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1. INTRODUCTION 

Equation Section (Next) 

This dissertation aims to develop algorithms of guidance and control for propulsive 

terminal phase planetary landing, including a piloting strategy. The algorithms developed 

here are based on the Embedded Model Control (EMC) principles [1]–[6]. This research 

treats an extension of the architecture proposed in Molano‟s PhD dissertation [7]. 

Currently, the planetary entry descent and landing are important issues, landing on Mars 

and Moon has been scientifically rewarding; successful landed robotic systems on the 

surface of Mars have been achieved. Projects as Mars Science Laboratory MSL [8]–[10] 

inter alia have achieved a successful landing. These new approaches are focused in 

delivering large amounts of mass with a low uncertainty and in performing the entry, 

descent and landing sequence for human exploration. This dissertation treats the last phase 

of the planetary landing with a pinpoint landing strategy [11], [12]. The dissertation is 

divided in two parts, the first part is focused on Pinpoint landing algorithms that have been 

studied in recently years[7], [12]–[17] and the integration between the guidance and the 

piloting. Chapter 2 describes the phases of the entry descent and landing (EDL) phases and 

the frames of references that are involve in the last phase of landing (propulsive phase). 

Then, a geometric description of the propulsive system and an optimal dispatching strategy 

for a generic case is depth on chapter 3. The guidance and control for planetary landing and 

the complete design follows the EMC methodology is described in Chapter 4, where a 

unique discrete-time state equation (the embedded model EM) is derived and used by the 

Guidance Navigation and Control (GNC). Here only guidance and piloting are treated. The 

whole GNC algorithm has been tested on a simulator. In chapter 5 a hazard avoidance 

strategy is developed based on computer vision process [18]–[20], piloting definition and 

its integration with guidance is studied and some simulations runs are provided.  

 

On the other hand the development of this project allowed an alternative methodology to 

model and control a small quadrotor for testing propulsive planetary landing, guidance, 

navigation and control called project Borea [21]–[26]. The second part of this research 

describes this project. Chapter 7 shows modelling of quadrotor dynamics and kinematics. 

Its propulsive system is studied and an alternative methodology for the propeller modelling 
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is presented. The embedded model for quadrotor vehicles is developed in chapter 8. 

Vertical and horizontal position guidance is developed on chapter 9, a high level navigation 

is described on chapter 10 and the control law is explained on chapter 11. The problem of 

on-ground testing guidance, navigation and control (GNC) algorithms for accurate and safe 

planetary landing can be approached through the flight of small quadrotors, suitable for 

indoor and outdoor operations. The dissertation is focused on the test of GNC algorithms 

for planetary landing. The main difference of an on-Earth-flying quadrotor dynamics with 

respect to a generic planetary landing vehicle is analyzed in chapter 12.  
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2. PLANETARY DESCENT DYNAMICS 

Equation Section (Next) 

2.1 Entry, Descent and Landing 

The planetary landing can be concentrated in the main four phases covered in these 

summary [20], [27], [28]; they are mentioned and explained below and also shown in 

Figure 1; 

1) Approach phase 

2) Entry phase 

3) Parachute phase 

4) Powered descent phase 

In the approach phase trajectory rectification manoeuvres are executed and, the navigation 

is performed on the ground using radiometric tracking data, the predicted position, velocity 

and attitude [7], [10], [29]. Next in the entry phase starts at entry interface, during this 

phase the entry controller achieve the commanded 3-axis attitude by generating  roll, pitch, 

and yaw torque commands, The purposes of this phase are to survive the entry 

environment, as well as aeroheating heat pulse and to reach the desired parachute deploy 

target. The latter objective is approached by the so called guided entry: the vehicle is 

endowed with a (small) lift force and the lift direction in the vertical plane is suitably 

oriented by thrusters. Guide entry was employed by the US shuttles when entering in the 

Earth atmosphere and for the first time outside the Earth by the US Mars Science 

Laboratory in 2012 [8]–[10], [27]. Guided entry allowed MSL to reduce landing 

uncertainty to well below 10 km. An approach to guided entry with EMC is in [1], [2], [6]. 

The parachute phase starts at altitudes of about 10 km above Mars‟ surface. On Mars due to 

low atmosphere density, parachute landing is not possible, and supersonic parachute must 

be deployed, contrary to the Earth entry. Parachute descent allows the vehicle sped to be 

reduced from about 500 m/s to less than 100 m/s, when the propulsive phase starts. In this 

phase the spacecraft is reconfigured with the jettisoning of the heat-shield, which exposes 

the local sensors, allowing the vehicle's altitude and velocity measurements. During 

parachute phase the vehicle trajectory (especially the horizontal component) is exposed to 

winds that may generate unwanted displacements up to 4 km. Pinpoint landing thus 



NAVIGATION, GUIDANCE AND CONTROL FOR PLANETARY LANDING 

4 

 

requires to recover such displacement by controlling the lateral vehicle position. Up to now 

nothing of this sort has been done on Mars. Also MSL was missing lateral control except 

for diverting the vehicle from the parachute and shield after their jettisoning. This 

dissertation outlines a guidance that allows also horizontal control of the vehicle. The last 

phase, powered descent phase is explained in section 2.2. 

 

 

Approach Phase

Entry Phase

Parachute Phase

Powered Descent Phase

 

Figure 1. Entry and descent scheme 

 

2.2 Powered Descent Phase 

 

During the terminal phase starting at parachute release and lasting until thrusters are 

switched off, is usually obtained by appropriate orientation of the thrusters, which are 

rigidly connected to the vehicle. The main-thruster assembly is arranged to actuate a three 

degrees-of-freedom command (axial thrust, pitch and yaw torque) plus spin damping 

around the vehicle symmetry axis. Vehicle orientation (pitch and yaw) allows the axial 

thrust to be used for controlling the horizontal motion. Strategies for guidance and control 

to this phase were studied and implemented during the recent years (gravity-turn maneuver 

[30]–[34]). In Apollo-like guidance [13], [28], [35]–[39], the centre-of-mass (CoM) 
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trajectory is interpolated between initial and kinematic constraints through a 3D 

polynomial, thus becoming suitable to pinpoint landing [13]. The guidance of the MSL 

(Mars Science Laboratory [27], [37]), followed a modified Apollo guidance law using a 

fifth order polynomial law.  

 

2.2.1 Guidance and control for the propulsion phase of planetary landing 

 

In the propulsion phase of planetary landing, horizontal motion is obtained by tilting and 

aligning the axial thrust either to the opposite of the velocity vector or to the requested 

acceleration vector. The strategy of [7], [12] is assumed here, as it allows free horizontal 

motion and is preliminary to achieve accurate landing. Instead of designing a hierarchical 

guidance and control in which horizontal acceleration becomes the attitude reference, a 

unique control system is designed based on a fourth-order state equation per degree-of-

freedom from the angular acceleration to the position coordinate.  

 

To complete the tasks, axial thrust may be oriented either opposite to the current speed 

vector as in [30]–[34], or along the desired acceleration as in [13], [28], [35]–[39]. The 

previous approach is suitable to soft landing because it allows restricted horizontal 

diversions such as for escaping from back-shell and parachute trajectory as in [34]. In the 

latter approach the centre-of-mass (CoM) trajectory is interpolated between initial and 

terminal kinematic constraints through a 3D polynomial, thus becoming suitable to pinpoint 

landing. The guidance of the Mars Science Laboratory [27], which successfully landed on 

Mars in August 2012, employs a fifth order polynomial law for satisfying kinematic 

constraints at the powered phase.  

 

Most of the studies focused on guidance problems, employs adaptive guidance to contrast 

disturbance [40], altitude measurement errors and target site modification. From this 

position simple feedback laws around the guidance trajectory are considered as sufficient, 

and are complemented with an attitude control around the reference trajectory imposed by 

CoM guidance. The solution applied here combines CoM and tilt dynamics, as the 

command acceleration of the horizontal motion [11], [12]. The suggested approach exploits 
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input-state linearized dynamics as in [41], [42], from the angular acceleration to horizontal 

position, and develops guidance, and control algorithms on the same state equations as 

suggested by the Embedded Model Control in  [2], [3], [5], [43]. The modelling process has 

been outlined in [12]. 

 

2.3 Frames of References 

In the planetary landing has become mandatory the uses of a set of references systems, 

these references frames are well studied in the literature [11], [12], [44], [45] in this section 

three of them are reviewed and the notation is unified. 

 

2.3.1 Inertial frame of reference 

 The inertial reference frame  , , ,p p p pR C i j k is centered on the planet center of mass 

CoM pC . 

2.3.2 Local Vertical Local horizontal frame of reference 

 

The co-rotating local vertical local horizontal frame  , , ,f l l lR O i j k is centered on the 

fixed surface point O  and the axial direction lk , requirements are referred to local vertical 

local horizontal frame of reference. For these references the following assumptions are 

made: 

 

 The vertical axis lz  is defined to be opposite to the planet gravity  

 
l

g
k

g
   (2.1) 

 The axis lx  is located on the plane orthogonal to the axis lz  in the same direction to 

the planet north. The axis ly  is defined as 

 l l lj k i   (2.2) 

 The origin O is rigidly connected to the landing target. The vertical axis lz  is 

defined to be opposite to the gravity in the same direction of the Zenith. 
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A transformation between the inertial frame of reference and the local frame of reference is 

introduced, and this is defined by two rotations with the latitude L  and longitude L  

angles. The Figure 2 shows the inertial and local vertical local horizontal frame of 

references. 

 

L

L

xi

zi

yi

zl

xl

yl

Equator

Rl

Ri

p

 

Figure 2. Inertial and local frames of reference 

The transformation between the references systems is shown in the equation below 

    

0 0 1

0 1 0

1 0 0

l

i L LR Y Z 

 
   
 
  

 (2.3) 

 

2.3.3 Body frame of reference 

The body frame of reference  , , ,b b b bR C i j k  is centered on the body CoM C  and the 

axial direction bk  is directed opposite to the velocity vector v  
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xb
yb

zb
Rb

Rl

xl

yl

zl

b


 

Figure 3. Local and Body frame of references 

 

2.3.4 The descent equations 

 

Guidance is a process that computes CoM and attitude courses from known initial 

conditions to target position and attitude, based on vehicle and environment models. 

Guidance trajectories become the references to be followed by feedback control law. In the 

propulsion descent the vehicle tilt determinates the horizontal force and therefore the 

acceleration. The guidance algorithms in [13], [17], [28], [35]–[39] split reference 

computation in a hierarchical method. They compute the desired CoM kinematic variables, 

position, velocity and acceleration, and design attitude control to track the reference 

computed by inverting the reference acceleration. The main advantage is a simplified 

control design, for this nonlinearity enters the transformation from CoM acceleration to 

attitude components. 

 

The solution proposed in [11], [12] abandons the hierarchical approach by including 

attitude dynamics in the generation of the desired trajectory. To overcome the design 

problem posed by the nonlinear and variable link between attitude and CoM dynamics, 

input-state linearization as in [42] has been proposed and demonstrated in [12]. 

Linearization takes advantage of a bounded vehicle tilt such to accommodate localization 
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sensors (less than 1 radian) and of an appropriate Euler angle sequence, specifically 3-2-1, 

denoted by  , ,    The fourth-order multivariate (two degrees-of-freedom) differential 

equation of the tilt and horizontal motion, derived in [12], is the following 

 

  

00 0 0 0

0 0 0

00 0 0 0

0 0 0 0

x x xbz m

x

x x m

I

a I b I
t

I

I

        
        
          
        
        

        

x x

v v d
u

q q

ω ω d

 (2.4) 

In (2.4) x  and xv  denote the horizontal position and rate coordinates in the local vertical 

local horizontal frame  , , ,l l lO i j k . The local vertical local horizontal frame of reference is 

assumed as inertial because of the small planet rotation rate p  coupled with low altitude 

and speed during the descent phase. 

 

Attitude and rate vectors are bounded nonlinear expressions of the Euler angles and of the 

body angular rate bω  as follows  

 

 

cos sin

sin

cos sin sin cos sin

0 cos sin cos

x

y

x b

q

q

 



    

  

   
    

  

    
    
   

q

ω ω

 (2.5) 

 

The command angular acceleration xu  is a combination of command torques and gyro 

torques as a result of the linearization. The disturbance md  and xd  include external 

perturbations and parametric uncertainty. The time varying gain is the axial acceleration of 

the vehicle, entering the vertical dynamics in (2.6). Equation (2.4) must be completed with 

vertical and spin rate dynamics as follows 
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   

       

   

cos cos

z

z z bz z

z z

z t v t

v t u t a t g d t

t t

 

 



   



 (2.6) 

 

g  is the gravity acceleration and zd  encompasses disturbance and uncertainty. z  is the 

spin rate and z  is the spin angular acceleration. Control and guidance algorithms are 

constructed around a discrete time (DT) version. The state variables are updated from 

navigation data. 
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3. OPTIMAL THRUSTERS DISPATCHING 

Equation Section (Next) 

3.1 Description 

The configuration of the main thrusters has been studied in previous researches [7], [46] , a 

symmetric pyramidal thrusters geometry is analyzed with a generic case of n thrusters. 

They are equally spaced at a radius tr  from the z axis, at a vertical coordinate th  with 

respect to the xy plane, with a cant angle t  measured from the xy plane, and azimuth 

angles , 1,...,k k m  , counted from the x-axis, see Figure 4. 

 

bi

bj

bk

bi

r

h


1

2

345

1n 

n


...

... ...

 

Figure 4. Thruster geometry 

Consider a configuration with n  thrusters, the assembly is organized into n 360 / n  apart 

clusters, they are ordered j=1,2,..,n. The magnitude force of each thrusters is denoted as 

, 1,..,iu i n , and total force thrusters vector is denoted as f  The orientation matrix that 

includes the direction is defined as V . The equation (3.1) depicts the connection between 

the magnitudes iu  and total force. 

 

1

2

3 1

3

x

y

z x
n xn

u
f

u
f V

f
u

 
   
    
   
    

 

f  (3.1) 
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Hence the matrix V is denoted as 

 

 

 

 

2 1

0 2 1

3

( ), cos( ), cos , 2 /

n

n

nx

s s c s c s c

V s s s s s s s s

c c c c

s Sin c c n

      

      

   

      





    
 

     
 
  

   

 (3.2) 

The total force applied in the body frame of reference is assumed applied in the CoM, in 

order to obtain the torques the applied force point vectors are summarized in matrix vA . 

Each column of the matrix vA  represents the position of each thruster in the body reference 

frame. 

 

 

 

2 1

0 2 1

3

n

v n

xn

r rc rc rc

A rs rs rs rs

h h h h

  

  





 
 

  
 
    

 (3.3) 

 

Total torque m  can be obtained accumulating each singles torques, the torque dispatching 

matrix is made by the moments of the directions. 

 

1

2

3 1

1

,

x

y t

z x
n nx

u
m

u
m M

m
u

 
   
     
   
    

 

m u u  (3.4) 

Where the matrix tC  is denoted as 

 

 

 

2 1

2 1

3

0

1 , ( )

0 0 0 0

n

t n

xn

s s s

M d c c c d rc hs

  

   





 
 

       
 
 

 (3.5) 

Note the first two lines of matrix tM  and V  are linearly dependent, hence, it is not possible 

to control the total force and moment at the same time with this configuration. 

