constraints of the
systems that offload functions or components because by definition services are
self-contained. Once a decision is made to offload, the service is invoked and the
system either waits for a reply or receives the reply when it is ready.

Finally, there is one system that offloads at the process level (1/52 or 2%).
In this system the mobile device is fully cloned inside a VM running on the
offload target. When the system encounters a computation block that is marked
for offload, the process enters into a sleep state and process state is transferred
from the mobile device to the clone VM. The clone VM integrates the process
state, executes the computation block from beginning to end, and then transfers
its process state back to the mobile device. The mobile device reintegrates the
process state and wakes up the sleeping process to continue its execution. This
system allows very fine-grained control of what portions of an application to
offload, but requires a very stable network connection to support state synchro-
nization.

Concerning Payload, for the majority of the systems the payload is the Invo-
cation Parameters to execute the remote computation (27/52 or 52%). All these
systems assume that the offloaded computation already exists on the offload
target, which leads to a small payload that simply depends on the size of the
parameter data types. However, these systems completely rely on the existence
and currency of the offloaded computation on the offload target, which in turn
would require more complex deployment processes.

For the next largest set of systems the payload is Computation and Invocation
Parameters (12/52 or 23%). This means that both the actual computation (code)
and its invocation parameters are sent from the mobile device to the offload
target.The offload target deploys the computation inside a container or execution
environment, executes it directly in a runtime environment, or distributes it
to other offload targets for deployment. Once the computation is running, the
mobile device sends the invocation parameters for the actual execution.

For the next set of systems the payload is Application State (2/52 or 4%).
The state of the application on the mobile device is synchronized with the offload
target so that the remote computation can be executed with the same state as
that on the application running on the mobile device. In both of these systems
the execution returns to mobile device and state is synchronized back in the
same way.

For a small set of systems the payload is Setup Instructions and Invocation
Parameters (2/52 or 4%). This means that the initial payload is the instructions
of how to set up the computation on the offload target. Once the computation
is running, the mobile device sends the invocation parameters for the actual
execution.

In the next set of systems (2/52 or 4%) the payload is Continuous Data from
Offload Target to Mobile Device. In Kahawai [12], a system targeted at GPU-
intensive applications such as games, the offload target maintains a high-fidelity
version of the graphics and a low fidelity version that matches the fidelity of
the mobile device. It compares both and sends a compressed video stream of
delta frames to the mobile device. The mobile device decompresses the stream
and applies the deltas to the frames that it renders locally. In the Resource
Funishing System [36] the interaction with the offload target is done via a VNC

client which means that GUI updates are continuously sent from the offload
target to mobile devices and applied locally.

In addition to Invocation Parameters, two systems offload the Partitioning
Algorithm that is part of the "When to Offload” decision to determine what
computation executes locally and what computation is offloaded (2/52 or 4%).

For two systems the initial payload is local Application State so that the
mobile device and the offload target can synchronize state before invoking the
offloaded computation (2/52 or 4%). Once the computation is running, the mo-
bile device sends the Invocation Parameters for the actual execution.

Finally, for one system the initial payload is the Device Context (1/52 or 2%),
which in this case is device type, browser type, supported codecs, screen size,
network bandwidth, and latency, such that the appropriate media processing
components are selected. Once the computation is running, the mobile device
sends the Invocation Parameters for the actual execution. For one system (1/52
or 2%), the initial payload is the Source Location, or where to obtain the compu-
tation for installation on the offload target. Application State is then transferred
from the mobile device to the offload target. Once the computation is running
and the state is synchronized, the mobile device sends the Invocation Parame-
ters for the actual execution. For one system, the initial payload is the Source
Location (URL) of the offloaded computation and then it sends the Invocation
Parameters for the actual execution (1/52 or 1%).

Data Staging Systems For data staging, one architecture decision has to do
with the type of data that is being staged and the other has to do with the
operations that are offloaded to the surrogate or cloud resource to be performed
on the data. As with computation offload, the answer to this question has ar-
chitecture implications because it requires different components on both sides
depending on how data is stored and forwarded.

Concerning Data Type, Field-Collected Data is sent to an offload target for
staging in three of the systems (3/8 or 38%). Staging sensor data addresses
storage limitations on mobile devices. In addition, data collected by a surrogate
can be shared by other mobile devices connected to the same surrogate or can
be fused or pre-processed before sending it to the enterprise.

