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Efficient Localization Methods for Passivity
Enforcement of Linear Dynamical Models

Zohaib Mahmood, Student Member, IEEE, Stefano Grivet-Talocia, Senior Member, IEEE,
Alessandro Chinea, Member, IEEE, Giuseppe C. Calafiore, Senior Member, IEEE, and Luca Daniel, Member, IEEE

Abstract—This paper describes a novel approach for passivity
enforcement of compact dynamical models of electrical intercon-
nects. The proposed approach is based on a parameterization
of general state-space scattering models with fixed poles. We
formulate the passivity constraints as a unitary boundedness con-
dition on the H∞ norm of the system transfer function. When this
condition is not verified, we use it as an explicit constraint within
an iterative perturbation loop of the system state-space matrices.
Since the resulting optimization framework is convex but non-
smooth, we solve it via localization based algorithms, such as the
ellipsoid and the cutting plane methods. The proposed technique
solves two critical bottleneck issues of the existing approaches
for passivity enforcement of linear macromodels. Compared to
quasi-optimal schemes based on singular value or Hamiltonian
eigenvalue perturbation, we are able to guarantee convergence to
the optimal solution. Compared to convex formulations based on
direct Bounded Real Lemma constraints, we are able to reduce
both memory and time requirements by orders of magnitude.
We demonstrate the effectiveness of our approach on a number
of cases for which existing algorithms either fail or exhibit very
slow convergence.

Keywords—Passive macromodeling, convex optimization, local-
ization methods, ellipsoid algorithm, cutting plane method.

I. INTRODUCTION

S IGNAL and Power Integrity analysis of modern electronic
systems are based on extensive numerical simulations,

aimed at predicting the overall system performance and com-
pliance since early design stages. Such simulations rely on
accurate component macromodels that prove efficient when
used in standard circuit simulators. The most critical compo-
nents in terms of both influence on system performance and
complexity in model extraction are the electrical interconnects
used in signal and power distribution. Hence, over the last few
years many techniques [1]–[36] have been developed for the
extraction of compact interconnect macromodels.
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A common and very successful approach for the extraction
of compact dynamical models of linear interconnects and more
general linear time invariant systems, is based on frequency
domain fitting techniques applied to measured or simulated
frequency response data [1]–[5]. The system response is first
approximated by a rational function. Then either an equivalent
schematic or a state space form is synthesized to ease the
interface with a circuit simulator.

In order to guarantee robust and stable numerical simula-
tions, these models must satisfy physical properties such as
causality, stability and passivity [6], [7]. Causality and stability
can be easily enforced during the model fitting [4], [5], [8],
[9]. Passivity enforcement is instead more challenging and
requires special care. Passivity, which is often referred to as
dissipativity in other scientific communities, intuitively refers
to the inability of a dynamical system to generate energy in
addition to the one already provided by external connections.
As discussed in [7], passive models not only are physically
consistent, but also guarantee numerically stable system-level
simulations. Non-passive models may instead lead to instabil-
ity even when their terminations or loads are passive [37].

Passive models can be generated using various approaches.
Most of them involve minimizing some cost function, while
imposing some form of passivity constraint. The various
available techniques differ in the way the cost function and
the passivity constraints are formulated, and in the way the re-
sulting optimization problem is solved. All of these approaches
represent different points in a trade-off between computational
cost and optimality of the solution. We consider a solution as
optimal when it represents the most accurate passive model
in the considered parameterization class, with respect to the
original non-passive model.

For instance, on the more optimal but less efficient side of
the trade-off, the technique in [13] (available for download
at [38]) presents a quasi-convex relaxation, with the advantage
of simultaneous optimization of both model poles and residues
including passivity constraints. This approach has also been
extended in [13] to the generation of parameterized passive
models. Although optimal, this formulations may require very
large computational costs both in terms of memory and CPU
time for systems with a large number of parameters.

A suboptimal but more efficient class of methods uses a
‘two-steps’ procedure. In the first step, poles and residues
are fitted extremely efficiently without considering passivity
constraints [4]. In a second step the poles are kept fixed and
the residues are then optimized based on a variety of cost
functions, passivity constraints and optimization techniques.
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Within these ‘two-steps’ methods, some approaches guaran-
tee optimality in the second step exploiting convex or quasi-
convex formulations ( [10]–[12], [14]–[17]). Such algorithms
enforce passivity by defining constraints based on the positive
real lemma or the bounded real lemma [39], [40]. For example,
in [10], [16], [17] passivity constraints are formulated as linear
matrix inequalities. As for [13], these formulations may result
in a high computational costs both in terms of memory and
CPU time, even for moderately complex models.

Also within the ‘two-steps’ methods, other approaches use
a perturbation framework in the second step [18]–[26], where
iterations are employed to correct passivity violations. These
techniques are computationally very efficient. However their
main drawback is that the underlying formulation does not
guarantee convergence of the algorithm in all cases. Even when
convergence takes place, the obtained solution is generally
non-optimal in terms of accuracy. Some of these methods
are based on iterative perturbation of the frequency dependent
energy gain of the model ( [20], [21], [27], [28]) through the
solution of approximated local problems. Variants of the above
schemes have been presented in [29]–[33]. A comprehensive
comparison of such passive linear dynamical modeling tech-
niques is available in [34].

There is thus a need for efficient algorithms that can generate
passive linear dynamical models with guaranteed convergence
to the global optimal solution, and characterized by moderate
computational requirements both in terms of CPU time and
memory occupation. An attempt was made in [35] to formulate
the perturbation based approaches in a convex framework. This
resulted in a convex but non-smooth optimization problem,
which was solved in [35] using general descent schemes
based on projected or alternate subgradient iterations. Even
though the methods in [35] guarantee the optimality of the
solution, they are highly sensitive to the given problem specific
parameters, and requires tuning of the algorithmic coefficients
for individual cases. If proper tuning is not achieved, the
number of required iterations may grow very large, with an
obvious increase in processing time.

