
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Supporting Fine-Grained Network Functions through Intel DPDK / Cerrato, Ivano; Annarumma, M.; Risso, FULVIO
GIOVANNI OTTAVIO. - STAMPA. - (2014), pp. 1-6. (Intervento presentato al convegno Third European Workshop on
Software Defined Networks (EWSDN 2014) tenutosi a Budapest, Hungary nel September 2014)
[10.1109/EWSDN.2014.33].

Original

Supporting Fine-Grained Network Functions through Intel DPDK

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/EWSDN.2014.33

Terms of use:

Publisher copyright

©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2560942 since: 2016-05-03T16:49:57Z

IEEE

Supporting Fine-Grained Network Functions through Intel DPDK

Ivano Cerrato, Mauro Annarumma, Fulvio Risso
Department of Computer and Control Engineering

Politecnico di Torino
Torino, 10129, Italy

Email: {ivano.cerrato, fulvio.risso}@polito.it
mauro.annarumma@studenti.polito.it

Abstract—Network Functions Virtualization (NFV) aims to
transform network functions into software images, executed
on standard, high-volume hardware. This paper focuses on
the case in which a massive number of (tiny) network func-
tion instances are executed simultaneously on the same server
and presents our experience in the design of the components
that move the traffic across those functions, based on the
primitives offered by the Intel DPDK framework. This paper
proposes different possible architectures, it characterizes the
resulting implementations, and it evaluates their applicability
under different constraints.

Keywords-DPDK; NFV; fine-grained network functions

I. INTRODUCTION

Network Functions Virtualization (NFV) is a new net-
work paradigm that proposes to implement in software
the many network functions (NFs) that today run on pro-
prietary hardware or dedicated appliances, by exploiting
high-volume standard servers (e.g., Intel-based blades) and
IT virtualization. This approach allows to consolidate sev-
eral NFs (e.g., NAT, firewall, etc.) on the same machine;
moreover, it offers an unprecedented agility to network
operators, as the network service can be reconfigured
dynamically by simply instantiating new NFs on the flight.

The most notable difference between classical IT virtu-
alization and NFV is the degree of network traffic that has
to be handled within a single server, as traditional virtu-
alization has to deal mostly with compute-bounded tasks,
while network I/O represents the dominant factor in the
NFV case. This poses non trivial challenges when writing
both NFs and the system framework (e.g., the hypervisor),
as many low-level details such as memory access patterns,
cache locality, task allocation across different CPU cores,
synchronization primitives and more, may have a dramatic
impact on the overall performance.

To facilitate the development of network I/O-intensive
applications, Intel has recently proposed the Data Plane
Development Kit (DPDK) [1], a framework that offers effi-
cient implementations for a wide set of common functions
such as NIC packet input/output, easy access to hardware
features (e.g., SR-IOV, FDIR, etc.), memory allocation and
queuing.

In this work we exploit the primitives offered by DPDK
to investigate the case in which a huge number of NFs
are executed simultaneously on the same server, e.g.,
when the network is partitioned among several tenants
(potentially individual users), each one having a set of

NFs that operate only on the traffic of the tenant itself.
This requires the system to execute many NF instances,
leading to a situation in which thousands of NFs may be
running on the same server, although each instance will
be characterized by a minuscule workload.

This paper focuses on the design of the components that
deliver (and receive back) the traffic to the NFs, one of the
topics of the EU-funded FP7 project UNIFY [2], which
aims at providing full network and service virtualization
to enable rich and flexible services. In particular, efficient
data exchange is one of the requirements mentioned in the
deliverable D5.1, which provides the functional specifica-
tion of a platform that is potentially able to deliver both
computing and network virtualized services. This paper
proposes several possible architectures, each one targeting
a specific working condition, for transferring data between
the virtual switch (shown in Figure 1) and NFs, exploiting
(whenever possible) the primitives offered by the Intel
DPDK framework. Our goals include the necessity to scale
with the number of NFs running on the server, which
means that we should ensure high throughput and low
latency even in case of a massive number of NFs operating
concurrently, each one potentially traversed by a limited
amount of traffic.