Application Data is staged in three of the systems (3/8 or 38%). Data that is
like to be used by an application on the mobile device is retrieved from a cloud
resource and staged on a surrogate. The advantage in this case is lower latency
because the data resides in a nearby surrogate and not in a remote cloud.

One system uses the surrogate as an intermediary for Data Updates (1/8 or
13%). In Edge Proxy [53] the surrogate informs the mobile device when marked
areas of a web page have changed, so that the mobile device is only notified when
there are data updates. therefore limiting the amount of direct communication
to remote resources.

Finally, one system stages Data Files (1/8 or 13%). In Trusted and Unman-
aged Data Staging Surrogates [55] a surrogate stages data files that might be
needed by the mobile device. The advantage, as in staging application data, is

lower latency because the files reside on a nearby surrogate and not in a remote
server. Access to the remote server is done by the surrogate and only when the
file is not available on the surrogate (similar to a cache miss) or when data on the
surrogate has changed and need to be consolidated with the data in the remote
server.

Concerning Data Operations on Surrogate, two systems perform Pre-Fetching
operations on the surrogate (2/8 or 25%). The goal is to pre-determine data that
is likely to be used by connected mobile devices, retrieve that data from cloud
resources, and then store it to reduce the latency of direct cloud access.

Two systems perform In-Bound Filtering or Pre-Processing of data that flows
from the enterprise (or cloud) to the mobile device (2/8 or 25%). The goal is to
pre-process data that is retrieved or pushed from cloud resources so that data
is ready to be consumed, or filtered such that the mobile device only receives
the data that it needs. The advantage is that the heavy computation and com-
munication to remote servers happens on the surrogates and not on the mobile
devices.

Two systems perform Qut-Bound Filtering or Pre-Processing of data that
flows from the mobile device to the enterprise (or cloud) (2/8 or 25%). The goal
is for the surrogate to process data that is received from mobile devices such
that the data that is sent on to the cloud resource is ready for consumption by
the cloud resource (e.g., cleaned, filtered or merged data).

Finally, two systems use the offload target as an extension of the mobile
devices storage system for Data Storage (2/8 or 25%). All data operations (i.e.,
CRUD operations) are performed on the surrogate.

4 Observations and Findings from Primary Studies

The primary studies show different and novel computation offload and data stag-
ing systems targeted at guaranteeing fidelity of results, and optimizing attributes
such as energy consumption, network bandwidth usage, and performance. For
computation offload systems, the offload mechanisms range from dynamic ap-
proaches in which the computation is provisioned from the mobile device to
more static approaches where the computation already exists on the offload tar-
get. For data staging systems, the capabilities of the offload target range from an
extension of the mobile devices storage to sophisticated algorithms that predict
and stage the data that will likely be needed by the mobile device. As far as
distribution, the number of computation offloading systems (52) is much larger
than the number of data staging systems (8).

A preliminary analysis of the data shows the following gaps and opportunities
for architecture strategies for cyber-foraging systems.

— Understanding of quality attributes beyond energy, performance, network
usage, and fidelity of results: Many of the cyber-foraging systems, especially
those that perform runtime partitioning and offloading decisions, have very
complex algorithms for guaranteeing fidelity of results, and optimizing en-
ergy consumption, network bandwidth usage and performance. Disconnected

operations and fault tolerance are supported by some systems in which the
local computation is a fallback mechanism if the remote computation fails.
However, there is very little consideration of other quality attributes that
are relevant to cyber-foraging systems, such as ease of distribution and in-
stallation, resiliency, and security.

— System-level architecture analysis: Related to the previous point, the sys-
tems in the studies tend to focus on enabling cyber-foraging between one
mobile device and one offload target. However, there is very little discus-
sion of system-level attributes that have to be considered when moving from
experimental prototypes to operational systems. For example:

e How do the systems perform when there are multiple devices trying to
offload to the same target?

e If there are multiple offload targets available, how does the mobile device
select the target that best fits its requirements?

e What happens if the mobile device loses connectivity to the offload tar-
get?

e In those mechanisms that require custom infrastructures or middleware,
what are the mechanisms for ensuring currency and compatibility of
mobile-side and server-side components if these may not have the same
distribution mechanisms?

e What are the tradeoffs between the quality attributes promoted by the
system and other quality attributes such as ease of distribution and
installation, resiliency and security?