3.2 Inverse Law  

Equations (3.4) and (3.1) show that thrusters are arranged to drive a three degrees-of-

freedom command (axial thrust, pitch and yaw torque), the number of main thrusters allows 

to define an optimization problem, where the functional can be exploit in order to reduce 
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the propellant consumption, or avoid engines constrains. In this section in order to 

guarantee fast computational process a quadratic functional is selected. A pseudo inverse 

law is implemented, additionally a version of the recursive minimum quadratic algorithm is 

implemented in order to avoid the thrusters constrains taking advantage of the worst-case 

analysis. At the end some partial results are shown. 

 

3.2.1 Unconstrainted Thrusters Analysis  

 

The command of a spacecraft as it is mentioned before has only three degrees-of-freedom, 

a vector zmf  command is defined in the equation (3.6), where the matrix zmB  represents the 

relationship between  x,y torques, z force and the single thrusters magnitudes,  
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3 1
1

,

z

zm x zm

y x
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    

 

f u u  (3.6) 

The thrusters vector u  is a decision variable, the objective is to minimize the norm 2 of the 

vector, therefore least squares method is used. The next steps are executed in order to 

obtain a fast algorithm to define the magnitude force value of the thrusters, also with 

straight implementation. 

 

The matrix zmB  can be obtained from matrices V  and tM  in (3.8), from this a new sized 

known matrix G  is defined, 

 

 
( ) ( ) ( ) 3
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 (3.7) 

and 
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 (3.8) 
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The optimal problem is solved through the pseudo inverse strategy [47] the solution 

without constraints is shown in the equations below 

 
1T

zm zmB Gu f  (3.9) 

where G  and 1G  follows the expressions 
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 (3.10) 
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 (3.11) 

A very interesting result is obtained when the expression (3.9) is itemized 
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u f  (3.12) 

 

Combining (3.2) and (3.12), the relation between the commands and forces in (3.13) was 

obtained which shows connections that can be considered as a known disturbances [5] and 

therefore they are part of the spacecraft dynamics described in (2.6). 
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 (3.13) 



Chapter 3 OPTIMAL THRUSTERS DISPATCHING 

15 

 

3.2.2 Constrainted Thrusters Analysis 

3.2.2.1 Problem statement 

In order to determinate which thrusters is closer to saturation, a general version of (3.12) is 

used,  
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0 1

1 2 2k k
k zm
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i n

d s c
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d nc n n
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

  
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  
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f
 (3.14) 

Each u element is a dot product between each 
1T

zmB G
 row and the vector zmf  
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    (3.15) 

The command ku  is divided in two terms 'k f ku u u  , the first one depends on the axial 

force /f zu f nc , this remains constant for all thrusters, the other equation part is defined 

by the torques xm  and ym , on equation (3.16) the torques are changed in a magnitude and 

phase representation. 
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 (3.16) 

For each k -th thruster, the command is defined between the angle of the moment required 

and the thruster location, a geometrical expression is shown below 
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 (3.17) 

The worst case depends on the k -th thruster selected, this case is found when (3.17) is 

maximised. Equation (3.18) shows the result. 
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 (3.18) 
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The number k  has discrete values but the angle   takes continuous values, therefore the 

maximum force is applied in the closest thrusters to the result (3.18). The thrusters 

constraints are defined by 
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/ ( ) 2 / ( )

/ ( ) 2 / ( )

z xy

z xy

u f nc nd

u f nc nd
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m
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 (3.19) 

 

While a thrusters is not saturated the result (3.9) is applicable. This is posed as a quadratic 

programming problem with linear constrains. The objective function is, 

  Minimize u  (3.20) 

Constrains from (3.6) and (3.19) are summarized next 

 

 max

min

zmB 





u f

u u

u u

 (3.21) 

3.2.2.2 Thrusters Constrains Analysis with force Reduction 

In order to avoid constraints a recursive least squares algorithm is performed, the vector is 

divided in two vectors. The first one 1u  is composed by the thrusters that are free to take 

the decision. The second 2u  is formed by the thrusters which using the solution (3.9) 

overcome the bounds in the equation (3.19), these are forced to saturate, therefore the 

values of 2u  are known, hence the values of 1u  can be found by solving the next problem. 
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 (3.22) 

 

The solution (3.9) is applied in order to solve equation (3.22), this Is possible until given 

the condition ( ) 3zmrank B  , when the rank decrease, a critical choice is made, the stability 
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of the spacecraft is connected with the attitude, the tilt and therefore the moment in any 

case is able to guide the vehicle out to the saturation. The alternative explores here in order 

to avoid the saturation is to decrease the axial force zf . When zf  is decreased, the system 

remains into a constrained hyper plane and then is possible to apply the result (3.12) with a 

rank 2. 

 

3.2.3 Simulation results 

A Matlab-Simulink model was implemented in order to test the algorithms developed 

above. A test for a spacecraft with 12 main thrusters with the following features was 

implemented; / 4  , radius 2r m , and a thrusters height  1h m , Figure 5,Figure 6 

and Figure 7 shows the total axial force and the total moments requested , and the thrusts 

obtained for each engine.  
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Figure 6. Y Torque 

It is important to note that when the force and the applied torque cannot be guaranteed, the 

axial force is reduced. The green line in Figure 7 depicts the output force when bounds are 

surpassed. 

 

Figure 7. Axial Force 

Figure 8 shows the force of each thruster, a saturation is obtained when the requested axial 

force overcome the constraint (3.19). The optimal dispatching algorithm is applied until 

only 2 thrusters are used to maintain the requested moment (Figure 8), in that case the axial 

force is reduced to guarantee the moment requested. Similar results are obtained on [48] for 

n-rotor dispatching. 
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Figure 8. Thrusters Force  
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4. EMBEDDED MODEL CONTROL FOR PLANETARY TERMINAL 

DESCENT PHASE 

Equation Section (Next) 

The research shows the control design around the reference trajectory (tilt and position) 

given by the guidance that takes advantage of the quasi linearization based on embedded 

model control method [11], [12]; the first part of this dissertation is restricted to closed-loop 

control strategies. 

 

4.1 Embedded Model Control EMC 

 

Robust control design is dedicated to guarantee the closed-loop stability of a model-based 

control law in the presence of parametric uncertainties[49]. This law uses diverse 

methodologies that are derived from non linear models. Stability is guaranteed by 

introducing some coefficients and reducing the feedback control effort. Embedded Model 

Control (EMC) [1]–[3], [5], [6], [43] illustrates that a control law has to and can be kept 

without modifications in the case of uncertainty, if the controllable dynamics is 

complemented with a disturbance dynamics capable of real-time encoding the different 

uncertainties that affect the embedded model (EM). The disturbance state is updated in real-

time by a noise input vector, which is estimated from the model error only. Model error e  

is the sole available measure of the uncertain discrepancies, i.e. it is the difference between 

plant and model output. Feedback control reduces output sensitivity to discrepancies. 

Sensitivity may be further abated by explicitly rejecting disturbance, Disturbance dynamics 

is widely studied in the literature [50], [51]. Model error can be elaborated and accumulated 

in a state vector dx  (disturbance state), ready to correct cx . Formally, an observable input-

output dynamics D  must be built, from an input noise  w  to an output dynamics d , the 

latter forcing M  in parallel to u . As a result, dx  encodes the past accumulated 

discrepancies, whereas w  encodes the past and future independent uncertainty capable of 

updating dx . Independent of future derives from causality, whereas independence of past 

answers the principle of not delaying disturbance updating. For such reasons w , should be 

treated as a set of arbitrary and bounded zero-mean signals, flat spectrum in the frequency 
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domain, and statistically as a bounded-variance discrete-time white noise. In other terms, 

no state equation exists relating past to future of w . 

 

Two alternative mechanisms can generate noise: i) pseudo-random extraction, ii) estimation 

from a correlated realization. The former would respect noise statistical properties, the 

latter, to be adopted, reveals the residual discrepancies that are hidden in the model error to 

the benefit of the embedded model, as it can be driven to approach the plant and to bound 

e . Complexity and uncertainty of discrepancies may suggest abandoning the statistical 

framework in favour of a bounded arbitrariness, which entails command independence. 

 

Appropriate separation of the uncertainty components into low and high frequency domains 

by the noise estimator allows stability recovery and guarantees the rejection of the low 

frequency uncertainty components. For this research an emphasis is given to the control 

unit. The embedded model in section 4.2 is forced by two input vectors:  iu  is known 

since it is computed at any step i  by the control unit,  iw  is defined to be unknown and 

unpredictable. The uncertainty design include the noise estimator, as the model error may 

convey uncertainty components (parameters, cross-couplings, neglected dynamics) which 

are command-dependent and thus are prone to destabilize the controlled plant, into the 

embedded model (Figure 9).  

 

 



NAVIGATION, GUIDANCE AND CONTROL FOR PLANETARY LANDING 

22 

 

 iu
A/D D/A

 iy  iy

Plant+DAC+ADC

 iu

Extended plant

Controllable 

dynamics

Disturbance 

dynamics

Reference 

dynamics

 m iy

Uncertainty

Control unit

Embedded Model

Higher evel 

 id

 ie

M

D

M

 iu

 iy
Reference 

generator

 

Figure 9. The plant and the parallel embedded model as the core of the control unit. 

 

4.2 Horizontal Embedded model 

 

A model can run in parallel and synchronous (real-time) with the plant under the same 

admissible command u  as in Figure 9. The principle is seminal to subsequent formulation, 

as well as to control architecture, as it suggests that control units shall develop around the 

real-time model, henceforth indicated as the „embedded model‟. Restricting to computer-

based control, a real-time model can only be discrete time and state variable[52], implying 

a time unit T  and a state cx  must be defined. 

 

The embedded model is the ensemble of the discrete time version of (2.4), referred to as 

controllable dynamics, and disturbance dynamics, in charge of expressing the unknown 

time evolution of the disturbance md . The controllable dynamics links the command vector 

xu  to the model output my . The disturbance dynamics links the disturbance vectors to an 

arbitrary signal vector w  referred to as noise. The strategy allows pinpoint landing. As 

such, tilt angles (pitch and yaw) become proportional to the horizontal acceleration. Instead 

of designing a hierarchical guidance and control in which horizontal acceleration becomes 
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the attitude control target, a unique control system can be designed based on the fourth 

order dynamics from angular acceleration to position.  

 

4.2.1 Controllable dynamics 

 

To compute a smooth angular acceleration xu , the latter vector is treated as a state variable, 

which asks for a new command vector xs , called jerk. As a further constraint, all the state 

variables are given the same measurement units, which are guaranteed by scaling them 

times the time unit T  of the control system, which is fixed by the thruster actuation time 

unit. Since a property of (2.4) is that the horizontal components are completely decoupled, 

a single scalar component of x  simplified to x  will be treated hereafter. The controllable 

state vector is defined as  

 
 

2,  ,  

T

c x x x

x x x x x

x v q

v v T T u T

 
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   
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x
 (4.1) 

The discrete time state equation is obtained by integrating (2.4) along the time unit T  and 

holds 

          1c ci A i i Bs i i   x x d  (4.2) 

 

Matrices in (4.2) are the following: 
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 
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   
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    
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   
      

 

 (4.3) 

 

The measurements of the embedded model state variables are „pseudo measurements‟ 

provided by attitude, angular rate, position and velocity that are estimated by the navigation 

algorithm. Only the angular acceleration xu  is not measured. The output equation is 

therefore 



NAVIGATION, GUIDANCE AND CONTROL FOR PLANETARY LANDING 

24 

 

 

  4 0

0 0
m c

I
i

 
  
 

y x e  (4.4) 

 

4.2.2 Disturbance dynamics  

Disturbance dynamics expresses the disturbance vector d  in (4.2) as a combination of a 

third order state vector dx , of a fifth order noise vector w  and of the vector kd  of the 

known interconnections coming out from the input-state linearization. The noise vector w

is the only input driving dx . A linear, time invariant combination is sufficient  

 

        c d c ki H i G i i  d x w d  (4.5) 

with matrices  
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 

 (4.6) 

Because of the structure of cG  in (4.6), w  does not directly affect all the state variables 

in(4.1), but only  1xv i   and  1x i  . A scheme of this kind looks coherent with the 

absence of noise in the chain from acceleration to position (noise design as [53]). The third 

order state equation is  

 
     1d d d d

d x q q

i A i G i

d d s

  

   

x x w

x
 (4.7) 

The first component, expressing a random drift, refers to xd  in(2.4), whereas the second 

and third components -second-order random drift - refer to md  in(2.4). Matrices in (4.7) 

hold 
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1 0 0 0 1 0 0 0

0 1 1 ,  0 0 0 1 0

0 0 1 0 0 0 0 1
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    
   
      

 (4.8) 

4.3 The guidance algorithm 

Guidance is computed under the restrictive assumption of a uniform vertical deceleration. 

Extension to hovering and ascent as in [14], [17], [54] for increasing horizontal motion is 

an extension under development, which may be essential for hazards avoidance. Vertical 

guidance drives the horizontal guidance through the reference  i . Assuming uniform 

deceleration, initial altitude  0h , velocity  0zv  and descent duration ft  are related. For 

instance given  0zv  and ft  the initial altitude to start from is obtained. Vertical guidance 

then provides the reference altitude z , velocity zv  and reference acceleration zu . The 

horizontal guidance algorithm minimizes a norm of the jerk s , thus limiting acceleration 

slew rate. Given zu  the reference gain   can be computed as 

  
 

    

2

2 21

z

x y

u i T
i

q i q i
 

 
 (4.9) 

thus depending on the horizontal guidance. In addition to jerk, the horizontal guidance 

minimizes the energy of the tilt angles in (4.9), which is related to propellant consumption. 

Optimization is constrained by tilt bound, and is iterated to accommodate the nonlinearity 

in (4.9). Guidance can be adapted to a target site update until a minimum altitude is 

reached.  