In this paper, we solve the same convex non-smooth passiv-
ity enforcement problem of [35] by using efficient localization
schemes such as the ellipsoid method [41] and the cutting plane
method [42]. The main differentiating factor between our work
and [35] is that the algorithms implemented in this paper are
reliable and efficient, in the sense that they are less sensitive
to the given problem parameters. As a result, they converge
to the global optimal solution even for the challenging cases
where the subgradient techniques in [35] require excessive
iterations. Our framework generates optimal passive models
with the same quality of [10], while requiring only a fraction
of the memory. In addition, we derive a lower bound for the
cost function that can be used to bracket the optimal solution.
This bound, which provides a precise quantification of the
distance between the original system and the class of passive
models with prescribed poles, is here used to stop the iterations
whenever the accuracy is satisfactory.

In summary, the main contributions of this paper are as
follows:
• the application of efficient localization methods to solve

the convex non-smooth passivity enforcement formula-
tion presented in [35];

• the definition of a systematic procedure for the initial-
ization of the iterations, by defining an initial feasible
set (a hypersphere or a hypercube with controlled size)
that is guaranteed to contain the global optimum;

• the construction of a lower bound on the objective
function that gets tighter with every iteration;

• the implementation of efficient modifications and im-
provements (e.g., deep cuts formulations) to the standard
localization methods, see, e.g., [43].

The resulting schemes provide an accuracy-controlled estimate
of the passive model that is closest to an initial model in the
desired norm, with an acceptable number of iterations and
limited memory requirements.

This paper is organized as follows. Section II provides the
required background on the problem formulation and on basic
localization methods. Section III presents our implementation
of localization methods for passivity enforcement. Numerical
results are presented and discussed in Section IV.

II. BACKGROUND

In this section we review some of the concepts used in this
paper including linear dynamical modeling and localization
methods. Additional definitions are provided in Appendix A.

A. Problem Description
Consider a nominal state-space dynamical model in scatter-

ing representation, characterized by its np×np transfer matrix

H(0,s) =C(sI−A)−1B+D. (1)

Here s is the Laplace variable, with state-space matrices
A ∈ Rq,q,B ∈ Rq,np ,C ∈ Rnp,q,D ∈ Rnp,np . The first argument
of H, which is set to 0, shall be used later to parameterize
a perturbation of the transfer matrix. We suppose that the
dynamical model (1) is available through an approximation
process. A common scenario is the availability of frequency
samples {(ωψ,Sψ),ψ = 1, ...,F} of the scattering matrix for a
linear device from either direct measurements or a full-wave
electromagnetic field simulation. Common rational approxi-
mation schemes such as Vector Fitting [4], [5], [8], [9] can
be applied to these samples in order to identify a state-space
dynamical model (1) with minimal deviation from the raw
data. In a least-squares formulation, this amounts to solving

minimize
A,B,C,D

F

∑
ψ=1
||H(0, jωψ)−Sψ||2. (2)

Problem (2) is addressed in the literature [4], [5], [8], [9],
hence we consider the nominal dynamical model (1) as our
starting point.

System (1) is assumed to be asymptotically stable and the
state-space realization is assumed to be minimal. A stable
system (1) is passive if and only if its H∞ norm is unitary
bounded,

||H(0)||H∞
= sup

ω∈R
σ1(H(0, jω))≤ 1, (3)
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Fig. 1. Algorithmic flow for perturbation based passivity enforcement

where σ1 denotes the largest singular value [18], [27], [44]. In
the cases where (3) does not hold, the standard approach is to
introduce a perturbation in the model, to make it passive. The
two step process of perturbation based passivity enforcement
framework is summarized in Figure 1.

A common choice is to perturb only the state-space C
matrix which usually stores the residues for the partial fraction
expansion of H(0,s), see [34]. Matrix A is preserved in order
to maintain the system poles, and matrix B does not need
perturbation since it usually provides a static map between
the inputs and the states. Matrix D, which corresponds to
the high frequency response (s → ∞), is assumed to have
||D||2 = σ1(D) ≤ 1, which is necessary for passivity. The
perturbed system is defined as

H(CP,s) = (C+CP)(sI−A)−1B+D (4)

where the perturbation matrix CP is unknown. Supposing that
the original system H(0,s) is not passive, the goal here is to
find the minimal perturbation such that the perturbed system
H(CP,s) is passive. The problem can be formulated as

minimize
CP

||CP||F s.t. ||H(CP)||H∞
≤ 1, (5)

where the minimal perturbation condition is expressed, e.g.,
in terms of the Frobenius norm. It actually turns out that
minimizing the state-space matrix perturbation CP is not appro-
priate, since we would like to minimize the perturbation of the
model response. This is achieved by the following weighted
perturbation

minimize
CP

||CPGT ||F s.t. ||H(CP)||H∞
≤ 1, (6)

where G is the Cholesky factor of the controllability Gramian
of the system. It is shown in [19] that (6) yields a solution
that provides minimal impulse response perturbation in the L2

(energy) norm. Since (6) is readily reduced to (5) by a change
of variable, we will base our derivations on (5) without loss
of generality.

Using vectorized variable x = vec(CP) ∈ Rn (n = qnp) and
rewriting (5) we get

minimize
x

f (x) s.t. h(x)≤ 1, (7)

where

f (x) = ||x||2 = ||CP||F , h(x) = ||H(CP)||H∞
. (8)

Any local minimum is also a global minimum for Prob-
lem (7), if both f and h are convex. For the problem at
hand, both f and h are norms, hence convex by virtue of
the triangular inequality. Furthermore, this problem is feasible
since one can always find at least one feasible point, namely
x =−xc =−vec(C). This is because

x =−xc =⇒ ||H(CP)||H∞
= ||H(−C)||H∞

= ||D||2 ≤ 1 (9)

by assumption. Since minimizing f is equivalent to minimizing
f 2 (which is a strongly convex function), and since the feasible
set is compact and nonempty, Problem (7) has a unique
globally optimal solution. Notice further that, as described
in [35], h(x) is convex and continuous but non-smooth.