The paper is structured as follows. Section II provides
an overview of DPDK, while Section III describes the gen-
eral architecture of the framework to (efficiently) provide
traffic to a massive number of NFs. Several implementa-
tions of this framework are then provided in Section IV,
while their performance are evaluated and compared in
Section V. Section VI discusses related works, and finally
Section VII concludes the paper and proposes some future
extensions to this work.

II. DPDK OVERVIEW

Intel DPDK is a software framework that offers to
programmers a set of primitives that help to create efficient
NFs on x86 platforms, in particular high speed data plane
applications.

DPDK assumes that processes operate in polling mode
in order to be more efficient [3] and reduce the time
spent by a packet traveling in the server. This would
require each process to occupy one full CPU core (in
fact, DPDK processes are pinned to a specific CPU core
for optimization reasons), hence the number of processes
running concurrently are limited by the CPU architecture.

Although this scheduling model is not mandatory, DPDK
primitives are definitely more appropriate when applica-
tions are designed in that way; for example, DPDK does
not offer any interrupt-like mechanism to notify a NF for
the arrival of a packet on the NIC.

DPDK supports multi-process applications, consisting
of a primary process enabled to allocate resources such as
rte_ring and rte_mempools, which are then shared
among all the secondary processes. A DPDK process, in
turn, consists of at least one logical core (lcore), which is
an application instance running on a CPU core.

To manage memory, DPDK offers the rte_malloc
and the rte_mempool. The former looks similar to the
standard libc malloc, and can be used to allocate objects
(i) on huge pages (in order to reduce IOTLB misses),
(ii) aligned with the cache line and (iii) on a particular
NUMA socket in order to improve the performance of the
applications. The rte_mempool, instead, is a set of pre-
allocated objects that can be acquired, and later possibly
released, by lcores according to their needs. Since the
same rte_mempool can be shared across lcores, a
per-core cache of free objects is available to improve
performance. In addition to the performance techniques
already mentioned with respect to the rte_malloc, all
objects within the rte_mempool are aligned in order to
balance the load across different memory channels. This
is particularly useful if we always access the same portion
of the object, such as the first 64B of packets.

To exchange data among each others, lcores can
use the rte_ring, a lockless FIFO queue that allows
burst/bulk-single/multi-enqueue/dequeue operations. Each
slot of the rte_ring contains a pointer to an allocated
object, hence allowing data to be moved across lcores in
a zero-copy fashion. If the rte_ring is used to exchange
network packets, each slot of the buffer points to an
rte_mbuf, which is an object in the rte_mempool
that contains a pointer to the packet plus some additional
metadata (e.g., packet length).

Finally, the Poll Mode Driver (PMD) library is the
part of DPDK used by applications to access the network
interface cards (NICs) without the intermediation (and
the overhead) of the operating system. In addition, it
also allows applications to exploit features offered by the
Intel NIC controllers, such as RSS, FDIR, SR-IOV and
VMDq. The PMD does not generate any interrupt when
packets are available in the NIC, hence the lcores that
receives packets from the network should implement a
polling model. As a final remark, packets received from
the network are stored into a specific rte_mempool.

III. GENERAL ARCHITECTURE

The general architecture of our system is shown in
Figure 1. A virtual switch (vSwitch) module (i) receives
packets from both NICs and NFs, (ii) classifies and (iii)
delivers them to the proper NF according to the service
chain each packet belongs to. Finally, when a packet has
been processed by all the NFs associated with its service
chain, (iv) the vSwitch sends it back to the network.

Journey of a specific
packet within a
middlebox

vSwitch

NF 28

NF 11 NF 25

Network

Function traversed by
the considered packet

Other function
deployed in the node
and not traversed by
the considered packet

Figure 1. High-level view of a server with a vSwitch and several NFs.