 

4.4 Control law 

Following EMC, the control law of each horizontal has the following form 

  ( ) ( ) c d ds i s i K Q M    x x x x  (4.10) 

 

which is the sum of the reference jerk s , of a feedback control proportional to tracking 

error c dQ x x x , and of the disturbance state dx  to be rejected. The tracking error 

includes the disturbance state, as the latter affects an intermediate state (the horizontal 
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acceleration) of the fifth order chain from jerk to horizontal position. Matrices M  and Q  in 

(4.10) are juts imposed by the embedded model in (4.2) and (4.7) using the Sylvester-type 

matrix equation 
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 (4.11) 

It is straightforward to find the following solutions 
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 (4.12) 

The feedback matrix 
x v q uK k k k k k

     is related with the desired eigenvalues of 

the closed-loop control, which in turn define the coefficients of characteristic polynomial  

   5 4 3 2

4 3 2 1 0P c c c c c            (4.13) 

 

The five gains are uniquely obtained by solving the following equalities given   and   

and the coefficients of (4.13). 
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 (4.14) 

To compute (4.10) the current one-step predictions of the controllable state cx , and the 

disturbance state dx are required. They are obtained from the predicted 3D position r , 

velocity v , attitude q (expressed as a quaternion) and angular rate ωof the body, output of 

the navigation algorithm. A nonlinear transformation  P   converts the navigation pseudo 

measurements into measurements y  compatible with the model output y  in (4.4). The 
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model error m e y y  is employed as in Kalman filters to estimate the noise vector w  in 

(4.5) and to update the disturbance and controllable states cx  and dx  (output of the 

embedded model block). The embedded model state variables and the reference state and 

jerk x  and s  enter the control law block implementing (4.10). The output is the 

commanded jerk s  which is integrated to provide the angular acceleration xu . The 

conversion from xu  to the thrust vector and vice versa passes through a nonlinear 

transformation  S   and the thruster dispatching law. The thruster vector is then converted 

back to xu , the embedded model command. 
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5. HAZARD DETECTION AND AVOIDANCE 

Equation Section (Next) 

5.1 Piloting 

In order to select the best landing site, the position target in the local reference system can 

change. The piloting is a process computed in real time that sets or changes the landing 

target position in order to avoid obstacles and to define a safe landing region. The piloting 

is the input on the guidance and in general this topic is treated separately from the GNC. In 

this section a piloting based on hazard detection and avoidance is presented, and it is 

connected with the guidance and control algorithms based on EMC theory [7], [11], [12]. 

Figure 10 shows how the piloting is included in the GNC scheme. 

 

Piloting
Guidance

Navigation

Computer Vision

Hazard Maps

Attitude, Posision

Updated Target 

Control

 

Figure 10. Piloting  

 

5.2 Hazard Maps 

The hazard maps (HMs) have been studied in recent years [18], [55]–[60]. HMs are divided 

in two components, the first one is a constant component due to topographic elements 

(slopes, rocks, inter alia) and other due to not permanent elements (shadows), all are 

provided by a vision based process [18], [19], [55], [57] that uses the camera on board with 

a field of view (FOV). FOV is determinate by the camera's angle of view   and the 

vehicles attitude.  
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Figure 11 and Figure 12 shows examples of HMs used in this research [18]. The camera 

provides the image in the camera frame of reference, and navigation provides the position 

and attitude, with this information the image processing generates as output a projected HM 

in the local vertical local horizontal frame of reference. The projected HM are assumed as 

piloting inputs. 

 

Figure 11. Projected map at 2000 m altitude. 

 

Figure 12. Projected map at 700 m and 500 m altitude, with different local coordinates. 

The projected HM (Figure 11) is a matrix of elements that represents the risk that exists 

when a spacecraft lands on a particular area (0=safe, 1 = unsafe), these HMs are in the 
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vertical local horizontal local frame of reference, the size of the map is defined by the 

camera. For the analysis of the HM the following definitions are made; 

 Safety level  ,s i j  (SL): it is the value between 0 and 1 that defines the landing 

quality of a pixel on the projected hazard map a safe landing site should satisfy 

that the surface slope must be below 15 degrees and probability of landing on a 

rock greater than 33 cm high should be less than about 1% [60],  

 Safety threshold maxs : only the pixels with a safety level   max,s i j s  

(acceptable level, AL) are candidates to be landing site. 

 

It is assumed that the lander CoM C  is located in the local vertical local horizontal frame 

before piloting and guidance functions start. When guidance and piloting start, the origin of 

the local vertical local horizontal frame may be outside the camera FOV. Guidance will 

direct the lander to the approach direction and to the landing point. If the landing point is 

outside of the propellant ellipse, piloting function will find an acceptable site inside 

propellant ellipse and close to the target landing point. 

Target landing ellipse T is the predefined landing ellipse of the mission [8], [27]; it defines 

the target frame. It holds  
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 (5.1) 

The ellipse centre is  0, 0, 0O x y zc c c   c . The semi-axes are 0, 0a b   [m] and the 

angle 0   of the „main‟ axis with 1t . The semi-major axis is the first target frame axis. 

The ellipse parameters are related to parameters in (5.1) by 
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 (5.2) 

The dimensions of the target site should be related to the landing uncertainty. To this end 

the minimum (size) landing site should be defined a priori, by fixing the lower limit mina  of 

a  and b . A sub-task aiming to such a computation has been added, but it is not essential 

(last priority). For now  min 100 m 3a  . The target site ellipse may have a b  which 

suggests that the landing site is approached along the semi-major axis direction. 

 

To find the landing site, the hazard map is further compressed into average squares. 

Currently the number of macro-pixels aggregated is 2 2m m   . From the altitude of 

about 500 m, the edge (pixel width) of an AS is about 4 m. It is coherent with the size of 

the map in Figure 11, and it corresponds to the landing platform footprint. At an altitude of 

about 4000 m the edge length is about 33 m and it corresponds to the landing uncertainty (1 

sigma),   min4000 / 3 33 mw a  . The average square map (ASM) is a map with square 

pixels whose width is a real length in the target frame. The pixel width  w h  of the ASM 

varies with the altitude. The process is shown in Figure 13. 
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Figure 13. Average square construction. 

 

Landing site L  is the output of the piloting function, and it is defined as an ellipse whose 

average square (AS) has acceptable safety level (below the threshold). The equation of the 

ellipse is the same as (5.1). The landing site is selected to be close to the target site and 

inside the propellant ellipse (see Figure 14). Two landing sites are selected: (i) the coarse 

landing site is selected just after the guidance is activated and the lander camera is directed 

toward the target site; it occurs at about 4000 m and the resolution is larger than 30 m to 

avoid coarse hazards. (ii) the fine landing site is obtained when after the coasting (sailing) 

phase, the lander camera points again to the coarse landing site and a fine landing site is 

obtained with resolution about 5 m. During the acceleration phase and the early coast phase 

piloting function continues to search a safe landing site but dummy, until the coarse landing 

point enters the camera FOV. No guidance decision is made based on dummy landing sites. 

Referring to Figure 14, the coarse landing region will be the region (red circles) closest to 

the target landing point (cross). The red line is the semi-major axis of the landing ellipse. 

The line of average squares (red circles) above the crossed location will be discarded. The 

new landing point is the centre of the landing ellipse. The landing ellipse function is under 

development.  
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Figure 14. Average square map with the target landing point and the closest safe squares 

Propellant ellipse P  is defined as the region which is accessible given the current 

propellant with some margin. The equation of the ellipse is the same as (5.1). A landing site 

within the propellant ellipse is said to be reachable. 

 

Average square algorithm given the map resolution or pixel width  w h  takes the average 

of the safety level of macro-pixels of the hazard map inside the AS width. 
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If the number of found macro-pixels  , 0N k l  ,which may be due to inclination of 

camera FOV, then interpolation is done from the previous contiguous AS with finite safety 

level 
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5.2.1 Phases Strategy 

The best landing site is searched according to the following criteria: 

1) The safety level of the landing site has to be lower than the threshold maxs  (safe) 

2) The landing site must be inside the propellant ellipse (reachable) 

3) The landing site must be as close as possible to the target landing site (target).  

To accomplish these objectives a strategy of phases is performed, Figure 15 shows the 

phases of the landing site algorithms. These phases are developed in order to have the 

piloting and guidance as incorporated as possible. The piloting exposed here is divided in 

five phases in which is assumed a single camera with a limited FOV and is taken into 

account the fact that the camera will lose sight of the target. 

 

The piloting function has as main inputs 

1) Projected hazard Maps (HM)  

2) Time  

3) Attitude (quaternion) 

4) Centre of mass(COM) position (target frame of reference) 

5) CoM Velocity vector, 

6) Angular Velocity vector, 

7) Nominal target landing ellipse, 

8) Propellant ellipse is built by the piloting function, 
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Altitude>4000m1. Lander location phase

The lander CoM is located in 

the target frame. The camera 

FOV may not see  the target 

landing point . To be done 

before piloting and  guidance. 

As soon as the lander CoM is 

located piloting may start, also 

before guidance.

3. Acceleration Phase 

The lander follows the 

guidance law to orientate  

the lander to the current  

landing site (landing point 

=centre). During the 

acceleration phase the 

reachable landing site may 

not be visible It cannot be 

changed.

Unseen Target Landing Point

2. Landing site mapping

The camera is pointed by 

guidance to the target 

landing point in order to map 

the preselected landing 

point. A hazard map is built. 

The target landing point may 

be reachable or not . Piloting 

function looks for a 

reachable and safe landing 

site. Coarse hazards must be 

avoided. There is a timeout.

Reachable (coarse) landing Point

Reachable coarse  landing Point 

(unchanged)
4. Sailing (coast) Phase 

The lander reaches the 

vertical orientation and the 

landing site may become 

visible. As soon as it 

becomes visible, the second 

and final hazard avoidance 

starts.

Fine landing Point

5. Braking Phase and 

verticalization

The lander brakes to reach 

the  reachable landing site. It 

becomes visible. The fine 

hazard avoidance starts. The 

fine landing site is selected. 

The braking pahse must end 

at about 500 m with the 

lander verticalization.

Altitude<4000m

Seen target Landing Point

Not reachable  Target Landing Point

Reachable  landing Point 

(unchanged)

Direction and acceleration

Direction (opposite to acceleration) 

Direction, zero acceleration

Altitude<500m

 

Figure 15. Phases of the landing site algorithm. 
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5.2.2 Phase 1- Lander location  

The objective of this phase is to locate the lander in the local vertical local horizontal frame 

of reference and to start image acquisition, therefore obtain the first outputs of pre-guidance 

hazard maps, which is performed by navigation. The initial HMs are input to piloting and 

guidance. Lander location is performed as soon as navigation can establish the target frame 

and the lander CoM position, velocity and attitude (quaternion, angular rate) are detected in 

the frame. This phase is done during parachute descent, as soon as the front shield has been 

ejected. Altitude > 4000m. As soon as the above function is confirmed and hazard maps are 

received, piloting function may start by computing the propellant ellipse and selecting the 

best landing ellipse inside the available hazard maps (pre-guidance maps). The pre-

guidance maps may not include the nominal target point, or exceptionally the target landing 

ellipse. To this end, the second phase is necessary. The phase duration is defined by 

navigation. If done during propulsion descent, time becomes critical. 

 

5.2.3 Phase 2- landing site mapping 

The phase aims to course map the region around the nominal target and find the current 

(coarse) landing ellipse. It is performed by piloting, guidance and navigation. As an 

exceptional case the landing point may be inaccessible because of limited lander tilt (45 

degrees) or outside propellant ellipse. In both cases a new landing site is found close to 

nominal target by piloting function. Actually, in the former case the lander might be moved 

horizontally to approach the landing site. 

 

Piloting imposes to guidance the lander orientation to centre the nominal landing site in the 

camera FOV. The actual guidance must be extended to implement attitude control alone. 

During lander orientation, to be fast, no map is obtained by camera. There are three 

possibilities, to be selected before guidance is actuated. (i) The target point can be viewed 

by the camera FOV at the end of the orientation (case 1).  (ii) The landing point is outside 

the propellant ellipse (case 2) (Figure 16), but the landing point can be viewed by the 

camera. The lander is oriented to the landing point. (iii) (Case 3)  The landing point cannot 

be viewed (large orientation angle). The largest orientation angle in the landing point is 

applied to the lander. The two last cases are due to control errors in the previous phases 
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(entry and parachute). The hazard map is elaborated to improve the current coarse landing 

site, free of coarse hazards.  Hazards may occur at the nominal landing site because of 

location (knowledge) errors. The time duration must be short with a fast manoeuvre, 

without camera data, during slew orientation. Less than 4 s (400 m altitude).  
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Figure 16. Phase 2 left (case 1) right (case 2) 

5.2.4 Phase 3 – Acceleration 

 

This phase aims to move toward the current lading site; it will require lander orientation or 

the opposite direction to accelerate with the axial thrusters. The guidance reorients the 

lander and accelerates toward the coarse landing site (Figure 17), during this phase, no 

camera map will be used. The lander will be oriented opposite to landing site and unless a 

second camera is available a single camera cannot enter the landing side in the FOV. 
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Figure 17. Phase 3: acceleration toward the coarse landing site. 

 

5.2.5 Phase 4 – Coasting/braking and start for fine landing site.  

This phase aims to move at constant velocity and then to brake toward the coarse landing 

site. The lander assumes the vertical orientation and then a tilt to brake (in the landing point 

direction), no horizontal acceleration or negative acceleration (Figure 18). In this way, the 

coarse landing site may enter the camera FOV. To this purpose the piloting starts again to 

elaborate hazard maps for finding a fine landing site (fine hazards). 
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Figure 18. Coasting/braking. 
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The braking must be slow (low angular rate) to allow camera to map the coarse landing 

site. This phase should end at altitude of about 500 m to perform the final landing selection. 

 

5.2.6 Phase 5 –Verticalization on the site and final small maneuvers. 

 

This phase aims to orient the lander vertically on the fine landing site, ready to land. Final 

small manoeuvres can be made to avoid fine/small hazards. The lander assumes the vertical 

orientation in a fast way (no camera map) higher than 500 m altitude (< 20 m/s vertical 

velocity) at the end of horizontal braking. Final hazard map is elaborated to refine the final 

landing site. The final guidance is computed to approach the site (10 m altitude) at a 

vertical orientation. 

 

Fine landing should end at about 500 m. After verticalization hazard map may continue to 

be elaborated, but the resolution being about 0.5 m, the map at 500m should be sufficient to 

plan the final guidance. Assuming 2 s after 500 m and 20 m/s of vertical velocity, the final 

guidance will start at about 400m. The final descent should be mostly vertical.  

 

5.3 Hazard map processing to identify landing regions 

 

The landing region must be defined in the initial phases, this process is performed by the 

piloting functions and guarantees the selection of candidates regions, these hazard map 

processing is made in order to choose large enough compatible regions with spacecraft 

footprint [10], [61]. Following treating each map is shown. Identification of the landing 

zones is made. The main selection criterion is to find the largest Circular zone (convex), 

that overcomes the safety level. Figure 19 shows an example where the safety level is given 

by a scale from zero to one. Zero indicates the highest safety (blue) and one the lowest 

safety (red). The hazard map coordinates are given in the local vertical local horizontal 

frame of reference.  
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A simulation example is performed based on HM in Figure 19. (Projected) Hazard map 

processing for piloting is subdivided in six steps as follows. Each step is explained in detail 

below. 

 

1) Average square algorithm  

2) Selection of the candidate landing regions through the safety threshold  

3) Cluster selection. 

4) Convexification of the selected cluster and search of the centre 

5) Generation of landing ellipse 

6) Restriction to the propellant ellipse 

 

5.4 Average square algorithm 

Typical Hazard maps are use in this step [18], the average square algorithm described in the 

section 5.2 is applied, the original HM is exposed in Figure 19, and the simulation result is 

shown in Figure 20. 

