
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Practical assessment of Biba integrity for TCG-enabled platforms / Sassu, Roberto; Ramunno, Gianluca; Lioy, Antonio. -
STAMPA. - (2014), pp. 495-504. (Intervento presentato al convegno TRUSTCOM'14: 13th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications tenutosi a Bejing (China) nel 24-26
September 2014) [10.1109/TrustCom.2014.63].

Original

Practical assessment of Biba integrity for TCG-enabled platforms

Publisher:

Published
DOI:10.1109/TrustCom.2014.63

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2556371 since:

Practical Assessment of Biba Integrity for
TCG-enabled Platforms

Roberto Sassu, Gianluca Ramunno, Antonio Lioy
Dip. di Automatica e Informatica, Politecnico di Torino, Italy

Email: first.last@polito.it

Abstract—Checking the integrity of an application is necessary
to determine if the latter will behave as expected. The method
defined by the Trusted Computing Group consists in evaluating
the fingerprints of the hardware and software components of a
platform required for the proper functioning of the application
to be assessed. However, this only ensures that a process was
working correctly at load-time but not for the whole life-cycle.
Policy-Reduced Integrity Measurement Architecture (PRIMA)
addresses this problem by enforcing a security policy that denies
information flows from potentially malicious processes to an ap-
plication target of the evaluation and its dependencies (required
by CW-Lite, an evolution of the Biba integrity model). Given the
difficulty of deploying PRIMA, as platform administrators have
to tune their security policies to satisfy the CW-Lite requirements,
we propose Enhanced IMA, an extended version of the Integrity
Measurement Architecture (IMA) that, unlike PRIMA, works
almost out of the box and just reports information flows instead of
enforcing them. In addition, we introduce a model to evaluate the
information reported by Enhanced IMA with existing techniques.

Keywords-Remote attestation; information flow; Biba integrity

I. INTRODUCTION

The increasing number of cyber-attacks is pushing software
developers, vendors and governments to fight this threat with
greater effort than before [1].

A significant contribution in this direction comes from
the Trusted Computing Group consortium (TCG). The TCG
defined the specifications of a cryptographic chip, the Trusted
Platform Module or TPM [2] which provides remote parties
(via the remote attestation protocol) with the evidence that
a platform is behaving as expected. If a platform is capable
of demonstrating its trustworthiness from measurements of
hardware and software components (e.g. a fingerprint of a
firmware blob or file content) then a remote party (verifier)
may trust that platform to perform the requested tasks, af-
ter comparing reported fingerprints against reference values
known to be good.

The Integrity Measurement Architecture (IMA) [3] is one of
the widely accepted TCG-compliant solutions (215 citations1).
It provides measurements of a system up to application level
(code executed and data read by processes) but with IMA a
verifier cannot fully determine if an application will behave
as expected in every situation or not. Indeed, while a software
should work correctly (as intended by its developer) just after
it has been loaded, it could start behaving unexpectedly (e.g.

1http://dl.acm.org/citation.cfm?id=1251391 (mid July 2014 access)

modifies user data in an unauthorized way) if it receives
a malformed input from a corrupted module acting on the
same system. The ability of an application to work correctly
after loading is known as load-time integrity while run-time
integrity refers to the whole process life-cycle.

Traditional integrity models (Biba [4] and Clark-Wilson [5])
ensure the run-time integrity of an application by preventing,
with system-wide access control, the latter from reading low
integrity data (malformed inputs) or by requiring (in the
second model) the filtering of such data. Recently, these
models were followed by CW-Lite [6], which remedies the
scarce applicability of Clark-Wilson on conventional operating
systems by lowering the requirements of formal code verifi-
cation and the need of filtering for all application interfaces.

The CW-Lite model was the basis for a new proposal built
upon IMA, Policy-Reduced Integrity Measurement Architec-
ture (PRIMA) [6]. PRIMA overcomes IMA issues by isolating,
with the SELinux software [7], the portion of the platform that
is of interest to remote verifiers (a target application providing
a service and its dependencies) from the rest of the system. By
enforcing a SELinux policy where the rules do not violate the
requirements of CW-Lite, PRIMA ensures that the integrity
of the isolated portion is preserved for the entire process
life-cycle and drastically reduces the likelihood of unknown
measurements (frequent with IMA due to the necessity of
inspecting all system processes), as only the isolated portion
has to be measured.

Even if PRIMA’s authors demonstrated through a formal
proof the effectiveness of their solution with respect to IMA,
it is not as user-friendly as the latter. Indeed, while IMA mostly
works out of the box, configuring PRIMA means performing
an expensive analysis of the reference SELinux policy to detect
and eliminate CW-Lite violations. Although Jaeger et al. in a
previous work [8] identified a nearly minimal portion of the
Linux operating system that must be trusted, their result may
not apply due to the specific configuration of the platform
where PRIMA will run. If very skilled administrators may be
able to accomplish this analysis, regular users are not likely
to be included among the beneficiaries, as they are often not
able to make security decisions [9] and “[...] expect a device
with the maintenance factor of a toaster” [10].

Our work starts from Sailer et al.’s [3] idea of making IMA
extensible, so that integrity relevant events not covered in the
initial proposal can be captured in the future with enhance-
ments to the base software. As one of the missing pieces is

This is the author's version of an article published in the TRUSTCOM'14 proceedings. Changes were made to this version by the publisher prior to publication.
The published version of this paper is available at http://dx.doi.org/10.1109/TrustCom.2014.63

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.

antonio
Typewritten Text

antonio
Typewritten Text

antonio
Typewritten Text

http://dx.doi.org/10.1109/TrustCom.2014.63

evaluating, in the absence of an isolation mechanism, if an
application was compromised by another software running on
the same platform, IMA could be extended to capture such
type of events; this way, it would be possible to analyse the
integrity of a system with the same degree of detail as PRIMA
with a software that is accessible even for non-skilled users.
We expect that, even if such modification could introduce some
overhead both for capturing events at a higher rate and for
managing a large amount of data, these issues are manageable:
the delays experienced (in terms of pure system performance)
will not be noticeable and managing measurements should be
comparable to collecting the logs of a web server.

In this paper, we present an extended version of IMA
(Enhanced IMA) that records all interactions occurring be-
tween processes through regular files. Developing the nec-
essary extensions did not consist only in tweaking IMA to
provide additional measurements, but required understanding
of how to properly detect interactions between processes.
Furthermore, we introduce a tool (RA Verifier) to represent
the measurements of a platform with a graph. Through this
graph, we are able to evaluate: (1) the load-time integrity of
all processes executed with a known technique [11]; (2) the
run-time integrity of a target application and its dependences
(provided as input for the analysis), by checking whether they
read a file written by the remaining (possibly malicious) pro-
cesses (violation of the Biba model). The PRIMA verification
of CW-Lite requirements will be considered in a future work.

