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Abstract—In-network function chaining often involves the de-
ployment of multiple applications into a single, possibly multi-
tenant, middlebox. This approach has gained much interest since
new network paradigms, such as Software Defined Networking
(SDN) and Network Function Virtualization (NFV), have been
proposed to virtualize resources as well as network functions. In
this scenario, it is very common to move data (e.g., packets) from
an application to another by means of a switching module that
is in charge of chaining network functions in the correct order,
also ensuring an adequate level of isolation between any two
virtualized components. With this purpose in mind, this paper
proposes an efficient algorithm to handle the communication
between the internal soft-switch and the heterogeneous network
functions that are executed on the same server. Our proposal
is designed with the aim of dealing with high speed packet
processing, hence an extensive performance evaluation is also
provided to prove the goodness of our solution in this context.

I. INTRODUCTION

Recently we assisted to the consolidation of two new net-
work paradigms, namely Software Defined Networking (SDN)
and Network Functions Virtualization (NFV), which assign
much more importance to the role of the software in both
the data and control plane of the network. Briefly [1], SDN
is based on the separation between the control and the data
plane of the network; the former is transformed into an open
and programmable platform that allows many actors to finely
control the forwarding decisions taken in any portion of their
network. Instead, NFV focuses on the problem of consolidating
and optimizing the processing of the network traffic that
needs to traverse several middleboxes, each one implementing
a specific function1 (e.g., NAT, firewall, etc), with a huge
impact in terms of costs, reliability and complexity of the
network. NFV proposes to transform the network functions
that today are running on proprietary equipment into a set
of software images that could be installed on general purpose
hardware, hence leveraging high-volume standard servers (e.g.,
x86-based blades) and computing/storage virtualization. This

This work was conducted within the framework of the FP7 UNIFY project,
which is partially funded by the Commission of the European Union. Study
sponsors had no role in writing this report. The views expressed do not
necessarily represent the views of the authors’ employers, the UNIFY project,
or the Commission of the European Union.

1In the rest of this document, the terms data plane application, application

and function will be used interchangeably. Instead, network function chain is
the result of many network functions chained one after the other.

results in higher flexibility for applications, as well as in lower
capital and operating costs for the hardware, since many differ-
ent functions can be deployed on the same middlebox instead
of being forced to exploit dedicated network middleboxes as
in the past.

A direct consequence of this flexibility is that two packets
may traverse two different function chains, e.g., one packet
has to be handled by a WAN accelerator, while the other one,
which carries HTTP traffic, has to be handled by a web cache,
then both packets have to traverse a firewall. This requires the
presence, within the network node, of a module that classifies
the traffic and sends it to the proper functions. This is the
virtual switch component shown in Figure 1. Furthermore,
as network functions can modify the packets (e.g., an HTTP
request packet is replaced by a packet that asks for that content
from the nearest cache by means of a proprietary protocol),
the classification must not only be done as soon as the packet
enters the node, but it must be re-executed each time the traffic
leaves an application. In fact, the classifier in the virtual switch
module cannot know, when the packet enters the middlebox,
the entire sequence of applications it has to traverse during
its journey within the network node. As a consequence, each
application, after having handled a packet, must send it back
to the virtual switch, which can determine which is the next
function that has to be traversed or, if it has already been
handled by all the required applications, can send it on the
network.

Figure 1 depicts the journey of a packet through a chain of
data plane applications in a middlebox, and also shows that the
number of functions installed within the middlebox is generally
higher than those traversed by a single packet. However, all
the packets traverse the virtual switch multiple times, which
suggests that this module should be carefully designed in order
not to become the bottleneck of the system (more insights on
this choice will be detailed in Section III-A).

In this context, our contribution is to propose and evaluate
an efficient way for moving data between the virtual switch
and a generic network application, which is based on a single
lock-free shared circular buffer. In order to achieve high
performance the system is designed so as to: (i) exploit cache
locality (both for code and data) as much as possible and (ii)
limit the number of context switches since their cost would
introduce an excessive overhead [2]. In addition, since multi-
tenant network nodes are envisaged, the algorithm should take
into account that function chains may involve applications in-
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Fig. 1. Journey of a packet through a function chain deployed in a middlebox.

stalled/developed by different tenants; then, the data exchange
algorithm must guarantee traffic isolation between functions,
so that a function can only access the portion of network traffic
that is expected to flow through it, hence limiting the potential
hazards due to malicious applications.