 

Figure 19. Original HM 

Hazard map is compressed into the Average square map, this allows fast processing, and 

therefore computational load is reduced hence the real time implementation is feasible with 

a deterministic processing for Hazard maps algorithms. 
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Figure 20. Average square map from Figure 19 

5.5 Selection of the candidate landing pixels  

The safety threshold is chosen. Safe landing pixels are selected to have a safety level below 

the threshold. Figure 21 shows the pixels found in the average square map of Figure 20. 

Green points correspond to safe landing pixels. 

 

 

Figure 21. Safe landing pixels of the ASM in 

As output of the algorithm step, candidate landing pixels are obtained. They are saved 

with their coordinates. 
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5.6 Cluster selection 

Using the safe landing pixels, clustering and classification is made in order to find the 

largest safe cluster. To this end neighbouring pixels are grouped and clusters are 

determined. 

 

Figure 22. Safe clusters of the safe landing pixels in 

5.7 Cluster convexification and centre determination 

Obtained clusters may not be convex. A single cluster can be seen as a non convex 

polygon, and the process aims to find the largest convex sub-cluster. The convex sub-

cluster must have a minimum area (landing footprint [10], [61]) that includes the 

uncertainty of the landing GNC. The following assumptions are made. 

 

1) The landing site is selected to be convex and thus converted to an ellipse. 

2) Each convex sub-cluster is defined by centre and diameter, prior of the ellipse 

conversion. 

3) Each cluster includes at least one convex sub-cluster. 

4) A convex sub-cluster is acceptable if the diameter is larger than the landing 

footprint. 

5) Distance between neighbouring points is defined by the ASM.  
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To find the centre of the largest sub-cluster of a cluster, the following requirements are 

employed. 

 

1) The centre must be inside of the cluster 

2) The centre must be the farthest point from the cluster contour 

3) There may be more than one sub-convex cluster in a single cluster. 

  

Figure 23. Convexification algorithm example 

Each convex/non convex cluster is treated in order to find the centre of the sub-convex 

cluster. The algorithm is similar to [62]. The centre is found through a recursive algorithm 

that progressively removes the contour of the region until a single central point is achieved. 

The found point guarantees that is the centre of the maximum circle inscribed in the non-

convex cluster. During the iteration process the non convex cluster may split. For this 

reason a further clustering process is added at each iteration. Therefore a single region may 

have more than one centre. After that, a set of regions defined by centre and diameter are 

obtained. A simulation example is shown in Figure 23 and the algorithm is explained 

graphically in Figure 24. 
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the contour is 

removed 

recursively

The convex region center is founded 

 

Figure 24. Convexification algorithm and centre finding. 

5.8 Generation of the landing ellipse 

Figure 24 shows the iteration process: the contour is shrunken, and at each step the 

algorithm generates smaller subclusters. The recursive breakpoint is defined by the sub-

cluster being a single point. As soon as a centre has been found, the diameter is computed 

as the minimum distance between the original contour and the centre. 

 

Figure 25. Convex sub-clusters found. 
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During the descent manoeuvre a set of hazard maps is available. The clusters are updated 

when a new hazard map is received. Fine hazards will be detected as soon as the height is 

reduced (some clusters can split or disappear). The field of view of the camera may lose 

some regions, in the descent the parameters of the regions (centres, diameters) are refined 

according to the new risks. 

The result obtained from a typical landing path [11], [12] are shown in the figures below. 

The sub-clusters that intersect the propellant ellipse remain. For this simulation a propellant 

ellipse is assumed. Figure 26and Figure 27 shows the variations of the regions during the 

descent. 

 

 

Figure 26. Ellipses from Hazard Map processing (X-Y Plane) 

 

Figure 27. Profile of ellipses at Hazard map height (X-Z Plane) 
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5.9 Intersection with propellant ellipse 

The sub-cluster that are complete or partial included in the propellant ellipse are 

candidate landing sites, Figure 28 shows the propellant ellipse (green) and the candidate 

landing sites. 

 

Figure 28. landing path with safe regions found 

To summarize Figure 29 shows the scheme of the Piloting that is integrated with the 

guidance. 
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Figure 29. Piloting Scheme 

5.10 Piloting – Guidance fusion 

 

This section provides guidance and piloting are combined for the final stage of landing, the 

camera sensor is integrated to the simulator and maps are obtained through the orientation 

and position of the vehicle.  
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5.10.1 Piloting Simulation 

 

In order to validate the piloting and guidance algorithms, an artificial mars surface was 

implemented (Figure 32) the projected hazard maps are obtained according to the lander 

attitude and position, to this aim a sensor of 36 24mm mm  was used (Figure 30), focal 

length is determinate from the desired field of view. 

Camera Sensor
Focal Length

X- Angle of view

Y- Angle of view

FoV

x

y





 

Figure 30.  Sensor Configuration 

The artificial surface region is generated through a random process passed by a filter. The 

sensor is divided in pixels each pixel generates a vector bks  that is transformed and 

projected in the surface, a projection in the plane of the vectors bks  is performed in order to 

obtain in-house hazard maps.  
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Figure 31. FoV Projection 

 
l

lk b bks R s  (5.5) 

The interception of the vector with the target plane is called ,x yp , the point is founded 

through the extension of the vector lks , the equation below shows the problem statement, 

where   is the vector extension. 

   ,

0

x

l

lk o b bk o y x y

p

s p R s p p 

 
     
 
  

p  (5.6) 

 

3
1

1
11 2

3

12 3

2

3

1
0 0

1 0

0 1

lk
o

lk
o

lk

o

lk

lk

s
p

s
p p

s
p p

s

s



 
 
    
         
        

 
 

 (5.7) 

 

Figure 32. Artificial Surface Region(left) in-house hazard map (right) (example h=1000m) 
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5.10.2 Piloting-Guidance Simulations 

 

This function was tested using in-house hazard maps since they are sensible to actual 

position and attitude. The following progressive runs are under development, using only 

guidance. 

 

Table 1. Test 1 

No Altitude h[m] Velocity (vertical) 

v [m/s] 
Time to go tf 

Lateral 

speed [m/s] 
Tilt [rad] 

Angular rate 

[rad/s] 

0 1000 40 50 2 0.04 0.03 

1 500 35 28 2 0.04 0.03 

2 201 22 18 1 0.02 0.03 

 

5.10.2.1 Height 1000m 

 

Figure 33 shows in-house projected hazard map at a height of 1000 meters with the initial 

attitude, the algorithm obtain the ellipses that satisfied the safety level, for first tests the 

criteria used is to choose the largest region. The target selected is shown with a cross, each 

processed pixel has 64 64m m  resolution. 

 

 

Figure 33. Target selection based landing ellipse (Height 1000m) 
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The position in the last phase of descent is shown in Figure 34, in this you can observe the 

correction to initial conditions and as it reaches the landing point selected by the hazard 

map processing. 

 

 

Figure 34. Vehicle Position 

Figure 35 (right) shows how change the field of view as the vehicle descends, at each 

guidance step the simulator gets an in-house hazard maps and develops hazard map 

processing until 200m height, Figure 35 (left) shows the centres of the landing region 

obtained from each map. 

 

 

Figure 35. 3D Field of View (left) Landing Ellipse Centre (right) 

The tilt attitude guidance is shown in Figure 36, this attitude is based on the algorithms 

developed on [7], [11], [12], the graph is focused on the last phase of landing (<1000m) and 

how the zone is redefined. 
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Figure 36. Attitude Vehicle (1000m) 

5.10.2.2 Height 500m 

 

The same results describe in are shown below for heights of 500 (Figure 37) and 201 

meters (Figure 41). The target region is redefined with a new resolution and new risks that 

were not visible at higher altitudes appear. 

 

 

Figure 37. Target selection based landing ellipse (Height 500m) 

The vector bks  are shown in the position trajectory in Figure 38(right), they determinates 

the camera FoV. 
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Figure 38. Vehicle Position (Height 500m) 

The simulator obtains the hazard maps from the attitude and the camera FoV, this step is 

made for each photography.  

 

Figure 39. 3D Field of View (left) Landing Ellipse Centre (right) 

The horizontal guidance changes the tilt in manoeuvre beginning in order to modify the 

vehicle trajectory. The new images are taken at each photograph step and therefore the 

photo is taken in order to guarantee the camera constraints, Figure 39(left) shows the FoV 

at each photography step. 
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Figure 40. Attitude Vehicle(Height 500m) 

5.10.2.3 Height 201m 

 

Figure 41 shows the last map that is acquired by the algorithm, where each processed pixel 

has resolution 12 12m m  , the region is region is defined and refined to better resolution 

as the vehicle descends. 

 

Figure 41. Target selection based landing ellipse (Height 201m) 

The inclination shown in the graphic below is described as the behavior of the guide when a 

new hazard map is obtained.  
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Figure 42. Vehicle Position(Height 201m) 

In this section is shown the simulations results of the connection between piloting and 

guidance in the last phase of landing.  
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PART II BOREA QUADROTOR PROJECT 
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6. BOREA INTRODUCTION  

Equation Section (Next) 

The problem of on-ground testing guidance, navigation and control (GNC) algorithms for 

planetary accurate and safe landing can be approached through the flight of small 

quadrotors (< 2kg mass), suitable for indoor and outdoor operations. The literature is full of 

studies and experiments with such aerial vehicles [15], [41], [63]–[71] (sometimes referred 

to as aerial robots) aiming at very different exploration, commercial and education goals. 

Here we focus on the test of GNC algorithms for planetary landing. Simulated results will 

be presented as a baseline. The main difference of an on-Earth-flying quadrotor dynamics 

with respect to a generic planetary landing vehicle is analyzed, showing that a similitude 

can be formulated, capable of scaling down mass, geometry and trajectories to outdoor 

tests, and of compensating the different gravity acceleration. As a result, indoor tests look 

rather critical as they would require small quantization to quadrotor thrusts, in order to keep 

landing flight duration constant. Similitude to be very accurate needs a careful model of 

propeller dynamics and response. A further problem comes from emulating radar altimeter 

and velocimeter; both can be emulated by a GPS receiver but reliably only in outdoor tests. 

Indoor tests should require camera. Radar altimeters are massive. Altimeter is also 

emulated by Ultrasonic range sensors, they are used at touch-down. Initial alignment must 

be provided by some attitude sensor either magnetometers or external markers, or the 

accelerometer itself (on-ground). Subsequently, under a short flight time (< 100s), attitude, 

velocity and position can be obtained by gyro and accelerometer integration. Thus, essential 

sensor devices are assumed, namely IMU (accelerometers and gyros) and ultrasonic range 

sensor (conservative conditions). An outline of the guidance, navigation and control 

algorithms is included. Simulated runs are provided. 

 

Preliminary to in-field tests a simulator has been built for testing and debugging the EMC 

code [6]. The control unit is built around the vehicle dynamics embedded model, which is a 

set of discrete time state equations of centre-of-mass (CoM) and attitude dynamics. It has 

been shown by [11], [12], [21] that the embedded model and the control strategies can be 

partitioned into horizontal, vertical and spin dynamics. Their cross-couplings are treated 

either as known or unknown disturbances to be estimated by state predictors (embedded 
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model plus noise estimator) and rejected by the control law. As a non-conventional feature, 

CoM horizontal dynamics and attitude dynamics (vehicle tilt, pitch and roll) constitute a 

unique dynamics. Assuming moderate tilt (acrobatic flight is not an immediate goal), the 

nonlinear dynamics from angular jerk to CoM acceleration is feedback linearized [42] to 

make available a fifth-order linear embedded model for each horizontal degree of freedom. 

Something similar has been done by [41]. 

 

The EMC design implies the development of the noise estimators, this navigation allows 

the control unit to estimate the variables accurately. In this research, a simple method to 

make state predictors that guarantee stability with minimum variance is presented. The 

horizontal noise estimator implements a decoupled strategy that allows the attitude 

variables to be estimated with a classical state predictor, this prediction is connected with 

the motion noise estimator through a nonlinear gain also predicted. In addition the 

horizontal navigation is the same for the vertical and horizontal position. 

 

The vertical guidance uses a standard minimum control strategy [72]. The horizontal 

guidance splits in two identical models due to the feedback linearization in chapter 4. The 

strategy used is a polynomial strategy implemented with a two-phase state machine. The 

guidance avoids abrupt changes in the states, and thus the attitude variables are not forced, 

this feature is considered important to the stability of the quadrotor vehicles. The 

polynomial guidance also is adaptive to the measurements, and allows the reference states 

to be updated before a new maneuver. 

 

The vertical control law is made with a classical state feedback. The horizontal case uses a 

state feedback with variable gains that are computed at each control step. Navigation is 

implemented using the embedded model and noise estimator structure typical of Embedded 

Model Control. The details presented are just a summary. 

 

This research intends to develop the Borea quadrotor simulator. Specifically the simulator 

will include kinematic, dynamic, dispatching and will be able to determine the attitude and 

dynamics in the local and body frames of reference. The first contribution of this part of the 
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project is the development of a simulator of the quadrotor Borea, capable of describing the 

dynamics and kinematics of the vehicle. 

 

In order to test the simulator a guidance, navigation and control strategy are implemented, 

this will follow the EMC scheme. This implies the development of the embedded models 

for position dynamics of the quadrotor. The embedded model is partitioned in horizontal 

and vertical dynamics and thus defining the strategy for the following procedures, the 

horizontal embedded model will include the attitude through a feedback linearization, this 

horizontal model reduce the complexity and transforms the quadrotor non linear model into 

a simple linear model with four controllable states no limited to small angles. 

 

The EMC design implies the development of the noise estimators. This navigation allows 

the control unit to estimate the variables accurately. In this research, a simple method to 

make state predictors that guarantee stability with minimum variance is presented. The 

horizontal noise estimator implements a decoupled strategy that allows the attitude 

variables to be estimated with a classical state predictor, this prediction is connected with 

the motion noise estimator through a non linear gain also predicted and finally the 

horizontal navigation is the same for the vertical and horizontal position. 

 

The vertical guidance uses a two order bang-bang control strategy through five steps state 

machine. This generator uses vertical acceleration and velocity bounds defined previously. 

The guidance includes one final state to correct discrete discrepancies, this guarantees to 

reach the correct position. The horizontal guidance is divided in two identical axes models 

due to the feedback linearization. The strategy used in this model is a polynomial strategy 

implemented in a two phases state machine. 

 

The vertical control law is made with a classical state feedback. The horizontal case uses an 

adaptive state feedback with gains calculated and set at each control step; this 

implementation respects the linearization and guarantees a good performance with very low 

tracking errors. 
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6.1 Unmanned aerial vehicles UAV  

 

The traditional aerial vehicles are commanded by an expert pilot onboard the aircraft. On 

the other hand, Unmanned Aerial Vehicles (UAV) are operated remotely or fly semi-

autonomously based on algorithms preloaded on computers on board. They have been used 

for many applications; remote sensing [73]–[75], reconnaissance [76], scientific research 

[21], [22], [77], [78], civilian aerial-imaging [79], [80], aerial surveillance [81], [82], 

military [83], [84], inter alia. The most challenging problem of semi-autonomous 

algorithms is mainly to develop the GNC. 

