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Abstract

The demand for different levels of Quality of Service (QoS) in IP networks is grow-

ing, mainly to attend multimedia applications. However, not only indicators of qual-

ity have conflicting features, but also the problem of determining routes covered by

more than two QoS constraints is NP-complete (Nondeterministic Polynomial Time

Complete). This work proposes an algorithm to optimize multiple Quality of Service

indices of Multi Protocol Label Switching (MPLS) IP networks. Such an approach

aims at minimizing the network cost and the amount of simultaneous requests rejec-

tion, as well as performing load balancing among routes. The proposed algorithm,

the Variable Neighborhood Multiobjective Genetic Algorithm (VN-MGA), is a Genetic

Algorithm based on the Elitist Non-Dominated Sorted Genetic Algorithm (NSGA-II),

with a particular feature that different parts of a solution are encoded differently, at

Level 1 and Level 2. In order to improve results, both representations are needed.

At Level 1, the first part of the solution is encoded by considering as decision vari-

ables the arrows that form the routes to be followed by each request (whilst the

second part of the solution is kept constant), whereas at Level 2, the second part

of the solution is encoded by considering the sequence of requests as decision vari-

ables, and first part is kept constant. Pareto-fronts obtained by VN-MGA dominate

fronts obtained by fixed-neighborhood encoding schemes. Besides potential benefits

of the proposed approach application to packet routing optimization in MPLS net-

works, this work raises the theoretical issue of the systematic application of variable

encodings, which allow variable neighborhood searches, as operators inside general

evolutionary computation algorithms.
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Chapter

1
Introduction

With the emergence of new technologies, the transmission of multimedia applications

has become an achievable goal. New applications such as videoconferences, Video

on Demand (VoD) or Voice over IP (VoIP) brought the need of some guarantees

of network characteristics regarding the quality of the data flow, such as minimum

bandwidth or maximum delay (De Giovanni et al. , 2004).

However, in the conventional internet traffic it is not possible to predict the path of

packets, i.e, there is no guarantee of communication regularity. For this reason, some

mechanisms were developed for Quality of Service (QoS). They allow differentiation

of the transmitted flows. They also allow the definition of conditions in order to

reach a level of quality from the prioritization of different flows according to their

characteristics and objectives (Paul & Raghavan, 2002).

Recently, several technologies have been proposed to develop approaches of Traf-

fic Engineering for Routing with QoS. According to RFC-3272 (Request for Comments

3272), the Internet Traffic Engineering is defined as an aspect of Internet network

engineering that deals with the issue of performance evaluation and optimization of

operational IP networks (Awduche et al. , 2002). Many of these studies deal with

routing on IP networks and MPLS (Multi Protocol Label Switching), using single-

objective Genetic Algorithms (GAs) (Maia et al. , 2007; Andrade, 2008) or determin-

istic methods, such as Lagrangian Relaxation (Dias, 2004). As the model of these

studies is formulated with a single objective, search can be biased to a specific goal,

leading to solutions that are unsuitable under other objective viewpoint. For this rea-

son, multiobjetive strategies have been receiving some attention. However, the use

1



1. Introduction 2

of multiobjective methods applied to the problem of routing on IP networks is not

extensive. Nevertheless, most of works perform the optimization of two objetives (Al-

varado et al. , 2005). Other studies use deterministic methods (Erbas & Erbas, 2003).

The current study deals with the optimization of three objetives which, according

to (Wang & Crowcroft, 1996), render the problem NP-complete (Nondeterministic

Polynomial Time Complete). For this reason, techniques based on non-deterministic

heuristics are likely to be the most suitable ones. Santos (2009) proposes a dynamic

evaluation for routing in an ambient of MPLS using multiobjective techniques. That

research represents an initial reference for the present work, employing the same

scenarios and objective functions.

MPLS is an example of a technology that makes possible the explicit routing of

packets. It facilitates the provisioning of QoS according to requirements of multime-

dia applications. This technology allows the addition of labels to packets in order to

identify them.

A possible way to deal with various requirements of different applications is the

use of search strategies for finding optimal or suboptimal solutions. Techniques such

as Genetic Algorithms (GAs) and Variable Neighborhood Search (VNS) are examples

of heuristic search strategies that can be used.

GAs (Goldberg, 1989) are search techniques that consider sets of candidates so-

lutions (each solution is an individual, and the set is the population), which vary ac-

cording to two kinds of probabilistic rules: mutation and crossover. Mutations intro-

duce perturbations into current solutions, producing new ones. Crossovers combine

the information from previous solutions, producing new ones. The current popu-

lation goes finally through a selection procedure, that probabilistically increases the

frequency of the best solutions in a new population, reducing the frequency of the

worst ones. In recent years, it has been recognized that a key factor that determines

the performance of GAs is the encoding employed for representation of solutions in

the population. This is due the fact that different encodings induce different neigh-

borhoods, which lead to different behaviors of the variation mechanisms of mutation

and crossover (Carrano et al. , 2010).

VNS techniques (Mladenovi & Hansen, 1997), however, usually evolve a single

solution each time. This solution is subjected to heuristic descent searches that find

local minima in attraction regions. The regions are characterized by connected paths

in a given neighborhood. It allows the algorithm to perform further descent steps

after finding a local minimum in a neighborhood, by simply the neighborhood.

This work deals with the problem of packet routing in MPLS networks. In the

specific context of this problem, a new Multiobjective Genetic Algorithm, the VN-
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MGA (Variable Neighborhood Multiobjective Genetic Algorithm) is developed. The

optimized routing tries to minimize the network cost and the amount of rejection of

simultaneous requests, as well as to perform a load balancing among routes. The

proposed algorithm allows to deal with conflicting QoS indicators, described as in-

dependent objective functions. Moreover, the solution sets that are delivered as so-

lutions for the multiobjective problem provide flexibility for the decision maker to

select a specific solution that fits an operation goal, according to the current state of

the network.

The proposed VN-MGA is based on the classical NSGA-II (Deb et al. , 2002) and

has, as a distinctive feature, its crossover and mutation operators inspired in the con-

cept of variable neighborhood of the VNS techniques. Two different encodings are

employed: a low-level encoding, which encodes explicitly the routes that are fol-

lowed by each requirement of service, and a high-level encoding, that encodes the

permutations of the several requirements of service, defining the order in which they

will be included in the solution. Crossover and mutation operators, acting in two

levels, are able to explore and to exploit the decision variable space with enhanced

efficiency, leading to solutions that dominate the ones that appear in algorithm ver-

sions using only one level. It should be noticed that the proposed operators are

problem-specific. In problems of combinatorial nature, it has been established that

algorithms employing specific crossover and mutation operators can be much more

efficient than general-purpose GAs (Carrano et al. , 2006).

The proposed algorithm is also compared with: (i) a pure VNS algorithm which

employs the same neighborhoods employed in the proposed VN-MGA along with a

typical VNS neighborhood change mechanism; and (ii) an Integer Linear Program-

ming (ILP) solver. Both algorithms, which are scalar in their original formulation,

are adapted to the multiobjective problem using an ε-constraint procedure (Ehrgott,

2000). The proposed VN-MGA reaches better solutions, when compared with the

VNS, and requires a much smaller computational effort, compared with the ILP.

A group of routing problems has been solved using hybrid approaches (Perboli

et al. , 2008). There are hybrid methods for the vehicle routing problem using Ge-

netic Algorithms and Tabu Search (Perboli et al. , 2008) or combining VND (Variable

Neighborhood Descent) and GRASP (Greedy Randomized Adaptive Search Proce-

dure) (de Freitas & Montané, 2008). Also problems with other characteristics, such

as pipeline petroleum distribution using GA and VNS (de Souza Filho, 2007), should

be mentioned. Those studies typically combine different algorithms in a literal way,

performing steps from one and other algorithm.

Some preliminary results presented in this thesis have been published in a con-



1. Introduction 4

ference proceedings (Onety et al. , 2011), and a more complete version have been

published in a journal (Onety et al. , 2013).

1.1 Motivation

Currently, several technologies have been proposed in order to enable the recogni-

tion of the type of information that is transmitted over IP networks and, therefore, to

offer support for the QoS requirements. The technology called MPLS, for instance,

is an effective alternative, since it allows the determination of explicit routes. With

the assignment of routes, it helps the QoS provisioning with the view to meet the

requirement of multimedia applications. This technology allows the addition of la-

bels to packages, identifying them. Thereafter, it makes possible to perform routing,

considering several indicators of QoS.

However, different QoS indicators that should be enhanced have conflicting na-

ture. The minimization of delay, for example, may generate an unbalanced load

distribution due to the concentration of packages on the shortest path links. More-

over, the problem of determining optimal routes under two or more QoS constraints

can become NP-complete (Wang & Crowcroft, 1996). In this way, the use of de-

terministic methods is not an efficient approach for routing. In the specific case of

multimedia applications, it is desirable the assignement of reliable and delay-free

routes for the transmission of information, in order to enable those applications.

These routes should consider multiple QoS requirements, many of them conflicting,

such as reducing delays and performing network load balancing.

A viable alternative to deal with the various conflicting requirements of differ-

ent applications is the implementation of search strategies for finding the optimal or

suboptimal solutions based on heuristics. Through heuristics, it is possible to find

solutions for which the feasibility is guaranteed with a reasonable computational ef-

fort. Multiobjectivs Genetic Algorithms and Variable Neighborhood Search are some

examples of heuristic search strategies.

1.2 Objectives

This work proposes an approach for the optimization of routes on IP networks in an

MPLS domain, based on a Traffic Engineering methodology that is capable of con-

trolling some Quality of Service (QoS) parameters. In particular, it proposes specific

genetic operators for the problem of ensuring QoS in IP networks, aiming to increase

the probability of generation of feasible individuals during the evolution process.
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The methodology is based on a Multiobjective Genetic Algorithm. As an innovative

feature, it has specific genetic operators that consider different neighborhood struc-

tures, such as suggested by the technique of Variable Neighborhood Search. Thus,

using this change of neighborhood structure, it can explore new areas, not glimpsed

before.

This thesis assumes an MPLS-based environment due to its explicit routing with

labels on its packages. This environment consequently favors the QoS. The use of

multiobjective genetic algorithms, in turn, can deal with different QoS indicators of

conflicting nature. These indicators are described as independent objective functions,

i.e., there is no need to adopt a single goal to weight the different metrics. Moreover,

the fact that multiobjective algorithms deliver sets of solutions at the same time,

can offer flexibility to the decision maker, which can analyse the current state of

the network and decide in each moment which objective should be privileged, by

choosing different solutions.

The definition of a new method for route generation is a contribution of this

work. The proposed method exploits the fact that, depending on the request order,

the route generation can privilege a particular request that could be impaired if it

were in a different priority. The variation of request order, therefore, increases the

diversity of solutions, allowing the development of new possibilities of routes.

1.3 Thesis Contributions

As result of this work, we expect to provide a viable methodology for package routing

in MPLS IP networks.

The particular feature of the proposed approach is that solutions are encoded such

that different neighborhoods become defined, allowing the application of principles

of VNS algorithms. In this way, specific VNS-based operators for the GA are able to

perform global search with acceptable computational cost.

In addition to the technological contribution, we expect that the proposed concept

of variable-neighborhood operators for genetic algorithms might become a relevant

contribution to the theory of evolutionary computation algorithms.

1.4 Document Outline

This thesis is organized as follows. In Chapter 2, we introduce the basic concepts

necessary for understanding the purpose of this research, such as Traffic Engineer-

ing, Quality of Service and MPLS technology. We describe, in the context of Traffic
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Engineering, some techniques for obtaining Quality of Service.

In Chapter 3, we present basic concepts about multiobjective optimization. We

also describe a scalarization method, called ε-constraint, which may be solved exactly

by ILP solvers in the case of mixed-integer linear programming problems, which will

be used for extracting benchmarks for the comparison of the proposed method. After-

ward, we present some discussion about evolutionary computation methods, includ-

ing genetic algorithms in single-objective and multiobjective versions. In addition, we

present some discussion about meta-heuristics, focusing on Variable Neighbourhood

Search, which is the main inspiration of the proposed method. Finally, we present

a brief discussion about the issue of Decision Making, in order to contextualize the

proposed method.

In Chapter 4, we mention some related works that have been done, considering

Evolutionary Computation, MPLS, Routing and hybrid methods.

In Chapter 5, we describe the problem tackled in this thesis and its modeling. We

present the VN-MGA, its operators, and the corresponding algorithms.

In Chapter 6, we present some results obtained with this approach. We compare

them with other algorithms.

Finally, conclusions and future developments of the research activity are reported

in Chapter 7.



Chapter

2
Traffic Engineering and Quality of Service on

IP Networks

This chapter introduces basic concepts from the field of Telecommunication Net-

works. They are necessary for understanding the purpose of this research, such as

Traffic Engineering, Quality of Service and MPLS technology.

2.1 Traffic Engineering

The Internet Engineering Task Force (IETF) is a large open international community

of network designers, operators, vendors, and researchers concerned with the evolu-

tion of the Internet architecture and the smooth operation of the Internet. Its mission

is to make the Internet work better by producing high quality, relevant technical doc-

uments that influence the way people design, use, and manage the Internet (IETF,

2013). Recommendations of IETF are usually published in documents called RFCs

(Request for Comments). According to the scope of this work, we are interested in

principles of Traffic Engineering.