The problem of envisioning an efficient data exchange
mechanism between different network functions operating
within the same server is one of the topics of the EU-funded
FP7 project UNIFY [3], which aims at providing full network
and service virtualization to enable rich and flexible services.
Particularly, efficient data exchange is one of the requirements
mentioned in the deliverable D5.1 [4], which provides the
functional specification of the universal node, i.e., a platform
that is potentially able to deliver both computing and network
virtualized services.

The rest of the paper is organized as follows: Section
II briefly recalls the most relevant work that inspired our
proposal. Section III dives into the design of our proposal,
presenting the core concepts of the data communication algo-
rithm. Section IV shows some evaluation results while Section
V draws conclusions.

II. RELATED WORK

The efficient lock-free implementation of FIFO queues has
been investigated in several research papers. However, all the
solutions proposed so far are not optimized for function chains
in network middleboxes because they are usually based on uni-
directional flow of data according to the producer-consumer
paradigm. For instance, [5], [6] and [7] propose lock-free
algorithms that operate on FIFO queues managed as non-
circular linked-lists. Similar proposals can be found in [8]
and [9], which require also to manage a pool of pre-allocated
memory slots. However, since in network function chains a
packet always goes from the virtual switch to the network
function and then back to the virtual switch, these algorithms
require the applications to remove the data just received from
a first queue and to write it into a second queue used for
sending the data back. This implies that data is always copied
once in this trip, which may limit the throughput of the system
particularly when several functions have to be traversed (hence
several copies have to be completed).

Another possible way to efficiently exchange data between
applications can be seen in the context of a lock-free op-

erating system, in which [10] and [11] present a single
producer/consumer and a multi-producer/multi-consumer al-
gorithm to manage circular FIFO queues. Similar proposals
have been made also in [12] and [13], whose algorithms have
been designed to operate in contexts where many processes
can concurrently insert or remove items from a shared buffer.
However, those proposals are not applicable in our case as
we need to provide isolation between the network functions,
which is not guaranteed by a unique shared buffer.

Aside from the pure buffering mechanism, another impor-
tant aspect to consider when moving data between different
processing entities is the interaction of the queuing mecha-
nism with the rest of the system. Particularly, the algorithm
should avoid an excessive overhead due to context switches or
improper memory access patterns, which impacts on the effec-
tiveness of the CPU cache. For instance, those techniques are
taken into high consideration in the Intel DPDK library [12],
which has been explicitly designed for data plane applications.
In fact, DPDK implements effective data batching mechanisms
to improve performance, as well as algorithms designed to
exploit memory locality.

MCRingBuffer [14] defines an algorithm to exchange data
between one producer and one consumer running on different
CPU cores that is particularly efficient with respect to memory
access patterns. For instance, it defines a cache-line protection
mechanism that places the shared and local variables for the
producer and the consumer in different cache lines. Further-
more, the processes use mainly local variables to access the
buffer, and only when the buffer is potentially empty/full they
actually read the shared variables in order to realign their local
copies. Similar techniques are exploited in our algorithm as
well.

Finally, works such as ClickOS [15] (based on the VALE
virtual switch [16]) and Xen [17] address the problem of
efficiently exchanging packets between different entities such
as virtual machines (VM) running on the same physical server,
which can be seen as similar to our problem of implementing
network function chains. However, their intrinsic architecture
is designed for packet destined to or generated from the VMs,
without forcing the traffic to return to the virtual switch.
This implies different architectural choices such as different
buffers for packets in different directions, albeit integrated with
sophisticated data exchange mechanisms (e.g., in [17]) based
on exchanging memory pages rather than copying the packet
between hypervisor and the VM.

As a final remark, it is worth pointing out that this paper
focuses on the problem of efficiently moving packets between
different functions within a network middlebox, while it does
not consider the problem of efficiently receiving/sending pack-
ets from/to the network. This aspect, which is orthogonal to
our proposal, is instead considered in [18] and [19].

III. ALGORITHM

This section provides an overview of the proposed al-
gorithm, introducing first the goals and constraints that are
derived from the use case presented in Section I, followed by
a detailed description of the algorithm itself.



A. Design choices and architecture

As stated in Section I, flexible function chains require a
fast and efficient communication mechanism to move traffic
between the virtual switch and the network functions (and then
back), which translates into the necessity of a dedicated data
dispatching mechanism, being this component one of those
that most influence the performance of the system.