B. Computation of the H∞ Norm
Accurate computation of the H∞ norm is a critical step in

solving (5). A naive way of computing the H∞ norm is by
sampling, where a given system H(CP, jω) is densely sampled
in the frequency domain, ω, and the largest singular value
σ1(H(CP, jωk)) at each frequency sample is computed. The
H∞ norm is then calculated by finding the maximum, as
described in (10).

||H(CP)||H∞
≈max

k
σ1(H(CP, jωk)) (10)

The memory and time required for computing (10) are O(n2
p)

and O(κn3
p) respectively. Here κ is the number of samples.

Computing the H∞ norm via (10) is simple, however it may
require computing a large number of samples consequently
increasing the run-time of the algorithm.

An alternative method for computing the H∞ norm of a
transfer matrix is based on an iterative scheme which computes
eigenvalues of a related Hamiltonian matrix. The details for
such algorithms can be found in [18], [27], [44]. The memory
and time required for these methods are O(q2) and O(τq3)
respectively. Here τ is proportional to the number of iterations
and is relatively small. In general, Hamiltonian matrix based
methods are more accurate than the sampling methods, how-
ever they require more memory. In this paper we use [44] to
compute the H∞ norm.

C. Localization Methods
Localization methods are the optimization techniques where

an initial set containing the global minimum becomes smaller
at each iteration, thus bracketing the solution more and more
tightly as the iterations progress. These methods are memory
efficient and can handle non smooth problems, such as (7).
The two localization methods that we employ in this work are
the ellipsoid algorithm [41] and the cutting plane method [42].
In the following sections we provide an intuitive description of
the two algorithms to solve the generic problem defined in (7).
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Fig. 2. First (infeasible) iteration of the ellipsoid algorithm.
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Fig. 3. Second (feasible) iteration of the ellipsoid algorithm.

1) The Ellipsoid Algorithm: The ellipsoid algorithm, pro-
posed in [45], starts with an initial ellipsoid (defined in
Appendix A-C) that is guaranteed to contain the global min-
imum. Figures 2 and 3 illustrate the first two iterations of
the algorithm. In Figure 2 the yellow convex region describes
the feasible region h(x) ≤ 1. The blue sphere describes the
initial ellipsoid ε(0). The algorithm checks if the point x(0) is
feasible. In case x(0) is not feasible, the algorithm defines a
hyperplane given by the subgradient g ∈ ∂h of the constraint
function. The halfspace given by {x|gT (x− x(0)) ≤ 0}, which
is shown by the shaded region in Figure 2, is the one where
the constraint function decreases and hence intersects with the
feasible region. In the next step, the algorithm updates the
ellipsoid such that the updated ellipsoid ε(1) is the smallest
ellipsoid containing the intersection of the original ellipsoid
ε(0) and the half space {x|gT (x− x(0)) ≤ 0}. The updated
ellipsoid ε(1) is shown in the right half of Figure 2.

For the next iteration, without loss of generality, we assume
that the center x(1) of the updated ellipsoid lies in the feasible
region. The algorithm defines a hyperplane by the gradient g=
∇ f of the objective function. The halfspace given by {x|gT (x−
x(1)) ≤ 0}, depicted by shaded region in Figure 3, is the one
where the objective function decreases and hence contains the
global minimum. In the next step, the algorithm updates the
ellipsoid such that the updated ellipsoid ε(2) is the smallest
ellipsoid defined by the intersection of current ellipsoid ε(1)

and the half space {x|gT (x−x(1))≤ 0}. The updated ellipsoid
ε(2) is shown in Figure 3.

This is continued until the size of the updated ellipsoid is
small enough such that all of its interior points fall with in
the δ neighborhood of the global minimum. The algorithmic
details are described in Algorithm 1.

Algorithm 1 Ellipsoid Algorithm

Input: f ,h and ε(0)(x(0),P0) such that x∗ ∈ ε(0), accuracy δ> 0
1: Set k = 0
2: If h(x(k))≤ 1, let gk ∈ ∂ f (x(k)), else gk ∈ ∂h(x(k))
3: Evaluate ηk =

√
gT

k Pkgk

4: If h(x(k))≤ 1 and ηk ≤ δ, then return x(k) and quit
5: Update ellipsoid parameters x(k+1) and Pk+1 using (11)
6: Let k← k+1 and goto 1.
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Fig. 4. First (infeasible) iteration of the cutting plane method.

The updates, as described in [41], are given by

x(k+1) = x(k)− 1
n+1

Pkgk√
gT

k Pkgk

Pk+1 =
n2

n2−1

(
Pk−

2
n+1

PkgkgT
k Pk

gT
k Pkgk

)
. (11)

The ellipsoid algorithm is extremely efficient in terms of
memory but it may take many iterations to converge because
at each iteration, the volume reduction factor for the updated
ellipsoid depends on n (size of x) as vol(εk+1)< e−

1
2n vol(εk).

2) The Cutting Plane Method: The cutting plane
method [42] also belongs to the class of localization
methods. This approach uses a polyhedron (defined in
Appendix A-D) instead of an ellipsoid to define the search
region. The algorithm starts with an initial polyhedron P0 that
is guaranteed to contain the global minimum. At each step
the algorithm adds a new constraint to the current polyhedron
Pk such that the updated polyhedron Pk+1 is smaller and still
contains the global minimum.

Figures 4 and 5 illustrate the first two iterations. Consider
a scenario similar to the ellipsoid algorithm, where the yellow
convex region describes the feasible region while the blue
polyhedron defines the initial search space. The algorithm
checks if the center of the polyhedron is feasible. When the
center x(0) is infeasible the algorithm defines a cutting plane
based on the subgradient g ∈ ∂h of the constraint function.
The half space {x|gT (x−x(0))≤ 0} overlaps with the feasible
region. The algorithm adds this cutting hyperplane to the
definition of the polyhedron such that the updated polyhedron
is the intersection of the original polyhedron and the shaded
halfspace {x|gT (x− x(0))≤ 0}, as shown in Figure 4.