— Large-scale evaluations: Most of the studies have very limited case studies
or evaluations. For example, even though studies talk about mobile cloud
computing the experiments are done in controlled environments over WiFi
connections, which is not representative of a real mobile cloud environment
with disconnections, high latency and multiple heterogeneous users and de-
vices.

— Architectures for data staging systems: The low number of primary studies
related to architectures for data staging, combined with an increasing num-
ber of data collection devices in the field and the Internet of Things (IoT),
show that it is a potential area for developing architecture patterns or tactics
that can be leveraged by software architects and developers of these types
of systems.

5 Related Work

There are several studies that survey the field of MCC and identify cyber-
foraging as a research area and challenge, but are not systematic literature
reviews and do not have an architecture focus. Abolfazli et al [62] present a
survey of cloud-based mobile augmentation (CMA) approaches, one of which is
cyber-foraging. One of the challenges stated by this work is the lack of a reference
architecture for CMA. Dinh at al [63] present a survey on MCC. Computation
offload is discussed as a technique for extending battery lifetime of mobile de-
vices and listed as one of the challenges for MCC. Fernando et al [64] present

a more complete survey on mobile cloud computing. Some of the research that
addresses efficient computation offload and distribution to the cloud and how it
differs from traditional distributed systems is discussed in this paper. Kumar et
al [65] present a survey on computation offloading but focus primarily on the al-
gorithms used to partition and offload programs in order to improve performance
or save energy. Finally, Yu et al [66] present a survey on seamless application
mobility, which is the continuous or uninterrupted computing experience as a
user moves across devices. Code offloading is mentioned as a future direction for
seamless application mobility. The work that is most similar to ours is by Flinn
et al [67] that presents a discussion of representative cyber-foraging systems and
their characteristics. However, it is limited to a small number of systems and
does not follow a systematic process. To the best of our knowledge, ours is the
first systematic literature review related to architectures for cyber-foraging.

6 Conclusions and Next Steps

We presented preliminary results of an SLR in architectures for cyber-foraging
systems and analyzed the primary studies using a categorization of architecture
decisions related to what, when and where to offload computation and data from
mobile devices. The analysis allowed us to identify gaps and opportunities for
research in (1) quality attributes that are relevant to cyber-foraging systems,
such as ease of distribution and installation, resiliency, and security, (2) system-
level architecture analysis, (3) large-scale evaluations, and (4) architectures for
data staging systems. Our next steps are to further refine the analysis and cluster
the results to identify architectural tactics that can be employed by system
architects to build systems that use cyber foraging, with an analysis of the
quality attributes and tradeoffs related to each tactic.

Acknowledgments

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon Univer-
sity for the operation of the Software Engineering Institute, a federally funded
research and development center. This material has been approved for public
release and unlimited distribution (DM-0001173).

References

1. T. Dyba, T. Dingsoyr, and G. Hanssen, “Applying systematic reviews to diverse
study types: An experience report,” in Empirical Software Engineering and Mea-
surement, 2007. ESEM 2007. First International Symposium on, September 2007,
pp- 225-234.

2. B. Kitchenham and S. Charters, “Guidelines for performing systematic literature
reviews in software engineering,” Keele University and Durham University Joint
Report, Tech. Rep. EBSE 2007-001, 2007.

10.

11.

12.

13.

14.

15.

16.

17.

18.

J. Ahnn and M. Potkonjak, “mhealthmon: Toward energy-efficient and distributed
mobile health monitoring using parallel offloading,” Journal of Medical Systems,
vol. 37, no. 5, pp. 1-11, 2013.

P. Angin and B. Bhargava, “An agent-based optimization framework for mobile-
cloud computing,” Journal of Wireless Mobile Networks, Ubiquitous Computing,
and Dependable Applications (JoWUA), vol. 4, pp. 1-17, 2013.

A. Aucinas, J. Crowcroft, and P. Hui, “Energy efficient mobile m2m communica-
tions,” in Proceedings of ExtremeCom ’12, 2012.

. R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb, “Simplifying cyber

foraging for mobile devices,” in Proceedings of the 5th international conference on
Mobile systems, applications and services, ser. MobiSys '07. New York, NY, USA:
ACM, 2007, pp. 272-285.