 

6.2 Quadrotors 

 

The quadrotor vehicle has been previously analyzed due to their special features [77], [85], 

[86]. From the control point of view it is a non lineal plant with four driving forces 

produced by propellers. The quadrotor is composed by 4 propellers, in square distribution 

and interconnected with a rigid body composed typically by arms; the geometric centre is 

called pC  and is shown in Figure 43. 
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Figure 43. Quadrocopter Left: Up view Right: Side Views 



NAVIGATION, GUIDANCE AND CONTROL FOR PLANETARY LANDING 

60 

 

The propellers are the actuators of the quadrotor, they transmit energy from rotational 

motion to the air, this effect produces a thrust command [24], [87], [88]. This topic is 

studied further in section 7.3.  
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7. QUADROTOR BOREA 

Equation Section (Next) 

The Borea quadrotor project [21]–[26] is developed by the Space and Precision Automatics 

(SPA) group from Politecnico di Torino. It aims to test Guidance, Navigation and Control 

(GNC) algorithms based on Embedded Model Control (EMC) theory. This consists in an 

Unmanned aerial vehicle (UAV), as is explained in section 6.1. 

 

The quadrotor has important similarities with a precedent aircraft space vehicles in the 

landing propulsive phase, therefore this feature allows testing not only GNC algorithms for 

Earth flight but also for space applications, mainly because on-ground testing algorithms 

for accurate and safe planetary landing can be approached through the flight of small 

quadrotors[22]. A similitude between the spacecraft lander and quadrotor is analyzed and 

tested on chapter 12. Up to this date, the GNC algorithms for purposes of landing have been 

tested only in stochastic simulations.  

 

7.1 Borea Quadrotor Modeling 

7.1.1 Frames of references 

As in section 2.3 the quadrocopter is located in a set of frame of references, additional 

references are added in order to analyze the thrust provide by propellers. This section 

describes the nominal frames of reference. 

 

7.1.1.1 Inertial Frame of reference 

The origin is located in Earth COM io , the axis ix  is located in the equator plane in 

direction of Greenwich meridian . The axis iy  is located in the equator plane orthogonal of 

ix  axis. The axis iz  is defined orthogonal to the previous axes i i ik i j  , the equation 

bellow summarize the frame. 

 

  , , ,i i i i iR o i j k
.
 (7.1) 
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7.1.1.2 Local Frame of reference 

All quadrotor requirements are referred to the local frame of reference. The following 

assumptions are applied; 

 

4) The origin lo
 
is rigidly connected to the initial point target 

5) the land is assumed plane for short displacements (<200m) 

6) the lz -axis is normal to the land plane 

7) the lx -axis and lz -axis are assumed two orthogonal vectors in the land plane. 

The vertical axis lz  is defined opposite to the gravity in the same direction of the Zenith 

 
i

g
k

g
 

.

 (7.2) 

 

The axis lx  is located in the plane orthogonal to the axis lz  in the same direction to the 

Earth north. The axis ly  is defined as 

 l l lj k i   (7.3) 

and 

  , , ,l l l l lR o i j k
.
 (7.4) 

 

Figure 44 shows the inertial frame of reference graphic scheme. A transformation between 

the inertial frame of reference and the local frame of reference is introduced. Figure 44 

shows the transformation 
i

lR  that is defined by two rotations with the latitude L  and 

longitude L  angles, an exchange of the axis and signal inversion of an axis 

 

    

0 0 1

0 1 0

1 0 0

l

i L LR Y Z 

 
   
 
   .

 (7.5) 
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Figure 44. Inertial and Local frames of references 

 

7.1.1.3 Body Frame of Reference 

For the body frame of references the following assumptions are made, 

 

1) all propeller centres lie in the same plane 

2) the origin is the geometric centre of the propeller centres 

3) the bz -axis is normal to the plane in the direction of the thrust  

4) the bx -axis bi  is oriented as 3 1A A  

5) the by -axis is directed as 4 2A A  

 

The geometric reference is defined as, 

 

  , , ,b b b b bR O i j k
.
 (7.6) 

The axes of this frame are  
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 3 1 2 4

3 1 2 4

, ,b b b b b

A A A A
i j k i j

A A A A
   

.

 (7.7) 

 

A vector represented in a geometric frame of reference can be transformed into an inertial 

frame of reference through the transformation matrix. The transformation matrix 
i

bR  is 

represented with three Euler angles , ,b b b    in 1-2-3 sequence. Figure 45 shows inertial 

and body frames of reference. 
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Figure 45. Inertial and Body Frames of Reference 

 

7.1.1.4 Propeller frame of reference 

For the propeller frame of references the following assumptions are made, 

 

1) all propeller centres lie in the same plane 

2) The frame assumes the arm orthogonal to the thrust vector. 

3) the z-axis is normal to the plane in the direction of the thrust  

4) The origin of each propeller frame of reference is located in the application 

point of the aerodynamic forces, it is the same as spin frame of reference 
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    , , , , 1,2,3,4pj j pj pj pjR A i j k j   (7.8) 

The axis pji  is the direction of the arm 
j p ja C A  from the propeller centre to rotor centre, 

the reference of frame is shown in Figure 7 and defined as, 

 

 , ,
j Tj

pj pj pj pj pj

j Tj

a f
i k j k i

a f
     (7.9) 

This frame of reference is implemented in order to analyze the propeller aerodynamics 

effects and it is rigid connect with the geometric frame of reference. The angles between to 

translate a vector are fixed. Figure 46 shows the propeller frame of reference. 

 

Figure 46. Propeller frame of reference 

 

7.1.1.5 Spin Frames of Reference 

For the spin frame of reference the following assumptions are made, 

 

1) the ,sj kz -axis is normal to the plane in the direction of the thrust  

2) The axis ,sj ky  is the direction of the blade tip, equal to blR . 

3) The axis ,sj kx  is in the same plane than the spin plane. 
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4) The origin of each spin frame of reference is located in the propeller application 

point of the aerodynamic forces. 

,sj kk  is a normal vector to the plane formed by jA  points, the axis 
,sj kk  is defined as the 

direction of the nominal thrust 
Tjf . 

 

      , , , ,, , , , 1,2,3,4 , 1,..,sj k j sk j sk j sk j bR A i j k j k n    (7.10) 

 

The unitary vectors are defined as 

 

 
,

, , , , ,

,

, ,
j k Tj

sj k sj k sj k sj k sj k

j k Tj

t f
j k i j k

t f
     (7.11) 

 

The following figure shows a representation of the spin frame of reference. 
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Figure 47. Spin frame of reference 

The transformation matrix between the spin frame of reference and propeller frame of 

reference is defined as, 
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 (7.12) 

The geometric reference frame and the spin reference frame have a common plane; to 

represent the translation is necessary only 2 angles. The angle gj  is related to the angular 

velocity of the propeller as follow equation, 

  
2

1
3

gj j j


     (7.13) 

7.1.1.6 Blade frames of reference 

The blade frame of reference is implemented in order to analyze the aerodynamic force, it 

is not a unique frame but it is a set of frames of references which change along the blade 

and are connected to the spin frame of reference through the transversal-section. 
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Figure 48. Transversal section  

 

For the blade frame of reference the following assumptions are made, 
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1) The blades centres lie in the same plane. 

2) The frame assumes the blade orthogonal to the thrust vector. 

3) The blade reference frame is not unique for each blade, it is defined and change 

for each transversal section of the blade dr . 

4) The origin kO  is located in propeller application point of the aerodynamic forces 

where the torques produced by these forces are equal to zero, it is for each 

transversal section. 

5) The drag and lift blade coefficients are referred to this frame of reference 

The blade frames of references are defined as 

 

      , , , , ,, , , , 1,2,3,4 , 1,..,blj k k j blj k blj k blj k bR o i j k j k n    (7.14) 

 

The axis ,blj ky  is the direction to the blade tip from the propeller centre 
, ,j k j j kt A T , ,blj ki  is 

in blade chord direction from the forces application point to the blade fin 
, , ,j k k j j kg o G . 

The frame of reference is shown in Figure 48 and defined as, 

 

 
, ,

, , , , ,

, ,

, ,
j k j k

blj k blj k blj k blj k blj k

j k j k

t g
j i k i j

t g
     (7.15) 

The translation between the spin frame of reference and the blade frame of reference is 

function of the pitch angle  r  
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Figure 49. Pitch angle 

The transformation matrix between the spin frame of reference and blade frame of 

reference is defined as, 

 

 

   

   

cos 0 sin

0 1 0

sin 0 cos

s

bl

r r

R

r r

 

 

 
 

  
  

 (7.16) 

7.1.1.7 Wind frames of reference 

The wind frame of reference share some properties with the blade frame of reference, it is 

unique for each transversal section dr  and it takes the following assumptions 

1) The relative wind velocity 0 ,R j kv  is in the direction to the axis ,wj kx . 

2) and the axis ,wj ky  is the direction of the propeller centre from the blade tip 

opposite to blR ,  

The wind frames of reference are defined as 

      , , , , ,, , , , 1,2,3,4 , 1,..,wj k k j wk j wk j wk j bR o i j k j k n    (7.17) 
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, 0 ,

, , , , ,

, 0 ,

, ,
j k R j k

wj k wj k wj k wj k wj k

j k R j k

t v
j i k i j

t v
     (7.18) 

The transformation between the wind frame of reference and the blade frame of reference is 

denoted in equation (7.19). 

 

0 0

0 0

cos 0 sin

0 1 0

sin 0 cos

bl

wR

 

 

 
 
 
  

 (7.19) 
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Figure 50. Wind frames of reference 

 

All frames of references that act along the blade are depicted in Figure 51, these are 

necessary to understand the propeller operation, and allows to this research to develop a 

new novel method to modelling the propeller effects. 
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Figure 51. References of frames on the propeller blades in two different transversal 

sections. 
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7.2 BOREA SENSOR UNIT 

 

Figure 52 depicts the main components of the Borea quadrotor [26],  

 

Figure 52.  Borea sensors and actuators 

7.2.1 measurement unit 

 

The Borea quadrotor has a classical inertial measurement unit IMU, the accelerometer 

specifications are shown in Table 2, and a set of tests has been carried out on this sensor. 

The results are summarized in Table 3 , Figure 53 and Figure 54. 

 

The accelerometer has an important role in the quadrotor navigation, in previous results 

[89], [90] show how can be used as an indirect measurement of the velocity through drag 

forces, and how can be include in a sensor fusion process with gyroscope as input of 

navigation. For the Borea quadrotor case a navigation has been divided in two levels, low 
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level navigation includes the sensor fusion, on the other hand the high level navigation is 

performed to get the variables and disturbances in the linear model studied in the first part 

of the dissertation.  

 

Table 2. Accelerometer features 

No Variable Symbol Unit Value Comments 

0 Zero-g g [V] 1.65 Output without acceleration 

1 Sensitivity value S 

[mV][s^2]/[

m] 81.549 The value of the sensitivity 

2 
Max-Output-

Voltage maxoutV  

[V] 

2.85 Vout=Vzero-g+ Sensitivity*1.5g 

3 
Min-Output-

Voltage minoutV  

[V] 

0.45 Vout=Vzero-g- Sensitivity*1.5g 

4 
Max-Digital 

word-ADC 
 

[LSB] 

4096 12-bit then 2^12 

5 
Max-Digital 

word-ACC max accD  

[LSB] 

3537 Round(2.85 *4096/3.3) 

6 
Min-Digital 
word-ACC min accD  

[LSB] 

559 Round(2.85 *4096/3.3) 

7 
Range- Digital 

word-ACC accD  

[LSB] 

2978  

8 Rho voltage [ ]acc V
Rho

 

[V]/[LSB] 

805.664 μ 3.3/2^12 

9 
Rho 

Acceleration 
2[ / ]acc m s

Rho

 

[m]/[s^2] 

9.87m (3.3/2^12)/ 81.549m 

10 
Max-

acceleration-

1.5g 
maxa  

[m]/[s^2] 

14.715 g=9.81 m/s^2 

11 

Min-

acceleration-

1.5g 
mina  

[m]/[s^2] 

-14.715  

 

All sensors on Borea quadrotor were characterized and tested [23], [25], the disturbances 

effects were analyzed and modelling. A low level navigation based on sensor fusion was 

implemented, the values of the position, velocity, attitude and angular rated are the outputs 

of the low level navigation and inputs of the high level navigation explained on chapter 10. 
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Table 3. Accelerometer Test 

No 

TEST CHANNEL BIAS [V] BIAS [M/S^2] STANDARD 

DEVIATION[M/S^2] 

COMMENTS 

0 

Accelerometer X 0.3074 3.7692 0.0714 clean Environment test 

1 

Accelerometer Y 0.0718 0.8804 0.0727 clean Environment test 

2 

Accelerometer Z 0.3965 4.8622 0.0795 clean Environment test 

 

 

Figure 53. Accelerometer PSD (Channel X) 

An example of a measurement performed by the accelerometer (axis x) is shown in Figure 

54. The results were developed on a controlled laboratory (clean environment) and on a 

office desk (noisy environment), for the clean environment the sensors board was put into a 

“StableTop 450 Optical tabletops”. It is an optical table enhanced with proprietary tuned 

and broadband dampers, where the outer skins are matched with the internal plate to 

minimize bowing due to thermal variations and cycling and to ensure the flatness of the 

tabletop is maintained. Moreover, the table has self-leveling vibration isolator that offers 

the highest performance of any pneumatic isolator. It also includes super damp isolators, 
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which provide total vertical and horizontal isolation with extremely low resonant frequency 

and constant height
1
.  

 

Figure 54. Accelerometer measure (Channel X) 

Gyroscope, magnetometer, GPS and ultrasound were also characterized the Table 4,Table 5 

and Table 6 show the main features that were verified and included on the simulator.  

Table 4. Gyroscope features 

No Variable Symbol Unit Value Comments 

1 Uscita zero-rate 𝑽𝒁𝑬𝑹𝑶 V 1.35  

2 Field Range 
maxω  rad/s 8.72  

3 Dynamic Range 𝑺  mV/rad/s 114.7  

4 
Tensione di 
uscita massima 

𝑽𝒐𝒖𝒕𝒎𝒂𝒙 V 2.35   outmax zero maxV V S ω  

5 
Tensione di 

uscita minima 
𝑽𝒐𝒖𝒕𝒎𝒊𝒏 V 0.35   outmin zero maxV V S ω  

6 
Massima word 

digitale 
𝑫𝒎𝒂𝒙  2917 /max outmax ADCD V σ  

7 
Minima word 

digitale 
𝑫𝒎𝒊𝒏  434 /min outmin ADCD V σ  

8 
Intervallo di 
quantizzazione ADCσ  μV 805.66 

123.3 / 2VADCσ  

9 Risoluzione  
GYRσ  mrad/s 7.031 /GYR ADCσ σ S  

 

                                                 

1
 The optical table was provided by Thales Alenia space. 
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Table 5. Magnetometer features 

No Variable Symbol Unit Value Comments 

0 Field Range g [uT] ±800  

1 Dynamic Range S 

 

[uT] ±88  

2 Sensitivity S 

 

uT/Lsb 0.07299 In another unit is 1370Lsb/gauss 

3 Noise floor  

uT 

0.2  

5 
Measurement 

Period 
Tcon 

ms 

20 Time from receiving command to data ready 

 

Table 6. Magnetometer Parameters 

No 

TEST CHANNEL STANDAR

D 

DEVIATIO
N[T] 

AVERAGE[T] AVERAGE[LSB] COMMENTS 

0 

POSITIVE 
BIAS 

X   2.0696e-
007 

 

1.1263e-004 1.5430e+003  

1 

POSITIVE 

BIAS 

Y 5.5958e-007 

 

1.0586e-004 

 

1.4503e+003  

2 

POSITIVE 

BIAS 

Z 2.8622e-007   1.1104e-004 

 

1.5213e+003 

 

 

 

7.3 THRUST UNIT 

A quadrotor vehicle has several differences with a planetary lander in a propulsive phase, 

one of the main differences is the propulsion system. In order to make a similitude, the 

thrusters used in planetary landing are replaced by propellers, therefore a complete study of 

the aerodynamics effects of the propeller was done. 

