
27 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Local cooperative caching policies in multi-hop D2D networks / Jqbal, J.; Giaccone, Paolo; Rossi, Claudio. - (2014).
(Intervento presentato al convegno IEEE WiMob tenutosi a Larnaca, Cyprus nel Oct. 2014).

Original

Local cooperative caching policies in multi-hop D2D networks

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2560138 since:

IEEE

Local cooperative caching policies
in multi-hop D2D networks

Javed Iqbal, Paolo Giaccone, Claudio Rossi
Department of Electronics and Telecommunications

Politecnico di Torino, Italy
Email: {javed.iqbal, paolo.giaccone,claudio.rossi}@polito.it

Abstract—Cooperative caching schemes allow to improve the
performance of multi-hop networks based on device-to-device
(D2D) communications. Indeed, each node does not only share its
transmission capabilities to physically extend the network, but it
also shares its storage to cache copies of contents for the sake of
other nodes. It results in an increased network performance for
users, since caching decreases both network load and latency to
reach a content.

The design of effective caching policies in a network of caches
is very challenging and all the known solutions must be adapted
both to the topology and to the request traffic pattern. In this
paper, we consider a linear topology, representing a sequence
of adjacent nodes, investigating the performances of both local
and distributed cooperative caching policies. We specifically
investigate where to apply the caching policy. Interestingly, we
show that a simple local caching policy, that caches only the
contents requested by the node itself, is not worse (or even better)
than distributed policies, in which the content is eventually cached
across the path from the requester node to the closest copy of
the content. In some sense, we show that simplicity pays off.

I. INTRODUCTION

Device-to-device (D2D) communications are enabled by
recent layer-2 technologies, e.g., WiFi Direct [1], and they are
becoming more and more available in modern mobile devices
like smartphones and tablets. Besides the simplicity to support
direct communications between nodes, these technologies are
evolving to support also multi-hop communications, which are
obtained by a sequence of D2D hops, requiring the cooperation
of the intermediate nodes which relay the traffic for end nodes.
Moreover, new specific middlewares (like AllJoyn [2]) ease
the development of applications tailored for such scenario, en-
abling peer-to-peer capabilities among terminal nodes, without
the need of a centralized access point (as in legacy 802.11).
Furthermore, the D2D paradigm is also supported in new LTE
Direct standard, specified in 3GPP (Release 12) [3].

Furthermore, modern mobile devices are equipped with
large storage capacity that could be in the order of several
gigabytes. A considerable amount of such storage can be
considered as a free resource nowadays, and users may pre-
fer to share it more than other constrained and expensive
resources, like CPU or memory, since storage availability
does not directly affects Quality of Experience of running
applications. This fact enables the adoption of cooperative
caching schemes, in which each mobile device acts as a
caching node. Each node may store locally all the received
contents in its cache, including the ones to be forwarded in a

multi-hop fashion. Content distribution across nodes eventually
allows a user to retrieve desired contents in its close proximity.
Thus, cooperative caching can reduce the delay to access
contents, bringing a benefit to users, as well as the network
load at the infrastructure, bringing a benefit to wireless network
operators. Note that also the new network paradigm, denoted
as Information Centric Networking [4], is typically based on
cooperative caching occurring at each node and is one of the
motivating scenarios for our work.

A cooperative caching strategy is usually defined in terms
of the caching eviction policy, i.e. when the cache becomes
full, the node must choose some content to remove from
the cache to admit the new content. We instead focus our
investigation on where to cache (i.e. the insertion policy),
considering as candidates for caching all the nodes along the
path from the requester to the closest content provider. As
extreme cases, caching could occur in all the nodes along the
path, or just in the requester node. The former case refers
to a distributed cooperative caching scheme, in which all the
nodes are storing contents requested by other nodes. The latter
case refers instead to a local cooperative caching scheme in
which a content is stored only at the local cache where it has
been requested. Note that this policy can still be defined as
cooperative, since each node is available to provide a copy of
its cached contents to other nodes, but it stores only contents
requested by itself.

In our work we will compare local and distributed coopera-
tive caching schemes, under different synthetic content request
models as well as with real content request traces obtained by
an Italian ISP.

The rest of the paper is organized as follows. In Sec. II, we
describe the system model considered in our investigation. In
Sec. III we discuss the related works. In Sec. IV we explain the
specific caching policies adopted for the comparison. Sec. V
explains the methodology adopted to get the results shown in
Sec. VI. Finally, in Sec. VII we draw our conclusions.