Y.-S. Chang and S.-H. Hung, “Developing collaborative applications with mobile
cloud-a case study of speech recognition,” Journal of Internet Services and Infor-
mation Security (JISIS), vol. 1, no. 1, pp. 18-36, 2011.

G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and R. Chan-
dramouli, “Studying energy trade offs in offloading computation/compilation in
java-enabled mobile devices,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 15, no. 9, pp. 795-809, 2004.

B. Cheng and M. Probst, “Hbb-next i d4.4.1: Intermediate middleware software
components for cloud service offloading,” HBB-NEXT Consortium 2013, Tech.
Rep., 2013.

H.-h. Chu, H. Song, C. Wong, S. Kurakake, and M. Katagiri, “Roam, a seamless
application framework,” Journal of Systems and Software, vol. 69, no. 3, pp. 209—
226, 2004.

B.-G. Chun and P. Maniatis, “Augmented smartphone applications through clone
cloud execution,” in Proceedings of the 12th conference on Hot topics in operating
systems. USENIX Association, 2009, pp. 8-8.

E. Cuervo, “Enhancing mobile devices through code offload,” Ph.D. dissertation,
Duke University, 2012.

N. Duga, “Optimality analysis and middleware design for heterogeneous cloud hpc
in mobile devices,” Master’s thesis, Addis Ababa University, 2011.

H. Endt and K. Weckemann, “Remote utilization of opencl for flexible compu-
tation offloading using embedded ecus, ce devices and cloud servers,” in Volume
22: Applications, Tools and Techniques on the Road to Ezxascale Computing, ser.
Advances in Parallel Computing. I0OS Press EBooks, 2011, vol. 22, pp. 133-140,
this paper was not available online. I got it from the library.

R. G. Esteves, M. D. McCool, and C. Lemieux, “Real options for mobile com-
munication management,” in GLOBECOM Workshops (GC Wkshps), 2011 IEEE.
IEEE, 2011, pp. 1241-1246.

T. Fjellheim, S. Milliner, and M. Dumas, “Middleware support for mobile applica-
tions,” International Journal of Pervasive Computing and Communications, vol. 1,
no. 2, pp. 75-88, 2005.

J. Flinn, S. Park, and M. Satyanarayanan, “Balancing performance, energy, and
quality in pervasive computing,” in In Proceedings of the 22nd International Con-
ference on. Distributed Computing Systems, 2002, pp. 217-226.

I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling the cloud:
Enabling mobile phones as interfaces to cloud applications,” in Middleware 2009,
ser. Lecture Notes in Computer Science, J. Bacon and B. Cooper, Eds., vol. 5896.
Springer Berlin Heidelberg, 2009, pp. 83—102.

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

S. Goyal, “A collective approach to harness idle resources of end nodes,” Ph.D.
dissertation, School of Computing, University of Utah, 2011.

T. Guan, “A system architecture to provide enhanced grid access for mobile de-
vices,” Ph.D. dissertation, University of Southampton, 2008.

K. Ha, G. Lewis, S. Simanta, and M. Satyanarayanan, “Cloud offload in hostile
environments,” Carnegie Mellon University, Tech. Rep., 2011.

S.-H. Hung, J.-P. Shieh, and C.-P. Lee, “Migrating android applications to
the cloud,” International Journal of Grid and High Performance Computing
(IJGHPC), vol. 3, no. 2, pp. 14-28, 2011.

S. Imai, “Task offloading between smartphones and distributed computational re-
sources,” Master’s thesis, Rensselaer Polytechnic Institute, 2012.

A. N. Iyer et al., “Extending android application programming framework for seam-
less cloud integration,” in Mobile Services (MS), 2012 IEEE First International
Conference on. 1EEE, 2012, pp. 96-104.

C. Jarabek, D. Barrera, and J. Aycock, “Thinav: truly lightweight mobile cloud-
based anti-malware,” in Proceedings of the 28th Annual Computer Security Appli-
cations Conference. ACM, 2012, pp. 209-218.

R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a computation offloading
framework for smartphones,” in Mobile Computing, Applications, and Services.
Springer, 2012, pp. 59-79.

S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dynamic
resource allocation and parallel execution in the cloud for mobile code offloading,”
in INFOCOM, 2012 Proceedings IEEE. 1EEE, 2012, pp. 945-953.

D. Kovachev and R. Klamma, “Framework for computation offloading in mobile
cloud computing,” International Journal of Interactive Multimedia and Artificial
Intelligence, vol. 1, no. 7, pp. 6-15, 2012.