 

The propeller analysis is a problem well known in literature, most of the studies use an 

approximation to the force is the square of the angular velocity [63], [69], in this research a 

novel method to develop a force model, which can be compute in real time is developed.  
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7.3.1 Propellers 

The operating principle of the propeller is to transfer rotational energy in order to generate 

propulsion, to this aim the air mass is displaced through the blades and therefore a force is 

generated. From the physics point of view this force can be obtained mixing two different 

theories, first using the Bernoulli's principle that is called momentum theory, and the 

second one airfoil theory that is used to consider the blades, this is commonly called blade 

element theory. Each analysis gives and expression of the force, and finally both are 

combined to obtain the complete expression of the thrust Tf  
[24], [87], [88]. 

 

7.3.2 Momentum theory  

This theory is focused on the pressure difference on the propellers. The propeller can be 

seen as a tube that displace atmospheric air mass trough the blades, the force is expressed in 

terms of this pressure differences. For this analysis the propeller frame of reference (section 

7.1.1.4) is used and the following assumptions are considered, 

 

 The propeller blades are despised.  

 The propeller is a ideal disk infinitely slim. 

 The air that goes through the propeller is seen as an incompressible fluid.  

 The propeller does not have resistance with the air. 

 The air changes the velocity magnitude and maintains the direction 

 The force that impulses the air af  is opposite to the propeller thrust 

,T T af f f   

 The forces are applied in the disk center. torques are not included in the 

momentum theory. 
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Figure 55. Axial wind flow through the propeller 

Figure 55 shows a simple scheme of the pressures, flows and forces that are significant in 

the momentum theory, where wind velocity on top (initial) of the propeller is denoted as iv , 

wind velocity through the propeller is denoted as 0v
, 

wind in the bottom of the propeller is 

denoted as sv  which can be expressed as an increment indv  from the initial wind velocity iv

, i.e. . s i indv v v  . The pressure in the lower part of the propeller is denoted as 2P  and in 

the upper part is denoted 1P  and the atmospheric pressure is denoted 0P . Thrust Tf  can be 

expressed in terms of the pressure difference on the disk as. 

 

  2 1Tf S p p S p     (7.20) 

 

On the other hand an additional result is obtained from air linear momentum dp . In the disk, 

the conditions are given by the atmospheric pressure 0P  and the initial air's velocity iv . The 

mass of air which pass through the disk is defined by the area S , the disk air's velocity 0v  

and the air‟s density  . The flow of mass through the disk is, 

 d ap m v  (7.21) 

 0am Sv  (7.22) 

Where am  is the air mass. Thrust is expressed in terms of the velocities as,  
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    0 0,T i s i sf Sv v v p v v v        (7.23) 

 

The variation of the linear momentum is expressed as, 

  0 0 ,T d i s indf p Sv v v Sv v       (7.24) 

The velocity in dv  is found through the fusion of the momentum theory and blade element 

theory, explained before. 

 22 T
ind i i

f
v v v

S
    (7.25) 

 

7.3.2.1 Efficiency analysis 

The previously analysis was made based on several assumptions, therefore the actual 

efficiency is lower because: 

3) Slipstream rotation 

4) Blade profile drag 

5) Non-Uniform flow 

6) Compressibility effects 

7) Propeller Blockage (Fuselage, Nacelle)  

But in ideal cases is not possible use all generated power as required power, part of the 

energy is dissipated in the ideal propeller operation. The following procedure aims to find 

the analytical expression of the efficiency. The incompressible Bernulli equation can be 

applied only to constant energy flow, therefore this equation is applied in two stages, 

before, 

 

 
2 2

0
0 1

2 2

iv v
p p

 
    (7.26) 

And after, 
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2 2

0
2 0

2 2

sv v
p p

 
    (7.27) 

 

Therefore the pressure difference can be seen as, 

 

    2 2

2 1 / 2
2

s i i ind indp p p v v v v v


        (7.28) 

 

From (7.23) and (7.28) 

    0 0/ 2 / 2s i i ind iv v v v v v v       (7.29) 

 

The useful generated power uP  of the propeller is given by, 

 u T iP f v   (7.30) 

The ideal propulsive efficiency or the Froude efficiency of a propulsive system is, 

 
0

i
d

v

v
   (7.31) 

 

7.3.3 Simple Blade-Element Theory 

The airfoil theory can be used in order to determine the components of thrust and torques 

that are produced by the blade. For this case the blade frame of reference and wind frame of 

reference are utilized in order to analyze each transversal section along the blade. For this 

analysis are used the following assumptions, 

 

 bv  is the forward velocity and is located in the air plane 

 the real blade velocity Rv takes into account the propeller advance velocity and 

The spin velocity 
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The effect of the air on the propeller dynamics is represented by the total aerodynamic 

force
pf , this force is the result of the addition of each blade-aerodynamic force, where bn  

is the number of blades. 

  , 1,..,p bk bf f k n   (7.32) 

The aerodynamic force is expressed in a spin frame of reference as, 

 0

m

bk

Tk

f

f

 
 
 
  

f  (7.33) 

Where mf  is the tangential component of the aerodynamic force and Tkf  is the 

perpendicular component which defines the thrust in the axial-propeller direction and mf  

generates the torques produced by propellers. In order to analyze the blades forces, a 

differential analysis is made, R  blade length is divided in segments dr . Figure 56 shows 

the segmentation in the spin frame of reference (see 7.1.1). 

 



R

c

r

dr

pk

pj

dr

 

Figure 56. Blade Segmentation 

 

Figure 57 illustrates a section of a blade element at r  distance in the spin from the 

propeller spin axis and the forces. The angle between the real blade velocity and the blade 

cord is called attack angle  r . The angle between spin plane and the propeller advance 
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velocity is called  ,bv r  helix angle. The angle between the blade cord and spin plane is 

called Geometric pitch  r  (Figure 50, Figure 57). 

 

Note 

The values of , , ,     must not be confused with Euler angles in other sections. 
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Figure 57. Geometry of a propeller Blade element 

 

The lift and drag acting on the transversal section are Ldf  and Ddf , these aerodynamics 

forces are expressed in thrust and torque components on the transversal section and they are 

denoted as Tdf  and Tdm . 

 

7.3.3.1 Thrust analysis 

From Aerodynamics point of view is necessary to define  LC   lift coefficient and  DC   

drag coefficient, these allow to determinate the aerodynamic forces in two components 

referred to the wind direction. In order to simplify the following analysis the area is 

expressed as the product of the chord length  c r  and the differential dr  [88]. 



Chapter 7 - QUADROTOR BOREA 

83 

 

 

 
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2
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2

D R
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akw

Lk
L R

c c r v
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c c r v





 
  
      
   
 
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 (7.34) 

The propeller thrust and propeller torque is composed by a lift and a drag component  

 

cos , sin

0

0 0 1 0 0

0

mk D

aks

Tk L

c s

df c s df
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 
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        

 (7.35) 

 

The moment can be obtained in the spin frame of reference. 
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 (7.36) 

The moment is originated by the force components in the plane rotation, 

 
, , ,Tk sj k mk sj k mk sj kdm rj df i rdf k     (7.37) 

Therefore, 

 
 

 

2

2

/ 2

/ 2

Tk R L D

Tk R L D

df v C c C s cdr

dm v C s C c rcdr

 

 





 

  
 (7.38) 

 

7.3.4 Combined Blade-Element Theory and Momentum Theory 

In general cases the area S  is not constant, it changes with the value r . For this case the 

value of S  is assumed constant. Therefore for future analysis the solidity ratio of a 

propeller   is define as, 

 

 
2

b bn cR n c

R R


 
   (7.39) 
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These equations for force and moment can be solved with numerical analysis (iterations), 

but in a real time embedded system these kind of implementations are not feasible. To 

resolve this issue, a previous numerical analysis is made with a set of wind velocities and 

angular velocities, generating a lookup table, and then to apply the least square method to 

not only identify the classical parameters but also increase the order of the polynomial and 

take into account the wind velocity (different to classical approaches). This procedure was 

performed and analyzed for Borea in the following case of study. 

 

7.3.4.1 Case of Study 

 

The propeller case of study is described in Table 7, these features are based on the Borea 

quadrotor propellers.  

 

Table 7. Propeller Parameters for simulation 

No Variable Symbol Unit Value Comments 

1 Cord c  [m] 0.01 0.01 

2 Number of 
blades bn  

[] 2 2 

3 Blade length R  [m] 0.127 0.127 

4 pitch wing 
aP  

[m] 0.119 0.177 

5 solidity ratio   [] 0.501 0.501 

6 Air Density   [kg/m2] 1 1 

7 Lift Slope 
0CL  

[1/Rad]   

8 Drag coefficient 

(Zero Lift)  0CD  
[] 0.02 0.02 

9 Oswald 

efficiency 
number 

e  [] 0.85 0.85 

10 Motor velocity   
[rad/s] 630 630 
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The following simulations show the comparison between two propellers, both of them have 

the same radius, with different pitch wing,  

 

 

Figure 58. Fractional Induced Velocity in dv  along the blade 

Figure 58 shows the comparison fractional induced velocity, through the blade, Figure 59 

shows the pitch angle and inflow angle along the blade with a normalize axis /x r R . 

 

 

Figure 59. Pitch angle(left) Inflow angle (Right) 

The force produced by the propeller is determinate by the fractional induced velocity 

(Figure 60). When the integrations along the blade of the expressions in (7.38) are 

performed the force and moment obtained in function of the angular velocity and wind 

velocity. 
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Figure 60. Fractional Induced Velocity in dv  

 

The axial force obtained by the integration is shown in Figure 61 and Figure 62 (left). 

 

 

Figure 61. Thrust vs climb velocity 

 

The lookup table is generated (Figure 62,left), and with this a least square method is 

applied to identify a polynomial that summarizes the non linear model in a fast 

computational implementable model. The resultant model with a maximum error of 5% is 

shown Figure 62 (right). 
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Figure 62. Theoretical Propeller Force 

7.4 Com Dynamics 

 

The quadrotor analysis has some specific features: The thrust is given by four propeller-

motor set. The propeller forces are defined as , 1,2,3,4pif i  ; all forces are assumed to be 

applied in the centre of mass; the quadrotor is an uncompressible body with constant mass. 

 

The Newtown‟s law equations are applied in the local reference frame, the force is assumed 

to be applied in the centre of the mass qm . From the total applied force 
qf  that includes the 

propeller, gravity and disturbances forces, the quadrotor acceleration 
qa  is obtained, this is 

shown in equation (7.40), i.e., the command who defines the velocity qv  and position qx  

 / ,q q q q u g dm    f a f f f f
.
 (7.40) 

Therefore quadrotor dynamic model follows the classic mechanics, the main variables in 

the inertia frame of reference are defined as, 

 , ,

qlx qlx qlx

ql ql qly ql q qly ql qly

qlz qlz qlz

a v x

a v y

a v z

     
     

         
     
     

v a x v x

.

 (7.41) 

As mentioned before, the quadrotor has a 4 motor-propeller set that generates an input force 

ulf  in the local frame of reference, it can be defined as, 

 1 2 3 4ul pl pl pl pl   f f f f f
.
 (7.42) 

0

5

10

x 10
5

-2

0

2

4
0

5

10

15

20

Motor Velocity
2
 [rad

2
/s

2
]

Propeller Force

Wind Relative Velocity [m/s]

P
ro

p
e

lle
r 

F
o

rc
e

 [
N

]

0

5

10

x 10
5

-2

0

2

4
-5

0

5

10

15

Motor Velocity
2
 [rad

2
/s

2
]

Identified Propeller Force

Wind Relative Velocity [m/s]

P
ro

p
e

lle
r 

F
o

rc
e

 [
N

]



NAVIGATION, GUIDANCE AND CONTROL FOR PLANETARY LANDING 

88 

 

 

The forces applied to the quadrotor are mainly two, the input force 
ulf  and the gravity force

glf , since the assumptions are not entirely fulfilled (symmetry and mount discrepancies), 

disturbance forces are included in the model. The Figure 63 and equation (7.43) summarize 

the model. 

 

 q u g d  f f f f
.
 (7.43) 

 

1/mquf

df

gf

qa
dtdt

qv qx

 

Figure 63. Com Dynamics 

The equation (7.44) shows that the input force in the body reference frame is applied only 

on z axis. 

 

0

0

ubx

ub uby

ubz uzb

f

f

f f

   
    
   
      

f  (7.44) 

 

When the body reference frame and the inertial reference frame are aligned, the quadrotor 

can only move along the vertical axis, therefore a tilting is required in order to displace 

along the horizontal plane. The force command is clearly represented in the body frame of 

reference, the transformation is mandatory to develop the centre of mass (COM) dynamics.  

 

The gravity in the local reference frame, by definition has only one component on the z axis 

of the local frame of reference 
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0 , 9.81m/ sgl

q

g

m g

 
 

  
  

f

.

 (7.45) 

The disturbance forces expressed in the local frame of reference are 

 

dlx

dl dly

dlz

f

f

f

 
 
 
  

f  (7.46) 

The command force in the local frame of reference is shown in the equation (7.47). This 

force has only one component, this allows to reduce the expression of the propeller force 

components to 

 

c c c s s

s s c c s s s s c c s c

c s c s s c s s s c c c

ulx ubx

uly uby

ulz ubz

f f

f f

f f

    

           

           

    
            
          

 (7.47) 

Finally, the COM dynamics model in the local frame of reference is 

 

s 0

s c 0

c c
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q ly ubz dl

lz

v
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v g
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 

 

    
           
        

f

.

 (7.48) 

 

The equation (7.48) shows the coupling between the attitude and the Com dynamics, in a 

simple analysis, small tilting in the axis X produces a forces in the axis Y and the same for 

the opposite case, in the local frame of reference this interconnection can be modified in 

order to have a coupled model directly from the attitude, the command forces are expressed 

in the intermediate frame of reference. 

 

 

0 1 0

1 0 0

0 0 1

il

lR

 
 
 
  

 (7.49) 

The command forces pass through the transformation il

lR   in the local frame of reference; 

because the axis Z remains equal the gravity is not affected for the transformation. 