II. COOPERATIVE CACHING

We consider a wireless network consisting of a server and
N nodes interconnected through a multi-hop linear topology,
as shown in Fig. 1. The choice of this topology is somehow
arbitrary, and besides its simplicity it can be considered as
one important keystone to understand the behavior of caching
algorithms along any routing path in a generic topology.
We assume that each node is associated with a single user,

TABLE I. MAIN NOTATION

Symbol Meaning
N Number of network nodes/users
C Number of different contents
B Cache size in number of contents

Fig. 1. Multi-hop linear topology with one server and N nodes. All the
content requests travel towards the left and the contents travel towards the
right.

who generates requests for different contents. The server is
equipped with a finite catalog of C different contents, which
are the only ones that can be requested by the users. Each node
is equipped with a local cache, able to store up to B contents,
independently from their size.

Whenever the user generates a request, the corresponding
node sends a request packet (rc) to request the content. We
assume that the requests are always routed towards the server,
i.e., to the left, as shown in Fig. 1. Each request is transmitted
between neighboring nodes in a multi-hop fashion, until it
reaches the first node having the requested content or the
server. Then, the hit node (or the server) replies by sending
back the content (c), which reaches the requester node in a
multi-hop fashion. Note that in the case of distributed caching
policies, the nodes along the path traversed by the content
can eventually store it in their own cache. When the content
reaches the requester node, the content is always locally
cached.

The performance of a caching policy is evaluated in terms
of the average distance traveled by a content request. The
optimal caching policy minimizes such distance, thus it results
in minimum content access latency and minimum number of
transmissions, reducing network load and congestion.

III. RELATED WORK

Caching is an important technique to enhance the per-
formance of wired and wireless networks. Caching eviction
policies, as LRU (Least Recently Used) and some variants
of it, have been widely studied [5], [6], [7]. Authors in [8]
proposed GreedyDual algorithm which can be regarded as a
generalization of LRU, as it tend to evict either “old” contents
or contents with small access costs. On the other hand, LRU
evicts just the oldest contents.

Interestingly, [9] proposes an analytical methodology to
minimize the average distance to access a content in a large
two-dimensional grid topology; as a result, the optimal caching
policy must provide a number of copies proportional to p0.667,
where p is the request popularity of a content. Then through
simulations, [9] shows that a local replacement algorithm,
derived from GreedyDual in [10], is able to approximate the
optimal solution. In our work, we adopted such policy, denoted
as “CacheDistant” (see Algorithm 3 in Sec. IV).

Unlike eviction schemes, insertion policies are less stud-
ied. In the specific context of CCN [5], a universal caching
approach is proposed, in which each node caches every new

content; such policy has been referred as “1-DC” policy in
our work. To reduce redundancy between contents cached in
neighboring nodes, [11] suggested a group caching scheme in
which only one node will cache the content among the one-
hop neighbors. Thus, a node has to periodically update its
neighbors about its cache status. Based on this information a
node is selected for caching a newly arrived content.

To overcome the protocol overheads in the network when
distributing a content across the network, a probabilistic
caching scheme is introduced in [12]. The insertion decision
is taken at random with a fixed probability p ∈ [0.75, 0.9]; this
policy will be referred as “p-DC” policy in Sec. IV. Note that
both 1-DC and p-DC require no information exchange between
caches.

In the context of wireless ad-hoc networks, [13] (extending
the work of [14]) considers a content dissemination scheme
among the nodes based on the channels each user has sub-
scribed. Whenever a node receives a content, if this belongs
to a subscribed channel, it is stored in the node private cache.
Otherwise, it is eventually stored in the node public cache
that is present in the node to allow cooperative dissemination
among the nodes. Differently from [13], we do not distinguish
between private and public cache. In our proposed LC policy,
the cache works as a private one, whereas in p-DC it works as
public. Finally, we consider a fixed communication topology
and we do not consider the effect of mobility.

Regarding the request patterns, recent works [15], [16] have
suggested that geographic locality affects user-generated con-
tent consumption and content popularity. According to [16],
about 50% of the videos have more than 70% of their views
in a single region, showing the effect of geolocation on video
on-demand. On the other hand, according to [17], about 71%
of the contents are requested just once by a user, highlighting
possible limitations of generic caching systems.

IV. CACHING POLICIES

We will investigate two families of caching policy, based
on where the caching operations occur.