The paper is articulated as follows. Firstly, in Section II, we
provide a background to introduce the reader to the problems
of PRIMA we are going to mitigate. The problems found, our
proposed solution together with its attack model are presented
in Section III. Related works are reported in Section IV.
Secondly, we introduce in Section V a system model to
compare our proposed solution to IMA and PRIMA, and we
describe how to perform with that model the load-time and
run-time integrity analyses. The implementation of Enhanced
IMA and RA Verifier is illustrated in Section VI. Lastly, in
Section VII, we evaluate the effectiveness of our solution and
we conclude in Section VIII.

II. BACKGROUND

A. Integrity Fundamentals

In the Biba model [4], the first relevant work in the
integrity field, users are given with the right to access (security
clearance) a certain amount of data (access class) according
to two fundamental properties. Considering security clearances
and data classes as numeric levels and the dominance as the
≤ comparison operator between levels, the simple integrity
property states that the level of a subject must be dominated
by that of the object the former wants to read; the *-property
requires, on the contrary, that the level of the subject dominates
that of the object it is attempting to write.

These two properties guarantee that a malicious program
can not corrupt critical system processes, if the level of
the former is lower than that of the latter entities. Thus,
to ensure that a target application behaves as expected, the

system can be partitioned in two parts: the portion which the
application depends on for the execution of its tasks (with high
integrity level) and the rest of the system (with low integrity
level). The first part, together with the system components
required to enforce the chosen policy is defined as a Trusted
Computing Base (TCB) in the Orange Book [12], a superseded
specification of system evaluation criteria, whose definitions
still apply.

B. Access Control

According to [13], a system can provide integrity (or
confidentiality) with high assurance only if it is built around a
security kernel, as the latter mediates every operation requested
by active system entities (subjects) to passive entities (objects),
and enforces a mandatory policy. While in the past mandatory
enforcement was almost confined to military and government
installations, the recent addition into the Linux kernel of the
Linux Security Module (LSM) framework [14] favoured the
diffusion of security kernels also in commodity operating
systems. This framework consists of a set of security hooks,
inserted in critical points of the kernel code (e.g. inside the
code of a system call), which a Mandatory Access Control
software can implement to allow or deny requested operations.

In this paper, we focus especially on SELinux [7], as it is
very flexible (supports policy models based on user identity,
roles, types and levels [15]) and because it is shipped with the
so called SELinux Example Policy, to achieve comprehensive
system security. In particular this policy, which is mainly based
on the Type-Enforcement (TE) model [16], assigns a label to
all system objects (e.g. processes, inodes) and contains rules
that allow subjects to access objects depending on the types
of those entities, the class of the object (e.g. regular file,
directory) and the operation requested (e.g. read, write).

C. Integrity Analysis

Although SELinux is suitable for various security goals,
like process confinement and isolation, it has been demon-
strated [8] that the TE model is not appropriate for integrity.

While the satisfaction of the Biba model requirements can
be directly verified from the policy rules (by comparing the
levels of the subject and the object of each rule), this is
undecidable for TE and access matrix models in general, as
pointed out by Harrison et al. [17]. Indeed, since TE does
not impose restrictions on the operations that a subject can do
with respect to an object, a rule may have been granted for
the proper functioning of an application regardless of the fact
that it violates an integrity requirement.

In order to ensure whether a given policy is safe with respect
to the desired security goals, a method commonly used is to
define a set of constraints, i.e. the specifications of what a
subject must not do to violate a goal, and to check whether
policy rules violate or not specified constraints. If the previous
condition is true, it is said that a violating rule generates
a conflict. To check for conflicts, a number of tools (e.g.
Gokyo [18]) represent a policy with a graphical model, which

This is the author's version of an article published in the TRUSTCOM'14 proceedings. Changes were made to this version by the publisher prior to publication.
The published version of this paper is available at http://dx.doi.org/10.1109/TrustCom.2014.63

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.

highlights the flows of information among subjects, and detect
if flows are licit or not.

More formally, given an information flow defined as:
Information flow: given an object o, there is an information

flow from the subject s1 to s2 iff s1 is able to write o and s2
can read o.

To satisfy the Biba model, a policy must not allow informa-
tion flows from low integrity subjects to high integrity ones.

D. IMA and PRIMA

IMA [3] is a Linux kernel software that records in a list
(stored in the kernel memory) measurements upon the events
(binary/library execution, file access, kernel module loading)
specified in a policy. When a measurement is added to the list,
a register of the TPM accumulates the digest of captured event
data to protect their integrity. Performing the measurements
just after the LSM hooks makes IMA suitable for reporting
the same information used for making security decisions;
this aspect is crucial for moving from policy enforcement to
reporting operations performed by system entities.

According to IMA’s authors, a verifier can evaluate two of
the three data types that affect the integrity of an application:
executable code and structured data (e.g. configuration files).
Indeed, while such data can be identified with a reference
database, unstructured data (the third type, e.g. temporary
application data) do not have a predictable value. PRIMA
solves this issue by preventing that dynamic data are modified
by possibly malicious processes through the enforcement of
a security policy meeting the requirements of the CW-Lite
model. Supposing that a trusted process checks dynamic data
at boot, before the use by applications, and that the result of
the validation is given to verifiers, dynamic data do not need
to be measured as they are necessarily of high integrity and,
thus, will not affect applications behaviour.

III. PROBLEM STATEMENT

A. Motivations

The SELinux policy analysis [8] used as the basis for
PRIMA consists in proposing an initial TCB of subjects,
depending on their early appearance during the boot process,
in deriving constraints from the Biba model and in resolving
found conflicts semi-automatically with Gokyo. The authors
believe that their approach, based on the use of access control
spaces (permissible, precluded and unknown permissions),
makes conflict resolution feasible for administrators. Indeed,
once they find a resolution strategy for a group (subspace)
of semantically similar permissions (from the intersection of
the above sets), they can apply the chosen strategy to all
permissions within the same group.

However, the main problems are that an administrator must
have a deep knowledge of the system to identify subspaces and
must find an appropriate way to resolve conflicts (excluding
a subject or an object type, requiring the sanitization of
program inputs or modifying the policy). In particular, an
administrator must know, from the features he intends to
support on a managed platform, which part of the policy can be

excluded from the analysis2 and must be able to determine if a
program is really capable to sanitize its inputs, if he chose this
strategy. To further complicate things, an administrator must
face with privileged programs which usually have a broad set
of permissions assigned and generate many conflicts.