The fundamental choice for this mechanism is between a
distributed architecture, which looks more appropriate for a
component that may become the bottleneck of the system, or
a more traditional (and centralized) architecture. For instance,
while the centralized architecture may be translated into a
virtual switch that has to dispatch packets to the various
applications and receive them back in order to determine the
next processing step, the distributed architecture allows each
function to determine autonomously which is the function that
follows and, consequently, it is able to send the traffic directly
to it, in a completely distributed fashion.

Although more appealing, the distributed architecture has
several problems. First, the necessity to synchronize all the
classifier instances deployed in each function when some
chains change (e.g, new functions are added/removed, new
flows are added that require new service paths, etc.). Second,
the necessity to arbitrate the transfer of packets between each
function and the next one, as each function may receive input
traffic from multiple sources. While the above problems could
lead to a noticeable number of implementation issues (with
an expected impact in terms of performance) for a possible
distributed architecture, the necessity to isolate a function
from the following ones (Section I) puts definitely to an end
the distributed architecture. In fact, a distributed architecture
would not be able to prevent a network function F1 from
accessing the packets directed to function F2, with potential
security risks as an application may be able to modify traffic
that is not under its responsibility. This issue can be solved by
means of an intermediate entity that is in charge of isolating
network functions from one another, giving each application
only the visibility on its own traffic. This, in turn, makes the
centralized architecture, based on the virtual switch, the most
appropriate.

Our data exchange mechanism is based on a set of lock-free
ring buffers, each one shared by the virtual switch (which is
named Master in our algorithm) and a single function instance
(named Worker), as shown in Figure 2. Each shared buffer
is used for the communication in both directions: since data
provided by the Master to a Worker will eventually come back
to the Master itself, the algorithm allows the Worker to return
those data back without any copy. Instead, when data received
from a Worker must be sent to another Worker of the chain,
the Master will make a copy of the data from the buffer shared
with the first Worker to the buffer shared with the second one,
as each Worker has access only to its own buffer. This design
enables higher throughput for the function chain thanks to the
capability to limit the number of data copies in the system,
which, for each packet, are equal to the number of functions
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Fig. 2. Deployment of the algorithm within a middlebox.

N traversed by the packet itself minus one2. It is worth noting
that a solution with a single buffer shared among the Master
and all the Workers of the chain would allow the packet to be
moved with zero-copy from Worker to Worker, but it would
not ensure an adequate level of isolation: in fact, a Worker
could access data that should not flow through it.

To better understand the overall functioning of the system,
let us describe the scenario depicted in Figure 2, where packets
have to flow through a number of Workers, each one executing
a different kind of network application. When a packet enters
the node, the Master determines the first application that must
process the data based on one or more field of the packet itself.
Once the packet has been inserted into the proper buffer, the
corresponding Worker will process it by applying its logic,
possibly altering the content of the packet. After marking the
data as “consumed”, the Master will be able again to handle
the packet and decide which is the next application. At the end
of the chain, when all the Workers have successfully completed
their task, the packet is finally forwarded by the Master on the
network.

Moving to the execution model, the Master operates in
polling mode, i.e. it continuously reads a new packet and
copies it into the buffer shared with the target Worker. This
mode is appropriate in our working conditions, where the
network node is supposed to process an huge amount of traffic.
Instead, with a blocking model the Master would need to be
woken up as soon as new data arrive, which requires interrupt-
like mechanisms to start the processing. This would be too
penalizing because of the excessive overhead of those inter-
process communications (e.g., interrupts) and the associated
context switches. Vice versa, the traffic entering a specific
Worker is potentially a small portion (e.g., a single tenant)
compared to the one handled by the Master, then in this module
a blocking model looks appropriate. In particular, we have a
semaphore shared between the Master and the Worker, used by
the first module to wake up the application at the “right time”
(more details in the next section). As a consequence a Worker
will suspend itself when it has no more data to be processed,
until the Master wakes it up again; this way, CPU resources
can be used by Workers actually having data to be processed.

2In real systems one additional copy is required, because the packet has to
be copied from the memory of the network interface card to the shared buffer
of the first Worker, bringing the total number of copies to N .