For the next iteration, without loss of generality, we assume
that the center x(1) of the updated polyhedron falls in the
feasible region. The algorithm defines a cutting plane by the
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Fig. 5. Second (feasible) iteration of the ellipsoid algorithm.

gradient g=∇ f of the objective function, corresponding to the
dotted line in Figure 5. The half space {x|gT (x−x(1))≤ 0} is
where the objective function decreases and hence contains the
global minimum. The algorithm adds this cutting hyperplane
to the definition of the polyhedron such that the updated poly-
hedron is the intersection of the original polyhedron and the
shaded halfspace {x|gT (x− x(0))≤ 0}, as shown in Figure 5.

Algorithm 2 describes the cutting plane method conceptu-
ally. Since the cutting plane method is not a descent method,
the algorithm keeps track of the best feasible solution fbest
attained throughout all previous iterations.

Algorithm 2 Cutting Plane Method
Input: f ,h and P0 such that x∗ ∈P0; initialize the lower bound

L0 = 0 and fbest = f (x f easible); accuracy δ > 0,set k = 0
1: If h(x(k))≤ 1, let gk ∈ ∂ f (x(k)), else gk ∈ ∂h(x(k))
2: Query the cutting plane oracle at x(k)

3: If h(x(k)) ≤ 1 and | fbest −Lbest | < δ, then return x(k) and
quit

4: Update P : add a new cutting plane aT
k+1z≤ bk+1, Pk+1 :=

Pk
⋂
{z|aT

k+1z≤ bk+1} here ak+1 = gk and if feasible bk+1 =

gT x(k) else bk+1 = gT x(k)−h(x(k))+1
5: Update x(k+1) ∈ Pk+1, Lk

6: Update Lbest = max
k

Lk, fbest = min
k

f (x(k)f easible)

7: Let k← k+1 and goto 1.

The cutting plane method is also efficient in terms of
memory. However, compared to the ellipsoid method, the
volume reduction factor for the updated polyhedron is less
sensitive to n (size of x). An implementation of the cutting
plane method based on a maximum volume ellipsoid reduces
the volume of the polyhedron as, vol(Pk+1)≤ (1−1/n)vol(Pk)
[46].

D. Passivity Enforcement Using Semidefinite Programming
Based Methods

Passivity of a linear dynamical system described by scat-
tering representation can be directly enforced by the bounded
real lemma (or by the positive real lemma for hybrid repre-
sentation) [10]. Passivity enforcement via bounded real lemma
can be formulated as a semidefinite program (SDP) and solved
using standard SDP solvers such as [47] to compute the global

optimal solution.

minimize
B,C,D,W

F

∑
ψ=1
||H(0, jωψ)−Sψ||2 (12)

subject to

 ATW +WA WB CT

BTW −I DT

C D −I

� 0 (13)

W =W T � 0

Problem (13) generates a passive model with optimal accuracy
with in the class of ‘two-steps’ based methods. The main
drawback of these methods, however, is the excessive com-
putational cost (O(q5.5) [10]), due the introduction of a large
slack Lyapunov matrix variable W . This limits the scalability
of SDP based passive model generation algorithms. Hence the
application of such algorithms is restricted to relatively smaller
examples.

III. PASSIVITY ENFORCEMENT USING LOCALIZATION
METHODS

In this paper we employ the localization methods described
in the Section II-C to solve the convex continuous but non-
smooth problem described in the Section II-A. Specific chal-
lenges when using localization methods include how to define
an initial set that is guaranteed to contain the global optimum,
how to define a cutting plane that effectively reduces the size
of the search space, and how to update the search space. In the
following sections we provide the algorithmic details including
solutions for all such issues.

A. Initialization

One of the main challenges in using localization methods is
to define an initial set that is guaranteed to contain the global
optimum. This initial set needs to be as small as possible,
because for larger initial sets the algorithms may take more
iterations to converge. In this section, we define an initial set in
the form of a hypersphere, with radius R, that is guaranteed to
contain the global optimum for our problem. We also compute
an upper and a lower bound on R, which help us to pick a value
of R that is appropriate.

1) Upper Bound on R (RUB): Computation of an upper
bound on R is pictorially described in Figure 6. To understand
this, consider the following Lemma.

Lemma 3.1: Let f (x) = ||x||2 be the cost function, and let
the feasible set be defined by h(x) ≤ 1. Suppose that we
are given any feasible point x f such that h(x f ) ≤ 1. Then,
the hypersphere centered at origin with radius equal to the
Euclidean distance of x f from the origin is guaranteed to
contain the global optimum.

Proof: Let x f be the given feasible point. We define the
initial hypersphere with radius R = ||x f ||2. Now suppose that
the global optimal solution x∗ lies outside the hypersphere,
which by definition requires ||x∗||2 > ||x f ||2. This means
f (x∗) > f (x f ) which leads to a contradiction because the
condition of optimality requires f (x∗)≤ f (x f ).
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As described in Section II, one of such feasible points is
x =−xc. We can compute an upper bound on the radius of the
initial hypersphere by RUB = ||xc||2. Furthermore, we can use
this feasible point to find an even smaller upper bound on the
radius by using simple line search as

β
∗ = argmin

β∈[−1,0]
f (βxc) s.t. h(βxc)≤ 1

RUB = ||β∗xc||2 (14)

If instead a weighted objective function, such as (6), is used
the cost function becomes

f (x) = ||Wx||2, (15)

where W = G⊗ I and I is the identity matrix. The derivation
of (15) is described in Appendix B. For this case, we can
compute the upper bound on R by RUB = ||Wxc||2, which can
be further shortened by the line search (14).