Furthermore, another problem of PRIMA, derived from
reducing the system portion to be measured, is that some
useful information are not reported. In particular, the distinc-
tion between the three data types defined by IMA’s authors
cannot be done, as only the first two types are reported.
Measuring also dynamic data would be preferable for the
following reasons. Firstly, to determine from the digest if
a file was malformed at the first access by a TCB subject
(not known with PRIMA). Secondly, if the measurements list
contains an unknown digest, a verifier may want to check if a
measured file is unknown due to a previous write by another
TCB subject (which may be doing something bad) or, instead,
is a structured data whose digest is not present in the reference
database (e.g. a customized configuration file or a SSH key).

B. Goal

The above issues motivated us to find an alternative solution
easier to deploy and that, at the same time, provides compre-
hensive information (the latter is one of the five requirements
identified by Coker et al. [19] for a remote attestation solution).
If we can move the complexity of the integrity assessment
from platforms administrators to verifiers, this would facilitate,
in our view, the adoption of the remote attestation as a concrete
solution to mitigate cyber-attacks. Given its extensibility by
design and the very low effort needed for the deployment, we
decided to base our work on IMA.

Our goal is to extend IMA to provide the measurements
of the three data types affecting application behaviour (code,
structured and unstructured data). With these measurements
a verifier can, unlike with PRIMA, directly assess the load-
time and run-time integrity of a target application and its
dependencies. The main advantages of this approach are that:
(1) platform administrators are not required (if the limitations
listed in Section III-C are acceptable) to perform the expensive
SELinux policy analysis; (2) the target of the analysis does not
need to be pre-determined because all interactions through
supported object types would be reported3; (3) a verifier
can identify exactly the minimal TCB (whose code must be
trusted) needed to support an application, since the information
flow graph built from measurements would represent only
interactions occurred and not all the possible ones.

C. Attack Model

Reporting processes interactions with IMA restricts the
guarantees that could be inferred from the integrity analysis:
the only cause, a verifier would be aware of, whereby an
application can get compromised at run-time is the reading
of a malformed datum previously written by a malicious

2Although SELinux labels are descriptive enough, finding the binding with
a specific program configuration option is not always straightforward.

3Differently from PRIMA, we do not enforce integrity on a system portion.

This is the author's version of an article published in the TRUSTCOM'14 proceedings. Changes were made to this version by the publisher prior to publication.
The published version of this paper is available at http://dx.doi.org/10.1109/TrustCom.2014.63

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.

process. Unlike PRIMA, where SELinux mediates accesses
to every object, our solution does not report for performance
and technical reasons (IMA deals only with inodes4) possible
attacks through other Inter Process Communication (IPC)
mechanisms, such as shared memory. Also, it cannot be used
to detect information flows through covert channels5 (e.g.
creation/deletion of files).

Although this can be seen as a serious drawback, we believe
that our approach is acceptable for the following reasons:
(1) regular files represent with network sockets the majority
of processes interfaces and thus, from the first source, a
verifier could determine the integrity of a platform with a
reasonable degree of confidence; (2) as a future work, we
are planning to add support in IMA for other inode-related
objects (e.g. fifos, pipes), thus reducing the gap with PRIMA;
(3) whenever evaluating processes interactions through all
channels is needed, PRIMA adopters could report, with our
solution, information flows through supported channels and
analyse only the portion of the SELinux policy not covered by
IMA (about the 33% does not refer to inode-related objects);
intuitively, doing the analysis on this portion would be simpler.

Nevertheless, to assert the validity of information reported
by IMA, making the following assumptions is necessary. First,
as other works that rely on a TPM, we exclude hardware-
based attacks that could prevent a malicious action from being
shown in a measurements list. Second, we give to verifiers
the evidence that system events were properly recorded by
Enhanced IMA from the measurements of the hardware and
software components involved in the boot process. Third, we
do not audit direct accesses to the disks and the memory; we
will include such events when Enhanced IMA supports special
inodes. Fourth, we assume that measurements are delivered
correctly to verifiers with a proper remote attestation protocol.
Lastly, we do not inspect dynamic data (possibly malformed)
at boot time; as supposed by PRIMA, a trusted subject could
check those data and write the result in the measurements list.

IV. RELATED WORK

The problem of assessing the run-time integrity has been
addressed in several ways. A class of solutions (PRIMA [6],
DR@FT [20]) employs a Mandatory Access Control software
to ensure information flow integrity. However, as said in [21],
they do not consider how an application internally handles
its inputs; a software may misuse assigned privileges if it
operates on information at different security levels. Decentral-
ized Information Flow Control (DIFC) solutions address this
problem, allowing applications developers to specify flexible
policies, but these solutions require in general modifications
to the applications or the operating system [22].

Another class of solutions tries to solve the run-time in-
tegrity problem by running an application to be attested in
an isolated environment, whose underlying mechanism can
be attested e.g. through the Trusted Computing technology.

4Data structure to represent a filesystem object (e.g. file, directory).
5System objects used in a manner that they are not originally intended.

For example, SecureBus [23] ensures strong isolation and
flexible communication between processes at run-time in a
way that is transparent for applications. Nexus [24] is a micro-
kernel based architecture that uses a labelling mechanism to
provide meaningful information about the run-time properties
of an application to verifiers. Also, Gu et al. [25] proposed
a mechanism to attest the correctness of the program exe-
cution through the separation of processes and generation of
a dependency graph for the data required by the program
to be evaluated. Finally, Haldar et al. [26] use a trusted
virtual machine to derive high-level properties of programs
in a platform-independent way.

The last category contains solutions that try to infer the run-
time integrity of an application by collecting measurements of
dynamic data. In particular, some solutions aim at evaluating
the dynamic state of the Linux kernel, like LKIM [27] (further
improved in [28] by employing a Copy-on-Write mechanism),
and SBCFI [29]. Among the solutions at application level, we
mention ReDAS [30], an architecture to attest two dynamic
properties of applications (structural integrity and global data
integrity) and DynIMA [31], which detects return-oriented
programming attacks with a new module, the Process Integrity
Manager (PIM), measured by IMA.

V. DESIGN

The first step toward our goal of assessing the integrity
of an application from measurements is to represent them
in a graphical model. The idea is to follow the PRIMA
verification procedure, i.e. building an information flow graph
and detecting through that graph if a high integrity process is
able to read a datum that can be written by an untrusted process
(violation of the Biba model). Unlike PRIMA, our model is
built from real interactions (although it supports also policy
rules) and is suitable for the load-time integrity analysis.

Given that the current IMA version is not adequate for
building a graph as accurately as PRIMA (we confirm this by
evaluating with own model the impact of an unknown digest
for both solutions), the second step consists in identifying how
the format of IMA measurements should be extended to over-
come this issue. The outcome will exceed our expectations;
considering interactions through regular files, the information
flow graph built with Enhanced IMA will be more accurate
than that of PRIMA, as it will take into account the temporal
and inode information (not available in a security policy).