To define the caching algorithms, we define d(c) as the
distance of content c from the closest content provider (either
a node or the server). Let Kn be the set of all the contents
stored at a given node n; by construction, |Kn| ≤ B. Any
content c present in cache of node n is associated with an
eviction priority Hu(c). Let source(rc) be the requester node
for rc.

Distributed Caching (p-DC) policy is a randomized algo-
rithm with parameter p ∈ [0, 1] and whose pseudocode is
reported in Algorithm 1. The policy runs at each node n
along the path from the content provider to the requester.
This policy may cache a copy of the content along any node
of the path, with a given probability p at each node. Also,
the content is always cached at the requester node. Note that
function CacheDistant in the pseudocode stores the content
according to the eviction policy described later in this section
and implements a variant of “least recently used” (LRU)
replacement policy.

On the other hand, in Local Caching (LC) only the re-
quester node caches content c, as shown in pseudocode of

Algorithm 1 p-DC (Distributed Caching)
Require: n is the current node, c is the content

if (c /∈ Kn) then . c not in the local cache
if (source(rc) == n) then . node is the requester

CacheDistant(c)
else . another node requested c

CacheDistant(c) with probability p
end if

else . c in the local cache
Hn(c) = d(c) . update priority with content distance

end if
forward c to the requester

Algorithm 2. Note that, by construction, 0-DC degenerates into
LC.

Algorithm 2 LC (Local Caching)
Require: n is the current node, c is the content

if (c /∈ Kn) and (source(rc) == n) then
. c not in the local cache and node is the requester

CacheDistant(c)
else . c in the local cache

Hn(c) = d(c) . update priority with content distance
end if
forward c to the requester

Furthermore, upon the arrival of a new content, if the cache
is already full, the CacheDistant policy stores the new content
after operating the eviction policy. This policy extends LRU,
since it tries to evict either “old” contents or those with small
distance from the source. Indeed, if another copy of the content
is available close to the node, this can be evicted locally with
high priority. Conversely, CacheDistant tends to keep within
the cache the farthest contents, and this fact should explain the
policy name. We have chosen CacheDistant since it has been
shown to outperform LRU in networks of caches, as discussed
in Sec. III.

In more details, CacheDistant keeps an eviction priority
value H(c) for every cached content c ∈ K. A lower value
of H(c) means an higher priority to be evicted. When a new
content is cached, its value is set equal to the distance d(c)
from the closest copy. In the case of eviction, the content ĉ
with the minimum value of H is removed and, finally, all the
values of the remaining contents are decreased by H(ĉ). In
this way, an aging mechanism is implemented to remove the
oldest contents.

Algorithm 3 CacheDistant(c)
if (|K| == B) then . full cache

ĉ = argmink∈KH(k) . find the content to evict
K = K \ ĉ . remove ĉ
for each k ∈ K do

H(k) = H(k)−H(ĉ) . update all priorities
end for

end if
K = K ∪ c . store c into the cache
H(c) = d(c) . update content priority

V. METHODOLOGY

We developed a Montecarlo simulator, written in C++,
that models the linear topology (shown in Fig. 1), the request
process at each node and the different caching policies under
investigation. The simulator evaluates the performance in terms
of distance to reach the closest copy, averaged across all
content requests.

To compare the performance of different caching policies,
we varied the size of the network N , the catalog size C and
the cache size B. The simulation runs in discrete time steps. At
each timeslot, a random permutation of the users is generated
and, based on it, each user is sequentially chosen to generate
a request for a content. The requested content is selected at
random within the catalog, according to one of the following
request scenarios: uniform, zipf, zipf-one-requests and trace-
driven.

Under uniform requests, each user independently requests a
content at random with uniform probability, i.e. all the contents
have the same popularity. Note that a user can request the same
content many times. This model is very simple, due to the
limited level of redundancy in the request process, and even
if unrealistic it aims at testing the caching performance under
“worst-case” scenario.

Under zipf requests, the popularity of each content is
assumed to follow a Zipf distribution with parameter α > 0.
More precisely, if qk is the probability of requesting the kth
content in the catalog, it holds:

qk = γ/kα with k = 1, . . . , C (1)

where γ is a proper normalization factor. This traffic model
is well-known, and captures the different content popularity
in large content catalogs, as requested by an aggregation of
users. Due to high level of redundancy in the request process,
this process favors cooperative cache schemes. The zipf model
is valid at an aggregated level, and may not be fully realistic
when applied to each single user.

