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Abstract—Network Functions Virtualization can enable
each user (tenant) to define his desired set of network
services, called (network) service graph. For instance, a User1
may want his traffic to traverse a firewall before reaching
his terminal, while a User2 may be interested in a different
type of firewall and in a network monitor as well. This paper
presents a prototype of an SDN-enabled node that, given a
new user connected to one of its physical ports, it is able
to dynamically instantiate the user’s network service graph
and force all his traffic to traverse the proper set of network
functions.
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I. INTRODUCTION

Network Functions Virtualization (NFV) [1] proposes to
transform the network functions (NFs) that today run on
dedicated appliances (e.g., firewall, WAN accelerator), into
a set of software images, which can be consolidated into
high-volume standard servers thanks to the power of com-
puting virtualization technologies and software switches.
The unprecedented flexibility and agility provided by those
technologies enable the creation of network service chains
that can be finely customized, even on a per-user base,
enabling each user to defined his own preferred set of
network services, called (network) service graphs.

This paper focuses on the case in which users are given
the possibility to define their own service graph [2], made
up of a set of NFs chosen by the user himself and that
operate solely on his traffic. The service graph is stored in
a user profiles database and it is used when the network
recognizes an user terminal that belong to the user himself,
such as based on the MAC address of the terminal or on
the physical port the user connects to. In this case, our
system is able to reconfigure the network paths inside the
node and instantiate the NFs (as specified in the service
graph) on the user’ traffic. This requires the network to
translate the service graph, which includes only high-level
information such as the chosen NFs and their service
order, into a more precise representation called Network
Functions - Forwarding Graph (NF-FG), which includes
additional parameters (e.g. physical/virtual ports) required
by the system to operate.

This paper presents a software architecture to dynam-
ically instantiate NF-FGs starting from an high level
description of the desired graphs and the occurrence of
a particular event (e.g., a new user is connected to the
node), leveraging traffic steering primitives provided by

Figure 1. Overall architecture.

SDN technologies that are used to dynamically reconfigure
the network paths inside the network node. The dynamic
instantiation of NF-FGs is one of the topics of the EU-
funded FP7 project UNIFY [3], which aims at providing
full network and service virtualization to enable rich and
flexible services.

II. ARCHITECTURE

The overall system architecture of our prototype is
shown in Figure 1. The global orchestrator is the mod-
ule in charge of authenticating a user connecting to the
network node. Upon receiving the information that a new
user terminal is connected to one of the physical ports
of the node, the orchestrator retrieves the correct Service
Graph (SG) stored in an external user-profiles reposi-
tory, and outputs the corresponding Network Functions
- Forwarding Graph (NF-FG) to the node orchestrator.

The NF-FG (Figure 2) is a JSON data that consists of a
sequence of “flow-space/action” pairs, each one indicating
which traffic has to be delivered to a specific NF (on a
given virtual port), or the physical port through which this
traffic has to leave the node itself. The flow space supports
all the fields defined by Openflow 1.3 [4] (although new
fields can be defined), while the action can refer either to
a physical port of the node, or to a port of a NF. In this
respect, we can consider the NF-FG as a generalization of
the Openflow data model that specifies also the functions
that have to process the traffic into the node, in addition
to defining the (virtual) ports the traffic has to be sent to.

The node orchestrator receives the NF-FG through a
REST API. This module takes care of instantiating the



"NF-FG" : {
"id" : "user1_123",
"flow-rules" : [
{
"flow-space" : {
"port" : "eth0",
},
"action" : "stateless_firewall:1"

},
{
"flow-space" : {
"port" : "stateful_firewall:2",
"tcp_src" : "80"

},
"action" : "URLfilter"

},
.......

]
}

Figure 2. Excerpt of a NF-FG description.

NF-FG on the selected node, which requires to start the
proper computing environments and to configure the net-
work paths in the software switch. The implemented API
also supports commands that delete/modify existing NF-
FGs, while the extension to support cascading NF-FGs is
currently in progress. When the node orchestrator receives
a request for a new NF-FG, according to the capabilities
of the node (e.g., number of CPU cores, specific hardware
accelerators, etc.) it selects a NF implementation from a
NFs repository, for each NF required by the NF-FG.

The traffic steering among the elements of the NF-FG
is based on xDPd [5], a software switch that allows to
dynamically create several software Openflow switches,
called Logical Switch Instances (LSIs), which can be
connected to each other, to physical interfaces and to NFs.
LSIs are required to provide the expected level of traffic
isolation among users, allocating a distinct virtual switch
to each user that is dedicated to the implementation of the
service chaining of the user himself. Instead, the LSI-0 is
in charge of classifying the user’s traffic and delivering
it to the proper LSI instance. LSIs access to the network
ports using the DPDK framework [6]: the igb driver is
used in case of physical interfaces, while the kni driver
or rte_rings are used to exchange packets with NFs,
according to the type of NFs themselves.

When the node orchestrator receives a new NF-FG
description, it: (i) retrieves an implementation for each
required NF (using the NFs repositories) and installs it,
(ii) instantiates a user-LSI on xDPd, connecting it to
the proper NFs and to the LSI-0, and then (iii) it creates
a per-tenant Openflow controller that allows to insert the
proper rules in the flow table(s) of the LSIs. In particular,
rules defining a NF-FG are translated into two sequences
of Openflow flowmod messages: one to be sent to the
LSI-0, so that it knows which traffic must be provided to
the user-LSI and how to treat packets coming from this
LSI; the other to be sent to the user-LSI, to instruct it
on how to steer packets between NFs.

The node supports two flavors of NFs: DPDK pro-
cesses, and NFs deployed in Docker containers [7]. While
the former type provides better performance (in fact, an
LSI exchanges packets with DPDK NFs in a zero-copy
fashion), Docker containers guarantee properties such as
isolation among NFs, as well as they allow to limit the

Figure 3. Example of NF-FG deployment.

CPU and memory usage of NFs themselves. Finally, each
NF is provided with an interface dedicated to the control
and management of the NF itself, which can be used to
download the proper configuration in each NF and/or to
control its behavior.

III. USE CASE

Figure 3 provides a logical representation of a possible
use case. User1 configures a SG consisting of a stateless
firewall (e.g., a Docker container running an iptables
instance) and URLfilter, a DPDK process that iden-
tifies and drops HTTP requests belonging to a set of
blacklisted URLs. Since the latter NF requires to oper-
ate on HTTP traffic, the flow-rules describing the graph
will steer all non-HTTP traffic to eth2. User2, instead,
configures a SG that just includes a stateful firewall, hence
experiencing a network behavior that is different from the
one defined for User1. Obviously this example can be
straightforwardly enriched with more rules, NFs and users.
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