B. Algorithm description

The proposed data exchange algorithm is based on the
above mentioned principles and it requires the Master and
each Worker to share some indexes and a semaphore, in
addition to the circular buffer itself. Its main operation phases
are summarized in Algorithm 1 (with respect to the Master
portion) and Algorithm 2 (for the Worker portion), which
suppose the presence of a Master and a single Worker, while
its extension to the multi-worker case is trivial. The shared
buffer is made of M slots, whose size is equal to the maximum
packet size of the system; shorter packets are copied aligned
at the beginning of the slot while the remaining bytes are left
unused.

As evident from Algorithm 1, the Master cyclically repeats
the following three main operations: (i) produces new data3

and immediately dispatches it to the Worker through the shared
buffer (lines 9-10), (ii) reads from the buffer the data already
processed by the Worker (line 12), and finally (iii) wakes up
the Worker if it has been sleeping for too long and there are
data to be processed (line 13), in order to avoid data starvation
and packet aging, as better detailed below. It is worth noting
that the Master produces a certain number of consecutive data
in order to better exploit the cache locality (the while loop at
line 5). Furthermore, if the buffer is full, it stops producing
new data (lines 6-7) and immediately starts to remove from
the buffer those data that the Worker has already handled.

Algorithm 1 Executing the Master

1: Procedure master.do()
2:

3: while true do
4: i = 0
5: while i < N do
6: if (buffer.isFull()) then
7: break
8: end if
9: data ← master.produceData()

10: master.writeDataIntoBuffer(data)
11: end while
12: master.readDataFromBuffer()
13: master.checkForOldData()

14: end while

In addition to the high-level overview of the algorithm
depicted in the pseudo-code, some further details have to be
considered to better clarify its operation. First, we must avoid
that a Worker is woken up for each single packet that needs
to be processed. For instance, it would be more convenient to
queue several packets in the Worker’s buffer before waking
it up, which would allow batch processing in the Worker
(hence achieving better efficiency because of code and data
locality) and would limit the number of context switches in
the system (when a Worker is suspended because of the lack
of data and another is scheduled for execution). In this respect,
our algorithm defines a Master threshold which represents the
minimum number of packets that need to be waiting for service

3It is worth noting that producing new data corresponds, in fact, to reading
packet from the network interface card.

in the buffer before waking the Worker up. Second, we must
avoid that the packets of a Worker with a limited amount of
traffic would never be serviced because the Master threshold is
never reached. To comply with this requirement, the algorithm
stores the timestamp of the oldest packet present in the shared
buffer and checks if the buffer holds packets that appear too
old: in this case the Worker is woken up anyway, irrespective
of the Master threshold.

Those conditions are checked in the functions
writeDataIntoBuffer() and checkForOldData().
Particularly, the former does the following: (i) if the buffer
is empty, stores the current time in a variable; (ii) copies the
new data in the first free slot (which is pointed by a shared
index); (iii) if the Master threshold has been reached and the
Worker is not already up and processing data, wakes it up.
Instead, the checkForOldData() function is in charge of
checking for the presence of too old packets waiting to be
served, which requires to check if (i) the buffer contains one
or more data, (ii) the Worker is not already running, (iii) the
timestamp associated with the shared buffer has exceeded a
predefined threshold.

Both functions need to know whether the Worker is still
suspended or it is already running. This is done through a
variable shared between the Master and the Worker that tracks
the status of the latter, named workerStatus in the pseudo-
code of Algorithm 2. This variable is set by the Master just
before signaling the Worker to wake up, while the Worker
resets the variable just before going to sleep. In this way,
the Master can test this shared variable to have an indication
about the status of the Worker and then wake it up only when
necessary.

Algorithm 2 Executing the Worker

1: Procedure worker.do()
2:

3: while true do
4: waitForWakeUp()
5: processed packets ← 0
6: while isTherePacket() do
7: if (processed packets ≥ WORKER PKT THRESHOLD)

then
8: processed packets ← 0
9: updateSharedIndex()

10: end if
11: buffer.process()
12: processed packets++
13: end while
14: updateSharedIndex()
15: workerStatus ← WAIT FOR SIGNAL

16: end while

Algorithm 2 details the operations of the Worker. In partic-
ular, when it wakes up, it processes the data into the buffer
until data are available (lines 6-13). When it finishes (line 14),
or when it has already processed at least a given amount of
data (line 9), the Worker updates a shared index, so that the
Master can consume the data just processed by the Worker
itself. This way, also the Master is able to implement batched
reads, i.e., consuming several packets from the shared buffer



at once, in order to better exploit data and code locality and
improve efficiency.