Traffic Engineering (TE) comprises a set of techniques for the management of

telecommunication networks. By arranging the traffic distributions, it aims at reduc-

ing congestion, instability or impaired Quality of Service (Maia, 2006). According to

definitions of RFC-3272 (Awduche et al. , 2002), TE is an aspect of Network Engi-

neering that deals with issues of evaluation and optimization of performances of IP

7
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networks. It is capable of applying technologies and scientific principles in order to

measure, to characterize, to model and to control the network traffic. Performance

measures include delay, delay variation (jitter), packet loss and throughput.

Figure 2.1 illustrates the packet forwarding with and without TE. In a domain

that does not implement TE, all packets must be forwarded along the shortest path,

in this case, the middle way, which often results in congestion. The existence of

congestion may cause QoS degradation (Maia, 2006).

Figure 2.1: Packet routing in an intra-domain network, represented by the cloud.
In (a), the routing is done with no TE. Packets follow the shortest path, causing an
overload of the link. In (b), the routing has an implementation of TE. It tries to
distribute the flow over the available links, aiming at improving QoS (Maia, 2006).

Among many objectives of TE, it aims at facilitating reliable operations, reducing

the vulnerability to errors, faults and failures that can occur in the infrastructure. An-

other important goal of TE is to perform the control and optimization of the routing

function when it sends the traffic through the most effective way of network. Consid-

ering the optimization, it refers to the management of capacity and traffic. Capacity

management includes capacity planning, routing control and resource management

such as bandwidth, buffer size and computational resources. Traffic management

refers to the analysis of traffic conditions, queue management, scheduling and other

functions that regulate traffic flow through the network (Awduche et al. , 2002).

Summarizing the goals, TE includes four basic problems, that is, admission con-

trol of new connections, constraint-based routing, re-routing of established connec-

tions, and network resources planning (Maia, 2006).

The first problem, admission control, determines if a request can be admitted or

not. If so, it selects a route for this connection over the network.

The second problem, constraint-based routing, is responsible for the selection of

optimal paths that satisfy a given set of constraints and requirements. Metrics used

for constraint-based routing include cost in money, number of intermediate nodes,

transmission rate, reliability, delay and jitter. The first step of this process aims at

deleting links with not enough bandwidth for new connections or that somehow do
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not meet the requirements of incoming demand. The second step consists of choosing

the “best path” to be used on the residual network. The best path is not necessarily

the shortest path calculated by an algorithm such as Dijkstra’s, but a path that meets

all the requirements (Awduche et al. , 1999).

The third problem, re-routing of established connections, is the process in which

some traffic flows are re-routed in order to improve network efficiency. The network

administrator may periodically modify the routing of traffic flows due to new network

conditions. For example, a traffic flow can be re-routed into a secondary path in case

of failure in the primary path, or in the case of a higher priority traffic using the main

path resources. When a fault occurs, if there were no re-optimization, the network

could become increasingly distant from the optimal point (Andrade, 2008).

The last problem, network resource planning, includes planning of link capacities

and sizes of buffers. It aims at providing the network ability to comply with new

traffic demands. The planning of network resources should consider the possibility

of future demands, which can be estimated from the historical data of network traffic

(Girish et al. , 2000).

The RFC-3272 states that TE has not a goal that is reached only once. Instead, its

achievements are continuous, obtained in an iterative process. The reason for this is

that the optimization objectives may change over time whenever new requirements

are imposed. Due to the complexity of those tasks, the TE requires a continuous

development of new technologies and methodologies for enhancing network perfor-

mance.

TE can also be seen from a control perspective. This aspect of control can be

classified as pro-active and reactive. Pro-active control consists of a preventive action

that avoids unfavorable network states. Reactive control responds correctively and

adaptively, dealing with events that have already occurred in the network.

One of the major challenges of TE is the capability of automated control and of

performing adjustments for significant changes in the current network state, while

keeping its stability. Therefore, it is important to assess its performance in order

to determine the effectiveness of the chosen methods. Results of assessments can

help to identify problems and to predict potential problems. Moreover, they can

guide the network in a re-optimization procedure. This evaluation can be achieved

in many different ways. The main techniques include analytical methods, simulation

and empirical methods based on measurements. In the case of analytical methods or

simulations, the network nodes and links are modeled in order to capture relevant

operational features such as topology, bandwidth, buffer space, and nodal service

policies (link scheduling, packet prioritization, buffer management, etc.). Analytical
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traffic models can be used to describe dynamic characteristics and behavior of traffic,

such as burstiness, statistical distributions and dependence.

Another important objective of TE is to combat congestion at a reasonable cost.

A network resource is considered congested if the arrival packet rate exceeds the

output capacity of the resource over an interval of time. Congestion may result in

some of the arrival packets being delayed or even dropped. Congestion increases

transit delays, jitter, packet loss, and reduces the predictability of network services

(Awduche et al. , 2002).

Considering that performance evaluation is not a trivial issue, several techniques

are used to simplify the analysis, such as abstraction, decomposition and approxima-

tion. A simplification of concepts such as available bandwidth and effective buffer, for

example, can approximate nodal behaviors at packet level and simplify the analysis

at connection level. For instance, techniques of network analysis using queuing mod-

els and approximation schemes based on asymptotic and decomposition techniques

can render the analysis more tractable.

Simulations can be used to evaluate the network performance or to verify and

validate analytical approximations. However, they can be computationally expensive

and not very clear. Thus, the analysis of network performance should involve a hybrid

combination of analytical techniques, simulations and empirical methods.

As a general rule, according to the RFC 3272, concepts and mechanisms of TE

must be sufficiently specific and well-defined for known requirements and, at the

same time, flexible and extensible to future demands. For this purpose, it is necessary

to clearly define the context in which the TE is applied, specifying the appropriate

rules for each question. Hereafter, we present the contexts that are applied in Chapter

4 to the problem addressed in this study.

2.1.1 Context of TE

The use of a TE methodology is important to establish scenarios in which the rules

of Traffic Engineering are applied. Awduche et al. (2002) proposed in RFC-3272

the use of contexts, which delimit issues to be addressed and how they should be

evaluated.

Network Context

According to Awduche et al. (2002), Network Context defines the universe of dis-

course and, in particular, the situation which the TE problem occurs. This context

includes the structure, network policies, constraints and characteristics, quality at-
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tributes and optimization criteria.

Network elements and resources may have specific characteristics that restrict the

manner that demands are handled. Network resources may be equipped with traffic

control mechanisms, which should be used to control, for example, various packet

processing activities within a given resource, to arbitrate contention for access to the

resource by different packets, and to regulate traffic behavior through the resource.

Details about packet transport are specified in the policies of network administrators.

Types of services offered by the network generally depend on the technology and

characteristics of the network elements and protocols.

Problem Context

The Problem Context defines general and specific issues that the TE deals, such as the

identification, abstraction of relevant issues, representation, formulation, specifica-

tion of requirements on the solution space and specification of the desired features

of acceptable solutions.

Important questions to be taken into account are how to formulate explicitly the

problems that the TE may solve, how to identify the requirements on the solution

space, how to specify the desirable characteristics of good solutions, and how to

measure and to characterize the effectiveness of solutions. Another class of prob-

lems is how to measure and to estimate relevant network parameters and how to

characterize the state of the network in order to evaluate its performance in a va-

riety of scenarios. There is still another class of problems that concerns on how

to effectively optimize network performance. Performance optimization may entail

translating solutions to specific traffic engineering problems into network configura-

tions. Optimization may also entail some degree of resource management control,

routing control, and capacity augmentation.

Solution Context

The Solution Context indicates how to address the issues identified by the Problem

Context, including analysis, evaluation of alternatives, prescriptions and resolutions.

It demands reasonable estimates of traffic load, characterization of network state, in

this way deriving solutions for the problems of TE that can be implicitly or explicitly

formulated.
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Implementation and Operation Context

The Implementation and Operation Context indicates where the solutions are method-

ologically instantiated. It includes planning, organization and execution. This con-

text is characterized by constant changes that occur at multiple levels of abstraction.

Aspects of planning should involve a set of priority actions to achieve certain goals.

The organization involves assigning responsibility to the various system components

of TE and coordinating their activities. Execution involves measuring and applying

corrective actions when they are necessary.

2.2 IP protocol

The Internet can be described as a collection of Autonomous Systems (AS) intercon-

nected by backbones. Each AS is an independent node or a sub-network that defines

its own rules such as routing policy, internal structures and access technologies. A

protocol that enables the communication between each AS is called Internet Proto-

col (IP). IP is a protocol that has the task of delivering packets from the source to

the destination host based on their addresses. For this purpose, IP defines datagram

structures that encapsulate the data to be delivered. It provides the service of best

effort, i.e., it does the best service as possible, but with no guarantee of transport or

sequence, with a variable bit rate and with delay in delivery time (Andrade, 2008;

Maia, 2006).

According to Awduche et al. (2002), in a very basic abstraction level, an IP net-

work may by represented as a distributed dynamic system, consisting of:

1. A set of interconnected resources that provides transportation services of IP

traffic subject to certain constraints;

2. A demand system representing the offered load to be transported through the

network;

3. A response system consisting of network processes, protocols, and related mech-

anisms that facilitate the movement of traffic through the network.

To provide a successful multimedia network, many studies have focused on the

issue of how to ensure the quality of services on IP networks. We discuss such an

issue in next section.
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2.2.1 Quality of Service on IP networks

With the increment of data-intensive technologies such as multimedia applications

and of the capacity of networks, new applications have appeared requiring a better

network performance. However, the transportation of multimedia data is not trivial.

Apart from bandwidth, there are constraints related to maximum delay, maximum

jitter and packet loss. For the success of a multimedia network, major innovations in

the Quality of Service are essential.

Many multimedia applications are known as constant rate media applications.

Nevertheless, there is another class of applications which deal with variable rate

transmission. Several classes of multimedia applications share resources of a net-

work among themselves and with data applications. Some examples are applications

of streaming audio and video such as Internet radio, recorded lectures, interactive

applications such as IP telephony and video conferencing. Thus, classes of multime-

dia applications have different requirements and should be treated in a particular

way, according to their needs. Each source sends a stream of packets to a given des-

tination. The needs of each flow can be characterized by four parameters: reliability,

delay, jitter and bandwidth. These parameters define the Quality of Service for each

flow requirement (Andrade, 2008).

Reliability can be described as the acceptable percentage of lost packets for an

application. Delay is defined as the time that a packet takes to reach its destination.

It is a result of queuing in routers, propagation time and processing time along the

path from source to destination. Jitter delay or fluctuation is defined as the difference

between arrival times of successive packets. The bandwidth or throughput is the

amount of information sent or received per second (Andrade, 2008).

The definition of QoS through parameters of delay, jitter, throughput and packet

loss is not the only possible one. Although this definition is well-established, there

are other approaches provided by International Telecommunications Union (ITU),

European Telecommunications Standards Institute (ETSI) and the Internet Engineer-

ing Task Force (IETF). According to ITU/ETSI, there are three QoS definitions for a

general model: intrinsic, evaluated and perceived. Figure 2.2 presents the general

model of QoS.

The intrinsic QoS is determined by the network project of transmission mecha-

nisms and provisioning of access networks, terminals and connections. It is obtained

by a comparison of measured and expected performance characteristics. Another

aspect that should be emphasized is that the intrinsic QoS is not affected by user

perception (Andrade, 2008; Maia, 2006).

The perceived QoS reflects the user experience by using a specific service. This



2. Traffic Engineering and Quality of Service on IP Networks 14

Figure 2.2: The general model of QoS within the approaches provided by ETSI /
ITU and IETF. It represents three QoS definitions for a general model: intrinsic, eval-
uated and perceived. The intrinsic QoS is obtained by a comparison of measured
and expected performance characteristics. The perceived QoS reflects the user ex-
perience by using a specific service. The evaluated QoS begins to be analyzed when
the customer decides whether to continue to use this service (Andrade, 2008; Maia,
2006).

measure is subjective and will reflect the relationship between user’s expectations

and experience.

The evaluated QoS begins to be analyzed when the customer decides whether to

continue to use this service. This decision is influenced by factors such as price of

service, perceived quality and how well the customer is served.

The level of overall QoS should be evaluated in all dimensions (intrinsic, eval-

uated and perceived) separately. Each entity should separate responsibilities in the

process of obtaining QoS.

For the purpose of this research, some techniques for obtaining intrinsic QoS will

be discussed.

2.2.2 Techniques for Obtaining Quality of Service

In order to support multimedia applications, the network can use different tech-

niques. Some techniques may involve some structural aspects, while others may

involve traffic shaping and differential data treatment.

A basic solution is to oversize all network elements (routers, links and network

elements). In this way, problems as delay, jitter and loss packet will be reduced and

the bandwidth will be increased. Although simple, and sometimes impossible, this

solution is expensive and does not provide a rational usage of the available resources.

Another simple solution is to increase the buffers in the routers. This solves the
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problem of jitter, but also increases the delay. Both oversizing the network compo-

nents and increasing buffers do not solve the problem of QoS in the long term.

There are more elaborate mechanisms, such as Integrated Services and Differen-

tiated Services, which allow greater control by administrators.

Integrated Services

The Integrated Services (Intserv) is a structure developed by the IETF Integrated

Services working group. This structure aims at providing QoS for individualized ap-

plications. It requires resources, such as bandwidth and buffers, to be reserved a

priori for a given traffic flow. It includes resources such as packet classifiers, packet

schedulers, and admission control, which are beyond those used in the best-effort

model. A packet classifier identifies flows to receive a certain level of service. A

packet scheduler handles the scheduling of services to different packet flows to en-

sure that QoS commitments are met. Admission control is used to determine whether

a router has the necessary resources to accept a new flow (Andrade, 2008).