A. Zipf-one-requests

The last observation regarding zipf requests motivates a
new request process, denoted as zipf-one-requests. Under this
scenario, the global popularity of contents is still assumed to
follow a zipf distribution, but now the popularity experienced
by each user is not anymore a zipf, since each user is allowed
to request each content at most once. To satisfy both features,
we propose the following methodology to generate the request
process.

Given the global zipf popularity according to (1), we
impose that the kth content must receive exactly Nqk/q1
requests. Thus, the most popular content receives exactly N
requests (one from each user) and all the other contents a
number of requests proportional to its popularity, relatively to
q1. The request generator associates a given number of requests
for a content to a random permutation of users, thus each
content is requested at most once by each user. Each request
is also associated to a random time. Finally, after all requests
have been associated to a user and to a time, they are scheduled
by the request generator of the simulator in increasing time
order. Following this approach, the total number of generated

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

N
u

m
b

er
 o

f
re

q
u

es
ts

Content

Fig. 2. Global popularity of the contents in the trace.

requests is, by construction, equal to N/q1. For example, for
α = 0 (i.e. uniform requests), the total requests are NC, and
for α = 1 the total requests are about N logC.

Zipf-one-request model allows to consider the extreme case
in which the request process at each user has null redundancy,
even if it is still redundant at global level. We expect this
scenario behaving as worst-case for local caching, since it has
no particular value for a user to store its own requested content
when he will never request it again.

B. Trace-driven requests

To evaluate a real scenario, we considered a YouTube traffic
trace that was captured by one of the largest Italian ISP on a /24
IP subnet, which corresponds to a set of households attached
to the same DSLAM at the central office, i.e. households in
the same neighborhood. The trace collects the sequence of
all YouTube videos downloaded by 220 distinct households
during the period between May 1st and May 28th, 2012.
The total number of downloads is 79,725, corresponding to
C = 52, 133 distinct videos. In our work, we mapped each
household to a specific user in the linear topology, through a
random permutation.

Fig. 2 shows the global popularity of the contents in the
trace, which can be approximated by a zipf law with α = 0.7.
Moreover, out of all C contents only 20% have been requested
more than once, while the remaining have been accessed just
once in the whole trace. To show that this scenario could
benefit from a caching system, consider that the fraction of
requests for contents receiving more than one request is large
(around 47%); furthermore, the cache hit probability would be
35% in the case all the requests were concentrated on a single
cache, enough large to store all the contents.

We now consider each user’s perspective and show in Fig. 3
the one-request ratio for each user. The one-request ratio is
defined as the ratio between the number of contents requested
just once by a user and the total number of requested contents
by the same. Averaging across all users, 88.9% of contents are
requested just once by a user. As extreme case, 47 out of 220

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

O
n

e
re

q
u

es
t

ra
ti

o

User

Fig. 3. One-request ratio for each user, reported in decreasing order.

 1

 10

 100

 1 10 100 1000 10000

N
u

m
b

er
 o

f
re

q
u

es
ts

Content

Fig. 4. Individual ranking of contents for users in the trace

users request a particular content just once in the whole trace.
These observations show that it is not possible to apply the
zipf model for such users and motivate the adopted zipf-one-
request model. As other extreme case, the one-request ratio for
one user is zero since all contents have been requested more
than once.

Fig. 4 reports the popularity of the contents seen by each
user, so in total 220 curves are shown. For each user, the con-
tents have been sorted in decreasing popularity, independently
from other users. From the picture it is clear that for some users
and for a limited set of contents, the zipf model is still a good
approximation, even if it cannot be applied to the whole set
of users and contents, as discussed in the previous paragraph.
From Fig. 4, it is also clear that some extreme cases cannot
be approximated at all by a zipf model. In particular, some
users requested around 3,000 distinct contents, out of a total
of 52,133, which implies around 100 new contents for each
day. For these users, a uniform request pattern would be a
more appropriate model.

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 1 2 5 10 20

A
v

er
ag

e
d

is
ta

n
ce

Β

LC
1-DC

0.5-DC
0.1-DC

0.05-DC
0.01-DC

Fig. 5. Average distance for different caching policies under uniform requests,
for N = 10 and C = 300.

As a conclusion, reality cannot be described by a simple
request model at single user level, and none of the presented
synthetic models is perfect. Indeed, each of them can be
considered meaningful only for a subset of users and contents,
and all of them are useful to compare the performance of
different caching systems.