The vSwitch is created at startup; instead, NFs are
created at run-time as new tenants may be dynamically
attached/detached to the network node. This implies the
necessity to (i) dynamically create the proper set of NF
instances associated with the new tenant and (ii) dynam-
ically reconfigure the service chain for that tenant, which
translates into setting the proper forwarding rules for the
tenant’s traffic in the vSwitch.

Our NFs are simple UNIX processes instead of full-
fledged virtual machines as suggested in the NFV
paradigm. This is needed because of (i) the massive
amount of NFs that we need to handle (hence the pressure
on CPU and memory occupancy of each function that
would make VMs unpractical) and (ii) the startup time,
as we cannot wait tens of seconds for a NF to be active.
However this does not represent a limitation because we
focus on the communication mechanism between the dif-
ferent components, which is orthogonal to the architecture
of the components themselves.

The vSwitch is a simplified virtual switch that supports
only forwarding rules based on MAC addresses; while this
looks limiting compared to other equivalent components
such as OpenvSwitch [4], it allows us to focus on the trans-
mit/receive portions of the switch, limiting the overhead
due to the presence of other features.

Finally, following the DPDK recommendations, the
vSwitch operates in polling mode as it is supposed to
process a huge amount of traffic (each packet traverses
the vSwitch multiple times), while NFs may follow ei-
ther the polling or interrupt-based model, depending on
considerations that will be detailed in the following.

IV. IMPLEMENTATIONS

This section details five possible implementations of the
architecture described in Section III. Each implementation
is a multi-process DPDK application, where the vSwitch
is the primary process (single lcore) and each NF is
a different (single lcore) secondary process (except for
those described in Section IV-E). This is required because
of the necessity to create/destroy the processes containing
NFs at run-time, while all the lcores of the primary
process must be created at startup.

Unfortunately, vanilla DPDK does not support the ex-
ecution of two different secondary processes on the same
CPU core, which is a fundamental requirement in our
use case, since we envision thousands of NFs deployed
on the same physical server. To overcome this limitation,

mempool
NF 1 NF M

Network

PMD

vSwitch

…

NIC 0 NIC N

rte_rin
g

mbuf

Figure 2. Implementation based on a (different) pair of rings shared
between the vSwitch and each NF.

we modify the lcore_id internal DPDK variable in the
initialization phase of each secondary process, so that each
NF has its own DPDK internal data structures (and then
no conflict can arise among NFs).

A. Double buffer

In this implementation (Figure 2) each network interface
is configured with a single input and a single output queue;
all the packets entering in the node are first processed
by the vSwitch, which accesses to the NICs through
the PMD library. Each NF exchanges packets with the
vSwitch through a couple of rte_rings: one used
for the communication vSwitch → NF, the other used
for sending back to the vSwitch those packets already
processed by the function itself. Finally, all the elements
of the rte_rings points to rte_membufs in the same
rte_mempool, allocated by the vSwitch at startup.

In this case NFs operate in polling mode, hence they
never suspend spontaneously. Hence, this implementation
is appropriate for those cases in which a limited number
of NFs is active, even not higher than the number of CPU
cores available on the server.

B. Double buffer + semaphore

In this second implementation, NFs operate in blocking
mode: the vSwitch wakes up, through a POXIS named
semaphore, a NF when a given number of packets is
available for that application. When all the packets in the
buffer have been processed, the NF suspends itself and
waits for the next signal from the vSwitch. Obviously, this
mechanism is complemented by a packet aging timeout
that wakes up the NF if there are packets waiting for too
long, hence avoiding data starvation.

This implementation is appropriate when NFs need to
process a limited amount of traffic. In this case, the polling
model would unnecessarily waste a huge amount of CPU
resources, while a blocking model allows to increase the
density of the NFs active on the same server. In fact,
in this case a NF suspends itself when no packets are
available, freeing the CPU that can be used by another
NF that actually has packets to be processed.