A. Generic System Model

Our starting point to build a system model suitable for the
integrity analyses is the definition of the reference monitor [13]
as the component that mediates all accesses by active entities
(subjects) to passive entities (objects). Since the integrity prop-
erty of a secure system depends solely on the decisions that the
reference monitor makes according to the configured security
policy, we believe that our model would be appropriate for
verifying integrity as long as it represents information provided
during the remote attestation in terms of interactions between

This is the author's version of an article published in the TRUSTCOM'14 proceedings. Changes were made to this version by the publisher prior to publication.
The published version of this paper is available at http://dx.doi.org/10.1109/TrustCom.2014.63

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.

subjects and objects. The integrity of a remote system would
then be determined by analysing those interactions.

Thus, if we generically define the set of information pro-
vided by a platform for its assessment (IMA measurements and
security policy) as system activities, and the tuple <subject,
object, operation> as a system activity, we can model a system
by representing in a graph the subject and the object of each
system activity through two nodes6 (a circle for a subject and
a square for an object). These nodes will be connected with
an edge directed from subjects to objects for write operations
and vice-versa for read and execution actions.

However, while in an ideal model subjects and objects
would coincide with real system entities (e.g. processes and
inodes), as they are the ones which the reference monitor
bases its decisions upon7, in the real model built from system
activities they can be just an approximation. Indeed, as shown
in the middle of Figure 1, the subject and object of a policy
rule both represent all entities having the same LSM label,
while in a IMA measurement actually they can be seen
respectively as the process that triggered that measurement and
the snapshot of an inode at a given time (inode state). For the
latter case, we remark that a snapshot does not unambiguously
identify an inode; two snapshots may refer to two distinct
inodes or to the same one measured at different times. In the
graph, we represent inode states with the diamond shape.

The way system entities are represented from system activ-
ities has an impact on the analysis results. If the granularity of
the representation is too coarse, we may get a false positive; for
example, if two policy rules allow an information flow between
two subjects, those subjects did not necessarily communicate
between them, as they may have accessed two different inodes
with the same label. On the contrary, if the granularity is
too fine, we may detect a false negative; in this case, if
we erroneously represent two inode states as distinct inodes
when they refer to the same one, we are unable to detect an
information flow from a writer that caused the state change
and a process that read the inode while in the second state.

Additionally, handling system activities with different de-
grees of detail, depending on the source of information,
makes it difficult to correlate them, as activities may represent
different real entities. However, our model should be able
to represent all system activities together because different
sources of information may describe complementary aspects of
a system; for example, measurements may describe the load-
time integrity status while a policy the run-time aspect.

In order to address the above challenges, i.e. eliminating
at least the possibility of false negatives and handling het-
erogeneous system activities, we build the system model in
two steps: in the inode states aggregation step, we build an
approximation of the ideal model from measurements; in the
label aggregation step, we connect each entity with a known
label to the node representing all the entities with that label.

In the first step, since two inode states do not necessarily

6Subjects or objects present in multiple activities are drawn only once.
7This model would permit the most accurate analysis of a system.

System
Activities

System representation
(by activity)

Our graphical
model

security policy

process inode inode
state

data flow from
unknown process

subject object

real model
(rounded-up)

real model
(rounded-down)

same inode

ideal
model

label
aggregation

inode state
aggregation

IMA
measurements

IMA
measurements

security
policy

read

write

exec

Fig. 1. Modelling system activities.

belong to two distinct inodes, we can avoid false negatives
by aggregating all unknown inode states into the same inode;
this way, we can correctly handle the worst case where an
information flow effectively occurred through a measured
inode. In addition, if only reads are reported, the model
contains an unknown writer (depicted in Figure 1 in grey) that
could have possibly caused an inode state change. Lastly, in the
second step, processes are connected to the group of entities
having the same label, if this is reported in a measurement.

On the right side of Figure 1, we show a possible result
of the graph building process where we represent together
security policy rules and IMA measurements. From the bottom
upwards, inode states are depicted with two distinct inodes8,
which were executed by a process. By retrieving from IMA
measurements the LSM label of that process, we can connect
the latter to the group of entities with that label; this group is
in turn the subject of an operation allowed by a parsed security
policy rule. The second aggregation is usually not displayed
(measurements actions are associated directly to a LSM label)
as a process identity is not reported as part of a measurement
but inferred with other mechanisms (a process could have been
created if a digest corresponds to an executable file).

In the following we evaluate with our model the accuracy
of information provided by IMA, PRIMA and Enhanced IMA.

B. IMA-based System Model

With IMA, a verifier can perform the assessment of a
platform by using, as system activities, only the measurements
collected on that platform. The assessment consists in compar-
ing measurement digests with values in a reference database.

In the scenario depicted in Figure 2, a sample platform
provides an IMA policy (similar to the default IMA policy)
indicating that the code executed and files read by all root
processes have been measured. The platform also reports in a
measurements list the digest of the cat binary, its required
dependency (libc.so) and another file (/tmp/bad). To

8From the digest, it has been inferred that they are two binary files.

This is the author's version of an article published in the TRUSTCOM'14 proceedings. Changes were made to this version by the publisher prior to publication.
The published version of this paper is available at http://dx.doi.org/10.1109/TrustCom.2014.63

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.

IMA measurements

digest

4229d...

1a7ff...

fbe15...

file name

/lib64/libc.so

/tmp/bad

/bin/cat

reference measurements

4229d...

1a7ff... ...

...

digest file
name

file
type

exec
deps

exec

lib

libc.so

measure code
measure struct. data \
 read by root processes

IMA policy

cat

1a7ff... 4229d...

libc.so

fbe15...

bad

exec ?

cat ?

exec

measured
not measured

Fig. 2. IMA-based system model.

perform the analysis for this sample scenario, a verifier re-
trieves from a reference database the file type associated to
each digest and, for executables, the list of their dependencies
(shared libraries).

Since a measurement alone does not provide all the elements
characterising a system activity (the subject and the operation
are missing), a verifier can combine it with information
extracted from a reference database. In particular, from a
database it could be inferred that: (1) if the file type of a digest
is exec, the subject could be a process created during the
loading of that binary and the operation could be an execution;
(2) if the file type is lib, a subject could be a process
needing that dependency and the operation still an execution;
(3) otherwise, the subject could be a process of the TCB (all
root processes) and the operation a read. These assumptions do
not imply that the above activities really occurred; for example,
an executable could have been measured because it was simply
read. However, we think that our model is appropriate for the
analysis as we assumed that the worst case happened (only
false positives are possible).

The proposed model could lead to a positive analysis result
only if all digests in a measurements list are present in the
reference database, because otherwise we would not be able
to fully determine the operations presumably occurred on a
platform. Furthermore, as stated in Section V-A, an unknown
digest could mean that a TCB process reads from an inode
maliciously modified by another process (with low integrity).
Without the enforcement of a mandatory security policy, which
isolates the TCB from the rest of the system, the presence of
an unknown measurement is sufficient to consider a platform
as compromised.