 



NAVIGATION, GUIDANCE AND CONTROL FOR PLANETARY LANDING 

90 

 

 i
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l l

ul l b ubR R  f f  (7.50) 
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The command in the local intermediate frame of reference 
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f  (7.52) 

 

Finally COM dynamics Model in the local intermediate frame of reference 

 

 

s c 0

s 0

c c

i

i i

i

l x

q l y ubz dl

l z

v

m v f

gv

 



 

     
            
        

f  (7.53) 

The equation (7.53) shows that the vertical model is not modified, therefore the vertical 

analysis made in the local intermediate frame of references is valid also for the local frame 

of reference. The horizontal model in the intermediate local frame of reference is used in 

the following sections. 

 

7.5 Euler Equation of Rotation 

 

The Euler dynamics applied to the quadrotor follows the equation(7.54), where  q tω  is 

the quadrotor angular velocity, qJ  is the quadrotor inertia tensor and  q tc  are the torques. 

This expression takes into account the gyroscopic acceleration in the first term on the right 

side. For Borea case the inertia tensor qJ  and mass qm  were found on [25]. 
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        1 1

b q b q b q qt J t J t J t    ω ω ω c  (7.54) 

 

The block diagram in Figure 64 shows the Euler rotation for Borea project, 

 

Jq
-1

 0qbω

Jq

-

 qb tc

Cross 

Product

dt

 

Figure 64. Euler Dynamics 

 

The quadrotor torque 
qc  is defined by two main effects, the propeller torques, defined by 

the aerodynamics effects and the propeller forces located in the different points. For 

discrepancies with the model, caused by the wind or other elements, a disturbance 

component 
dc  is added to the model. 

 

 q d c c c
u  (7.55) 

The command torque 
uc  

is defined by two different sources, the torque produced by the 

propellers and the torque produced by the propeller forces  not applied in the COM, both of 

them are commanded by the angular rate of the motors. The procedure to obtain the forces 

and torques in the body frame of reference is called dispatching. Therefore the only missing 

part to complete the quadrotor model is the update of the attitude representation, i.e., to 

obtain the angles from the angular velocity, a simple relationship is shown in the equation 

(7.56). 
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bz
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 

    

 
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              
            

 (7.56) 

Summarizing, the angular rate can be obtained from the Euler angles  , ,   (attitude) and 

angular velocity . 

 

c c s c s

s c 0

0 0 1

b b b b b

b b

bx b

by b

bz b

    

 

 

 

 

    
          
        

 (7.57) 

In order to represent the rotations and attitude kinematics the quaternion-rotation  

representations are used. The quaternions are the generalized complex numbers [91], these 

elements are other way of the attitude representation. 
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 
 

eq
q =   (7.58) 

A quaternion can represent the attitude through the Euler parameters  ,e  , where

     , and e  is the Rodriguez vector [92] i.e. e  is the unique rotation axis in which 

the vector is rotate a   angle, therefore the quaternion should have unitary norm to 

represent transformations and rotations. The conversion from quaternion to matrix rotation 

is obtained from the Rodriguez formula, 

 

   

0

2

0 0

cos / 2

sin / 2

2 2T T

q

R q I q





   
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   

    

e q

q q qq q

q =

q

, (7.59) 

where q  is the skew matrix of the unitary vector q  

 

3 2

3 1

2 1

0

0

0

q q

q q

q q

 
   
 
  

q . (7.60) 

The quaternion has a special advantage when is used in kinematic differential equations, it 

is possible to know the derivative of the quaternion from the current quaternion and the 
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angular velocity vector, this allows considering this quaternion as a non linear state [92]. 

The equation is shown below, where the symbol   represents the quaternion product. 

 

    
   

 
 

       
0 01 1 1

,  
2 2 2

t t t t t t t
t t t




   
         

   
ω ω

e ω
q q q q ,(7.61) 

 

The angular velocity is obtained from the Euler dynamics, therefore this set of systems 

allows the simulator to update the quaternion and hence the rotation matrix.  

 

7.6 Dispatching  

The forces of each propeller denoted as 1,2,3,4iT i   are represented in the input 

propeller force vector upf  as, 

 

 

1
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3

4

pb

pb

up

pb

pb

f

f

f

f

 
 
 
 
 
 

f . (7.62) 

There is a transformation from the propeller force values to the body reference frame, this 

is represented with the matrix V . The following equation shows the general way to obtain 

the force body values. 

 
bu up

f
bux

f V
buy

f
buz

 
 
  
 
 
  

f f   (7.63) 

 

For the quadrotor case the propellers also can give axial thrush therefore the totality of 

force is applied in the z axes. The matrix V  which represents this case is 
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0 0 0 0

0 0 0 0

1 1 1 1

V

 
 
 
  

. (7.64) 

Each propeller gives a force and torque, the torques have two sources. One is obtained from 

the propeller dynamics, and the other one due to the forces not applied in the center of 

mass. To identify this torque the position of each propeller is required, the matrix 
LV  

contains the location of each propeller in the body frame of reference just as shown next, 

where d is the distance thought the arms between the propeller centers. And h is the 

distance along the vertical axis from the geometric center and propeller center. 

 

 

/ 2 0 / 2 0

0 / 2 0 / 2L

d d

V d d

h h h h

 
  
 
     

,  (7.65) 

 

The torque command is shown in the following equation,  

 

x

u y

z

m

m

m

 
 
 
  

c   (7.66) 

 

It is not possible to apply horizontal forces; therefore, the only controllable commands are 

the axial force 
bzf  and the torques. The controllable command vector 

zmP  is defined as, 

 

 

z

x

zm zm bu

y

z

f

m
B

m

m

 
 
  
 
 
 

P f . (7.67) 

 

Classical approaches ignore the relative wind velocity and the remaining component 

proportional to the square of the angular velocity, therefore the relationship between the 
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moment and the force can be expressed as m /d pbi pbik f , then the matrix 
zmB  can be 

written as 

 

 

1 1 1 1

0 / 2 0 / 2

/ 2 0 / 2 0
zm

d d d d

d d
B

d d

k k k k

 
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 
 
 
  

. (7.68) 

The dispatching allows the operator to traduce the requirements of axial force and moments 

to propeller angular velocities, approximating the force to a single element proportional to 

this rate the other components will be added to the disturbances. 
zmB  is a non singular 

matrix which allows to determine the propeller forces from the requirements. 

 

 
1

bu zm zmB f P . (7.69) 

 

The following matrix will be used to transform the requirements to propeller forces and 

then the angular velocities. 
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 
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. (7.70) 

7.6.1 Simulator results 

 

The following test shows typical requirements from the control unit. There are moment 

requirements in Figure 65 and force requirements in Figure 66, the force applied is divided 

into steps, and the moment requirements are polynomial type, the origin of the 

requirements is explained in the guidance chapter, and the real values of the requirements 
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are found in the control law chapter. The main point in this section is to define the 

propellers commands at each discrete time from the force and torques requirements. 

 

Figure 65. Moment Requirements 

The force requirements always guarantee at least the hover condition, in order to 

accomplish this task the gravity is compensated, then when the quadrotor is not inclined 

and is in hover condition the force will be equal in magnitude and opposite to the gravity. 

  

 

Figure 66. Force Requirements 
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The Figure 67 and Figure 68 show the former requirements expressed as propeller force 

requirements, the instant average value of the propellers is equal to the force requirements, 

on another hand the differences of the force represent the moments. 

 

 

Figure 67. Propeller Force 

 

From propeller point of view, the moment requirements are not as demanding as the force, 

a change in the moment only produces small variations in the quadrotor propeller, the 

Figure 68 shows an amplified version of the propeller forces, the diference between the 

propellers forces are proportional to required moments. 
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Figure 68. Propeller force (Amplified) 

 

The full simulator model is shown in Figure 69, this includes the displacement in the local 

reference frame, the Euler dynamics and quaternion kinematics. 
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Figure 69. Quadrotor Dynamic and Kinematic Diagram  
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8. EMBEDDED MODEL FOR BOREA QUADROTOR  

Equation Section (Next) 

Since all the state variables are not available (for instance the disturbance terms to be 

rejected) state estimation is mandatory and facilitated by the embedded model. Thinking to 

outdoor flight: IMU, GPS, ultrasound sensor and magnetometer [75] are typically used. For 

indoor flight GPS is not used. The navigation is organized in to different state predictors, 

consisting of the embedded model that is fed back by noise estimator, driven by the model 

error (measurement minus model output). The noise estimators are analyzed in a discrete 

time. all state units are meters. 

The model error is the sole accessible measure of the uncertainty. Its current value 

summarizes the past discrepancies that have not been saved in the embedded model. The 

model error can be elaborated and accumulated in disturbance states. The residual 

discrepancies are used to reduce the model error which is must brought to be bounded 

(internal stability). 

 

This research presents an approximation to the quadrotor problem, through a feedback 

linearization on the horizontal model, the horizontal displacement model is connected with 

the attitude model through a feedback linearization, the non lineal problem is transformed 

into a linear problem disregarding the angle value, and allows the problem to be regarded as 

a unique problem instead of to divide into two control levels. 

 

The embedded models are commanded by two input vectors: the known command 

computed at each step k  by the control unit, and the noise, that by definition, is unknown 

and unpredictable. 

 

8.1 Timing considerations 

The analog model is summarized below, the command ulzf  is limited in frequency by the 

electronic speed control (ESC) since it uses standard servo signals, i.e., the command is 

applied at 50Hz ( 20conT ms ), therefore all embedded models are discrete, this fact 

introduces a quantization error and hence disturbances in the controllable model. 
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The Model is discretized with        /t t t T T  x x x , in order to simplify the 

diagrams, digital integrators are used. 

1/Z

 0x

 0x

 x k

 u k  x k

 u k

Unit  Delay


 

Figure 70. Digital integrator Scheme 

 

8.2 Vertical Embedded Model 

The next equation represents the vertical analog model,  

 c cq zl ubz dlzm a f g f   
.
 (8.1) 

The embedded model only considers the rigid motion, confining flexible dynamics to the 

error model, the total disturbance acceleration is modelled as a first order dynamics. 

 

The disturbances only affect the acceleration, they cannot have disturbances in the velocity. 

Vertical EM equations are summarized as  
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1 1
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1 0 1 1 1 0 1 1

0 0 1 0 1 0 0

z z
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                          

                     

. (8.2) 
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Figure 71. Diagram block of Vertical EM 

 

8.3 Horizontal Embedded Model 

8.3.1 XY Model 

The vertical analog model is given by 

 

 
s c

s

xl dxl

q ubz

yl dyl

a f
m f

a f

 



    
     
     .

 (8.3) 

The model reveals a connection between the Z model and XY model, both of them are 

defined by the axial command and the attitude, if the attitude is known then the command 

ubzf  is defined to accomplish the vertical requirements and consequently for the XY model 

this command is previously defined. The actual command for the horizontal component is 

the attitude ( ,  ), a new state q  is defined as 

 
lx

l

ly

q s c

q s

 



   
    

  
q

.

 (8.4) 
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The attitude is modified through the 3D torques uc  also defined by the propellers. The new 

state can be controlled by torques, hence by state transformation a horizontal linear model 

is obtained that includes the attitude and horizontal position. In the intermediate local frame 

of reference a feedback linearization is done [12], [22]. 

 l lΩ q  (8.5) 

 
cos sin sin

0 cos

l x sx

l

ly sy

  



     
          

Ω  (8.6) 

Where , ,sx sy sz    are defined as, 

  ,

sx sx bx

sy s sy by

sz sz bz

c

Z

s


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   
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ω  (8.7) 

 

The local frame of reference is a state transformation, and then a command transformation 

is applied, the following equation shows the relationship between the new linear model 

with the quadrotor attitude and angular velocity,  
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0 cos
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i

iy by

Z
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Ω

.

 (8.8) 

 

Also the command transformation requires the attitude, the following equations show the 

transformation between the quadrotor command and the new model command. 

 
uix
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c s
c t t

c cf

f s c
s t t

c c

 

  

 

 

  

 

 
 

      
    

  

f  (8.9) 

In the horizontal dynamics the disturbances are placed in the acceleration and in   through 

the torques. By following the same procedure of the vertical dynamics the disturbances are 

set in these points, the order of the disturbance dynamics is set to three. 
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Figure 72. Diagram Block of the Horizontal EM 

The equation bellow summarizes the EM of the horizontal model, the variable alpha   is 

determined by the vertical command. 
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, (8.10) 

where 

 

 / c clbz ubzf f     . (8.11) 

The command and measures transformations are made with the attitude prediction at each 

time step. The prediction is available thanks to the noise estimator explained in the next 

chapter. 
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8.4 Spin Model 

The former analysis links the attitude with the displacement through two Euler angles, third 

Euler angle defines the spin of the quadrotor which can be controlled since the quadrotor 

allows controlling the three torques. There are not objectives related with the spin, so this 

variable is controlled only to bring it to zero value. The spin embedded model is 

 

      
1

2

1 1
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                      
                 

. (8.12) 

 

The variable   is not directly the angular velocity bz . 
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9. REFERENCE GENERATOR FOR BOREA QUADROTOR 

Equation Section (Next) 

9.1 Vertical Reference Generator 

The vertical EM is linear discrete limited only by linear constrains, (maximum acceleration, 

maximum velocity), in order to develop the reference generator only the controllable 

dynamics is used, therefore for the vertical guidance is selected as a bang-bang strategy 

[93]. This solution consists in the application of the maximum acceleration up to top 

velocity and then holds. 

Remark: 

The guidance defines only the reference command, from the control point of view is the 

open loop command to arrive to desired position. in this chapter a control law is not 

implemented. 

 

9.2 Horizontal Reference Generator 

To develop the lateral reference generator only the controllable dynamics is used, in order 

to avoid abrupt changes in the attitude model a polynomial strategy is used in the vertical 

reference generator. 

 

The following analysis is made for single axes; both axes of the horizontal movement track 

the same reference generator with an independent target. Assuming the   value known the 

model can be consider as a chain of digital integrators, to simplify analysis the reference 

generator is developed in continues time and then discretized. After the procedure, the 

states ,q  consider the   value. The states follow polynomial manoeuvre, the command 

 xa t  is. 

   2 31a t t t t   a . (9.1) 

The states track a trajectory as is show in the following equation, 
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 (9.2) 

The main scope is to take the horizontal position from any origin point to a desired 

position, in order to develop an adaptive strategy, the initial conditions define the vector 

 0 tx , i.e., the strategy takes the current measured states to generate a new trajectory, the 

elements of the reference generator are time functions. 
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 (9.3) 

The following expression shows the general state responses to a polynomial command 
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.

 (9.4) 

 

The objective of the manoeuvre is to displace the quadrotor. As it was explained before, the 

initial conditions vector is assumed or known from the sensors, it is clear that in stable 

cases, the states , ,vq  are equal to zero. 

     1 1 1

2 1 0T A T t t    x x a
.
 (9.5) 
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The general time depending solution is 
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 (9.6) 

If the manoeuvre time is predefined, then it is possible to get the coefficients a , the 

algorithm allows the operator to define the value of all states. The results are also valid in 

discrete time, it is only required to sample the state vector (9.4). 