The main issue with the Integrated Services model has been scalability [RFC-

2998], especially in large public IP networks which may potentially have millions

of active micro-flows in transit concurrently. A noticeable feature of the Integrated

Services model is that it requires explicit signaling of QoS requirements from end

systems to routers [RFC-2753] (Awduche et al. , 2002).

The main IETF protocol for Integrated Services is the ReSource Reservation Pro-

tocol (RSVP) (Braden et al. , 1997). This protocol is used to reserve resources. It

does a multicast routing with spanning tree, where each group receives a group ad-

dress. A sender adds the address of a group in their packets in order to transmit data

to this group. Then the algorithm builds a spanning tree that covers all members

(Tanenbaum, 1989). A drawback of this approach is the requirement of resource

reservation before sending packets. This leads to problems of scalability and exces-

sive complexity of routing elements. To remedy this problem, another approach,

called Differentiated Services, was developed.

Differentiated Services

In the differentiated services architecture it is not necessary to reserve resources

in advance. It operates on the principle of traffic categorization, creating multiple

classes of services. This way, each router is configured to differentiate traffic based

on its class. The Service Level Agreements specify which class of traffic would be

served, the guarantee and the amount of data that should be granted to each class.
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2.3 The MPLS Technology

The formerly discussed techniques for obtaining QoS allow a significant performance

improvement. However, as they still depend on the traditional routing algorithms

from IP networks, and as IP routing algorithms provide no guarantees, it is not pos-

sible to ensure the quality of multimedia applications.

In order to guarantee QoS in IP networks it is necessary to use mechanisms for

a greater control over network resources. With this goal, the Multiprotocol Label

Switching (MPLS) was developed. Concerning that it is the selected scenario of this

research, the MPLS will be described in some detail.

With the purpose of locating the MPLS in the layers model, the Open Systems

Interconnection (OSI) model is briefly introduced as follows. The OSI model stan-

dardizes internal functions of a communications system by partitioning it into ab-

straction layers. It classifies computer networks in seven layers, as shown in Figure

2.3 (Tanenbaum, 1984).

Application7

Presentation6

Session5

Transport4

Network3

Data link2

Physical1

Figure 2.3: The seven layers of OSI model.

According to Tanenbaum (1984), basically, the main rules to define those seven

layers are:

1. A layer should be created if there is the necessity of another abstraction level.

2. Each layer should perform a well-defined function.

3. The function of each layer should be chosen based on the definition of interna-

tional standardized protocols.

4. The boundaries of layers should be chosen to minimize information flow through

interfaces.
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5. The number of layers should be large enough such that distinct functions do not

need to be placed at the same layer, and small enough such that the architecture

does not become hard to control.

A brief description of each one was specified by ITU-T Rec.X.200 (1994), as fol-

lows.

Layer 1: The Physical Layer provides mechanical, electrical, functional and pro-

cedural means to activate, maintain, and de-activate physical connections for bit

transmission between data-link entities. Its entities are interconnected by a physical

medium. This layer defines the relationship between a device and a transmission

medium such as a copper cable or an optical fiber cable.

Layer 2: The Data Link Layer detects and possibly corrects errors which may occur

in Physical Layer. It also enables the Network Layer to control the interconnection of

data-circuits within the Physical Layer.

Layer 3: The Network Layer controls the operation in the subnet, deciding which

physical path the data should take based on network conditions, priority of service

and other factors. This layer is also responsible for forwarding packets between net-

works, to control traffic on the subnet and to maintain the quality of service requested

by the transportation layer.

Layer 4: The Transportation Layer provides transparent data transfer between

end-users, ensuring reliable services to the upper layers. It optimizes the use of

available network services in order to provide the required performance by each

session entity at minimum cost.

Layer 5: The Session Layer controls dialogues between computers, managing their

data exchange. It establishes a session connection between processes running on

different stations with the aim at supporting orderly data exchange interactions and

releasing the connection in an orderly manner.

Layer 6: The Presentation Layer establishes context between application-layer

entities. It transforms data in a form that the application accepts, formating and

encrypting data to be sent across a network.

Layer 7: The Application Layer is the closest one to the end-user. It interacts

directly with software application implementing a communicating component. In

this way, the end user may access the network services.

The MPLS technology operates at a layer that is generally considered to lie be-

tween traditional definitions of Layer 2 (Data Link Layer) and Layer 3 (Network

Layer), and thus is often referred to as a "Layer 2.5" protocol.

MPLS (Multi Protocol Label Switching) is one of the technologies proposed by the

IETF, which enables sophisticated routing schemes based on the ability of a prior
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establishment of routes to be followed by packets. The explicit routing of packets is

possible due to the addition of short path labels. Thus, it avoids complex lookups in

a routing table. This is an important feature for the maintenance of the network QoS

indicators.

Figure 2.4 shows the MPLS layer and its fields. The MPLS header is positioned

after Layer 2 header and before Layer 3 header. The Label is a short identifier that

is assigned to each packet when it enters in the MPLS network. Thus routers just

analyze the labels in order to direct the packet. The TC field means Traffic Class. It

defines classes of services, in order to indicate priority levels to support DiffServ in

MPLS network, among others. The field S refers to Stack. It supports queuing labels

if the package receives more than one label. The field TTL means Time to Live. It

counts the number of routers the packet has passed by, in a total of 255. If the packet

exceeds 255 routers, it is discarded to avoid possible loops.

Figure 2.4: The MPLS layer and its fields. The MPLS header is positioned after Layer
2 header and before Layer 3 header. The label is a short identifier that is assigned to
each packet when it enters in the MPLS network. TC is the Traffic Class, that defines
classes of services. S refers to stack, that supports queuing labels if the package
receives more than one label. TTL refers to Time To Live, that counts the number of
routers the packet has passed.

The term Multi Protocol from the acronym MPLS represents the possibility of in-

tegration of this technology with different network protocols. It consists of specific

software and hardware. In software it focus on communication protocols. In hard-

ware, it needs routers that can handle labeled packets within this domain.

On IP network routing, for each datagram, the router searches in the routing table

the network prefix that suits the same address, in order to determine the output link.

As the network prefix has different sizes, the search time varies. The basic idea

of MPLS is to increase the speed of processing IP datagrams, forwarding packets

based on labels of short fixed size. The routing process based on label increases

the processing speed, resulting in a better performance. MPLS network can offer
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Quality of Service guarantees without dedicated links. It was designed to convert IP

backbones (best effort) into business class transportation, capable of manipulating

real time data (Andrade, 2008).

The packet forwarding through label is only performed within an MPLS domain.

MPLS domain can be defined as a set of routers capable of loading MPLS packets. It

consists of three basic entities. Two of them are located in the domain boundary and

the third one is located inside the MPLS domain. The first boundary router inserts the

label on the packet. The inside router is responsible for routing in the domain. The

other boundary router removes the label packet (Andrade, 2008). When a packet

enters the MPLS domain, the edge router, called LER(Label Edge Router), inserts

labels on it. Thus, the router links the packet to a FEC (Forward Equivalence Class)
class, which indicates the LSP (Label Switched Path) path end-to-end through which

the packet should follow in the domain. FEC is defined as a class corresponding to a

set of packets sent in the same way through the network. Each FEC explicitly defines

the nodes that the packets of each class should follow. With FECs, it is possible to

create a LIB (Label Information Base), that is kept in each LSR (Label Switch Router)
(Dias, 2004; Awduche et al. , 2002).

Figure 2.5 represents a model of packet forwarding in the MPLS domain. Passing

through the LER ingress, the IP packet is assigned to a FEC and it receives a label

that indicates the path to be followed. Before the packet leaves the MPLS domain,

the label that indicates the FEC is removed.

Figure 2.5: Routing packets in the MPLS domain. (Adapted from Maia (2006)). The
cloud represents the MPLS domain. The ingress LER associates the IP packet to a
FEC, explicitly stating the path to be followed - for instance, LSP1 or LSP2. Finally,
the egress LER removes the label of the IP packet and it is forwarded on its way via
standard IP routing.
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MPLS is a very powerful technology for Internet Traffic Engineering because it

supports explicit LSPs, i.e., dedicated paths (virtual circuits) can be created in a

datagram network. The explicit routing allows constraint-based routing to be im-

plemented efficiently in IP networks (Awduche et al. , 2002). Multiple paths can be

used simultaneously to increase the performance of a given source to a given desti-

nation. Thus, load balancing can be performed using many routes for traffic flow.

As the network parameters can change at any time, schemes of routing and re-

routing should be created to keep the contract between service provider and users.

The Traffic Engineering with MPLS uses measurement systems coupled to routing

algorithms and determines LSPs. The LSP selection should avoid re-routing, because

it involves operation costs of management network. This process may be preven-

tive, where path allocation prevents congestion in the network, or may be reactive,

operating when a problem occurs (Andrade, 2008).

Embratel is an example of a company that provides the use of MPLS technology.

The company offers to the customers network structures with this technology, that

can ensure a suitable operation of their applications, allowing voice and video traffic

over IP, for example, with the desired QoS (Embratel, 2013).
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3
Related works

Current research indicate that many Computational Intelligence techniques are used

to solve different problems related to the optimization of Routes on IP Networks.

Among many problems, we can mention some of them that are investigated: the

prediction of delay, loss of packets, congestion, routing, rerouting, load balancing

and optimization of parameters such as available bandwidth. The literature review

was based on a set of techniques and technologies used to develop the proposed

algorithm in this thesis. The first part consists of network concepts, encompassing

Traffic Engineering and MPLS. Then, we list research related to routing applied to

IP networks. Subsequently, we list problems using techniques of multiobjective opti-

mization of networks. Finally, we present different routing problems that use hybrid

algorithms.

3.1 Traffic Engineering and MPLS Technology

Considering the Traffic Engineering and MPLS Technology , there is a set of research,

such as Nogueira et al. (2006) and Cortez et al. (2006) that attempts to perform the

detection of applications from the prediction of their traffic levels. The techniques

used are based on Artificial Neural Networks with Multilayer Perceptron (MLP).

Bui et al. (2007) propose a hybrid approach for predicting end-to-end delays

using Wavelet Transforms in combination with Artificial Neural Networks and Pattern

Recognition techniques. It is interesting to our approach once that it can be useful

21
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for the choice of requisitions sequence.

Onali & Atzori (2008) describe an algorithm for finding an optimal mapping of

the Type of Service in each type of class and an optimal allocation of bandwidth for

each one of them. The optimality is expressed in terms of the cost function in order

to obtain a level of Quality of Service and utilization of network resources. From the

improvement of techniques of Traffic Prediction, it is possible to create tools for fault

detection and efficient Traffic Engineering techniques, resulting in economic benefits

through an improvement of resource management. These studies may be useful to

supplement this study, by carrying out the routing associated with the possible traffic

or the best allocation of bandwidth with respect to the application. Other works

that deal with prediction in order to control the size of the queue buffer, such as

Sousa et al. (2006) also have significant importance to solve the delay caused by the

congestion problem.

The research developed by Maia (2006) proposes a Traffic Engineering system

capable of supporting mixed traffic (data, voice and video). It attempts to keep

dynamically different levels of Quality of Service using MPLS, principles of Auto-

nomic Computing and techniques of Computational Intelligence. This integration is

achieved by combining different techniques of Computational Intelligence, such as

Fuzzy Logic to implement the classification of routes, Genetic Algorithms for opti-

mization and Artificial Neural Networks for the traffic prediction. The use of theses

different techniques allows networks to have an intelligent behavior with some fea-

tures such as adaptability, fault tolerance and robustness. Autonomic Computing,

on its turn, allows the network to respond automatically to changes in conditions

that occur during its operation, presenting a self-management behavior. For the im-

plementation of traffic control and QoS, they used the MPLS (Maia et al. , 2007).

However, this work limits the construction of routes and treats them as pre-defined,

creating genetic operators that act only on the same routes. It also considers only the

shortest path as a criterion of convergence.

3.2 Routing applied to IP networks

In papers of routing applied to IP networks, Bagula (2006) attempts to maximize the

use of network bandwidth and to reduce the delay through the GEP method (Gene
Expression Programming).

Baguenine & Mellouk (2007) aim at finding a feasible path that satisfies QoS

requirements, from the optimization of resources, by reducing the number of hops

and delay. The metaheuristic used is the Ant Colony, which attempts to distribute the
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traffic through the N-best paths according to the criterion of end-to-end delay.

Dias (2004) proposes mono-objective strategies to solve problems of TE in IP

networks over MPLS. The method uses Lagrangian Relaxation, with a subgradient al-

gorithm to obtain a feasible solution in polynomial time. Its objectives are intended

to maximize the overall throughput of data flows injected into the network, con-

sidering the bandwidth of the links and the limit of end-to-end delay for each data

stream. Although the subgradient algorithm finds a solution, there is no guarantee

on its viability for a dynamic application.

The current study, however, involves the optimization of three parameters, which

according Wang & Crowcroft (1996) renders problem the complexity NP-complete.

For this reason, heuristic techniques become the most suitable ones.

Andrade (2008) proposes the provisioning of QoS in MPLS networks using bioin-

spired algorithms associated with local search methods such as Tabu Search and

GRASP method (Greedy Randomized Adaptive Search Procedure) in an environment

of autossimilar traffic. Santos (2009) proposes a dynamic evaluation of routing in an

MPLS environment using multiobjective techniques, such as the NSGA-II algorithm.

That work aims at minimizing the network cost, by responding to various user re-

quests, ensuring the Quality of Service and performing load balancing of flows in the

network.