Indeed, in our example, /tmp/bad could be a modified
version of libc created by a malicious process to corrupt
all other system processes. Thus, even if the correct version
of libc is present in the list, we cannot conclude that the
cat process loaded the good version instead of /tmp/bad
because the assumption we made to infer a complete a system
activity is that a binary requires a shared library in order to
be executed; however, this requirement could be satisfied also
by /tmp/bad (if it exports the functions needed by cat).

As already mentioned by IMA’s authors, and also confirmed
by the analysis done by Cesena et al. [11] on the measurements
obtained from a Fedora Linux distribution, the presence of
unknown digests in the list is very likely either because of
dynamic data (e.g. a temporary file used by an application
to persistently store its state) but also because there may be

reference measurements

4229d...

1a7ff... ...

...

digest file
name

file
type

exec
deps

exec

lib

libc.so

allow init_t var_run_t: file write

allow initrc_t var_run_t: file read

security policy

TCB: {init_t, initrc_t}
measure code and data read \
 by each TCB subject

IMA policy

IMA measurements

digest

4229d...

1a7ff...

file
name

/lib64/libc.so

/bin/cat

subject
type

initrc_t

initrc_t

fbe15... /tmp/bad initrc_t

measured
not measured

cat

initrc_t

init_t

var_run_t

libc.socat

TCB

user_t

1a7ff... 4229d...

bad

fbe15...

Fig. 3. PRIMA-based system model.

customized configuration files, SSH keys and log files whose
content is not predictable. This was the main motivation that
led PRIMA’s authors to propose an alternative solution.

C. PRIMA-based System Model

With respect to IMA, PRIMA provides more information
which verifiers can use to perform the assessment of a plat-
form. First, the IMA policy contains the list of TCB SELinux
subjects for which the code and structured data were measured.
Then, the IMA measurements list has an additional field to
associate code executed and data read to the SELinux label of
the process that performed a recorded operation. Finally, from
a security policy9 a verifier can build the information flow
graph and determine whether the supplied TCB is integrity
protected from the rest of the system.

Figure 3 depicts a sample system model built with PRIMA
information. Here, the TCB is composed by two subjects
(init_t and initrc_t) and the measurements list reports
the same files as the previous example. Additionally, a sim-
ple security policy allows the two TCB subjects to interact
through the var_run_t object: all other interactions must
be considered denied.

It appears clear from the graph that PRIMA information
sensibly increases the accuracy of the system representa-
tion. Since measurements now include the new subject field,
execution and read actions can be associated to a precise
entity even in the presence of unknown digests. The file type
from a reference database could be still used to distinguish
between actions, if they are evaluated differently. Furthermore,
unlike IMA, PRIMA reports different aspects of a system:
from measurements, it gives information about the load-time
integrity of subjects (relevant events refer generically to the
group of the processes with the same SELinux label); from a
policy, it reports the system activities affecting the run-time
integrity of TCB subjects.

The accuracy of the system representation guaranteed by
PRIMA makes it very easy to determine the impact of an
unknown digest. Indeed, since only the code and structured
data accessed by TCB subjects are measured, /tmp/bad can
be one of these two file types. Also, since this file was loaded

9The hash is included in the measurements list.

This is the author's version of an article published in the TRUSTCOM'14 proceedings. Changes were made to this version by the publisher prior to publication.
The published version of this paper is available at http://dx.doi.org/10.1109/TrustCom.2014.63

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.

as part of the initrc_t subject, the load-time integrity of
the whole TCB must be considered as low.

Despite there could be the possibility of unknown digests
due for example to the presence of customized configuration
files, the real advantage of PRIMA is that dynamic data (the
root cause of unknown digests) accessed by TCB subjects
do not need to be measured, as the security policy prevents
processes outside the TCB from writing them.

However, the problem is indeed tuning the policy in a way
that undesired modifications of dynamic data are not permitted.
Although [8] provides an estimation, the composition of a TCB
on a real platform is application-specific (applications may rely
on different software) and configuration-specific (applications
dependencies may vary depending on settings used). Thus, in
most cases administrators have to perform the security analysis
specifically for their platforms. In the next paragraph, we
propose a remote attestation solution comparable with PRIMA,
requiring a low effort for the deployment.

D. Enhanced IMA System Model

In order to match the accuracy of PRIMA, IMA needs to be
modified in order to report the missing information previously
identified: the LSM label of the process that triggered a
measurement, to determine exactly the load-time integrity of
each subject (group of processes with the same label); all
accesses to dynamic data, to infer the run-time integrity of
a subject from information flows by other subjects.

To perform the run-time integrity analysis, a better way to
correlate reported operations is necessary; previously, in the
model definition, we argued that digest values are inappro-
priate because, to avoid false negatives, all unknown inode
states must be aggregated into the same inode. Instead, IMA
could provide as part of a measurement also the LSM label of
accessed inodes, so that a graph can be built from information
similar to those provided by a policy (permissions allowed).

Although feasible, this choice does not ensure the best
model accuracy. Indeed, IMA can record system activities
at a granularity of inodes and, thus, can avoid the detection
of false positives due to the use of a policy. Additionally,
knowing the sequence of accesses to an inode further helps
in reducing the number of interactions between processes:
if, for example, an inode was read and then written after
the first operation terminated, the processes accessing that
inode did not communicate between them because no data
was exchanged.

The approach chosen to build an optimized model was to
add to each measurement a new field10 (the index of the record
reporting the previous inode write) that allows measurements
referring to the same inode to be reliably identified. With this
information, we are able not only to represent system objects
with the same granularity of the ideal model in the middle of
Figure 1 (one object for inode), but also to further increase
the degree of detail by decomposing an inode into multiple

10In addition to the LSM label of an inode for symmetry with the format
of a policy rule.

writers
group 1

writers
group n

readers
group 1

readers
group n

split safe meas:
- first element
- write (all previous
 reads finished)

replicate writes
to next groups

... ...

Fig. 4. Revised inode states aggregation step.

objects, in order to exploit the temporal information (as
described above). Indeed, referring to the previous example,
the detection of an information flow cannot be prevented if
the reader and the writer are connected to the same object.

However, determining how the states of an inode could be
aggregated into different objects cannot be simply done by
retrieving the action from a measurement (each time a read is
followed by a write, the next inode states would be assigned to
a new object). Indeed, a measurement indicates only when an
operation started, while the time the latter ended is unknown.
Only if we are sure that a read ended before a write begun,
we can connect the processes accessing the same inode to
different objects; under some circumstances, this information
can be inferred from IMA violations.