2) Lower Bound on R (RLB): We define RLB to be the
radius of an infeasible hypershere εLB centered at the initial
point x(0), as described in Figure 6. We assume that the initial
unperturbed system is non-passive, hence the initial point x(0)
is infeasible. The hypersphere εLB is a special ellipsoid for
which the corresponding matrix PLB = R2

LBI, where I is the
identity matrix of size n× n. Since all the points x ∈ εLB are
infeasible we get

h(x)> 1 ∀ x ∈ εLB. (16)

Since the constraint function h(x) is convex, we have for all
x ∈ εLB

h(x)≥ h(x(0))+∂h(x(0))T (x− x(0))

≥ h(x(0))+ inf
z∈εLB

∂h(x(0))T (z− x(0))

= h(x(0))−
√

∂h(x(0))T PLB∂h(x(0)), (17)

where ∂h denotes a subgradient of the constraint function h.
In the above derivation, we have used the fact that

inf
z∈εLB

∂h(x(0))T (z− x(0)) =−
√

∂h(x(0))T PLB∂h(x(0)), (18)

see Appendix C for a derivation. From (17), we note that
h(x(0))−

√
∂h(x(0))T PLB∂h(x(0))> 1 implies h(x)> 1 , which

means that all points in εLB are infeasible,

h(x)≥ h(x(0))−
√

∂h(x(0))T PLB∂h(x(0))> 1,

(h(x(0))−1)2 > ∂h(x(0))T R2
LBI∂h(x(0)). (19)

Solving (19) gives us RLB as

RLB =
h(x(0))−1√

∂h(x(0))T ∂h(x(0))
=

h(x(0))−1
||∂h(x(0))||L2

. (20)

This means that for any initial hypershpere with R < RLB, all
the points in the hypersphere are infeasible. Hence, we must
have R > RLB in order to guarantee that the hypersphere with
radius R includes the global optimum.

3) Practical selection of R: In this section we provide
guidelines on selecting the ratius R of the initial hypershpere.
From earlier discussions in Section III-A2 and III-A1, the value
of R must satisfy the following inequality

RLB < R≤ RUB (21)

From our experience with a diverse range of examples, the
lower bound RLB is tight. For most practical purposes R= γRLB
with γ = 2, defines a large enough hypersphere. If however the
resulting hypershpere is infeasible, this is detected and reported
within few iterations. If this happens, the user may choose
to increase the multiplying factor γ or simply pick the upper
bound R = RUB. In general, R is selected as

R = min(γRLB,RUB) (22)

B. Passivity Enforcement Using The Ellipsoid Algorithm

1) Initialization: The functions f (x) and h(x) for passivity
enforcement are defined in (8). The gradient ∇ f (x) and sub-
gradients ∂h(x) are derived in [35] and are not repeated here.
We initialize Algorithm 1 by defining an initial ellipsoid, ε(0),
that is guaranteed to contain the global optimum x∗. We define
ε(0)(x(0),P0) to be the hypershpere, P0 = R2In, with the radius
R and centered around the origin. The radius R is computed
by (21).

2) Complexity: The main attractive feature of the ellipsoid
algorithm is that it is extremely efficient in terms of the mem-
ory usage. Computationally, Algorithm 1 has two major com-
ponents a) Computation of the H∞ norm (or h(x)), described
in Section II-B b) Updating and storing ellipsoid parameters.
Their corresponding time and memory complexities are given
in Table I.

TABLE I. COST PER ITERATION

Component memory time

(a) H∞ norm O(q2) O(τq3)
(b) Ellispoid Parameters O(n2)≡ O(q2n2

p) O(n2)≡ O(q2n2
p)

The algorithm requires only a modest storage of O(n2) to
store the Pk ∈ Rn×n matrix. As described in Section II-B, the
memory required to compute the H∞ norm is only O(q2) which
is negligible. Similarly, the update cost for the algorithm in
terms of time involves matrix vector products and is also of
the order of O(n2). However, the cost per iteration is dominated
by the computation of the H∞ norm which is O(τq3).
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3) Deep Cut Ellipsoid Algorithm: We use a modified version
of the original ellipsoid algorithm known as the deep cut
ellipsoid algorithm. These modifications, proposed in [43], do
not come at any additional computational cost. Intuitively, in
the deep cut ellipsoid algorithm at each step the hyperplane
cuts off more region from the ellipsoid than the regular
ellipsoid algorithm. A deep cut is defined by

gT (x− x(k))+g(k)DC ≤ 0 (23)

In the deep cut ellipsoid algorithm, the updated ellipsoid at
each iteration is given by:

ε
(k+1) = ε

(k)∩{x|gT (x− x(k))+g(k)DC ≤ 0} (24)

The newly introduced variable gDC ∈ R+ is given by

g(k)DC =

{
f (x(k))− f (k)best if h(x(k))≤ 1
h(x(k))−1 if h(x(k))> 1,

(25)

here f (k)best is the best objective value of the feasible iterates so
far. The updates are given by ( [43])

x(k+1) = x(k)− 1+αn
n+1

Pkgk√
gT

k Pkgk

, where α =
g(k)DC√
gT

k Pkgk

Pk+1 =
n2(1−α2)

n2−1

(
Pk−

2(1+αn)
(n+1)(1+α)

PkgkgT
k Pk

gT
k Pkgk

)
. (26)

We will show in the results section that the deep cut ellipsoid
algorithm solves our problem much faster, when compared
with the original ellipsoid algorithm used in [36]. Proof of
convergence of the deep cut ellipsoid algorithm is provided
in [43].

C. Passivity Enforcement Using The Cutting Plane Method
1) Initialization: We define the initial set (a polyhedron) re-

quired for the cutting plane method, described in Algorithm 2,
to be the smallest hypercube P0 enclosing the hypershpere with
radius R. The radius R is computed by (21). This hypercube P0
is guaranteed to contain the global minimum. P0 is centered
around the origin with side length 2R. We shall refer to the
size of this hypercube as R.