VI. SIMULATION RESULTS

Fig. 5 compares the average distance for different caching
policies, under uniform requests. We set N = 10 nodes and a
catalog of C = 300 contents. We varied the local cache sizes
B. We run the simulations for 105 timeslots, i.e. a total of
106 requests were generated. From the figure, it is clear that
LC shows the best performance in terms of average distance.
Indeed, under uniform requests the probability that two or
more consecutive requests for the same content occurs is very
low and it is better just to keep few copies of each content
in the whole network. For each request of a new content,
LC stores one copy, and it takes around BN requests to
saturate the whole network buffer (defined as union of the
nodes caches). Hence, we can expect O(BN) distinct contents
stored in the network buffer at the same time, and thus the hit
probability, referred to the network buffer, for a generic user
will be O(BN/C). Instead, p-DC stores multiple copies of any
new content, on average a number of copies equal to pN/2. In
the worst case, 1-DC stores one copy for each node, i.e. around
B requests are enough to saturate the network buffer, and thus
the hit probability will be O(B/C), much smaller than LC.
Thus, LC consistently outperforms DC under uniform scenario.

Fig. 6 shows the average distance for zipf requests, for
different values of α. We considered a network with N =
10 nodes, C = 100 contents and each cache of size B = 5
contents. The total simulation time was 105 timeslots and the
number of requests equal to 106. The figure shows that, also
in this scenario, LC policy outperforms the other policies and
1-DC has the worst performance. For larger values of α, the
redundancy of requests increases and we can expect that it is
better to store few popular contents everywhere in the network;
indeed, the performance of DC improves compared to LC.

 0

 1

 2

 3

 4

 5

 0.25 0.5 1

A
v

er
ag

e
d

is
ta

n
ce

α

LC
1-DC

0.5-DC
0.1-DC

0.05-DC
0.01-DC

Fig. 6. Average distance for caching policies under zipf requests with
parameter α, for N = 10, C = 100 and B = 5.

 0

 100

 200

 300

 400

 500

 1 2 5 10 20

A
v

er
ag

e
d

is
ta

n
ce

Β

LC
1-DC

0.5-DC
0.1-DC

0.05-DC
0.01-DC

0.005-DC

Fig. 7. Average distance for different caching policies under zipf-one-requests
with α = 0.5 for N = 1000 and C = 1000.

Note that, under zipf requests, both LC and DC tend to devote
the caches to store just the most popular contents.

For the sake of space, we do not report the results for
larger cache (B = 20). In this scenario, the performance of
all the caching policies improves, since the caching becomes
more effective. The same qualitative behavior is observed as
the one obtained for B = 5, but now the effect of the different
policies tends to vanish, since for enough large B all the
policies behave almost the same.

Fig. 7 considers a larger network (N = 1000) under zipf-
one-request traffic described in Sec. IV. We set C = 1000
contents and α = 0.5 for the zipf global popularity; the
requests were 61,728 and satisfy the constraint that a user does
not request the same content more than once. When the cache
is very small (B = 1), LC outperforms the other policies,
with a relevant performance gain with respect to 1-DC policy.
For large values of B, the beneficial effect of the cache size

 85

 90

 95

 100

 105

 1 2 5 10 20

A
v

er
ag

e
d

is
ta

n
ce

Β

LC
1-DC

0.5-DC
0.1-DC

0.05-DC
0.01-DC

0.005-DC
NO-CACHING

Fig. 8. Average distance different caching policies under trace-driven
requests, havving N = 220 and C = 52133.

tends to vanish since the number of requests for each node
is not enough large to fill the cache. Thus, LC is not able
to store a variety of contents as in 0.01-DC and 0.005-DC,
and the performance becomes slightly worst than them. We
can conclude that LC is usually outperforming DC, even if
in some corner cases a well-tuned value of p allows DC to
slightly outperform LC.