Violations allow integrity verifiers to detect (from measure-
ments with a recognizable digest value) that the fingerprint
of an inode in the next measurement does not reflect the
content accessed by a process, because that inode was accessed
concurrently by other processes: the Time-of-Measurement
Time-of-Use (ToMToU) violation is triggered when a writer
accesses a measured inode while it is still being used by
readers; the open writers violation when a reader accesses
an inode to be measured while it is still opened by writers.
Although we are not able to determine, when an inode is
opened by several processes, which data a reader obtained
from a writer, we can safely conclude that a read is unrelated to
the next write if the latter operation did not trigger a ToMToU
violation (the number of readers at that time was zero).

The above statement clarifies how an inode can be decom-
posed into different objects without introducing the possibility
of false negatives. The revised inode states aggregation step
for building a model is depicted in Figure 4. Considering an
ordered sequence of measurements of the same inode, the first
measurement (we call it as split safe measurement) of each
group of inode states can be the first inode measurement or a
measurement reporting a write that does not follow a ToMToU
violation. Furthermore, since readers obtain data modified by
past writers, to correctly detect information flows write edges
directed to a group are replicated for all the next groups.

After defining the new format of measurements produced
by Enhanced IMA and how to process those data, we show
the degree of accuracy that can be obtained with our model
in the scenario depicted in Figure 5. Similarly to the previous
examples, the IMA measurements list reports, other than the
execution of cat and its dependency libc.so by the subject
type initrc_t, the file /tmp/bad accessed three times by

This is the author's version of an article published in the TRUSTCOM'14 proceedings. Changes were made to this version by the publisher prior to publication.
The published version of this paper is available at http://dx.doi.org/10.1109/TrustCom.2014.63

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.

reference measurements

4229d...

1a7ff... ...

...

digest file
name

file
type

exec
deps

exec

lib

libc.so

IMA measurements

measure code and data

IMA policy

measure flows

digest

4229d...

1a7ff...

file
name

/lib64/libc.so

/bin/cat

subject
type

initrc_t

initrc_t

object
type

bin_t

lib_t

op

exec

exec

last
write

var_run_t

fbe15...

/tmp/bad

initrc_t

write

var_run_t
da39a...

/tmp/bad

init_t

read

var_run_tfbe15... /tmp/bad user_t write

0

0

0

3

4

cat

1a7ff... 4229d...

initrc_t init_t

var_run_t-#3

libc.socat

user_t

fbe15...

bad bad

var_run_t-#5

measured
not measured

Fig. 5. Enhanced IMA-based system model.

the subject types init_t, initrc_t and user_t. With
respect to PRIMA, the IMA policy does not contain a pre-
determined set of TCB subjects and the security policy is not
provided (in this example, we assume that measuring only
regular files is acceptable for a verifier).

Even if initrc_t reads an unknown content of
/tmp/bad during the second access, we can determine
differently from IMA if cat is of high integrity or not11

by analysing the processes that wrote this file. By using
the temporal information we found that the only writer that
communicated with initrc_t was init_t, as the last write
by user_t did not cause a ToMToU violation. Thus, if we
add the subject type init_t to the TCB and we identify the
content of /tmp/bad at the time of the first measurement
(from the digest it can be inferred that this file was empty),
we can conclude that the integrity of initrc_t is high.

Regarding the integrity analysis, there are two main differ-
ences with PRIMA. First, if the processes interactions of the
previous scenario are inferred from a security policy, also the
user_t subject type should be added to the TCB because the
temporal information is not given. Second, with our approach,
the integrity analysis is more flexible. With PRIMA, the
detection of a low integrity subject always leads to a negative
analysis result because allowed rules have to be considered as
actions effectively occurred. With Enhanced IMA, verifiers can
truly determine if the same subject generated Biba violations
and, if not, can exclude it from the TCB.

In Section VII-B, we motivate our choice of reporting
information flows by showing the size of the init_t TCBs
obtained from the SELinux policy of Fedora 19 and from
measurements collected with Enhanced IMA.

E. Integrity Analyses

The ultimate purpose of the model previously defined is to
determine if a represented system is of sufficient integrity to
perform the tasks it is expected to do. Once a verifier identifies
the portion of the system (the target application and its TCB)
required to perform the desired tasks, the integrity assessment
of a platform consists, similarly to PRIMA12, in: checking

11We assume that the digests of the main executable and libc are known.
12PRIMA evaluates whether the requirements of CW-Lite are satisfied.

...

package

Type

p

d / p
Value

enh.

ok / new

Class
0

1

p bugfix 2

p security 3

d not-found 4

Severity TCB

Target

Conflicts

Outside
TCB

errors propagation:
severity(target node) < severity (source node)

conflict on obj:
subj(Outside TCB) write obj
subj(Target/TCB) read obj

d=digest, p=package
enh. = enhancement

Fig. 6. Load-time and run-time integrity analyses.

with the load-time analysis that the integrity of the processes
responsible for those tasks was high at the time of execution;
verifying with the run-time analysis that the integrity of such
processes did not become low due to an information flow from
an untrusted process (Biba requirement). The verification of
CW-Lite requirements and the initial state of dynamic data is
out of the scope of this paper.

To perform both the integrity analyses, we mainly reuse
existing methods that deal with graphs. In Figure 6, we
illustrate the analysis process: on the left side, we perform the
load-time analysis by using the method developed by Cesena
et al. [11], which consists in propagating errors found on
packages (not up to date) or digests (value not recognized) to
subjects; for the run-time analysis, similarly to [8], we group
subjects in three sets (TCB, Target of evaluation, Outside
TCB) and we draw both the operations causing a Biba violation
and the objects involved (Conflicts set).

VI. IMPLEMENTATION

a) Enhanced IMA: One part of our implementation work
consisted in modifying IMA to correctly report interactions
between processes, as this software was not designed for such
objective.

We first introduced a flexible mechanism for defining the
format of measurements. This mechanism makes it very easy
supporting a new data type and including it in a custom mea-
surement template format. Its code has been recently merged
in the mainline Linux kernel since version 3.13. Consequently,
we defined the new fields to create the custom template format
shown in Figure 513: the LSM label of the process and the
inode measured, the type of operation performed on the latter
and a list index to correlate measurements of the same inode.

Furthermore, we developed the following IMA extensions
for properly detecting all information flows: a new IMA hook,
called ima_bprm_committing_creds, to capture file de-
scriptors inherited by a child process from its parent14; the new
violation types flow_ToMToU and flow_open_writers
to properly handle concurrent accesses to inodes opened for
both reading and writing; a missing call to the LSM hook
security_bprm_check, added to the ELF interpreter.

We also defined new IMA policy actions (measure_all
and measure_flows) for capturing respectively the loading

13For sake of simplicity, we omitted a new field displaying the future
credentials of a process after the execve system call.

14The child is able to access files opened by the parent without executing
the open system call.