2) Computing the center of the polyhedron: At each step
of the cutting plane method we need to find a point x(k+1)

in the interior of the polyhedron Pk+1. In principle we can
define x(k+1) to be anywhere in the polyhedron however, the
benefit of having x(k+1) close to the center of Pk+1 is that
the updated polyhedron will be nearly half of the size of the
original polyhedron. There are various ways to define and
compute the center of a polyhedron, each having pros and cons.
We choose xk+1 to be the analytic center of the inequalities
defining Pk+1 = {z|aT

i z ≤ bi, i = 1...q}. This gives us a well
rounded performance both in terms of computational cost and
convergence. We compute the analytic center by solving (27)
using infeasible start Newton method

xk+1 = argmin
x
−∑

i
log(bi−aT

i x) (27)

3) Complexity: The cutting plane method requires a modest
storage of O(mn2) where n denotes the degrees of freedom
(x ∈ Rn) while m is the multiplying factor that increases with
increasing iteration. The update cost for the algorithm is also
of the order of O(mn2). As with the ellipsoid algorithm, the
cost per iteration for the cutting plane method, as described
in Table II, is dominated by the evaluation of the H∞ norm.
In general, the cutting plane method requires less iterations to
converge compared to the ellipsoid algorithm. However, since
we have to compute the center of the polyhedron at every step,
the computational cost per iteration is slightly larger.

TABLE II. COST PER ITERATION

Component memory time

(a) H∞ norm O(q2) O(τq3)
(b) Polyhedron Parameters O(mn2)≡ O(mq2n2

p) O(mn2)≡ O(mq2n2
p)

4) Epigraph Cutting Plane Method with Deep Cuts: The
convergence rate of the cutting plane method improves sig-
nificantly by solving the epigraph form of the problem and
defining deep cuts. For the examples presented in this paper,
this helps in reducing the number of iterations by more than
20% when compared with the original cutting plane method
used in [36]. The epigraph form [46] of our problem (7) is
given as follows

minimize
x,t

t

subject to f (x)≤ t
h(x)≤ 1 (28)

If at th k-th iteration x(k) is infeasible, we add the following
cutting plane

h(x(k))+gT (x− x(k))≤ 1, where g ∈ ∂h(x(k))

If on the other hand, x(k) is feasible, we add the following two
cutting planes

f (x(k))+gT (x− x(k))≤ t and t ≤ f (x(k)) (29)

where g = ∇ f (x(k)).

D. Piecewise Linear Lower Bound on the Global Optimum

Suppose the function f and its gradient gi = ∇ f (xi) have
been evaluated at k distinct points xi with i = 1, . . . ,k. Since f
is convex, one can compute the local linear under estimators
of f as follows

f (z)≥ f (xi)+gT
i (z− xi), ∀z, i = 1, ...,k. (30)

This implies that the function f̂ defined as

f (z)≥ f̂ (z) = max
i=1,...,k

( f (xi)+gT
i (z− xi)) (31)

is a convex piecewise linear global under estimator of f .
Similarly, one can also find piecewise linear approximations
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ĥ(x) ≤ 1 of the constraint h(x) ≤ 1. This helps formulating a
piecewise linear relaxed problem

x∗LB = argmin f̂ (x) s.t. ĥ(x)≤ 1, (32)

which can be solved using standard linear programming
solvers (in order to solve (32), per iteration a standard primal-
dual interior point method [48] would solve a linear system
with approximately 4k+2n equations with 4k+2n unknowns).
It can be shown that Lk = ||x∗LB||2 defines a lower bound on
the global optimum of (7). This lower bound gets tighter with
increasing iteration, so we can use it to define stopping criteria
for the localization iterations. Furthermore, we can guarantee
δ–optimality of the solution with the help of this lower bound
(by definition, the distance of a δ–optimal solution from the
true optimal solution is less than δ). For this purpose, note
that the linear program (32) is rarely solved to compute the
lower bound. The lower bound can be easily computed as a by-
product when solving for the analytic center of the inequalities
for the cutting plane method. For the ellipsoid method, the
lower bound can be computed using the following expression

lk = max
{∀k|h(x(k))≤1}

(
f (x(k))−

√
gT

k Pkgk

)
. (33)

IV. RESULTS

In this section we provide small to medium scale challenging
examples that arise in passive macromodeling. The computa-
tions were performed on a desktop computer having an Intel
Xeon processor with 2.4 GHz clock. We have implemented
and tested these algorithms in matlab without exploiting the
speed-up provided by the parallel programming. For all cases
an initial model was obtained using a fast vector fitting
implementation of [4], [5], [49], whose complexity scales
only as O(Fq2

p), where q = qpnp. This cost is negligible with
respect to to the passivity check and enforcement. In fact, for
the examples presented in this section, the first step took a
fraction of a second to generate a nominal model with < 0.1%
error, requiring less than one MB of memory.

A. Example 1: A 4-Port PCB Interconnect Structure
The first example we shall present is a 4-port coupled printed

circuit board structure. The scattering matrix was measured
from DC up to 2 GHz with a resolution of 10 MHz. The fre-
quency response samples were processed with the vector fitting
algorithm [4] to obtain an initial stable linear dynamical model
with 272 states and 4 inputs/outputs. We used the ellipsoid
algorithm with deep cuts to solve this problem. The algorithm
was initialized with R = 1.5RLB. The algorithm converged in
about 25 iterations, as shown by the solid blue line in Figure 7.
We report convergence by plotting the objective function.
Since the localization-methods are not descent methods, the
objective function may increase or decrease at each iteration.
The algorithm converges when the current solution is in the
δ neighborhood of the global minimum. We also plot the
progress for the ellipsoid algorithm without deep cuts, shown
by red diamonds in Figure 7. Note that by using deep cuts
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Fig. 7. Example 1: the cost function is plotted against the iteration number
to show convergence. Solid blue line is for the ellipsoid algorithm with deep
cuts, red diamonds are for the ellipsoid algorithm without deep cuts. (We
initialize the algorithm with zero perturbation, i.e. zero cost, which refers to
an infeasible point. The cost increases as the algorithm searches for a feasible
point. Since the localization-methods are not descent methods, the objective
function may increase or decrease at each iteration.)
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Fig. 8. Example 1: comparison between passive model and original non-
passive model

we achieve a significant speed-up of 100× over the original
ellipsoid algorithm used in [36].