M. D. Kristensen, “Empowering mobile devices through cyber foraging,” Ph.D.
dissertation, Aarhus University, 2010.

Y.-W. Kwon and E. Tilevich, “Reducing the energy consumption of mobile applica-
tions behind the scenes,” in Proceedings of the 29th IEEE International Conference
on Software Maintenance (ICSM 2013), 2013.

B.-D. Lee, “A framework for seamless execution of mobile applications in the
cloud,” in Recent Advances in Computer Science and Information Engineering.
Springer, 2012, pp. 145-153.

J. Matthews, M. Chang, Z. Feng, R. Srinivas, and M. Gerla, “Powersense: power
aware dengue diagnosis on mobile phones,” in Proceedings of the First ACM Work-
shop on Mobile Systems, Applications, and Services for Healthcare. ACM, 2011,
p- 6.

A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D. Chen, T. Giuli, and X. Gu,
“Towards a distributed platform for resource-constrained devices,” in Distributed
Computing Systems, 2002. Proceedings. 22nd International Conference on. IEEE,
2002, pp. 43-51.

D. Messinger and G. A. Lewis, “Application virtualizaton as a strategy for cyber
foraging in resource-constrained environments,” Carnegie Mellon Software Engi-
neering Institute, Tech. Rep., 2013.

S. Mohapatra and N. Venkatasubramanian, “Optimizing power using a reconfig-
urable middleware,” UC Irvine, Tech. Rep., 2003.

M. Ok, J.-W. Seo, and M.-s. Park, “A distributed resource furnishing to offload
resource-constrained devices in cyber foraging toward pervasive computing,” in
Network-Based Information Systems. Springer, 2007, pp. 416—425.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

M. J. O’Sullivan and D. Grigoras, “The cloud personal assistant for providing
services to mobile clients,” in Service Oriented System Engineering (SOSE), 2013
IEEE Tth International Symposium on, 2013, pp. 478—485.

S. Park, Y. Choi, Q. Chen, and H. Yeom, “Some: Selective offloading for a mobile
computing environment,” in Cluster Computing (CLUSTER), 2012 IEEE Inter-
national Conference on, 2012, pp. 588—591.

L. Pu, J. Xu, X. Jin, and J. Zhang, “Smartvirtcloud: virtual cloud assisted appli-
cation offloading execution at mobile devices’ discretion,” in 2013 IEEE Wireless
Communications and Networking Conference (WCNC): SERVICES and APPLI-
CATIONS, 2013.

M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govindan,
“Odessa: enabling interactive perception applications on mobile devices,” in Pro-
ceedings of the 9th international conference on Mobile systems, applications, and
services, ser. MobiSys '11. New York, NY, USA: ACM, 2011, pp. 43-56.

K. K. Rachuri, “Smartphones based social sensing: Adaptive sampling, sensing and
computation offloading,” Ph.D. dissertation, University of Cambridge, 2012.

M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra, and A. V. Vasilakos, “Map-
cloud: mobile applications on an elastic and scalable 2-tier cloud architecture,” in
Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and
Cloud Computing. IEEE Computer Society, 2012, pp. 83-90.

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” Pervasive Computing, IEEFE, vol. 8, no. 4, pp.
14-23, 2009.

C. Shi, P. Pandurangan, K. Ni, J. Yang, M. Ammar, M. Naik, and E. Zegura,
“Ic-cloud: Computation offloading to an intermittently-connected cloud,” Georgia
Institute of Technology, Tech. Rep., 2013.

J. N. Silva, L. Veiga, and P. Ferreira, “Spade: scheduler for parallel and distributed
execution from mobile devices,” in Proceedings of the 6th international workshop
on Middleware for pervasive and ad-hoc computing. ACM, 2008, pp. 25-30.
Y.-Y. Su and J. Flinn, “Slingshot: deploying stateful services in wireless hotspots,”
in Proceedings of the 3rd international conference on Mobile systems, applications,
and services, ser. MobiSys ’05. New York, NY, USA: ACM, 2005, pp. 79-92.

K. Yang, S. Ou, and H.-H. Chen, “On effective offloading services for resource-
constrained mobile devices running heavier mobile internet applications,” Com-
munications Magazine, IEEFE, vol. 46, no. 1, pp. 5663, 2008.