Fig. 8 shows the average distance under trace-driven re-
quests, discussed in Sec. V-B, for one random mapping be-
tween the households and the nodes in the linear topology. We
recall that the total number of requests in the trace is 79,725.
As a reference, we also show the performance achievable by
NO-CACHING policy, which does not cache at all any content
along the path. The corresponding average distance (equal to
102.8) depends on the specific household-node mapping and
on the number of requests for each node. For any cache size B,
1-DC shows the worst performance among all caching policies,
corroborating our previous findings. Instead, in this scenario
LC is outperformed by 0.05-DC, 0.01-DC and 0.005-DC. The
reason is that the number of requests is very variable among the
nodes (from a minimum of 1 to a maximum of 3826 requests
per node) and for the nodes with few requests the caches
remains almost empty in LC. Thus, the cooperative effect of
LC vanishes. Note that this effect, even if relevant for this trace,
is mainly due to the limited size of the trace. Nevertheless,
LC is behaving worse but comparable with DC, provided
that p has been carefully tuned for the specific topology and
request pattern. So, we can still conclude that LC is an efficient
caching scheme due to the limited loss of performance and the
simplicity of the approach, that does not require any parameter
to be tuned to the running scenario.

VII. CONCLUSIONS

We have considered a network of caches implemented
through D2D communications between neighboring mobile
nodes. The network is organized according to a linear topol-
ogy, in which each user corresponds to a node and cooper-
ates with the other nodes enabling two main functionalities:

infrastructure-less multihop communications and cooperative
caching.

In such specific scenario, we have focused on cooperative
caching and we have mainly investigated where to cache the
contents, according to one of two different policies: under
distributed caching policies, the content is eventually cached
along all the nodes located between the requester node and
the closest copy of the content. On the contrary, under a local
caching policy, the content is cached only at the requester
node. We compare the two policies under different request
scenarios (also taken from real requests of YouTube movies
measured on a large ISP) and show that a local policy, despite
its simplicity, is usually outperforming distributed policies and,
only in some corner cases, a local policy is slightly worse
than a well-tuned distributed policy. These results advocate the
implementation of local policies, but also question the adoption
of more complex distributed policies.

REFERENCES

[1] Wi-Fi Direct. [Online]. Available: http://www.wi-fi.org
[2] AllJoyn. [Online]. Available: http://www.alljoyn.org
[3] 3GPP release 12. [Online]. Available: http://www.3gpp.org
[4] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,

“A survey of information-centric networking,” IEEE Communications
Magazine, vol. 50, no. 7, pp. 26–36, July 2012.

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in ACM Co-NEXT,
2009, pp. 1–12.

[6] Y. Abdelmalek and T. Saadawi, “Collaborative multimedia content
caching algorithms for mobile ad-hoc networks,” in IEEE MILCOM,
2009, pp. 1–7.

[7] H. Gomaa, G. Messier, R. Davies, and C. Williamson, “Media caching
support for mobile transit clients,” in IEEE WIMOB, 2009, pp. 79–84.

[8] N. Young, “The k-server dual and loose competitiveness for paging,”
Springer Algorithmica, pp. 525–541, 1994.

[9] S. Jin and L. Wang, “Content and service replication strategies in
multi-hop wireless mesh networks,” in ACM international symposium
on Modeling, analysis and simulation of wireless and mobile systems,
2005, pp. 79–86.

[10] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms.”
in Usenix symposium on internet technologies and systems, 1997, pp.
193–206.

[11] Y.-W. Ting and Y.-K. Chang, “A novel cooperative caching scheme
for wireless ad hoc networks: Groupcaching,” in IEEE International
Conference on Networking, Architecture, and Storage, 2007, pp. 62–
68.

[12] S. Arianfar, P. Nikander, and J. Ott, “On content-centric router design
and implications,” in ACM Proceedings of the Re-Architecting the
Internet Workshop, 2010.

[13] L. Hu, J.-Y. Le Boudec, and M. Vojnoviae, “Optimal channel choice
for collaborative ad-hoc dissemination,” in IEEE INFOCOM, 2010, pp.
1–9.

[14] V. Lenders, G. Karlsson, and M. May, “Wireless ad-hoc podcasting,”
in IEEE Communication Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks, 2007, pp. 273–283.

[15] A. Brodersen, S. Scellato, and M. Wattenhofer, “YouTube around the
world: Geographic popularity of videos,” in ACM 21st International
Conference on World Wide Web, 2012, pp. 241–250.

[16] Z. Li, G. Xie, J. Lin, Y. Jin, D. Kaafar, and K. Salamatian, “On the
geographic patterns of a large-scale mobile video-on-demand system,”
in IEEE INFOCOM, 2014.

[17] M. Busari and C. Williamson, “ProWGen: a synthetic workload gen-
eration tool for simulation evaluation of web proxy caches,” Elsevier
Computer Networks, 2002.