C. Single buffer towards the vSwitch + semaphore

In the implementations described so far, the vSwitch
may have to handle a huge number of “downstream”

buffers coming from NFs, which may require a consid-
erable amount of time while working in polling mode.

In this third implementation all NFs share a single
“downstream” rte_ring toward the vSwitch, which
exploits the lock-free multi-access capabilities of that
structure. This would result in a saving of CPU cycles
when iterating on a fewer rte_rings, as well as an
improved cache effectiveness thanks to the better locality
in memory access patterns.

This implementation may be appropriate when a large
number of NFs are active on the same server, as we
expect that in each one of its running rounds the vSwitch
would find a few applications with packets ready to be
consumed. Unfortunately, according to [1], the multi-
producer enqueue function implemented in DPDK does
not allow two or more NFs executed on the same CPU
core to use the same rte_ring. Hence, although very
appealing, this architecture has not been implemented
because it would support only a limited number of NFs
(less than the number of CPU cores).

D. Double buffer + FDIR

This forth implementation aims at reducing the load
on the vSwitch, which is undoubtedly the most critical
component of the system, by allowing some NFs to receive
directly the traffic coming from the NICs.

For this, we use the FDIR (Flow Director) facility,
which allows each NIC to be initialized with several input
queues (incoming traffic is distributed based on the value
of specified packet fields) and a single output queue. Each
input queue is then associated with a different NF, while
the output queue is just accessed by the vSwitch. When
a NF is started, the vSwitch adds a new FDIR perfect
filter on all the NICs, and binds this filter with a specific
input queue of each port. This way, the first classification
of packets is offloaded to the NIC, hence the vSwitch
has just to move packets between NFs and send on the
network the ones already processed by the entire service
chain. However, this higher efficiency is paid with more
complex NFs, which have to handle multiple input queues,
namely the ones created by the NIC (accessed through the
PMD) and the rte_ring shared with the vSwitch.

Since the number of hardware queues available on the
NICs is limited, this architecture is appropriate when the
number of NFs is reduced. Alternatively, if the number of
NFs is huge, an hybrid architecture may be used: some
NFs only receives traffic from the vSwitch, while others
(which are at the beginning of the service chains) are
directly connected to a queue of the NIC.

E. Isolated buffers + semaphore

The last implementation targets the case in which NFs
are not trusted and hence we cannot allow them to share
a portion of the memory space with the rest of system, as
all the processes belonging to the same DPDK application
share all the data structures created by the primary process
(e.g., rte_mempool, rte_rings).

In this implementation only the vSwitch is a DPDK pro-
cess, while each NF is a separated (non-DPDK) process.

This way, the rte_mempool containing traffic coming
from the NICs can only be accessed by the vSwitch, which
will provide each packet only to the proper NF. To this
purpose, the vSwitch shares with each NF a distinct set of
three buffers: two are similar to the DPDK rte_rings,
and contain a reference to a slot in the third one, which is
actually a simple memory pool containing only the packets
exchanged between the vSwitch and the NF. This requires
one additional copy each time a packet has to be delivered
to the next NF in the chain, i.e., from the rte_mempool
to the per-NF buffer when the packet has just be received
from the NIC, and between those per-NF buffers in the
next steps of the service chain.

Since in this implementation we cannot exploit DPDK-
based functions neither in the NF, nor in the per-NF
buffers, we had to implement (manually) all the techniques
provided by the DPDK for efficient packet handling;
among the others, buffers starting at a memory address
that is multiple of the cache line size and storing each
packet to an offset that is multiple of the cache line size.

This implementation aims at providing the adequate
traffic isolation among NFs and is appropriate when an
operator does not have the control on the NFs deployed on
its network nodes, e.g., when tenants are allowed to install
“opaque” NFs on the network, which are not trusted by
the operator itself.