3.3 Multiobjective optimization of networks

In the literature review, we noticed that the use of multiobjetive methods applied

to routing problems in IP networks is scarce. Most of the papers presented assume

the existence of a single design goal. In situations in which more than one objective

is considered, the mathematical formulation is developed as a weighted sum of the

objectives. This results in a biased search for one particular purpose. For this reason,

multiobjective strategies have also gained importance in the optimization of traffic

flows in networks. As one of the advantages, the multiobjective approach presents a

uniform treatment of all objectives. The decision maker is the responsible for choos-

ing which goal will be prioritized in the set of final solutions. Among some studies

involving QoS analysis, some papers describe the application of bioinspired methods,

such as Ant Colony, Genetic Algorithms, Tabu Search and Simulated Annealing.

Alvarado et al. (2005) propose the application of evolutionary algorithms such

as NSGA-II and SPEA2 for multiobjective optimization of multicast networks, aiming

at minimizing the number of hops and the delay of transmission. Drummond et al.
(2008) propose an approach based on Fuzzy Logic for dynamic allocation of band-
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width for multimedia applications with high bandwidth requirement. The ability to

dynamically adjust the bandwidth required by these applications allows a better offer

of QoS to customers. Erbas & Erbas (2003) present a routing study with multiobjec-

tive MPLS networks. The conflicting objectives are the minimization of delay, load

balancing and minimization of number of LSPs. An exact implementation of a Cheby-

shev method with lexographic weights is used in that research, which leads to a high

computational cost. In order to achieve similar results with smaller computational

costs, Cerav-Erbas (2004) proposes the use of Simulated Annealing.

Banerjee & Kumar (2007) present a multiobjective approach applied to a realistic

model of a network of Autossimilar Internet Traffic. That work optimizes the delay

of packet delivery and the cost to build network topologies. The generated topolo-

gies for an autossimilar traffic have high delays if compared to the Poisson traffic

model. In small networks, that work uses a deterministic algorithm with exhaustive

search of the Pareto front and another algorithm based on the branch of the network.

Due to the high computational cost, it can be applied only to small networks. The

evolutionary algorithm was unable to find a good solution in regions of low cost.

3.4 Hybridization of algorithms in routing problems

Some works that involve the hybridization of algorithms in routing problems could be

identified. Perboli et al. (2008) propose a hybrid method for a vehicle routing prob-

lem using Genetic Algorithms and Tabu Search. Each solution that was optimized

by the GA is again optimized by Tabu Search, which combines two different neigh-

borhoods in a process that increases the size of the neighborhood without increasing

its complexity. To this end, they present a new operator for genetic mutation and a

new procedure of movement. It is important to note that this model is applied to a

mono-objective problem. de Freitas & Montané (2008) also investigate the vehicle

routing with simultaneous pickup and delivery, by using metaheuristics that combine

VND (Variable Neighborhood Descent) and GRASP (Greedy Randomized Adaptive

Search Procedure). de Souza Filho (2007) describes a search for a pipeline distribu-

tion using the VNS. The main objective, in this case, is to reduce the costs involved

in the logistics of pipeline transportation in the petroleum industry.

From hybrid methods, which put together Genetic Algorithms and Local Searches,

it was observed that the use of population ensures the exploration of the search space.

Beyond this, using local search techniques helps to quickly identify good areas in the

search space. The success of these methods may be due to the balance between

having a quick search and maintaining a diversity to avoid premature convergence
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(Perboli et al. , 2008).

3.5 Considerations

Based on these research, we constructed the theoretical basis for our approach. We

observed that most of the cited works perform the optimization of two parameters.

Beyond this, it was not identified any published work that uses VNS as a basis of a

hybrid algorithm for routing problems in telecommunications. Similar methods have

shown good performances in other contexts of routing problems. We noted the exis-

tence of limitations to the problem of network design. Difficulties as the correction

of infeasible routes, generated from the operations of crossover and mutation may

increase the complexity and computational cost of this technique. These limitations

need to be addressed with new approaches. We chose to investigate in this thesis

a scenario that combines features of Multiobjective Genetic Algorithms and Variable

Neighborhood Search in a specific encoding for routing on IP network, considering

the MPLS as technology that may allow the QoS provisioning.



Chapter

4
Optimization and Algorithms

Techniques of Traffic Engineering may use routing protocols in conjunction with

optimization methods. Among different problems addressed from TE techniques, we

can mention the prediction of delay and loss of packets, congestion, routing, load

balancing and optimization of parameters, such as the proper use of available band-

width. Although most of studies focus on optimization problems with a single goal,

it was observed that network problems have multiobjective features, i.e., they have

more than one objective to be minimized (e.g., reducing packet loss) or maximized

(maximizing traffic flow). For example, while customers want faster and more re-

liable connections, network administrators prefer a stable and balanced network.

Therefore, the objectives desired by customers conflict with the goals related to the

performance of the network (Cerav-Erbas, 2004).

In the following sections, we will present some concepts about Multiobjective

Optimization and Evolutionary Computation including description of Genetic Algo-

rithms. Some discussion about Decision Making is also presented. Next, Local Search

Algorithms such as Iterative Local Search and Variable Neighborhood Search are pre-

sented. Finally, some studies presented in literature are discussed.

4.1 Optimization

Optimization refers to the choice of the best elements in a set of available alter-

natives. In its simplest form, it consists of the minimization or maximization of a

26
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function within a set of possible values.

Although most of the studies in operations research focus on optimization prob-

lems with a single objective, most real-world engineering optimization problems

combine multiple objectives (Cerav-Erbas, 2004).

Early searches for optimal solutions of problems with simultaneous objectives, for

instance products with low-cost production, low-cost materials, low energy consump-

tion and, at the same time, high quality, high durability and reliability, treat them as

single-objective problems. In such approaches, all the objective functions are ag-

gregated in a single function, or all the objectives are transformed into constraints,

except one (Parreiras, 2006). The feasible set, in this case, is totally ordered, i.e., we

can rank all feasible solutions with regard to some objective function (Cerav-Erbas,

2004).

However, real problems do not present a natural way in which the several criteria

which are involved in the design could be transformed in a single objective. Such

an observation gave rise to the definition of multiobjective problems, that analyze

several functions and lead to a set of solutions, instead of a single function with

an optimal solution. In multiobjective problems, it rarely happens that all of the

objectives can be optimized simultaneously; instead, it is generally the case that the

objectives conflict with each other. It is not possible to obtain a total ordering of the

feasible solutions, i.e., the feasible set is only partially ordered (Cerav-Erbas, 2004).

When two solutions of a multiobjective problem that belong to the Pareto front

are compared, we observe that one achieves a better performance in one objective,

while the other one is better for the other objective. A whole set of solutions can

be generated in this way, describing the trade-off between objectives. Such a strat-

egy has great advantage over single-objective approaches, due to the flexibility that

it offers to the decision maker that can assess the relative importance of the dif-

ferent objectives in the moment of choosing a solution. Besides telecommunication

problems, multiobjective techniques can be applied to various systems, for instance

the transportation of petroleum (de Souza Filho, 2007), the design of power distribu-

tion systems (Carrano, 2007), and also epidemiological studies for finding irregularly

shaped spatial clusters (Duczmal et al. , 2008).

4.1.1 Multiobjective optimization problems

A multiobjective optimization problem is defined as:

min f(x), f(x) = (f1(x), f2(x), · · · , f`(x))

subject to: x = (x1, ..., xn) ∈ G
(4.1)
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where x ∈ X is the decision variable vector, X is the space of decision variables, G ⊂ X
is the feasible set, f ∈ F is the objective vector, and F is the objective space. Figure

4.1 illustrates an example of mapping between the space of decision variables and

objective space. The objective functions perform the mapping between each point

x = (x1, ..., xn) from the decision variable space and the respective image points

F (x) = (f1, f2, ..., fm) in the objective space.

Figure 4.1: Mapping from decision variable space to the objective space (Parreiras,
2006).

The goal of some multiobjective optimization methods is to obtain estimates of

the Pareto-optimal set (Ehrgott, 2000), which contains the set of non-dominated

solutions of the multiobjective problem. In a minimization problem, am point x′ is

said to be dominated by another point x if the following relation holds:

f(x) ≤ f(x′) and f(x) 6= f(x′)

in which the relational operators ≤ and 6= are defined as:

f(a) ≤ f(b)⇔ fi(a) ≤ fi(b), ∀i = 1, 2, · · · , l

and

f(a) 6= f(b)⇔ ∃i ∈ {1, 2, · · · , l} : fi(a) 6= fi(b)

in which a and b represent two different decision vectors.

In this way, the Pareto set P is defined as the set of non dominated solutions:

P = {x∗|@x : f(x) ≤ f(x∗) ∧ f(x) 6= f(x∗)} . (4.2)

All solutions which are not dominated by any other decision vector of a given

set are called non-dominated regarding this set. A Pareto-optimal solution is a non-

dominated vector x ∈ X . The Pareto-optimal set of the multiobjective optimization



4. Optimization and Algorithms 29

problem is the set of all Pareto-optimal solutions. The image of this set in the objec-

tive space is called the Pareto front (f(P)).

Figure 4.2 represents an example of non-dominated points. The points inside the

cones represented in the figure are dominated by the point located in its vertex. It

may be observed that the objective function f1 is smaller for point A than for point

B, while the objective function f2 is smaller for point B than for point A. This means

that there is not a dominance relationship between A and B. The same is valid

for E, in relation to A and B. The points C and F are dominated by the point A.

B dominates the points C, D and F . Among C, D and E there is no dominance

relationship. The points C and D dominates F . The points E e F do not dominate

any other point of the figure.

Figure 4.2: Non-dominated points. (i) There is no dominance relation between the
points A, B and E. (ii) A dominates C and F. (iii) B dominates C, D and F. (iv) Between
C, D and E there is no dominance relations. (v) C and D dominate F. (vi) E and F do
not dominate any other point shown in Figure (Adapted from Takahashi (2007)).

4.2 Scalarization Methods

In general, scalarization methods reduce multiobjective problems to parameterized

single objective problems. In those problems, the parameters can be systematically

changed such that different solutions of the original multiobjective optimization

problem can be found. Multiple single objective searches are carried out in order

to generate the Pareto optimal solutions. (Cerav-Erbas, 2004; Takahashi, 2007).

The most popular methods include the weighted sum method, the ε-constraint
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method, and the lexicographic weighted Chebyshev method (Cerav-Erbas, 2004).

This work will employ the ε-constraint method in order to obtain a formulation of

the problem studied here that can be solved by exact methods, at least for small

problem instances.

4.2.1 The ε-constraint method

The ε-constraint method is an approach that transforms multiple objectives into a

single objective by restating all but one objectives as constraints in the problem.

Theorem 1 If x∗ ∈ G is efficient then there is an integer i ∈ 1, 2, ..., l and real
numbers εj, j = 1, ..., l (j 6= i) such that x∗ determines:

x∗ = arg min fi(x)

s.t.


fj(x) ≤ εj ; j = 1, . . . , ` ; j 6= i

x ∈ G

(4.3)

As a practical implication of the Theorem 1, it follows that by parametrically

changing εj∀i and ∀j 6= i, it is possible to completely generate the Pareto-optimal set

P.

In Figure 4.3, the Pareto-optimal set P is represented by a continuous line. A and

B are points of Pareto-optimal set, obtained with ε-constraint method, respectively:

with the minimization of f1 s.t. f2 ≤ ε2 and with the minimization of f2 s.t. f1 ≤ ε1.

Figure 4.3: Representation of two points of the Pareto-optimal set P attained with
ε-constraint method. A is the minimization of f1 s.t. f2 ≤ ε2. B is the minimization
of f2 s.t. f1 ≤ ε1 (Takahashi, 2007).

The ε-constraint method may fail in finding efficient points. However, it can guar-
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antee at least a weak Pareto optimality of the solutions, such as illustrated in Figure

4.4. The optimal set of the problem includes the points lying on the line between

za and zb . On this line, zb is the only efficient solution. However, the optimizer

may end up with za whose corresponding decision vector is weakly Pareto optimal

(Cerav-Erbas, 2004).

Figure 4.4: The ε-constraint method guarantees weak Pareto optimality (Cerav-Erbas,
2004).

4.3 Evolutionary Computation

Optimization problems of combinatorial nature may be NP-hard, which means that

exact algorithms would require very long run times to obtain the optimal solution.

Therefore, in several practical situations a better alternative is to employ heuristic

algorithms, which attempt to find non-exact solutions as close as possible to the op-

timal one in a limited computational time budged (Cerav-Erbas, 2004). This class of

algorithms include the Evolutionary Algorithms, which are stochastic search meth-

ods, originally inpired on the natural evolution (Parreiras, 2006). However, the term

“evolutionary” has been expanded since the proposition of the earliest evolutionary

algorithms, and now it is no longer limited to algorithms that mimic the natural evo-

lution process described by Darwin. Nowadays it includes methods that, in general,

produce random perturbations or recombinations in previous solutions, which are

accepted or not accepted by a selection procedure which can have different degrees

of stochasticity. Some examples of evolutionary algorithms are Genetic Algorithms

(GA) , Genetic Programming, Evolutionary Strategies, Ant Colony and Artificial Im-
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mune Systems.

In this work, we focus on the description of Genetic Algorithms (GA) that are

popular and easy to use, inspired by the theory of natural evolution and genetics

(Parreiras, 2006). A justification for the use of GAs in routing is that they allow

the creation of several sub-optimal solutions, which can be advantageous in relation

to traditional algorithms which find routes by generating only one solution. In the

case of the problem under consideration in this thesis, this feature allows the use

of different routes for information delivery, keeping the lowest possible delay and

performing load balancing, for example.