This is the author's version of an article published in the TRUSTCOM'14 proceedings. Changes were made to this version by the publisher prior to publication.
The published version of this paper is available at http://dx.doi.org/10.1109/TrustCom.2014.63

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.

TABLE I
SYSTEM PERFORMANCES.

system config (policy / template)
none default PRIMA flows

ima-ng ima-ng ima-ng+subj custom
meas. 1 1350 1216 4604
meas. file size (KB) 0.166 187 211 1138
memory usage (KB)
- kmalloc 21027 21273 21304 23098
- iint cache 0 102 101 265
- total 21027 21375 21405 23363
boot time (secs)
- no TPM 15.71 18.73 19.38 19.34
- with TPM 15.64 61.56 50.69 180.79

of code and structured data for each subject type (otherwise
only one measurement is taken for efficiency reasons) and
information flows through dynamic data. In addition, to avoid
that IMA does not run out the kernel space memory, we
developed a new IMA interface that removes measurements
from the kernel list (thus, freeing allocated resources) after
they are transmitted to a requesting user-space tool.

b) RA Verifier: The remaining part of the work consisted
in the implementation of our verification tool. Basically, it
parses measurements, queries a reference database to verify
digests contained in measurement entries, builds a graph with
the NetworkX library (http://networkx.github.io/), according to
the procedure described in Section V-A, and finally performs
the integrity analyses described in Section V-E.

VII. EVALUATION

A. Performances

In order to demonstrate the goodness of our approach, we
measured the performances of our prototypes in a testing
environment composed by a TCG-enabled platform (a HP
6730b notebook), the target of the integrity evaluation, and
a conventional workstation (an assembled PC with an Intel
i7-4770 CPU and 8 GB of RAM) acting as a verifier. Both
platforms run the Fedora 19 Linux distribution, the former
with Enhanced IMA and the latter with RA Verifier.

During the first test, we quantified the overhead derived
from producing frequent and large measurements. In particu-
lar, we analysed four different configurations: Enhanced IMA
running without a policy and with the three IMA policies illus-
trated in Figures 2, 3 and 5 (also including kernel modules).
We installed Fedora on the target platform by selecting the
minimal software configuration. Table I shows the memory
occupied by kernel objects created with kmalloc and the
IMA cache (iint), and the boot duration either with the TPM
disabled (for pure system performance) and enabled.

As expected, we see an almost linear increase of the
memory occupied with the number of measurements. The
exception between the second and the third case is due to
the different measurement templates. The number of PRIMA
measurements could be further reduced by recording only
the actions performed by TCB subjects; however, the TCB
proposed in [8] cannot be used, as it refers to an old SELinux
policy. Boot time values obtained with the TPM disabled
are good; differences are negligible when Enhanced IMA is
initialized with a policy. Instead, the boot time obtained with

TABLE II
ANALYSIS STATISTICS.

Minimal Mediawiki Tomcat
meas. stats (unknown)
- code + kernel mods 258 (1) 356 (0) 327 (1)
- struct. data 2399 (187) 3214 (270) 2892 (225)
- unstruct. data 1947 2413 2201
- total (no boot aggregate) 4604 5983 5420
RA Verifier perf. (secs)
- parse meas. 0.06434 0.08109 0.05651
- build graph 0.28544 0.36624 0.31200
- query db 1.56593 2.38566 1.92309
- load-time analysis 0.30594 0.34446 0.39180
- run-time analysis 0.04230 0.06285 0.05643
- total 2.26395 3.24030 2.73983

the TPM enabled reveals that, to have an usable system, the
number of measurements should be lowered. To overcome
this issue, we could synchronously record with the TPM
system critical events (code and kernel modules loading) and,
asynchronously, other operations.

In Table II, we report the statistics and performances ob-
tained with RA Verifier for three different software configu-
rations of the platform to be attested: a minimal installation,
an Apache web server with Mediawiki, and Tomcat. Statistics
show that, while all the code is recognized (except for our test
script), many digests of structured data (SSH keys, customized
configuration files) are unknown. Furthermore, the numbers for
unstructured data demonstrate that the effort to manage them
is almost the same, compared to the other two data types.
Regarding the performances, the most important result is that
except for the query db step, both the load-time and run-time
analyses are done very fast.

With the last test, we demonstrate the scalability of our
approach by showing the benefits of the new IMA flushing in-
terface. During the experiment with Tomcat, for three times we
observed the memory usage, collected measurements through
the new interface and recorded the number of measurements
obtained and the size of the file containing those measure-
ments. Table III reports that the memory usage decreased with
a noticeable variation after the first flush (observed at 2nd
attest), with a lower variation after the second iteration (seen
at 3rd attest). The table also shows that the number of new
measurements did not grow rapidly during the experiment.

B. Discussion
The main advantage of Enhanced IMA is that it simplifies

the integrity analysis due to the low number of interactions
represented in the information flow graph. We quantified the
improvement with respect to PRIMA by comparing the size of
the TCB for the init process (one of the most critical part of a
system) with both measurements and the Fedora 19 policy. We
found that, in the Mediawiki scenario, the measurements and
the policy TCBs contain respectively 8 and 38 subjects (among
40 subjects recorded in the measurements list), confirming our
expectation that in practice the real number of an application

TABLE III
SCALABILITY STATISTICS.

1st attest 2nd attest 3rd attest
cur memory usage (KB) 24428 23847 (-581) 23719 (-128)
flushed measurements 5421 52 49
file size (KB) 1339 14 13

This is the author's version of an article published in the TRUSTCOM'14 proceedings. Changes were made to this version by the publisher prior to publication.
The published version of this paper is available at http://dx.doi.org/10.1109/TrustCom.2014.63

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.

dependencies is lower than that derived from a policy (that
must support all the possible configurations).

However, as said in the introduction, the main concern
is managing large amounts of data to be sent to verifiers.
Although nowadays broadband connections are common and
transferring files of 1.4 MB (TCG integrity reports are a bit
larger due to the use of the XML format) should not be a prob-
lem, our solution becomes scalable by adopting the attestation
delegation proposal described in [19]: an attestation proxy
trusted by a target machine and verifiers could be adopted so
that it maintains a fresh list of measurements and determines
locally if the TCB supplied by a verifier is of high integrity
or not. OpenAttestation v1.7 (https://01.org/openattestation/),
which we extended to support IMA and periodic attestations,
is a perfect candidate for taking the role of a proxy.

Lastly, currently Enhanced IMA does not permit to make
deep integrity assessments, at least until all inode types will be
supported. Nonetheless, we foresee an interesting application
of our solution: it may be used as an intrusion detection soft-
ware to detect anomalies in a monitored system. If a verifier
previously found a Biba compliant TCB, the occurrence of
a new conflict could mean either that a TCB subject may
have legitimately executed an action not previously captured,
or may reveal the intrusion of an attacker trying to exploit a
vulnerability in the target machine software.