The total runtime required for this example was about 24
seconds. However, note that over 92% of the time was spent
in computing the H∞ norm while only 1.8 seconds were spent
in the algorithmic computations. We have used a standard
algorithm to compute the H∞ norm [44].

Figure 8 demonstrates the accuracy of our passive model.
We compare the S1,2 response of our passive model with the
one from the original non-passive model. Figure 9 compares
the frequency dependent singular values of the original and
the passive model. As reported in [35], standard techniques
such as [19] generated only a suboptimal and less accurate
passive model. The alternate gradient method presented in [35]
took 900 iterations (833 seconds) to converge. This gives us a
speed-up of 35× over [35].
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Fig. 9. Example 1: singular values of the original non-passive (solid blue)
and the perturbed passive (dashed red) models are plotted versus frequency.
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Fig. 10. Example 2: comparison of the memory requirements for our
framework and [10].

B. Example 2: A 4-Port Transformer

We recall that the technique presented in [10] generates
passive models with optimal accuracy, at the cost of large
computing times and memory requirements, the latter being the
most critical limitation, as described in Section II-D. With the
proposed techniques, we are able to obtain the same optimal
solution with a comparable accuracy, but requiring only a
fraction of memory and time. We consider a 4-port transformer
structure, and we compute a passive model using both [10]
and the ellipsoid algorithm described in this work. We mon-
itor the memory and time requirements for increasing model
orders. Figures 10 and 11 plot the results. For models with
the same dynamical order, our proposed ellipsoid algorithm
based passivity enforcement framework achieved four orders
of magnitude improvement in terms of memory with a speed-
up of upto 1000× in terms of total run time. Figures 10 and
11 clearly demonstrate the scalability of our algorithm.

10
1

10
2

10
0

10
1

10
2

10
3

10
4

10
5

Model Order (q)

C
o

m
p

u
ta

ti
o

n
a

l 
T

im
e

 (
s
e

c
o

n
d

s
)

 

 

[10] (time)

This work (time)

Fig. 11. Example 2: comparison of the time required for our framework
and [10].
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Fig. 12. Example 3: singular values of the original non-passive (solid
blue) and perturbed passive (dashed red) models plotted against normalized
frequency.

C. Example 3: Handling Large Passivity Violations

We consider a system for which the initial stable but non
passive model has large passivity violations, as shown by the
blue solid curves in Figure 12. This testcase corresponds to
a SAW filter with 2 ports, whose initial model is charac-
terized by 36 poles, with C ∈ R2×72 and the corresponding
unknown vector x = vec(CP) ∈ R144. To improve accuracy in
the frequency response, we use the Cholesky factor of the
controllability Gramian to define weights on the cost function
as described in (6). We ancitipate the passivity enforcement
results in Figure 13, which compares the scattering response
S1,1 of the original non-passive model with the perturbed
passive model.

We solve first the problem using the cutting plane method.
Even though we would like the initial hypercube to be as
small as possible, in our experiments we vary the size of
initial hypercube to demonstrate that the convergence of the
cutting plane method is not too sensitive to the initial size. We
define the initial hypercubes with sizes R ∈ {10.0,1.0,0.06}.
Since for this testcase we have RUB = 1.0 and RLB = 0.036,
all of these hypercubes are guaranteed to contain the global
optimum. Figure 14 shows the convergence of the cost function
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Fig. 13. Example 3: comparison between original non-passive and perturbed
passive scattering response S1,1
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Fig. 14. Example 3: cutting plane method using analytic centering. The cost
function is plotted against the iteration number for different initial hypercubes.

for different initial hypercubes. We note that increasing the
size from 1 to 10 did not have a significant impact, since the
algorithm converged in about 400 iterations. The figure also
shows with a solid black line the lower bound on the cost
function, obtained by solving (32). Using this lower bound,
we can guarantee that the computed solution is δ–optimal, so
that we control how far we are from the actual optimum. For
this case, the algorithm converged in 30 seconds.

Next, we solve the problem using the ellipsoid method with
deep cuts. The algorithm converged in less than 600 iterations,
as shown by the solid blue line in Figure 15. The algorithm
found a feasible point at the 500-th iteration. In total, it took
only 20 seconds for the algorithm to converge. We also plot the
progress for the ellipsoid algorithm without deep cuts, shown
by the dashed red line in Figure 15. Note that by using deep
cuts we achieve a speed-up of 3× over the original ellipsoid
algorithm used in [36].

Note that both the ellipsoid algorithm and the cutting plane
method converge to the same global optimum. The cutting
plane method took more wall clock time than the ellipsoid
algorithm even though it converged in less iterations. The
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Fig. 15. Example 3: convergence of the ellipsoid algorithm with and without
deep cuts.
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Fig. 16. Example 4: singular values of the original non-passive (solid
blue) and perturbed passive (dashed red) models plotted against normalized
frequency.

reason is that the update cost for the cutting plane method
increases with the number of iterations, where it remains
constant for the ellipsoid algorithm.

For this example, standard techniques such as [19], [22]
failed to generate a passive model. The alternate gradient
algorithm presented in [35] took about 15,000 iterations (631
seconds) to converge. Hence we get an average speed up of
25× over [35].

D. Example 4: Wide Bandwidth Passivity Violation
In this example, we consider a system for which the initial

stable but non passive model has passivity violations spread
over a wide bandwidth, as shown by the solid blue curves in
Figure 16. Such a behavior is known to pose serious challenges
to existing perturbation based approaches. This testcase is
characterized by 2 ports and 34 poles, with C ∈ R2×68 and
the unknown vector x = vec(CP) ∈ R136. The bounds on the
initial feasible set are RUB = 2.4 and RLB = 0.04, respectively.