V. PERFORMANCE EVALUATION

This section evaluates the performance of the implemen-
tations described in Section IV. Tests are executed on dual
E5-2660 Xeon (eight cores plus hyperthreading) running
at 2.20GHz, 32GB RAM and one Intel X540-based dual
port 10Gbps Ethernet NIC. Two other machines are used
respectively as a traffic generator and a traffic receiver,
connected through dedicated 10Gbps Ethernet links.

Each test lasted 100 seconds and was repeated 10 times,
then results are averaged. Each graph representing the
maximum throughput is provided with a bars view that
reports the throughput in millions of packets per second
on the left-Y axis, and a points-based representation that
reports the throughput in Gigabit per second on the right-
Y axis. Instead, latency measurements are based on the
gettimeofday Unix system call and include only the
time spent by the packets in our system, without the time
needed to actually send/receive data on the network.

Tests are repeated with packets of different sizes and
with a growing number of running NFs; moreover, each
packet traverses two of these NFs. Traffic is generated
so that two consecutive packets coming from the network
must be provided to two different NFs in order to stress
more the system. The size of the buffers has been chosen
in order to maximize the throughput of the system.

The NFs used in tests simply calculate a signature
across the first 64 bytes of each packet, which represents a
realistic workload as it emulates the fact that most network
applications operate only on the first few bytes (i.e., the
headers) of the packet in read-only mode.

Finally, unless otherwise specified, we used only the
CPU whose socket is directly connected to the NIC.

A. Double buffer

Figure 3(a) shows the throughput achieved with a
growing number of NFs deployed on the “double buffer”
architecture. In particular, from the figure it is evident that
the throughput is maximized when no more than one NF
is executed on a physical core1. In fact, it drops of about
20% (with 64B packets) when the number of NFs changes
from 7 to 8, due to the fact that we start allocating NFs on
the logical cores of CPU0 as well, hence having multiple
NFs that share the same physical core.

Figure 4(a) plots the latency experienced by packets
in our system and shows that its value tends to increase
considerably with the number of NFs, as shown by an
average value of 24.44ms with 100 NFs.

This model looks appropriate only if the number of NFs
is smaller than the number of CPU cores available; after
that point the throughput drops and the latency becomes
barely acceptable.

B. Double buffer + semaphore

Figure 3(b) depicts the throughput obtained with a
growing number of NFs with the architecture described
in Section IV-B. In particular, it shows that the NFs
implemented in blocking mode achieve higher throughput
than in the previous case, in which they operated in polling
mode. This allows the system not only to go faster in any
working condition (even when a few NFs are active), but to
support an higher number of NFs without any significant
drop in terms of performance, achieving just over 8Gbps
with 700B packets even with 2000 NFs.

Interesting, the better throughput is not achieved at the
expense of the latency, as shown in Figure 4(b). In fact,
if with a few NFs we can assist to a negligible worsening
(with 4 and 10 NFs, the average latency is less than 100µs
higher compared to Figure 4(a)), things become rapidly far
better with an higher number of NFs, achieving an average
of 1,89ms and 4,83ms respectively with 40 and 100 NFs.

Finally, it is remarkable the fact that, with 2000 NFs,
the 7 CPU cores allocated to them (the last is dedicated
to the vSwitch) are loaded only at 18% in average, which
shows the efficiency of the system. However, as evident,
the latency is definitely not acceptable (an average of
160ms with 2000 NFs), that is the reason why we did not
try to squeeze even more NFs on the system, although,
from the point of view of the throughput, there was still
room for more of them.

C. Double buffer + FDIR

Figure 3(c) shows the throughput achieved with the
“double buffer + FDIR” implementation.