 

In order to guarantee the position is constant, the reference generator is also implemented 

with a state machine, while the quadrotor is in the desirable states the output of the 

reference generator output remains constant. If the operator changes the references, the 

polynomial command is applied, since the manoeuvre is time-fixed and the operator can 

change the references at any moment. An update of the reference is made and the process is 

restarted.  

 

Remark 

The guidance is made in continuous time and then sampled at Tcon (20ms), the differences 

between the EM states and references states will be estimated in the navigation. 

 

9.2.1 Simulations results 

A particular case of the guidance is displacement in only one axis x  with angular rate, 

attitude and velocity equal to zero. This means that the quadrotor starts and finishes in 

stable positions,  
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 (9.7) 

The coefficients are obtained with a final time ft  equal to 10 seconds. An example is 

shown bellow. 
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 (9.8) 

And finally the command reference is complete, 
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(9.9) 

 

 

Figure 73. Reference Command X 

 Figure 74 shows an example of the algorithm where the operator demands a displacement 

of 30 m then a displacement of 15 m, the command obtained with the reference generator is 

shown in Figure 73. 
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Figure 74. Horizontal Reference Generator 

 

Remark: the states ,x xq  consider the   value, this value can be estimated from the 

vertical command and attitude. The following chapter explains the prediction of these 

values. 

 

At the beginning of each manoeuvre the current states cannot be the same than the 

reference states, therefore an adaptive guidance is made, this allows to the reference to be 

update at the beginning the manoeuvres with the estimated states from the navigation, the 

same strategy was implemented in the horizontal guidance. The Figure 75 shows a example 

where the polynomial reference value is updated to the simulated measures, this adaptive 

feature allows the control to start in not ideal conditions, if the disturbances modify the 

states, the reference generators are able to get the current states. 
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Figure 75. Update horizontal reference 

 

Remark: the profiles shown in Figure 74 are defined by the manoeuvre time, whether the 

value of this variable changes the amplitudes are modified. In order to avoid command 

saturations, an appropriate time manoeuvre is selected, this allows relaxing the force 

requirements. 

 

9.3 Spin Reference Generator 

This reference generator is also made with the polynomial scheme. The control torque 

required to this reference generator is of second order, i.e., a simple ramp signal, 
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. (9.10) 

By following the same procedure for the previous reference generator, the general 

behaviour for the controllable states is found from the matrices 1 2,T T . 
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 (9.11) 

The results include the matrix  siM t  which multiplies the initial conditions. For the 

horizontal guidance here represented with the vector  0 tx . 
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 (9.12) 

 

By selecting the time of the manoeuvre, the following equations show how the coefficients 

are obtained, 

 

     1 1 1

2 1 0s f siT A T t M     sψ ψ a  (9.13) 

 1 1 1

22 1

1/ 0 1 02 6

0 1/ 0 1/6 12

f

s

f f

t
T A T

t t

  
    

          .

 (9.14) 

 

9.3.1 Simulation Results 

 

The Borea project was born to test landing algorithms. The polynomial guidance 

implemented in lateral motion and spin motion allows to set all states in an specific time. 

This property will be important to test other nature of the control strategies and put the 

quadrotor states in non ideal conditions before to launch landing procedure. 

 

Remark 

To get the coefficients is only necessary to define the manoeuvre time and to know the 

initial conditions; these conditions are obtained from the navigation. 
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Figure 76. Spin Reference Generator 

 

The Figure 76 shows a simple example where a change of angular velocity is required, but 

the orientation is not modified. The manoeuvre time is defined as 10 s. 
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10. QUADROTOR NOISE ESTIMATORS 

Equation Section (Next) 

In the quadrotor case states are not available and the sample frequency may be different to 

control frequency. Each sensor adds noise, and in some cases parasite dynamics, only few 

variables are measured, for outdoor quadrotors the IMU is the main sensor. For Borea 

quadrotor the sensor unit was studied and analyzed in [23] and a low level navigation was 

implemented in [25]. This research uses these works as measurement unit which provides 

the higher level navigation the state values. 

 

The noise estimators are analyzed in a discrete time, all values are given in meters, to 

couple with other simulator elements is required to multiply by sample frequency.  

 

Model error is the sole accessible measure of the uncertainty; its current result is defined by 

the past discrepancies. This model error can be elaborated and accumulated in disturbance 

states. These residual discrepancies are used to reduce the model error. The model error is 

always bounded but not zero. 

 

10.1 Vertical Navigation 

For the vertical navigation the position model error is defined as lze , 

 ˆ
lz lz lze x x    (10.1) 

To develop the noise estimator, a copy of the embedded model is made. The model error is 

used to close the loop through the gains 0 1,lz zl . In order to guarantee the stability, a 

dynamic filter with state  P k  commanded by the model error is added. The following 

equation shows the navigation discrete dynamic. 

 

      
1

0 01 1

1 0 1 0 0

ˆ ˆ0 1 1 0 1
1

ˆ ˆ0 1 1 0

0 1 0

z

lz lz

zlz lz

z

BP P

x x
k k u k

lv v

m lD D

       
      
        
      
      
        .

 (10.2) 

The Figure 77 shows the block diagram of the noise estimator,  
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Figure 77. Vertical EM+Noise Estimator 

To following result is expressed in complementary eigenvalues 1   . To compute the 

eigenvalues a classical approach is used. 
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.

 (10.3) 

 

At this point, the design of the noise estimator consists in determining the values of 

1 2 0,l , ,zl B m . The eigenvalues are set by the designer in order to develop a stable system 

with a minimum variance. 

 

10.2 Horizontal Navigation 

The horizontal navigation uses the embedded model with four order controllable dynamics, 

a decoupling strategy is implemented to develop the horizontal noise estimator, thanks to 
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the linear transformation made in the chapter 4 both axes in the horizontal plane follow the 

same model, therefore the following procedure is valid for them. 
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Figure 78. Horizontal EM + Noise Estimator 

The decupled observer form shown in Figure 78 allows separating the calculations of the 

navigation. The first observer from the command to acceleration relative to the variables 

,q  is developed assuming that both states can be disturbed, unlike to the velocity and 

acceleration, since the states ,q  are obtained from a transformation both of them are 

susceptible to model errors, the ,q   measures are known through the measure of q  and 

the attitude , ,    coming from the measure unit and then transform with the feedback 

linearization. The equation bellow shows the noise estimator dynamics from the command 

  to the state q . 

 

      3 2

3 4 3

2 5 2

1 1 0 0 0

1 1 0 1
1

0 1 1 0

0 0 1 0

x x

x x

x

x x

x x

q q

m l
k k u k

D m D

D m D

 

       
        
         
       
       

        .

 (10.4) 
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Here the problem is similar to the previous section, the noise estimator eigenvalues are 

calculated to guarantee stability with minimum variance. The equation bellow shows the 

characteristic polynomial in function of the complementary eigenvalues  . 

 

   4 3 2

2 3 4 5det I A l m m m           (10.5) 

 

For the model from the acceleration to position, the procedure and the scheme selected are 

the same of the vertical navigation in section 10.2. The equation bellow shows the noise 

estimator dynamics from the acceleration to the position. 
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 (10.6) 

 

It is clear that the results are the same than the previous section. The equation bellow shows 

the characteristic polynomial in function of the complementary eigenvalues  . 

 

    4 3 2

1 1 0 0 1 1 1 0det I A B l l m B l B l             (10.7) 

 

10.3 Spin Navigation 

 

The spin navigation uses the same scheme and strategy of the vertical noise estimator, there 

are not expected trajectories in the spin, the objective is to guarantee the velocity equal to 

zero, the algorithm presented in this research brings the spin angle to zero. 
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11. QUADROTOR CONTROL LAW 

Equation Section (Next) 

11.1 Vertical Control Law 

The CoM control is made in the inertial frame of reference, the controllable states are 

included to develop a state feedback, thus the command  lzu k  from this point is divided in 

two components, the reference command and the feedback state command 

    lz lz lzu k u k u  . (11.1) 

The feedback command lzu  is generated from a linear combination of the tracking errors 

   ,lxz lvze k e k , these errors are multiplied by the feedback gains ,p vk k . The new state 

model is 

       
1 1 0

1
0 1 1

lz lz

lz lz

lz lz

k k u k u
v v

x x      
         

       .

 (11.2) 

The Figure 79 shows the control law diagram block, the feedback is closed with the 

estimated variables, the tracking error with the real states is unavailable for any control 

strategy. 
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
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Figure 79. Vertical Control Law 

As the classical approach the dynamic of the system is modified by the feedback action, the 

equation bellow shows the state representation of the feedback system 
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        
1 1 0

1
1 1

lz lz lz

p vlz lz lz

k k u k k
k kv v v

x x x       
                    .

 (11.3) 

These procedures are shown to provide the reader with the simple procedures that are 

required to get the feedback gains and therefore the desired eigenvalues. The calculation of 

the characteristic polynomial 

 
1 1 1 10

det det
1 10 p v p vk k k k





        
                     .

 (11.4) 

As in previous chapters the procedures are simplified when they are expressed in 

complementary eigenvalues 1   .The characteristic polynomial is shown in the 

following equation. 
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1
det v p
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k k
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
 



   
        .

 (11.5) 

The eigenvalues are selected to guarantee stability and minimum variance. 

 

11.2 Horizontal Control Law 

The lateral control law follows the same strategy of vertical control law, therefore four 

tracking errors are presented , , ,x qx vx xxe e e e  to define the command action xu , Figure 80 

shows the block diagram of the horizontal control law. 
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Figure 80. Horizontal Control law 
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The model used to develop the control law includes the interconnection states generated by 

the discrete approximation, this bring the digital model closer to the real model. The 

following equation shows the discrete dynamic model considered to the control law, the 

vector hK  defines the dynamics of the horizontal position system. 

 
h p v q qk k k k   K  (11.6) 
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 (11.8) 

The equation bellow shows the characteristic polynomial of the horizontal control law, 
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 (11.9) 

 

To calculate the value of the vector hK  is necessary to know the   value, but this value 

can change at each time step, these constants are adapted in order to validate the lineal 

model. 

 

11.3 Spin Control 

The spin control implemented is an angle control. The target is always zero, it may be 

different due to developed of the guidance and navigation, following phases of the Borea 

project can be included aggressive manoeuvre, obstacles avoidance or optimal consume, in 

these cases the spin control can be useful. 
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12. SIMILITUDE CASE 

12.1 How to emulate landing 

 

The dynamics and kinematics of a spacecraft in the propulsive phase have several features 

in common with a quadrocopter vehicle the chapters 4 and 7 show this similitude, for the 

spacecraft the propulsion assembly has three characteristics; a near axial force is applied, 

Horizontal displacement is driven by axis tilt and Axis tilt is commanded by torques 

(Figure 81 left). On the other hand for quad-rotor propulsion, thrust is axial, horizontal 

displacement is driven by axis tilt, and axis tilt is commanded by torques (Figure 81 right), 

as in the spacecraft case.  
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Figure 81.  Spacecraft-quadrotor geometry comparison. 

For sensors the Table 8 shows the comparison between both measurement units, from 

emulating radar altimeter and velocimeter; both can be emulated by a GPS receiver but 

reliably only in outdoor tests. Indoor tests should require camera. Radar altimeters are 

massive. Altimeter may be also emulated by a barometric altimeter. Ultrasonic range 

sensors are used at touch-down. Initial alignment must be provided by some attitude sensor 

either magnetometers or external markers, or the accelerometer themselves (on-ground). 

 

Table 8. Spacecraft – quadrotor comparison 

No 
 BOREA  Landing vehicle 
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0 

IMU (accelerometer 

and gyro)  3D  

X X 

1 
Radar altimeter 1D   X 

2 

Proximity sensor 

(ultrasound)  

X  

3 
Radar velocimeter 3D   X 

4 
GPS (position)  X  

5 

Magnetometer     

(attitude) 2D  

X  

6 
Near axial thrusters    X 

7 

4 axial propellers and 

electric motors  

X  

 

 

12.2 Similitude Test 

 

In space applications the initial conditions cannot be set, the initial vertical and horizontal 

velocities and attitude are defined after the atmospheric entry therefore, the similitude test 

aims validate the landing algorithms. To achieve this is mandatory to be able to lead the 

quadrotor to different conditions of velocity and attitude before the landing. For that reason 

the Similitude test is divided into three phases: the first one is the lifting, which leads the 

quadrotor at a certain height, the second one is the initialization; in this phase the velocity 

conditions and initial attitude are selected, and finally the landing phase. 

 

Guidance aims to provide the reference trajectory for the vertical and horizontal models. 

Guidance is adaptive in the sense that is recomputed at change of the reference (maneuver 

initial conditions are taken account). 
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Navigation in section 10.1 has been done parametrically, the algorithms that are used in this 

work are not limited by the scale run, the dynamic input is the force applied by the 

propellers studied and modeled in section 7.3.1, i.e. the thrusters force is exchanged for 

propeller force. 

 

The similitude tests are made with the three main phases mentioned before, the initial 

conditions are define in order to carry the quadrotor a non ideal conditions before to apply 

the landing algorithms as in the real conditions in power descent phase to this aims the 

vertical and horizontal guidance in chapter 9 is applied. The dissertation shows the results 

of different tests that introduce variations in; vertical velocity, 3 axis angular positions and 

3 axis angular velocities. 

 

12.3 Simulation Results 

 

During the initial conditions setting the position cannot be defined, i.e, the initial position is 

not controlled, after setting the initial conditions, the quadrotor has as target a horizontal 

displacement of 20 meters from its current position. 

lifting

Initialization

Variables

landing phase

 

Figure 82. Vertical position - Similitude Phases 

Figure 83 shows a comparison between the horizontal position of four tests. According to 

this result, the guidance algorithm is updated and dependent on initial conditions. The path 
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is clearly different due to variations that are set in the initialization variables phase (Figure 

82). 

 

Figure 83. Horizontal Position – Similitude Test 

 

The Figure 84 shows the horizontal velocity, in all cases the desired horizontal 

displacement is achieved and the horizontal velocity is brought to zero implying coupled 

model for the orientation and angular velocity are also carried at zero value. 

 

 

Figure 84. Horizontal velocity 

The Figure 85 shows a typical 3D position on a similitude test, the quadrotor path spends 

97 seconds maneuver. 
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Figure 85. Quadrocopter Position 3D 
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13. CONCLUSIONS 

 

Algorithms of guidance and control for pinpoint planetary landing on propulsive phase 

were studied and integrated with a piloting strategy. The piloting strategy to avoid hazards 

based on computer vision that considers the bounds of a single camera impose was 

developed, a generic geometric description of the propulsive system was studied and an 

optimal dispatching strategy was performed. 

 

This research allowed to develop GNC based on EMC method for quadrotor vehicles. 

Embedded models, noise estimators and control laws were developed and simulated for 

vertical and horizontal position. A scientific quadrotor was built from scratch in the 

framework of Borea quadrotor project (Figure 86). A planetary similitude case was studied 

and simulated. 

 

 

Figure 86. Borea Quadrotor 
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