VIII. CONCLUSIONS

In this paper, we have reported the results of our experiment
of capturing with IMA all the events relevant for determining
an application behaviour. We have shown that our attempt is
worthwhile as, although the guarantees that can be inferred
from the reported information are lower than those provided
by PRIMA, the ease of deployment of Enhanced IMA makes
it attractive for those that want to use the remote attestation to
detect cyber-attacks but are not skilled enough to perform the
SELinux policy analysis. As a future work, we are planning
to capture events for all inode types and to verify on reported
information the requirements of the CW-Lite model. We will
also investigate if we can overcome the IMA limitation of
measuring only inodes by implementing the LSM hooks
for other IPC communications. By achieving these goals,
Enhanced IMA would report processes interactions through
reads and writes with the same completeness of PRIMA.

ACKNOWLEDGEMENT

The research described in this paper is part of the
SECURED project, co-funded by the European Commission
under the ICT theme of FP7 (grant agreement no. 611458).

REFERENCES

[1] European Commission, “Cybersecurity Strategy of the European Union:
An Open, Safe and Secure Cyberspace,” http://ec.europa.eu/information
society/newsroom/cf/dae/document.cfm?doc id=1667.

[2] Trusted Computing Group, “TPM Main Specification, Version 1.2,
Revision 103,” https://www.trustedcomputinggroup.org/, 2007.

[3] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and imple-
mentation of a TCG-based integrity measurement architecture,” in Proc.
SSYM’04, 2004, pp. 223–238.

[4] K. J. Biba, “Integrity considerations for secure computer systems,”
MITRE Corp., Tech. Rep., 1977.

[5] D. D. Clark and D. R. Wilson, “A comparison of commercial and
military computer security policies,” in IEEE Symposium on Security
and Privacy, 1987, pp. 184–195.

[6] T. Jaeger, R. Sailer, and U. Shankar, “PRIMA: Policy-Reduced integrity
measurement architecture,” in Proc. SACMAT’06, 2006, pp. 19–28.

[7] National Security Agency, “Security-Enhanced Linux SELinux,” http:
//www.nsa.gov/research/selinux/index.shtml, 2009.

[8] T. Jaeger, R. Sailer, and X. Zhang, “Analyzing integrity protection in the
SELinux example policy,” in Proc. 11th USENIX Security Symposium,
2003, pp. 59–74.

[9] K. Yee, “Aligning security and usability,” Security Privacy, IEEE, vol. 2,
no. 5, pp. 48–55, 2004.

[10] C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle, and V. Gligor,
“Subdomain: Parsimonious server security,” in Proc. LISA’00, 2000, pp.
355–368.

[11] E. Cesena, G. Ramunno, R. Sassu, D. Vernizzi, and A. Lioy, “On
scalability of remote attestation,” in Proc. STC’11, 2011, pp. 25–30.

[12] “Trusted Computer System Evaluation Criteria (Orange Book),” United
States Department of Defense, Tech. Rep., 1985.

[13] M. D. Abrams, S. G. Jajodia, and H. J. Podell, Eds., Information
Security: An Integrated Collection of Essays. IEEE Computer Society
Press, 1995.

[14] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman,
“Linux Security Modules: General security support for the Linux ker-
nel,” in Proc. 11th USENIX Security Symposium, 2002, pp. 17–31.

[15] S. Smalley, “Configuring the SELinux Policy,” http://www.nsa.
gov/research/ files/selinux/papers/policy2-abs.shtml, NSA, Tech. Rep.,
2005.

[16] W. E. Boebert and R. Y. Kain, “A practical alternative to hierarchical
integrity policies,” in Proc. 8th National Computer Security Conference,
1985, pp. 18–27.

[17] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating
systems,” Commun. ACM, vol. 19, no. 8, pp. 461–471, 1976.

[18] T. Jaeger, X. Zhang, and A. Edwards, “Policy management using access
control spaces,” ACM Trans. Inf. Syst. Secur., vol. 6, no. 3, pp. 327–364,
2003.

[19] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon,
J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen, “Principles of remote
attestation,” Int. J. Inf. Secur., vol. 10, no. 2, pp. 63–81, 2011.

[20] W. Xu, G.-J. Ahn, H. Hu, X. Zhang, and J.-P. Seifert, “Dr@ft: Ef-
ficient remote attestation framework for dynamic systems,” in Proc.
ESORICS’10, 2010, pp. 182–198.

[21] B. Hicks, S. Rueda, T. Jaeger, and P. McDaniel, “From trusted to secure:
building and executing applications that enforce system security,” in
Proc. ATC’07, 2007, pp. 205–218.

[22] W.-K. Sze and R. Sekar, “A portable user-level approach for system-
wide integrity protection,” in Proc. ACSAC’13, 2013, pp. 219–228.

[23] X. Zhang, M. J. Covington, S. Chen, and R. Sandhu, “SecureBus: to-
wards application-transparent trusted computing with mandatory access
control,” in Proc. ASIACCS’07, 2007, pp. 117–126.

[24] A. Shieh, D. Williams, E. G. Sirer, and F. B. Schneider, “Nexus: a new
operating system for trustworthy computing,” in Proc. SOSP’05, 2005,
pp. 1–9.

[25] L. Gu, X. Ding, R. H. Deng, B. Xie, and H. Mei, “Remote attestation
on program execution,” in Proc. STC’08, 2008, pp. 11–20.

[26] V. Haldar, D. Chandra, and M. Franz, “Semantic remote attestation:
a virtual machine directed approach to Trusted Computing,” in Proc.
VM’04, vol. 3, 2004, pp. 29–41.

[27] P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, and C. D. McDonell,
“Linux kernel integrity measurement using contextual inspection,” in
Proc. STC’07, 2007, pp. 21–29.

[28] M. Thober, J. A. Pendergrass, and C. D. McDonell, “Improving co-
herency of runtime integrity measurement,” in Proc. STC’08, 2008, pp.
51–60.

[29] N. L. Petroni, Jr. and M. Hicks, “Automated detection of persistent
kernel control-flow attacks,” in Proc. CCS’07, 2007, pp. 103–115.

[30] C. Kil, E. Sezer, A. Azab, P. Ning, and X. Zhang, “Remote attestation to
dynamic system properties: Towards providing complete system integrity
evidence,” in Proc. DSN’09, 2009, pp. 115–124.

[31] L. Davi, A.-R. Sadeghi, and M. Winandy, “Dynamic integrity measure-
ment and attestation: towards defense against return-oriented program-
ming attacks,” in Proc. STC’09, 2009, pp. 49–54.

This is the author's version of an article published in the TRUSTCOM'14 proceedings. Changes were made to this version by the publisher prior to publication.
The published version of this paper is available at http://dx.doi.org/10.1109/TrustCom.2014.63

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.