Figures 17 shows the convergence of the cutting plane
method to the global optimum for three initial hypercubes of
different sizes, together with the corresponding lower bound. A
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Fig. 17. Example 4: cutting plane method using analytic centering. The cost
function is plotted against the iteration number for different initial hypercubes.
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Fig. 18. Example 4: convergence of the ellipsoid algorithm with and without
deep cuts.

total of 21 seconds were sufficient to reach convergence. Next,
we solve the problem using the ellipsoid method with deep
cuts. The algorithm converged in less than 2000 iterations, as
shown by the blue line in Figure 18. The algorithm found a
feasible point in 40 seconds at the 1400-th iteration. We also
plot the progress for the ellipsoid algorithm without deep cuts,
shown by the dashed red line in Figure 18. Note that by using
deep cuts we achieve a speed-up of more than 2× over the
original ellipsoid algorithm used in [36]. For this example, we
get an average speed up of 250× over [35].

E. General Discussion

For the two localization-methods presented in this paper,
there is no clear winner between the ellipsoid algorithm and the
cutting plane method. As shown in the examples, wall clock
time for both of the localization algorithms is similar. The
ellipsoid algorithm is very attractive because its update cost is
very small, however it may take more iterations if the initial set
is larger. One of the key feature of the cutting plane method is
that it is relatively less sensitive to the size of the initial search
space. However the update cost for the cutting plane method

increases with the iteration number. Hence, if the initial search
space is tight with some confidence, we recommend using the
ellipsoid method with deep cut, on the other hand if the initial
search space is larger then we recommend using the cutting
plane method.

It is important to note that the total runtime can be traded
with accuracy in localization based methods. Since both an up-
per and a lower bound are available at each step, the algorithm
can be stopped at any time as soon as the gap between the
bounds is within the desired tolerance, even though successive
iterations would improve the solution. This possibility is ruled
out for common non-convex passivity enforcement schemes.

Note that the methods described in this paper can also be
used to improve the accuracy of an existing perturbed passive
system. For such systems, a feasible but inaccurate solution
can be used to define the initial hypersphere and the algorithms
described in this paper can be used to improve accuracy by
providing the global optimal solution. Additionally, the lower
bounds on the global optimum can be used to assess the quality
of any possible available solution.

V. CONCLUSION

In this paper we employ non-smooth localization-based
optimization methods to solve the formulation of passivity
enforcement presented in [35]. We guarantee that the solution
can be found up to any prescribed accuracy within a finite
number of iterations. The techniques presented in this paper are
memory efficient and demonstrate significant improvements
both in terms of time and memory when compared with similar
passive modeling algorithms.

APPENDIX A
DEFINITIONS

In this section we provide some basic definitions for subgra-
dients, hyperplanes, ellipsoids and polyhedra. This material is
available in the respective textbooks and online class materials
such as [46], and is summarized here as a convenience for the
readers.

A. Gradients and Subgradients

A vector g ∈ Rn is a subgradient of a convex function f at
x, if for all y ∈ dom f , it holds that

f (y)≥ f (x)+gT (y− x). (34)

If f is convex and differentiable at x, then g=∇ f is the unique
subgradient. However, subgradients also exist at points where
f is non differentiable. The set

∂ f (x) = {g : g is a subgradient of f at x} (35)

is called the subdifferential of f at x.
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Fig. 19. A hyperplane defined by aT x = b

B. Hyperplanes
A hyperplane is a set of the form

{x | aT x = b} (36)

where a ∈ Rn,a 6= 0 and b ∈ R. A hyperplane divides Rn in
two halfspaces. It is illustrated in Figure 19. The halfspace
determined by aT x ≥ b (unshaded region) is the halfspace
extending in the direction of a. The halfspace determined by
aT x ≤ b (shaded region) extends in the direction of −a. The
vector a is the outward normal of this halfspace.

C. Ellipsoids
An ellipsoid ε is described by its center xc ∈ Rn and the

matrix P.

ε(xc,P) = {x | (x− xc)
T P−1(x− xc)≤ 1}, (37)

where P = PT � 0 is a symmetric and positive definite
matrix which defines the squared length of the semi-axes (its
eigenvalues) and their orientation (its eigenvectors) for the
ellipsoid ε.

D. Polyhedra
A polyhedron is defined as the solution set of a finite

number of linear equalities and inequalities. For our purpose,
a polyhedron is defined only by the inequalities

P = {x | aT
j x≤ b j, j = 1, ...,m}. (38)

A polyhedron is thus the intersection of a finite number of
halfspaces as shown in Figure 20.

APPENDIX B
DERIVATION OF THE WEIGHTED OBJECTIVE FUNCTION

In this section we derive (15) starting from (6)

minimize
CP

||CPGT ||F ≡ minimize
CP

||vec(CPGT )||2

≡ minimize
CP

||vec(ICPGT )||2

≡ minimize
CP

||(G⊗ I)vec(CP)||2

≡ minimize
x

||(G⊗ I)x||2
≡ minimize

x
||Wx||2

≡ minimize
x

f (x)

 

 

 

 

 

 

Fig. 20. A polyhedron defined by P = {x|aT
j x≤ b j, j = 1, ...,5}

APPENDIX C
DERIVATION OF (18)

In this section we derive (18). The left hand side of (18)
is equivalent to the following convex optimization problem

minimize
x

gT x s.t. xT P−1x≤ 1 (39)

The Lagrangian, L(x,λ), and the dual function, fD(λ), of (39)
are given by

L(x,λ) = gT x+λxT P−1x−λ

fD(λ) = inf
x

L(x,λ)

fD(λ) =−
1

4λ
gT Pg−λ (40)

Since the problem (39) is convex and P� 0, it satisfies Slater’s
conditions [50]. This implies that strong duality holds. Hence
we compute the global optimal solution to (39) by solving the
its dual problem which is given by

maximize
λ

− 1
4λ

gT Pg−λ s.t. λ≤ 0 (41)

The global optimal solution (λ∗) for (41) is given by

λ
∗ =

1
2

√
gT Pg (42)

Substituting (42) in (40) gives us the right hand side of (18),
which is

fD(λ
∗) =−

√
gT Pg (43)
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