Notice that this batching mechanism is implemented in a
different way compared to the one that refers to the data sent
by the Master to the Worker. In fact, while in previous case the
Worker is woken up when the amount of data into the buffer
is higher than the Master threshold, in this case we update a
shared variable (i.e., the index used by the Master to know
the amount of data ready to be consumed in the buffer) only
periodically, instead of incrementing its value by one each time
the Worker processes a packet.

IV. EXPERIMENTAL RESULTS

This section reports on the results of several tests aimed
at identifying the maximum throughput that can be achieved
by the proposed algorithm in several test conditions. These
tests were executed on a workstation with 16 GiB of memory,
CPU Intel i7-3770 @ 3.40 GHz (four physical cores plus hy-
perthreading) and OS Ubuntu 12.10, kernel 3.5.0-17-generic,
64 bits. In all the tests an entire core was dedicated to the
master, which represents the most critical component of the
system because it has to dispatch packets to all the Workers,
depending on the function chain experienced by each packet.
Instead, for what concerns the Workers, they were distributed
among the cores (except that running the Master) in a fashion
that maximises the throughput of the system.

Each test lasted 100 seconds and was repeated 10 times.
The results are averaged and reported in the graphs shown
in the following. Each graph is provided with a bars view
and a points-based representation of the maximum throughput.
The first representation is referred to the left y axis, which
reports the throughput in millions of packets per second,
while the second one is referred to the right y axis, where
the throughput is measured in Gigabit per seconds. The data
exchanged between the Master and the Workers consists of
network packets of different sizes. Moreover, the chain of
Workers traversed by each packet is statically defined and the
tests are repeated with different the lengths of the chain.

Figure 3 provides the throughput in four different test
conditions, considering function chains with a different number
of Workers and forcing the packet to traverse them all. This
provides an insight of the forwarding capabilities of a network
node in case long function chains are configured. As expected,
the throughput decreases when increasing of the number of
Workers, which originates from the increased amount of time
spent by the Master to move packets from each Worker to the
following one. Furthermore, the presence of many Workers has
also an impact on data locality, as more buffers are allocated
and consequently there is a higher probability for the CPU to
experience cache misses, even if our algorithm tends to limit
their impact through batch processing.

Particularly, Figure 3(a) shows the throughput that could be
achieved in ideal scenarios, that is: with Workers that do not
actually access the packet4, referred to as “dummy” Workers
in the following, and with a single packet in memory. The

4It is worth remembering that the algorithm allows a Worker to send back
packets to the Master without actually accessing the packet content.

latter point means that the Master reads always the same
packet in memory and copies it into the buffer of the first
Worker, thus reducing the impact of the CPU cache miss
experienced at the beginning of the chain. This provides an
ideal view of the system compared to the actual scenario of
a network middlebox, were distinct packets are received from
the network.

Starting from this ideal situation, the following experiments
move into more realistic scenarios. In particular, Figure 3(b)
refers to Workers that access the packet content and calculate
a signature across the first 64 bytes of the packets, hence em-
ulating the operation that most network applications perform
on the first bytes (i.e., the headers) of each packet. The main
reason of the declining throughput of Figure 3(b) (compared to
the ideal case of Figure 3(a)) is the increased number of cache
misses in the L1 and L2 caches of the CPU core where the
Worker is running. In other words, the additional load in the
Worker due to the computation of the signature seems to have
a marginal impact compared to the time needed by the CPU
to move data from the cache of the core where the Master is
running to the core of the Worker.

Figure 3(c) refers to a scenario with dummy Workers (such
as in case (a)), but the Master reads data to be injected into the
chain from a buffer containing 1 million of packets. Also in
this case the reduced throughput compared to the ideal case is
due to memory access patterns, as the Master will very likely
experience frequent cache misses when reading packets at the
beginning of the chain. The obtained results confirm that this
modification alone can halve the throughput of our system,
particularly when the packet has to traverse a limited number
of Workers, while in case of longer chains this additional
overhead at the beginning is amortized by the cost of the rest
of the chain.