4.3.1 Genetic Algorithms

The first GA was presented by Holland in 1975 (Holland, 1975), but the technique

was just popularized by Goldberg in 1989 (Goldberg, 1989). The GA is based on

Darwin’s theory of species evolution, that states that individuals less adapted tend to

perish, while the most adapted ones continue to exist and are able to reproduce. Im-

itating this process, Genetic Algorithms are developed from an initial population and

evolve through genetic operators such as selection, crossover and mutation (Gold-

berg, 1989).

According to Osman et al. (2005), GAs are robust, do not require auxiliary infor-

mation and can offer significant advantages with respect to performance. GAs work

with a set of encoded parameters, which means that they can easily handle discrete

or integer variables. They use probabilistic transition rules instead of deterministic

ones. Figure 4.5 presents a diagram for the development of this algorithm.

In first place, the individuals must be encoded for the desired application, such

that a sequence of symbols represents a candidate solution of the problem. Analo-

gously to the biological genetic code, the sequence of characters can be decoded into

the problem variables (phenotype), thus being analogous to a chromosome. Each

character of the chromosome corresponds to a gene. The concatenation of all chro-

mosomes belonging to an individual represents the genotype. The decoded genotype

represents the phenotype. Figure 4.6 illustrates these analogies.

A selection operation consists of choosing which individuals will have copies and

which of them will disappear over the generations. Thus, it defines which individuals

will participate of the next crossover and mutation operations to be performed. This

choice is performed such that the best individuals are more likely to remain in popu-

lation, and the less adapted ones are more likely to be discarded, in order to ensure

the population quality (Parreiras, 2006; Carrano, 2007). Some of selection methods

are the Roulette wheel and the Stochastic Tournament (Goldberg, 1989).
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Figure 4.5: Diagram of Genetic Algorithm. It consists of an initial population that
has its symbol representation decoded into variable values. With each variable, it
is possible to assess the objective function of the problem. If it is according to a
convergence criterion, the algorithm is concluded. Otherwise, it evolves again and
again through genetic operators such as selection, crossover and mutation.

Figure 4.6: Genetic Encoding. The sequence of characters can be decoded into the
problem variables (phenotype). Each character of the chromosome corresponds to a
gene. The concatenation of all chromosomes belonging to an individual represents
the genotype. The decoded genotype represents the phenotype (Parreiras, 2006).

In Roulette wheel selection, the probability of each individual being selected is

proportional to its relative fitness function, represented by a slice of a roulette wheel.

The higher the fitness, the greater is the slice in roulette, and consequently, greater
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is its selection probability (Maia, 2006). Tournament Selection, in turn, chooses the

best individual among the limited set randomly selected.

The crossover operation consists of the exchange of genetic material between

individuals, simulating the genetic reproduction process in nature. This genetic ex-

change can be implemented in various ways, such as Crossing with Multiple Cutting

Points, Uniform Crossover, Crossover for each Variable. Considering the Crossover

with one cut-off point, it selects two individuals randomly, called as parents, and

picks up a random cut-off point in both of them. The chromossome parts after the

selected points are exchanged, creating the children, as shown in Figure 4.7. Other

schemes of recombination are also employed in AGs.

Figure 4.7: Crossover with one cutoff point. A and B represent the parents individual.
A ’and B’ represent the offspring individual generated from the crossover of A and B.
K indicates the cutoff point.

The mutation operation is the responsible for inserting new genetic characteristics

in individuals of the population, in order to avoid premature convergence of the

algorithm to local optima (Holland, 1975). Considering the mutation of one bit

in a binary codification, a random bit is selected and its value is inverted, such as

represented in Figure 4.8.

Figure 4.8: Mutation of one bit. A represents the initial individual. K indicates the
random chosen bit. A’ represents the individual after mutation.
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4.3.2 Multiobjective Genetic Algorithms

Multiobjective Genetic Algorithms use the same structure of single-objective GAs, just

differing in the operation of Selection. In single-objective selection, the individuals

order is based on the value of the function to be optimized. If it is a minimization

problem, the smaller the fitness function, the better the individual corresponding to

this fitness (Parreiras, 2006). In multiobjective selection, the search algorithm tries

to reduce the distance between the population and the Pareto-front of the problem,

on the same time also trying to keep the maximum diversity of the samples. For this

reason, the evolved population should result in a good distribution of solutions over

the Pareto-front (Parreiras, 2006).

Several multiobjective evolutionary algorithms have been proposed, such as Non-

Dominated Sorting Genetic Algorithm (NSGA) (Srinivas & Deb, 1994), Elitist Non-

Dominated Sorted Genetic Algorithm (NSGA-II) (Deb et al. , 2002), Strength Pareto

Evolutionary Algorithm (SPEA) (Zitzler & Thiele, 1999), Strength Pareto Evolution-

ary Algorithm Improved (SPEA2) (Zitzler et al. , 2001) and Pareto Archived Evolution

Strategy (PAES) (Knowles & Corne, 1999). By far, the most popular one currently is

NSGA-II, which will be employed as the basis for the construction of the algorithm

proposed in this work.

Figure 4.9 represents a diagram with a description of NSGA-II. Figure 4.10 also

indicates de procedures of NSGA-II. We will describe the tth generation of this algo-

rithm. It starts with the generation of a population Pt that must be sorted by non-

dominance. This population represents the parents. On this, selection is performed

with Tournament method, which uses the lowest rank and the greater crowding dis-

tance as choice criteria. Subsequently, operations of crossover and mutation are

performed to generate the offspring population Qt.

In a next step, the Pt population is joined to Qt to generate a new group of

individuals: Rt = Pt ∪ Qt. The new population Rt is sorted by non-dominance to

obtain the non-dominated front.

After finding the non-dominated front, individuals are sorted again by rank value,

which is equal to their non-dominance front level. The front 1 has 1 as rank, the

front 2 has 2 as rank, successively. The best individuals are those with lowest rank

(Deb et al. , 2002). Again, it obtains the crowding distances decreasingly ordered.

Individuals with greater distances are then copied to the new population. The others

are discarded. Crowding distance is an approximation of the perimeter formed by the

cuboid whose vertices are their nearest neighbors. The first and last front individual

receive infinite distance. This operation is used with the aim at maintaining the

population diversity.
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Figure 4.9: Diagram showing the steps of NSGA-II

Finally, individuals are selected with the lowest rank and greater distance and

they replace the initial population.

4.3.3 Decision Making

Considering real applications, even if a multiobjective technique is applied, just one

optimal solution should be selected and executed. As the final result of a multiob-

jective problem is a set of feasible Pareto-optimal solutions, another multicriteria de-

cision problem is originated: the choice among many Pareto-optimal solutions, con-

sidering simultaneously several criteria. This choice may consider the preferences of

someone who deeply knows the problem in question. Thus, a multicriteria decision
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Figure 4.10: NSGA-II procedure (Deb et al. , 2002).

method is also necessary to solve the problem (Parreiras & Vasconcelos, 2007).

In order to determine a solution for multiobjective optimization problems, there

are three ways of combining decision methods with optimization algorithms: a priori,

a posteriori and progressive decision-making.

In the a priori decision-making approach, the objectives are aggregated into a

single objective function where the decision maker preferences are represented. The

decision-maker is consulted before the optimization process, and his preferences are

used to guide the search toward the favorite solution from the Pareto front.

In the a posteriori decision-making approach, decision techniques are applied af-

ter the attainment of efficient solutions. The feasible set is searched with no previous

informations about preferences. A multiobjective optimization algorithm is executed,

resulting in a discrete approximation of the Pareto front. Thereafter, the decision-

maker may use a decision method to compare the available alternatives and choose

a unique final solution (Parreiras & Vasconcelos, 2007; Cerav-Erbas, 2004).

In the progressive decision-making approach, the information about decision-

maker preferences is obtained in the course of the iterative optimization process in

order to guide the search algorithm. At each iteration, the search result is evaluated

by the decision-maker in order to update the preferences. The search region is then

reduced and the search direction is restricted to some particular regions according to

the preferences of the decision maker (Parreiras & Vasconcelos, 2007; Cerav-Erbas,

2004).

This study does not deal with previous or progressive preferences. The final set is

an approximation to the Pareto optimal solutions which allows a decision maker to

see the trade-offs among objectives and then, make a choice.
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4.4 Local Search Algorithms

Metaheuristic methods have gained great attention in large combinatorial problems,

that emerge in industrial or academic level (Paquete, 2010). Among various existing

metaheuristics, we highlight some methods that perform the neighborhood search.

Those methods start with a feasible solution and iteratively try to improve this solu-

tion. These algorithms can also be called local search algorithms. They are important

for finding local optima, allowing the algorithm to deliver better solutions. As exam-

ples of those algorithms, there is Iterated Local Search (ILS) (Lourenço et al. , 2001),

Tabu Search (TS) (Glover, 1989) and Variable Neighborhood Search (VNS) (Mlade-

novi & Hansen, 1997).

With these metaheuristics, it is assumed that there is a heuristic that makes local

decisions based the knowledge of the problem. Metaheuristics guide such heuristic in

the search space based on an appropriate choice of certain methods and parameters.

These approaches are conceptually simple to be parameterized and quite effective,

once a good heuristic for the problem is found (Paquete, 2010).

Both VNS and ILS are approaches conceptually simple to parameterize and they

are effective. For these reasons, these metaheuristics were chosen as a basis for the

development of this work. Their principles are presented as follows, based on the

descriptions of Paquete (2010).

4.4.1 Iterated Local Search

Several researchers have proposed ILS independently, under names such as large-
step Markov chains (Martin et al., 1991, apud Paquete, 2010, p.126) and iterated
Lin-Kernighan (Johnson and McGeoch, 1997, idem). A group of researchers have

observed that these approaches follow very similar principles. Thus, the name ILS

was proposed in order to unify the terms. This method has demonstrated high per-

formance in classical problems such as Traveling Salesman, Graph Coloring problem

and problem escalation.

According to Paquete (2010), ILS is a metaheuristic that iteratively tries to con-

struct a sequence of solutions generated by a subordinate heuristic. At each iteration,

it causes a perturbation in the solution of previous iterations.

Formally, given a minimization function f , the candidate solutions are called s,

belonging to the set S. ILS tries to do a walking between two basins of attraction in

a stochastic and heuristic way in each iteration.

A local search uses a neighborhood structure, in which a move can be performed

from one solution s to another better solution sl, through a smart way. The simplest
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way of trying an enhancement in the solution is to repeat the local search starting

from another point. Thus, if the search is performed on Sl, it avoids large search

spaces. However, the biggest problem is how to define the neighborhood of Sl in

order to be numbered and accessed efficiently.

Thus, to explore Sl without the notion of neighborhood, a disturbance is applied

in the local optimal sl ∈ Sl which leads to an intermediate state s ∈ S. One applies a

local search in s, generating another local optimal sl∗ ∈ Sl. At the end, following an

acceptance criterion, one chooses which of the local optima, sl or sl∗, will be subject

to a perturbation in the next iteration. Clearly, ILS performs the search in Sl, but

without an explicit notion of neighborhood between basins of attraction.

Algorithm 1 presents the pseudocode of ILS. In order to avoid cycles, it uses

memory as a data structure capable of returning information about visited solutions,

improving the performance of ILS.

Algorithm 1 Iterated Local Search

1: s← Generate()
2: sl ← LocalSearch(s)
3: repeat
4: s← Perturbation(sl,memory)
5: sl∗ ← LocalSearch(s)
6: sl ← Acceptance(sl, sl∗,memory)
7: until Stop condition is met

Paquete (2010) highlights the modularity as a great advantage because it allows

different configurations by changing the ILS components Generate, Perturbation,

Acceptance and LocalSearch. For this reason, the best combination of these compo-

nents should be found. They are detailed as follows.

Generate: This component generates initial solutions, that may be based on a

greedy heuristic or randomly. The greedy heuristic is preferred by some authors

because it already has some level of quality and, in general, it is efficient in terms

of computational time. However, there are situations, as described by Johnson and

McGeoch (1997) (apud Paquete (2010)) in the traveling salesman problem, in which

the greedy heuristic returns solutions that are not possible to be improved through

the component LocalSearch. In this case, it is preferable that the initial solution be

generated randomly.

Perturbation: Perturbation is used to exit from local optima. This choice is re-

lated to the choice of heuristic to LocalSearch. An essential requirement is to choose

a perturbation that does not return a solution in a previously visited basin of at-

traction. The perturbation must not be extremely strong. Otherwise, the algorithm
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would reduce to a random reboot. Thus, an experimental analysis should be per-

formed on the problem to be solved in order to find good shaking and acceptable

values for the force parameter, which govern the intensity of the perturbation. Per-

turbation may vary, for example, according to the computational time spent. Thus,

the ILS approaches to other searches, such as VNS (Mladenovi & Hansen, 1997) or

Reactive Search (Battiti, 1996).

Acceptance Criteria: This criterion determines which local optimal should be

chosen to be shaken, either the optimal current or the optimal returned by LocalSearch

in the previous iteration. This procedure allows to obtain a balance between explo-

ration and intensification of the ILS. For example, accepting the best local optimum

for perturbation favors intensification. However, the acceptance of the latest local op-

timal favors the exploration of the search space. In any case, the procedure must save

the best solution found so far, because this is the solution that should be returned by

ILS.