L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for par-
titioning and execution of data stream applications in mobile cloud computing,”
ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 4, pp. 23-32,
2013.

Y. Zhang, X.-t. Guan, T. Huang, and X. Cheng, “A heterogeneous auto-offloading
framework based on web browser for resource-constrained devices,” in Internet and
Web Applications and Services, 2009. ICIW’09. Fourth International Conference
on. IEEE, 2009, pp. 193-199.

X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an elastic ap-
plication model for augmenting the computing capabilities of mobile devices with
cloud computing,” Mobile Networks and Applications, vol. 16, no. 3, pp. 270-284,
2011.

Y. Zhang, G. Huang, W. Zhang, X. Liu, and H. Mei, “Towards module-based
automatic partitioning of java applications,” Frontiers of Computer Science, vol. 6,
no. 6, pp. 725-740, 2012.

52

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

X. Zhang, W. Jeon, S. Gibbs, and A. Kunjithapatham, “Elastic html5: Workload
offloading using cloud-based web workers and storages for mobile devices,” in Mo-
bile Computing, Applications, and Services. Springer, 2012, pp. 373-381.

T. Armstrong, O. Trescases, C. Amza, and E. de Lara, “Efficient and transparent
dynamic content updates for mobile clients,” in Proceedings of the 4th international
conference on Mobile systems, applications and services. ACM, 2006, pp. 56—68.
A. Bahrami, C. Wang, J. Yuan, and A. Hunt, “The workflow based architecture
for mobile information access in occasionally connected computing,” in Services
Computing, 2006. SCC’06. IEEE International Conference on. IEEE, 2006, pp.
406-413.

J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satyanarayanan, “Data staging on
untrusted surrogates,” in Proceedings 2nd USENIX Conference on File and Storage
Technologies (FASTO03), Mar 31-Apr 2, 2008, San Francisco, CA., 2003.

S. Kundu, J. Mukherjee, A. K. Majumdar, B. Majumdar, and S. Sekhar Ray,
“Algorithms and heuristics for efficient medical information display in pda,” Com-
puters in Biology and Medicine, vol. 37, no. 9, pp. 1272-1282, 2007.

T. Phokas, H. Efstathiades, G. Pallis, and M. Dikaiakos, “Feel the world: A mobile
framework for participatory sensing,” in Mobile Web Information Systems, ser.
Lecture Notes in Computer Science, F. Daniel, G. Papadopoulos, and P. Thiran,
Eds., vol. 8093. Springer Berlin Heidelberg, 2013, pp. 143—-156.

Y. Xiao, P. Simoens, P. Pillai, K. Ha, and M. Satyanarayanan, “Lowering the
barriers to large-scale mobile crowdsensing,” in Mobile Computing Systems and
Applications, 2013.

F. Yang, Z. Qian, X. Chen, I. Beschastnikh, L. Zhuang, L. Zhou, and J. Shen,
“Sonora: A platform for continuous mobile-cloud computing,” Technical Report.
Microsoft Research Asia, Tech. Rep., 2012.

N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy con-
sumption in mobile phones: A measurement study and implications for network
applications,” in Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement Conference, ser. IMC ’09. New York, NY, USA: ACM, 2009, pp.
280-293.

K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can offloading com-
putation save energy?” Computer, vol. 43, no. 4, pp. 51-56, Apr. 2010.

S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, “Cloud-based augmen-
tation for mobile devices: Motivation, taxonomies, and open challenges,” IFEFE
Communications Surveys Tutorials, vol. 16, no. 1, pp. 337-368, 2014.

H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing;:
architecture, applications, and approaches,” Wireless Communications and Mobile
Computing, vol. 13, pp. 1587-1611, 2011.

N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A survey,”
Future Generation Computer Systems, vol. 29, p. 84106, 2012.

K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation offloading
for mobile systems,” Mobile Networks and Applications, vol. 18, no. 1, pp. 129-140,
Feb. 2013.

P. Yu, X. Ma, J. Cao, and J. Lu, “Application mobility in pervasive computing: A
survey,” Pervasive and Mobile Computing, vol. 9, pp. 2-17, 2012.

J. Flinn, “Cyber foraging: Bridging mobile and cloud computing,” in Synthesis
Lectures on Mobile and Pervasive Computing, M. Satyanarayanan, Ed. Morgan
& Claypool Publishers, 2012.