Finally, results in Figure 3(d) refer to an even more critical
scenario, where the Master reads packets from a buffer storing
1 million of packets and the Workers are the above described
realistic ones considered for Figure 3(b). Notice how also the
performance obtained in this case is very satisfying, reaching
about 38 millions of packets per second with 64 bytes packets
when a single worker has to be traversed. In addition to this,
we have to consider that the Master uses a single CPU core
and we do not want to exploit, by design, more CPU cores
as we would like to allocate them to the Workers, which will
host the network functions.

Figure 4 shows, in the same conditions of the results
provided in Figure 3(d), the internal throughput of the chain,
namely the total number of packets per second moved by the
Master, with an increasing number of Workers. This picture
gives an insight of the processing capabilities of the Master
that slightly increase with the number of workers, thus proving
the goodness of our algorithm as the number of packets
that our algorithm successfully processes does not depend on
the number of Workers. In fact, a packet that travels across
multiple Workers is likely to experience cache misses at the
beginning of the chain, while it may be found in cache in the
following processing steps. Therefore, an higher number of
Workers mitigates the cache miss problem, hence allowing to
achieve higher throughput.
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(a) Dummy Workers and a single packet in memory.
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(b) Real Workers and a single packet in memory.
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(c) Dummy Workers and 1M packets in memory.
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(d) Real Workers and 1M packets in memory.

Fig. 3. Throughput of the function chain.
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Fig. 4. Internal throughput of the function chain.

The last test, shown in Figure 5, refers to the throughput
obtained when dispatching packets (of different sizes) among
a growing number of chains. This test emulates the fact that
different packets may travel across a different number of
functions in the server, as we expect that their total number
will be much higher than the number of functions traversed by
each packet. This is different from the previous case in which
packet had to traverse a growing number of functions, but the
function chain is fixed. This test is particularly critical with
respect to the memory access patterns, thus stressing the CPU
cache, because (i) the Master has to read packets from an high
number of buffers and (ii) the packets read by the Master are
likely to be copied in different buffers for the next processing
step.

In this test, packets are provided in a round robin fashion to a
growing number of function chains, each one composed of four
cascading Workers. Chains have been randomly generated, but
on average 33% of the Workers are shared with other chains,
which means that (in average) the traffic of three chains exploit
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Fig. 5. Throughput with a growing number of chains.

eight Workers, bringing the total number of Workers active in
our test to 48 in the most complex case (18 chains). Workers
have been allocated across six cores of the CPU, in a way that
minimizes the number of times a packet has to be copied from
a core to another in order to limit CPU cache synchronization
operations among cores. Figure 5 shows that, as expected, the
final throughput tend to slightly decrease with the number of
chains, except for the case of 64 bytes packets in which the
throughput increases. Some more investigations are under way
to explain the throughput increase in case of short packets.

Finally we compare the advantages, in terms of perfor-
mance, of our shared buffer against a traditional mechanism
based on two unidirectional buffers between Master and Work-
ers, while still maintaining the other design goals (e.g., batch
processing, etc.) listed in Section III. Our results confirm that
the performance degradation due to the additional data copy
(packets have to be copied by the Worker from the first buffer
to the second one) has a noticeable impact on the overall
performance. In fact, the throughput of the entire chain halves
in the ideal case (dummy Workers, a single packet in memory)
as shown by comparing Figure 3(a) to Figure 6(a), while
drops of about 30% in case of real conditions (real workers,
1M packet buffer) as shown in Figure 3(d) vs Figure 6(b).
This confirms the advantages of our algorithm at least in our
application scenario.

V. CONCLUSION

A novel algorithm has been described to efficiently move
data between network virtual function implementations (the
Workers) by means of a switching module (the Master). The
algorithm provides both performance to the whole system
and traffic isolation among the different Workers. One of the
peculiarities of this approach is that data are sent to a Worker
and then returned back to the Master for further processing
with zero-copy, by means of a single lock-free buffer. A form
of batching has also been introduced in order to amortize
the cost of context switches, while a safeguard mechanism
avoids packet starvation in case of Workers traversed by a
limited amount of traffic. Our algorithm has been evaluated

with a wide range of experiments on a prototype designed to
characterize its behavior, with promising results. As a future
activity, we are planning to implement the algorithm in an
existing softswitch that handles function chaining and network
functions virtualization in a real cloud environment, which
will offer the possibility to validate the algorithm within the
framework provided by the UNIFY project.
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(a) Dummy Workers and a single packet in memory.
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