Local Search: In each problem, it is possible that different notions of neighbor-

hood exist and, in each of these neighborhoods, several ways of exploiting them.

However, it is often necessary to do experiments because we do not know which is

the best choice for the exploration of this neighborhood, that can use an exhaustive or

random way. Moreover, the computational cost available for performing an ILS must

be observed, since in many situations, it is preferable to obtain a lower quality result,

but with an acceptable computational cost instead of a better local optimization with

higher computational cost.

4.4.2 Variable Neighborhood Search

VNS can be described as a particular case of ILS. It consists of an implementation

of subordinate heuristics sequences, alternated with small perturbations in the re-

turned solutions by these heuristics, exploring systematically the idea of modifying

the neighborhood structure in the search.

The main difference between VNS and ILS approaches is that VNS explores the

notions of neighborhood in a more explicit manner. This method was proposed by

Mladenovi & Hansen (1997) and thanks to its simplicity of implementation, it has

shown promising results in combinatorial problems, such as optimization problems

in clustering, the problem of p-medians, among others.

Contrary to most local search methods, VNS does not follow a trajectory, but it

explores increasingly the distance of neighborhoods of a given current solution and

jumps from there to a new one, if and only if an improvement has been done. In

this way, the favorable characteristics of a current solution, for instance, that most of
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the variables are already in their optimal values, would be used to obtain promising

neighborhood solutions (Mladenovi & Hansen, 1997). In other words, the idea of

VNS is to have two or more neighborhood functions, defined by different points of

view, and switch between them.

There are many variants of VNS in literature that consider various orders in the

sequence of neighborhoods, either from simple or more complex changes, which gen-

erate more distant neighborhoods and involve higher computational cost followed by

higher accuracy in the solutions. Other versions of VNS consider different acceptance

criteria.

The first version of VNS performed by changing the neighborhood on each it-

eration of the search method, following a previously defined sequence. The stop-

ping condition happened when it was not possible to find a neighbor solution with a

smaller cost.

In a version called Reduced VNS, the change of the neighborhood would be done

if there were no neighborhood solution with lower cost. In general, the neighbor

solution is randomly selected. If a solution with a lower cost were found, the local

search method would use again the neighborhood that was ranked before, which had

occupied the first position in the sequence of neighborhoods. The advantage of this

approach over the previous one is in terms of computational time, because it pre-

vents the full exploration of the neighborhood and it allows the first neighborhood,

usually smaller, to be used more often. The stopping criterion may be the number of

iterations, the computational time or some other criteria set by user, since it is not

possible to identify a local optimum if the neighbor solution is randomly chosen.

The basic version of VNS is currently the most known and is the closest one to ILS.

Initially, a set of neighborhoods N = Nk, k = 1, ..., kmax and an initial solution x are

defined, generated by a random procedure or by a heuristic way. This solution will

be used by the local search method, which uses the neighborhood N1 and returns a

local optimum. This procedure is repeated through several iterations.

The initial solution is randomly selected in the neighborhood of the local opti-

mal of the previous iteration in accordance with the neighborhood Nk previously

selected. The acceptance criteria will be used to choose the solution with smallest

cost, between the new and the previous local optima. If the new local optimum is

chosen, then the selected neighborhood for the next iteration will be the one that

occupies the first position. Otherwise, the neighborhood will be the following in the

sequence. It is noteworthy that the process of generating initial solutions in each

iteration in the basic VNS is just the process of perturbation, typical of ILS.

The basic algorithm, proposed by Hansen & Mladenovi (2001), is described in
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Algorithm 2.

Algorithm 2 Basic VNS

1: Initialization. Select the set of neighborhood structures Nk(k = 1, ..., kmax) that
will be used in the search; find an initial solution x; choose a stopping condition;

2: Repeat the following until the stopping condition is met:
3: repeat
4: Set k ← 1;
5: while k! = kmax do
6: Shaking. Generate a point x′ at random from the kth neighborhood of x

(x′ ∈ Nk(x));
7: Local search. Apply some local search method with x′ as initial solution;

denote with x′′ the so obtained local optimum;
8: Move or not. If this local optimum is better than the incumbent, move there

x← x′‘, and continue the search with Nk, k ← 1 ; otherwise, set k ← k + 1.
9: end while

10: until

Based on Variable Neighborhood Search, the purpose of this research is to inte-

grate these concepts into the Genetic Algorithm metaheuristic, by developing a new

algorithm with features of both of them. During the process of evolution of the Ge-

netic Algorithm, crossover and mutation operators are defined under the perspectives

of different neighborhoods, which are called Level 1 and Level 2. The search on each

level is aided by a refinement performed by the other level through their alternate

application, which explores different search spaces. In a next chapter, we describe

these different operations proposed at each level.



Chapter

5
The Variable Neighborhood Multiobjective

Genetic Algorithm: VN-MGA

This chapter presents the optimization model for the problem of ensuring QoS on

IP networks. It also presents the genetic operators implemented and the definition

of levels, inspired by methods of VNS, used to enhance the exploration of the search

space.

5.1 Problem definition

The domain of discussion of this study is the TE intra-domanin, directed for a prob-

lem of choosing routes in a scenario of a corporative IP network with some specific

technology that allows the explicit routing, such as choosing LSP on IP networks with

the technology MPLS (Multiprotocol Label Switching). The routing should consider

some QoS requirements according to the type of application. Each QoS metric is

modeled as one objective. The proposal is to minimize the network cost, to respond

for simultaneous user’s requests, ensuring the Quality of Service and to provide a

load balancing in the network.

This research employs, in the formulation of the case studies, some classical net-

work topologies, analyzed in a similar context, but with different goals, by authors

such as Santos (2009) and Andrade (2008). These topologies are shown in Figure

5.1. Simple topologies such as #a, #b and #c allow the validation of the results

43
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of the proposed algorithm, comparing them with results obtained using other tech-

niques. Topologies as #d, #e and #f are of a similar scale of the netwoks that appear

in real world applications, such as metropolitan networks or Internet backbones.

(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Instances of networks (Santos, 2009).

5.2 Model Formulation

The network model is represented by the graph G = (V,A), where V = {1, 2, . . . , v}
indexes the set of routers (nodes) in the MPLS domain andA = {(i, j) | i, j ∈ V, i 6= j}
is the set of links, in which the link (i, j) connects node i to node j. The bandwidth of

each link (i, j) is represented by Bij. Each user’s request is represented by the triple

(ok, dk, bk), where ok ∈ V and dk ∈ V indicate, respectively, routers of source and
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destination of traffic and bk indicates the amount of bandwidth to be reserved for the

request k. The set of requests is indexed by Θ = {1, 2, . . . ,m}.
Objective functions and constraints are described by equations from (5.1) to

(5.4), respectively, which are based on the work of Santos (2009).

min


F1 =

∑
k∈Θ

∑
(i,j)∈A

zkij

F2 =
∑
k∈Θ

(1− ak)

F3 = α

(5.1)

s.t. ∑
j∈V,j 6=i

zkij −
∑

l∈V,l 6=i

zkli = Γk
i , ∀i ∈ V, ∀k ∈ Θ (5.2)

∑
k∈Θ

bkzkij ≤ αBij,∀(i, j) ∈ A (5.3)

∑
k∈Θ

ak ≥ C (5.4)

in which

zkij ∈ {0, 1},∀(i, j) ∈ A,∀k ∈ Θ (5.5)

is a variable which is equal to 1 when the link (i, j) is used to attend request k, and 0

otherwise,

ak ∈ {0, 1}, ∀k ∈ Θ (5.6)

is a variable that becomes equal to 1 if request k is attended and 0 otherwise, Γk
i ,

given by

Γk
i =


ak ; if i = ok;

−ak ; if i = dk;

0 ; otherwise

(5.7)

indicates if the node i is the source, the destination, or none of these, for the request

k, and

α ∈ [0, 1] (5.8)

is a variable which, being minimized under constraint (5.3) becomes equal to the

maximum relative bandwidth occupation considering all links.

Objective function F1 represents the number of links that are used in the paths of

all the accepted requests. The fewer links are used the smaller is the delay for the

data to travel from origin to destination. F2 represents the number of rejections of
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requests. The amount of rejection of requests is related to the admission control of

new connections, which determines whether a connection can be admitted or not,

according to the network load condition and the amount of requested bandwidth.

The minimum number of requests that must be responded is represented by C, shown

in Equation (5.4). In F3, α represents (in relative terms) the load of the most used

link, with values varying from 0 to 1. Minimizing the amount of data traffic on

the links means that the load is evenly distributed and consequently the network is

balanced. The constraint (5.2) represents the classical flow conservation. According

to constraint (5.3), the requested bandwidth (bk) for a link (i, j) must be less than or

equal to the available bandwidth.

5.3 The Implementation

The proposed multiobjective optimization approach to the problem of routing in IP

networks, with the specific features that are necessary to deal with QoS parameters,

is depicted in this section. The proposed algorithm, the Variable Neighborhood Mul-

tiobjective Genetic Algorithm (VN-MGA), is endowed with a new way to perform a

search, considering different neighborhoods. It can initially be described as an imple-

mentation of the NSGA-II. The innovation concerns on the way the genetic operators

work, in a switching mode between two different neighborhoods (levels).

Figure 5.2 presents a sketch of the main structure of VN-MGA. In this figure, it

can be seen that the idea is to perform a whole genetic search in one of the levels

(which means: a search considering the decision variables of that level) until a switch

indicator is met, and to change to the other level, and so forth, until a global stopping

criterion is reached. The switch indicator is defined here as the attainment of a fixed

number of generations, NumGen, within that level or as a number of generations

with no longer solutions enhancement.

5.3.1 Solution Encoding

The structure of an individual is described by an ordered set of m requests, along

with its corresponding routes, as shown in Figure 5.3.

The concept of level refers to the neighborhoods considering two different subsets

of decision variables, the low-level encoding, which represents explicitly the routes

that are followed by each request of service, and the high-level encoding, that rep-

resents the permutations of several requests of service, defining the order in which

they are included into the solution. The alternate employment of those encodings in
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Figure 5.2: Flowchart of VN-MGA

the VN-MGA, as long as they induce different neighborhoods, becomes similar to the

search principle of VNS.

When the search focuses on the routes (Level 1), the request sequence becomes

fixed and the sequences of graph edges for each pair source-destination compose the

decision variable vector, in the search for the request paths. The individual, denoted

by I1, I2, . . . , IN , is represented by a sequence of requests, which is kept fixed, and by

a group of edges associated with each request, which constitute the decision variables

within this level. Each request has a specific requirement of bandwidth according to

its application (requested bandwidth). This means that the requested bandwidth

must be less than or equal to the available one, when this request is examined. If

the request cannot be met, i.e. the requested bandwidth is greater than the available

one, then that request is rejected.
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Level 2 Level 1

I1

I2

I3

I4
...

In

R1

R2

...

Rm

R2

Rm

...

R1

1 2 3 5

2 1 4

4 5 6

2 3 5 4

4 2 3 5 6

1 4 5

Figure 5.3: Representation of solution encoding in two operation levels. In this
figure, the individual I1 processes a sequence of requests starting with R1 followed
by R2, and individual In processes a sequence of requests that starts with R2 followed
by Rm. In individual I1 the request R1 has origin in node 1 and destination in node 5,
with a path that comprises nodes 2 and 3. In individual In the request R1 has origin
in node 1 and destination in node 5 (the origin and destination nodes are necessarily
the same ones), with a path that comprises only node 4.

When the search focuses on the request sequence (Level 2), the paths associated

with each request are kept fixed, and the sequence of requests constitutes the decision

variable. The decision variables in this case are represented by the ordered sets

of requests, indicated by R1, R2, . . . , Rm, which define a priority order for request

answering.

Several former works consider the routing as the unique space of search – this

is called here the single-level approach. The proposed algorithm (the two-level ap-

proach) implements the Level 1 and the Level 2 encodings, which allow the con-

struction of routing solutions that are built according to different request sequences.

Although, in the case of solutions that accomodate all requests, both approaches are

able to find the same solutions, it should be noted that the two-level approach is

able to deal with partial solutions which may be rather useful in the construction of

the final solution. This means that the two-level approach is likely to become more

efficient in the search than the single-level approach. Of course, in the case of those
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problems in which some requests are not attended, the single-level approach is not

applicable.

Describing an example of instance represented by Figure 5.4 (a), a possible re-

quest R1 of an individual I1 may be composed of nodes 1 and 5 as source and des-

tination respectively (Figure 5.4 (b)). It means that a potential path, represented in

Figure 5.4 (c), may be composed of nodes 2 and 3. Another potential path for the

same request R1 associated with an individual In, represented in Figure 5.4 (d), may

be composed of node 4.

1

2 3

4 5

6

(a)

1

2 3

4 5

6

(b)

1

2 3

4 5

6

(c)

1

2 3

4 5

6

(d)

Figure 5.4: Representation of candidates paths in a given instance. In (a), the repre-
sentation of the network instance. In (b), nodes 1 and 5 are source and destination
respectively. In (c), 1 - 2 - 3 - 5 is a candidate path. In (d), 1 - 4 - 5 is another
candidate path.

Considering another request, Rm for the same individual I1, for the same instance

represented by Figure 5.5 (a), nodes 4 and 6 are defined as source and destination

respectively (Figure 5.5 (b)). A potential path, represented in Figure 5.5 (c), may be

composed of node 5. Another candidate path may be composed of nodes 2, 3 and 5

(Figure 5.5 (d)).