In this case we experienced a limitation of the DPDK
framework: although the NIC controller exports 64 hard-
ware queues (hence it can distribute the traffic to 64
different consumer processes), the DPDK forces each one
of those processes (as part of a multi-process DPDK

1It is worth noting that, for performance reasons, one physical core is
always dedicated to the vSwitch; hence, the machine used in the tests
has still 7 physical cores (on CPU0) that can be assigned to NFs.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

4 6 7 8 9 10 14 15 16 17 40 100
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
h

ro
u

g
h

p
u

t
[M

p
p

s
]

T
h

ro
u

g
h

p
u

t
[G

b
p

s
]

#NFs

64B
700B

1514B

(a) “Double buffer” architecture.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

4 10 40 100 400 1000 2000
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
h

ro
u

g
h

p
u

t
[M

p
p

s
]

T
h

ro
u

g
h

p
u

t
[G

b
p

s
]

#NFs

64B
700B

1514B

(b) “Double buffer + semaphore” architecture.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

4 10 30
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
h

ro
u

g
h

p
u

t
[M

p
p

s
]

T
h

ro
u

g
h

p
u

t
[G

b
p

s
]

#NFs

64B
700B

1514B

(c) “Double buffer + FDIR” architecture.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

4 10 40 100 400 1000
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
h

ro
u

g
h

p
u

t
[M

p
p

s
]

T
h

ro
u

g
h

p
u

t
[G

b
p

s
]

#NFs

64B
700B

1514B

(d) “Isolated buffers + semaphore” architecture.

Figure 3. Throughput with a growing number of NFs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 8000 160000

C
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y

Time [us]

4 NFs
10 NFs
40 NFs

100 NFs

(a) “Double buffer” architecture.

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 8000 160000

C
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y

Time [us]

4 NFs
10 NFs
40 NFs

100 NFs
400 NFs

1000 NFs
2000 NFs

(b) “Double buffer + semaphore” architecture.

Figure 4. Latency introduced by the framework.

application) to be allocated on a different CPU core. As a
consequence, we were only able to execute 30 NFs using
both the Xeon CPUs available in our server, while the
remaining two logical cores were allocated to the operating
system and to the vSwitch.

With this limitation, our tests confirm that FDIR could
provide a considerable speedup to the system, allowing our
server to reach a throughput that is up to 41% better com-
pared to the best of the previous implementations (e.g.,
6.05Gbps with 64B packets and 4 NFs). However, this
gain tends to decrease when adding more NFs (particularly
when we start to allocate NFs on the second CPU, which

forces the traffic to traverse the QPI bus), reaching a point,
with 30NFs, in which this solution does no longer provide
advantages at all.

The latency measured in this test case is slightly better
than the one provided in Figure 4(a), as packets coming
from the NIC are immediately delivered to the NFs with-
out passing in the vSwitch. However, for space concerns,
it is not reported in the paper.

D. Isolated buffers + semaphore
Figure 3(d) shows the throughput achieved through the

implementation providing isolation among NFs. Compar-
ing this graph with that depicted in Figure 3(b), it is evi-

dent a deterioration in performance, as a consequence of
the additional copies needed to guarantee traffic isolation
among NFs. Instead, latency looks very similar to the one
presented in Figure 4(b).

VI. RELATED WORK

NetVM [5] is a platform built on top of KVM and
DPDK, designed to efficiently provide network traffic
to NFs deployed as different virtual machines (VMs).
The onerous constraints (in terms of hardware resources)
imposed by full fledged VMs does not allow NetVM
to support thousands of NFs running together on the
same physical server. Moreover, the NetVM hypervisor
exploits several threads to provide packets to NFs, while
our vSwitch uses a single CPU core as we would like to
allocate all the others to the NFs.

Also ClickOS [6] is targeted at efficiently steering traffic
among many NFs deployed on the same server. In fact,
the paper defines an efficient packet exchange mechanism
between a vSwitch (based on VALE [7]) and NFs, which
are implemented as tiny VMs based on Click [8]. Hence,
NFs require limited hardware resources and bootstrap
time. Unlike our work, [6] does not consider different
architectures to be used according to the number and the
type of NFs deployed, as well as the number of NFs
supported is reduced compared to that shown in this paper.