5.3.2 Solution Decoding

The solution decoding procedure evaluates an individual according to the steps de-

scribed in Algorithm 3. The evaluation of an individual starts with the request which

is situated on the top of the request list, proceeding to the next one immediately

below, and so forth. It should be noted that if in any link the available bandwidth is
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Figure 5.5: Representation of candidates paths in a given instance. In (a), the repre-
sentation of the network instance. In (b), nodes 4 and 6 are source and destination
respectively. In (c), 4 - 5 - 6 is a candidate path. In (d), 4 - 2 - 3 - 5 - 6 is another
candidate path.

not enough, then a local search is performed within the decoding procedure, which

may modify the individual.

Algorithm 3 Solution Decoding

1: for k ← 1 to m do
2: if there is available bandwidth in all links of request k then
3: • request k is marked as “attended"
4: • the available bandwidth in each link of the path is reduced by the amount

bk

5: else
6: • a maximum path search is conducted from the origin to the destination of

the request, considering the value of the available bandwidth in each link as
the corresponding edge length

7: if the request can be attended in this new path then
8: • the path sequence is updated
9: • the request is marked as “attended"

10: • the available bandwidth in each link of the new path is reduced by the
amount bk

11: else
12: • the request is marked as “rejected"
13: end if
14: end if
15: end for
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After the evaluation of an individual, the objective function values can be esti-

mated for such an individual. The objective function F1 accumulates the number of

nodes between the source and the destination of all attended requests; the objective

function F2 accumulates the number of rejected requests; and the objective function

F3 registers the percentual of occupation of the most loaded link in the network.

5.3.3 Initial population

The initial population of VN-MGA is composed of N individuals. The ordering of

the requests in each individual of this initial population is randomly chosen. The

initial paths are chosen such that: (i) 10% of the individuals are constructed with

a minimum path algorithm, considering the number of links as the path length; (ii)

10% of the individuals are constructed with a minimum path algorithm, considering

the percentual of bandwidth occupation of each link as the edge length; (iii) 10%

of the individuals are constructed with a maximum path algorithm, considering the

number of links as the path length; (iv) 70% of the individuals are created with a

minimum path algorithm, considering random weights in the links.

It should be noted that the individuals created in steps (iii) and (iv) are rele-

vant in order to provide a diversity of the solutions in the genetic pool of the initial

population.

5.3.4 Crossover Operators

For both Levels 1 and 2, two different crossover operators are implemented. They

were proposed under a general context. It means that they can be used in another

graph problems, considering one or both levels, depending on the adopted encoding.

This way, it may guarantee the population factibility.

Level 1 crossover consists of the exchange of genetic material between individuals

concerning the encoded routes. This crossover, which is illustrated in Figures 5.6 and

5.7, is implemented as described in Algorithm 4.

Level 2 crossover performs combinations of individuals concerning the request se-

quence. This crossover operator, which is illustrated in Figure 5.8, is presented in

Algorithm 5. Both crossover operators deliver only one offspring.

5.3.5 Mutation Operators

The mutation operators are responsible for the insertion of new genetic characteris-

tics in the population. As in the case of crossover operators, the mutation operators

are also implemented in two levels. The Level 1 Mutation is presented in Algorithm
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Algorithm 4 Level 1 Crossover

1: • Two individuals Ii and Ij are randomly selected;
2: if Ii ≺ Ij then
3: O ← Ii
4: else if Ij ≺ Ii then
5: O ← Ii
6: else
7: for k ← 1 to m do
8: if the paths of request k in both individuals share some nodes then
9: • randomly choose a common node nc;

10: • the path of request k in offspring solution O starts in node ok, using the
path of individual Ii until node nc, and then proceeds with the path of
individual Ik until node dk (see figure 5.6);

11: else if there is a node nd which is reachable, in one step, from some node of
the path of individual Ij, and which either belongs to the path of individual
Ik or reaches this path in one step then

12: • the path of request k in offspring solution O starts in node ok, using
the path of individual Ii plus one step outside this path, until node nd,
and then proceeds with the path of individual Ij until node dk, eventualy
employing one step outside this path (see figure 5.7);

13: else
14: • the offspring solution O inherits the path of request k either from Ii or

from Ij, randomly chosen.
15: end if
16: end for
17: end if
18: return offspring O

Algorithm 5 Level 2 Crossover

1: Two individuals are randomly selected;
2: A request is randomly chosen;
3: The two routes that are associated with that request in the different individuals

are swapped, generating a new individual.
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ok nc dk

(a)

ok nc dk

(b)

ok nc dk

(c)

Figure 5.6: Level 1 Crossover: a common node nc exists (Santos, 2009). (a) The
route of parent I1 for request r. (b) The route of parent I2 for request r. (c) The
resulting route in the offspring for request r.

ok dk

(a)

ok dk

(b)

ok dk

(c)

Figure 5.7: Level 1 Crossover: no common node (Santos, 2009). (a) The route of
parent I1 for request r. (b) The route of parent I2 for request r. (c) The resulting
route in the offspring for request r.

6. In the Level 1 Mutation, a new section of the mutated route is created. This search

is performed in forward and backward directions (from the first to the second cutoff

point, and in the opposite direction, from the second to the first cutoff point), alter-
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R1 R2 R3 R4I1:

R4 R1 R3 R2I2:

(a)

R1 R2 R3 R4I1:

R4 R1 R3 R2I2:

(b)

Figure 5.8: Level 2 Crossover. (a) Request R2 is randomly selected. (b) The routes of
request R2 in I1 and I2 are interchanged, generating the offspring.

nately, avoiding any bias in this search. Figure 5.9 illustrates this mutation process.

Algorithm 6 Level 1 Mutation

1: • an individual is randomly chosen;
2: for k ← 1 to m do
3: • p is chosen from a uniform distribution in the interval [0, 1];
4: if p < pmut then
5: • Two cutoff points are randomly chosen in the path of request k;
6: • The Dijkstra algorithm looks for a new path considering random costs

distributed on the links, joining the first cutoff point to the second one.
7: end if
8: end for

The Level 2 Mutation is presented in Algorithm 7. It just performs a swap of the

position of requests in the precedence list. This mutation operator is illustrated in

Figure 5.10.

Algorithm 7 Level 2 Mutation

1: Choose randomly an individual;
2: Select randomly two requests;
3: Swap the position of those requests in the sequence.

5.3.6 VN-MGA Structure

The basic structure of the Variable Neighborhood Multiobjective Genetic Algorithm

(VN-MGA) proposed here is similar to the classical Non-dominated Sorting GA (NSGA-

II), described in (Deb et al. , 2002). The following features of NSGA-II are used inside

VN-MGA:

1. Non-dominated sorting: consists of sorting the solutions according to the non-

dominance ranking. An individual belonging to rank 1 is not dominated by any
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(a) (b)

(c)

Figure 5.9: Level 1 Mutation. (a) The route for request r. (b) Random selection of
two intermediate nodes which belong to the route for a new sub-route. (c) Mutated
individual.

R1 R2 R3 R4 R5I1:

(a)

R1 R2 R3 R4 R5I1:

(b)

R4 R2 R3 R1 R5I1:

(c)

Figure 5.10: Level 2 Mutation. (a) Sequence of requests R1...R5 from an individual
I1. (b) Selected requests for mutation: R1 and R4. (c) Mutated individual.

solution, while an individual belonging to rank q is dominated by at least one

individual that belongs to rank q − 1 and by no solution belonging to rank q

or greater. This ensures that solutions belonging to lower dominance ranks are

better than solutions situated at higher ranks.

2. Crowding-distance: The crowding distance is used as a measure of occupation in

the neighborhood of a solution in the objective space. This indicator is defined

as the sum of the edge lengths of a hypercube with vertices situated on the `
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nearest solutions (in which ` stands for the dimension of the objective space).

The crowding distance is used as the comparison criterion between solutions

situated in the same rank, providing an advantage to the solutions which have

the nearest neighbors at larger distances. This helps to avoid situations where

the obtained solution set is too concentrated in a small (crowded) region, lead-

ing the algorithm to produce more uniform samplings of the Pareto-optimal

set.

3. Binary tournament: consists of randomly choosing two individuals and compar-

ing them according to a fitness function. The one with best fitness evaluation

is selected. In such a comparison, the rank is used as the first criterion and, in

the case of solutions with same rank, the crowding distance is used in order to

determine the result of the tournament.

The VN-MGA procedure is presented in Algorithm 8, which describes in more detail

the flowchart of Figure 5.2.
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Algorithm 8 VN-MGA pseudocode

1: Generate an initial population Q with N individuals;
2: Evaluate the objective functions on Q;
3: Assign the non-dominated sorting ranking to the individuals of Q;
4: Assign the crowding distances to the individuals of Q;
5: while not stop condition 0 do
6: while not stop condition 1 do
7: Using a binary tournament, considering the non-dominated sorting rankings

and the crowding distances, select 0.75N individuals from Q, forming pop-
ulation C, and select other 0.75N individuals from Q, forming population
M

8: Perform Level 1 crossover on the individuals of C, generating a subpopulation
C̄ with a number of individuals equal to 0.75N ;

9: Perform Level 1 mutation on the individuals ofM, generating a subpopula-
tion M̄ with a number of individuals equal to 0.75N ;

10: Evaluate the objective functions on the individuals of C̄ and M̄;
11: Join the population Q with subpopulations C̄ and M̄, forming population

Q̄ = Q∪ C̄ ∪ M̄;
12: Assign the non-dominated sorting ranking to the individuals of Q̄;
13: Assign the crowding distances to the individuals of Q̄;
14: Select deterministically N individuals from Q̄, considering the non-

dominated sorting rankings and the crowding distances, forming population
Q;

15: end while
16: while not stop condition 2 do
17: Using a binary tournament, considering the non-dominated sorting rankings

and the crowding distances, select 0.75N individuals from Q, forming pop-
ulation C, and select other 0.75N individuals from Q, forming population
M

18: Perform Level 2 crossover on the individuals of C, generating a subpopulation
C̄ with a number of individuals equal to 0.75N ;

19: Perform Level 2 mutation on the individuals ofM, generating a subpopula-
tion M̄ with a number of individuals equal to 0.75N ;

20: Evaluate the objective functions on the individuals of C̄ and M̄;
21: Join the population Q with subpopulations C̄ and M̄, forming population

Q̄ = Q∪ C̄ ∪ M̄;
22: Assign the non-dominated sorting ranking to the individuals of Q̄;
23: Assign the crowding distances to the individuals of Q̄;
24: Select deterministically N individuals from Q̄, considering the non-

dominated sorting rankings and the crowding distances, forming population
Q;

25: end while
26: end while
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6
Results

With the purpose of determining the effect produced by the two-level encoding,

which was presented in the VN-MGA, some experiments have been performed. Ini-

tially, we validate the implementation of the proposed algorithm. Afterwards, we

validate the functionality of the proposed approach. Those tests were performed

with some network instances which are often used in the evaluation of algorithms

for telecommunication routing problems.

6.1 Validating the implementation

The algorithms presented in this work need to be validated. Generally, the validation

of algorithms is done by comparing with other similar algorithms, previously created

to solve the same problem. In this context, the term numerical validation is used

to represent observation procedures, comparison and evaluation of algorithms with

their technical specifications. Methods are considered validated if they can solve,

within the accuracy limits defined, the proposed test problems.

Aiming at validating the implementation of the proposed algorithm, initially, we

use a very simple network instance, represented in Figure 5.1(e). An implementation

of the ε-constraint method in a ILP solver looked for values of two objective functions,

F1 and F3 , equating F2 to zero. After, the proposed algorithm was tested.

The tests considered 10, 20, 30 and 40 simultaneous requests, with 150 gener-

ations and 100 individuals, ignor results with F2 different from zero. The proposed

58
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algorithm reached the same values of the exact method, providing support to the

proposed method. Such results are represented in Figure 6.1.
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Figure 6.1: Comparison between VN-MGA (represented by asterisks) and ILP ε-
constraint (represented by circles) results for 10, 20, 30 and 40 simultaneous re-
quests for the network instance represented in Figure 5.1(e).

6.2 Validating the proposed algorithm

Some experiments have been performed in order to compare the proposed approach

with other alternative formulations. Three analysis were performed. The first one

consists of a comparison among the proposed algorithm, the basic VNS and an exact

solution obtained from an Integer Linear Programming solver. The second experi-

ment compares the performance of VN-MGA with single-level encodings of the same

Genetic Algorithm and with the basic VNS. The third one analyzes the quality of the

solutions delivered by the algorithms, after 20 executions of each algorithm, using

the Hypervolume Metric (Zitzler, 1999).

These tests considered an available bandwidth for each link of 1024 kbps. Each

request required a bandwidth of 200 kbps or 400 kbps (randomly chosen). Source
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and destination of each request are randomly assigned. Different scenarios, with

different numbers of requests were considered in the tests.

6.2.1 Comparison with Integer Linear Programming (ILP) results

In first place, the VN-MGA was compared with the results obtained by Integer Lin-

ear Programming (ILP) solvers, which provide exact solutions of the problem. The

ILP formulation determined the solutions of the multiobjective problem by using a

scalarization approach, the ε-constraint method (Ehrgott, 2000). In this approach,

the multiobjective optimization problem is converted into several single-objective

problems, each one with only one objective function to be optimized. The other ob-

jective functions are treated as constraints. Each solution of such a problem is at

least a weakly non-dominated solution (Ehrgott, 2000). By varying the values εi of

the constraints, it is possible to generate all the solutions belonging to the Pareto-

optimal set of the problem. In this way, a multiobjective problem as defined in (4.1)

can be modeled in terms of ` problems:

x∗ = arg min fi(x)

s.t.


fj(x) ≤ εj ; j = 1, . . . , ` ; j 6= i

x ∈ X

(6.1)

In order to define an ε-constraint version of problem (5.1), only F1 and F3 ob-

jective functions were considered, and F2 function was fixed in zero (no request

rejection). In this way, the multiobjective problem studied the trade-off between cost

of time delay in the network and the relative occupation of the most loaded link. In

first place, F1 function was minimized without a constraint in F3 value. Afterwards,

starting from the optimal value of F1, the ILP solver minimized F3 objective function,

with F1 employed as a constraint which was relaxed, from that minimal value un-

til the minimum of F3 was reached. The ILP tools FICOTMXPress Optimization and

CPLEX solver were used in this procedure, leading to identical results.

The solutions delivered by the ILP solver, using the ε-constraint scalarization ap-

proach, are used to evaluate the ability of the proposed algorithm for reaching the

Pareto-optimal set of the problems.

Another comparison which was performed at the same time was with the results

provided by the original VNS algorithm, as defined by Algorithm 2, using the same

Level 1 and Level 2 neighborhoods. This algorithm employed the same ε-constraint
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scheme, generating only one estimate of a Pareto-optimal solution for each algorithm

run.

Some fixed parameters of the VN-MGA are described in Table 6.1. The choice

Table 6.1: Parameters for the VN-MGA algorithm

Mutation Probability (pmut) 0.4
Number of generations 150
Number of individuals (N) 100

of those parameters was performed, as a preliminary step, considering a rough grid,

in which the pmut value had resolution of 0.1 and both the number of generations

and the number of individuals had a resolution of 20. Each combination was then

executed. The final values were chosen as the ones that produced accurate results

within reasonable computational time.

It can be inferred, from Table 6.1, that the number of function evaluations in each

run of VN-MGA with this configuration is 45000. In order to provide a comparison

which becomes even unfavorable for the VN-MGA algorithm, the basic VNS was also

run with 45000 function evaluations for each ε value, which means 630000 function

evaluations for the search of the whole Pareto-optimal set.

The test instance is composed of 24 vertices and 43 links. For 10 simultaneous

requests, the values obtained by VN-MGA are equal to the best values reached by

the ILP ε-constraint method. For 20 and 30 simultaneous requests, not all the values

were reached. In some cases, the results by VN-MGA presented a gap in relation

to the exact solution. The algorithm was not able to cover the whole Pareto front.

Nevertheless, it clearly outperforms the basic VNS algorithm both in terms of con-

vergence and diversity. Figure 6.2 shows the results for 30 requests, with the best

values reached by the VN-MGA and the basic VNS, after 21 runs, against the values

provided by the ILP approach.

Although the ILP approach has delivered the best solutions for the problem under

consideration, there are some drawbacks with this approach which may render it in-

practicable. The ILP solver has to be executed once for generating each solution of the

Pareto-optimal set. Beyond that, it requires a simplification of the problem, namely,

the use of only two objective functions. But the main inconvenience is that its com-

putational complexity is exponential in the number of decision variables. Therefore,

this kind of approach is not suitable for even slightly larger problem instances. An

example of problem instance for which the proposed method works and the ILP for-

mulation does not run, in the same computer environment, is also presented in the
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Figure 6.2: Comparison among ε-constraint, VNS and VN-MGA algorithm for R=30.
Circles represent the solutions achieved by the ε-constraint ILP technique. The so-
lutions delivered by VNS are represented by black crosses and the solutions of the
proposed VN-MGA are represented by red asterisks. (Horizontal axis: F1. Vertical
axis: F3.

comparison.

6.2.2 Comparison among VN-MGA, single-level encoding GAs and the basic

VNS

This experiment compares the performance of VN-MGA with single-level encodings

of Genetic Algorithms and the basic VNS. Those single-level versions are built by

simply replacing the section in Algorithm 8 which performs search in a level by a

corresponding section which performs search in the other level. In this way, the

algorithm performs twice the search in the same level, instead of changing the level.

In this case, differently from the first experiment, the whole problem is considered,

with three objective functions. The same instance represented in Figure 5.1(d) is

considered, with 40 simultaneous requests. The same set of parameters presented in

Table 6.1 is employed again.

As can be observed in Figure 6.3, the variable encoding represented by VN-MGA

delivers the best results among all algorithms. With few exceptions, most of the

solutions found by the other algorithms were dominated by some solution provided

by VN-MGA.

Interestingly, the second best algorithm was the Level 2 MGA. It suggests that the

greedy operators, which provide the routes in the initial population plus the local

search included in the solution decoding routine, are able to reach good solutions in
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Figure 6.3: Comparison among VN-MGA, single-level encoding GAs and the basic
VNS for the network instance of Figure 5.1(d). Circles represent solutions achieved
by Level 1 GA. Triangles represent solutions obtained by Level 2 GA. Crosses indicate
solutions provided by VNS. Asterisks indicate solutions provided by VN-MGA.

this problem.

Likewise, another experiment considered 40 simultaneous requests, 150 genera-

tions and 100 individuals. The same instance represented in Figure 5.1(e) is consid-

ered. The purpose of this experiment is the comparison between single-level encod-

ing GAs and the proposed VN-MGA with three objective functions, as shown in Figure

6.4. The results are represented by circles (Level 1), triangles (Level 2) and asterisks

(VN-MGA). The figure shows the domination of VN-MGA solutions, also presenting

a better spread of solutions. This indicates the better performance of the two-level

encoding.

6.2.3 Hypervolume metric

The hypervolume metric is addressed to measure the proximity of solution sets to

the Pareto front and to quantify the uniformity of solution distribution over the front.

This indicator is defined as follows: Each point of the solution set A defines a ver-

tice of a hypercube hci. The opposite vertice, considering the main diagonal, is a

fixed point whose coordinates may be defined as the worst values attained by each

objective for all solution samples in the Pareto-front. Considering a solution set A,

the union of the regions covered by all such hypercubes generates a figure whose

hypervolume defines the hypervolume metric. Equations 6.2 and 6.3 illustrate this

metric.
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Figure 6.4: Comparison among VN-MGA, single-level encoding GAs and the basic
VNS for the network instance of Figure 5.1(e). Circles represent solutions achieved
by Level 1 GA. Triangles represent solutions obtained by Level 2 GA. Asterisks indi-
cate solutions provided by VN-MGA.

HVA = volume(∪|A|i=1hci) (6.2)

HV RA = HVA/HVY ∗ (6.3)

Hypervolume metric (Zitzler, 1999) was employed here in order to compare the

basic VNS and the proposed VN-MGA algorithm. Also the single-level GAs involving

only Level 1 and Level 2 operations are included, with the aim of quantifying the

gain of the combination of levels. For the hypervolume computation, the package

described by Fonseca et al. (2006) was used. Table 6.2 shows the values of hyper-

volume metric calculated for the Pareto fronts produced by each algorithm with the

set of parameters of Table 6.1, after 20 runs, using the instance of Figure 5.1(d) with

40 simultaneous requests.

These results are also shown in the boxplot of Figure 6.5. Comparing them, one

observes that the VN-MGA attains significantly better hypervolume values than the

other algorithms. Even its worst value is better than the best value provided by the

other ones.

The problem instance represented in Figure 5.1(d) with 40 simultaneous requests

is, indeed, near the edge of problem sizes which are solvable by the ILP formulation

in computational environments such as the one used in the comparisons performed
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Table 6.2: Hypervolume metric after 20 runs of algorithms with Level 1, Level 2, VNS
and VN-MGA, for 40 simultaneous requests.

Hypervolume Level 1 Level 2 VNS VN-MGA
Best value 27.73 26.22 19.83 44.64
Worst value 19.18 21.76 14.20 30.39
Average value 23.75 25.31 16.97 35.20
Standard Deviation 2.02 1.23 1.66 5.11
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Figure 6.5: Boxplot results of the hypervolume metric after 20 runs of algorithms
with Level 1, Level 2, VNS and VN-MGA, for 40 simultaneous requests.

here1. The same network topology with 50 simultaneous requests no longer runs in

that environment. In order to illustrate the performance of the proposed methodol-

ogy in that problem instance, Table 6.3 presents the hypervolumes of the solution sets

achieved by VN-MGA, Level 1 and Level 2 algorithms. Those results were obtained

with 15 runs of each algorithm.

Table 6.3: Hypervolume metric after 15 runs of algorithms with Level 1, Level 2, and
VN-MGA, for 50 simultaneous requests.

Hypervolume Level 1 Level 2 VN-MGA
Best value 19.13 31.13 37.40
Worst value 13.67 24.35 25.86
Average value 17.53 26.76 31.91
Standard Deviation 1.66 1.94 3.16

1Hardware: Intel Quad Core 2.66 GHz 64bits with 2GB of DDR-400 RAM. Software: Windows XP
SP3 and FICO XPress V. 7.01.
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7
Conclusions and Future work

7.1 Conclusion

This thesis proposed an algorithm to optimize the multiple objectives that represent

Quality of Service indices on IP networks, in the context of packet routing in MPLS-IP

networks. It aimed at finding LSPs in MPLS domain. This way, the routing process

tried to minimize the delay, keeping the load balancing of the network and minimize

the rejection of simultaneous requests.

The multiobjective techniques applied are based on genetic algorithms due to

good results observed in similar applications problems, besides the advantage of pro-

ducing a number of different solutions. The concept of walking between borderer

basins of attraction in a stochastic and iterative way acts as an effective solution that

comes from the concepts of VNS techniques. The proposed optimization model relies

on the definition of specific Genetic Algorithms operators and the study of different

alternatives for the choice of routes on IP networks.

The presented algorithm, VN-MGA, is a Genetic Algorithm based on the NSGA-

II with inspirations on VNS. Genetic operators were implemented in two levels that

encode the same individual in different ways to the same problem. In the first level,

named Level 1, each node is analyzed in order to establish the routes to be followed

under a "microscopic" point of view. The solution is encoded considering as decision

variables the edges that form the routes to be followed by each request. In the

second level, named Level 2, the operators focus on requests. The solution is encoded

66
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with the routes considered as fixed, and the sequence of requests considered as the

decision variable. The treatment of each request is based on the arrival order, i.e.,

there is no priority ranking between simultaneous requests. This level considered

routing under a "macroscopic" scenario that uses pre-defined routes of Level 1.

The modification of search space, aided by the levels change, generates different

local optima for each neighbor. It makes possible to jump from one attraction basin

to another, avoiding premature convergence of the algorithm. The expansion of the

search space allows a greater diversity of solutions belonging to the Pareto Front. It

results in a large range of options that may be considered by the decision maker in

different situations, such as in: (i) network congestion that occur in rush moments,

or (ii) using applications that require a small delay, or (iii) responding to concur-

rent requests that do not present stringent requirements of delay, but require large

bandwidths, among others.

From results presented in Chapter 6, in comparison with single levels, the com-

bination of levels generates non-dominated solutions, which thus confirms the effi-

ciency of the proposed method. It can be stated that the implementation with a new

kind of encoding combined in a Multiobjective Genetic Algorithm with features based

in concepts of VNS, the results show an increasing of the convergence and diversity

of solutions. Solutions not envisioned by other algorithms that dealt with the same

problem have been achieved. These results are innovative facing an IP network prob-

lems with particular features. It is important to say that the proposed algorithm gives

solutions comparable to those obtained by exact methods. Futhermore the algorithm

is able to run larger instances than those obtained by commercial solvers. It means

that the method allows indications of high quality results in feasible computational

time.

7.2 Limitations

It is important to note the methodological limitations of the studies involved in this

thesis. Although this research was conducted to indicate routes to provide QoS pa-

rameters, it did not examine a very important QoS parameters, that is the loss of

packets. However, an investigation in a dynamic environment should be carefully

analyzed due to the limitations of simulation softwares, such as the number of possi-

ble paths as described by Andrade (2008). It can be investigated in a future work.

It should be highlighted that, if scenarios of routers or backbones are analyzed, for

example, the instances used in Chapter 6 can be classified as medium size. However,

with these medium size instances, unlike the proposed algorithm, commercial solvers
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were not capable of running.

Another limitation of this study it that there were no previous works with the

same configuration to be used as benchmarks. For this reason, this research ex-

tracted reference values until the limitation of the commercial solvers to validate the

proposed algorithm. It can be seen as a limitation but also as an advantage of an

innovative approach.

7.3 Future works

The good behavior presented by the proposed VN-MGA, outperforming some algo-

rithm versions that do not employ variable neighborhood algorithm, raises an inter-

esting issue to be studied: should the evolutionary algorithms specialized in combina-

torial optimization problems employ variable neighborhood operators as a standard

methodology?

There are two principal directions for further development of the approach pro-

posed here. The first one considers the specific problem of routing. The second one

considers the theoretical problem of employing variable neighborhoods or different

structures encoding in generic evolutionary algorithms.

Concerning the routing problem, a challenging area of future work concerns a

quantitative analysis, covering sensitivity and scalability. The sensitivity deals with

fault tolerance in paths or routers and the capacity of re-routing of the proposed

method. Using new scenarios, it is possible to assess the scalability in order to quan-

tify the gain that is expected with the application of the proposed algorithm. Within

this perspective, it is also possible to suggest new models for telecommunication net-

works.

Concerning the theoretical problem of studying variable neighborhoods in generic

evolutionary algorithms, there are several open issues. We intend to tackle, in the

near future, some issues related to the usage of encodings that allow metric opera-

tions (Moraglio et al. , 2007; Carrano et al. , 2010).
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