Finally, [9] proposes to execute, in the data-plane of
an edge router, fine-grained applications associated with a
specific user. However it limits its scope to edge routers,
while our proposal considers servers running generic NFs.

VII. CONCLUSION

This paper focuses on the case in which a massive
number of (tiny) network function instances are executed
simultaneously on the same server and presents five pos-
sible implementations, each one with specific operating
characteristics, of a system that moves efficiently packets
across the many NFs running on the server itself. All the
proposed implementations are based, as much as possible,
on the features offered by the Data Plane Development
Kit, a framework recently proposed by Intel to efficiently
implement data plane applications.

Results obtained, particularly in terms of throughput,
are quite satisfying for almost all the implementations
proposed, confirming the goodness of the primitives ex-
ported by the DPDK; only in few cases we spotted some
limitations which are specific of our target domain. From
the point of view of the latency, we experienced huge
packet traveling times when the server was packed with
many NF active at the same time. In general, when
the number of NF exceeded 100, the average latency
experienced by the packets may become unacceptable in
real implementations.

To our view, this suggests that our particular use case,
with a massive number of (tiny) NFs, may not be satisfied
with the current generation of the hardware, in which
CPUs are dimensioned for a few, fat, jobs, while we have
here many, tiny tasks. This suggests that our future investi-
gations should take into consideration different hardware

platforms, such as the ones with a massive number of
(tiny) cores, which may be more appropriate for our case.
This, for instance, is one of the objectives of the UNIFY
project with respect to task T5.3, focused on the feasibility
analysis of different hardware solutions with respect to
various types of workloads.

ACKNOWLEDGMENT

This work was conducted within the framework of the
FP7 UNIFY project, which is partially funded by the
Commission of the European Union. Study sponsors had
no role in writing this report. The views expressed do not
necessarily represent the views of the authors’ employers,
the UNIFY project, or the Commission of the European
Union.

REFERENCES

[1] (2014) Intel dpdk - programmer’s guide. [Online]. Available:
http://dpdk.org/doc/intel/dpdk-prog-guide-1.7.0.pdf

[2] A. Császár, W. John, M. Kind, C. Meirosu, G. Pongrácz,
D. Staessens, A. Takács, and F.-J. Westphal, “Unifying cloud
and carrier network: Eu fp7 project unify,” in Proceedings of
the 2013 IEEE/ACM 6th International Conference on Utility
and Cloud Computing (UCC ’13). IEEE Computer Society,
2013, pp. 452–457.

[3] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive
livelock in an interrupt-driven kernel.” in USENIX Annual
Technical Conference, 1996, pp. 99–112.

[4] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and
S. Shenker, “Extending networking into the virtualization
layer,” in Proceedings of the 8th ACM Workshop on Hot
Topics in Networks (HotNets-VIII), October 2009.

[5] J. Hwang, K. K. Ramakrishnan, and T. Wood, “Netvm: High
performance and flexible networking using virtualization
on commodity platforms,” in 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14).
Seattle, WA: USENIX Association, 2014, pp. 445–458.

[6] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici, “Clickos and the art of network
function virtualization,” in 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14).
Seattle, WA: USENIX Association, 2014, pp. 459–473.

[7] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for
virtual machines,” in Proceedings of the 8th international
conference on Emerging networking experiments and tech-
nologies, ser. CoNEXT ’12. New York, NY, USA: ACM,
2012, pp. 61–72.

[8] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” in Proceedings of the seventeenth
ACM symposium on Operating systems principles, ser. SOSP
’99. New York, NY, USA: ACM, 1999, pp. 217–231.

[9] F. Risso and I. Cerrato, “Customizing data-plane processing
in edge routers,” 2012 European Workshop on Software
Defined Networks, pp. 114–120, 2012.

