
30 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Improving the design flow for parallel and heterogeneous architectures running real-time applications: The PHARAON
FP7 project / Héctor, Posadas; Alejandro, Nicolás; Pablo, Peñil; Eugenio, Villar; Florian, Broekaert; Michel, Bourdelles;
Albert, Cohen; Lazarescu, MIHAI TEODOR; Lavagno, Luciano; Andrei, Terechko; Miguel, Glassee; Manuel, Prieto. - In:
MICROPROCESSORS AND MICROSYSTEMS. - ISSN 0141-9331. - ELETTRONICO. - 38:8(2014), pp. 960-975.
[10.1016/j.micpro.2014.05.003]

Original

Improving the design flow for parallel and heterogeneous architectures running real-time applications:
The PHARAON FP7 project

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.micpro.2014.05.003

Terms of use:

Publisher copyright

© 2014. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.micpro.2014.05.003

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2552336 since: 2020-10-22T20:39:13Z

Elsevier

Improving the design flow for parallel and heterogeneous architectures
running real-time applications: The PHARAON FP7 project
Héctor Posadas a,⇑, Alejandro Nicolás a, Pablo Peñil a, Eugenio Villar a, Florian Broekaert b,
progres
s the de
ment p
hain w

designe
trol tec
lication
s.

⇑ Corresponding author.
E-mail addresses: posadash@teisa.unican.es (H. Posadas), nicolasa@teisa.unican.

es (A. Nicolás), pablop@teisa.unican.es (P. Peñil), villar@teisa.unican.es (E. Villar),
florian.broekaert@thalesgroup.com (F. Broekaert), michel.bourdelles@thalesgroup.
com (M. Bourdelles), Albert.Cohen@inria.fr (A. Cohen), mihai.lazarescu@polito.it (M.
T. Lazarescu), luciano.lavagno@polito.it (L. Lavagno), andrei@vectorfabrics.com (A.
Terechko), glasseem@imec.be (M. Glassee), mprieto@tedesys.com (M. Prieto).
Michel Bourdelles b, Albert Cohen c, Mihai T. Lazarescu d, Luciano Lavagno d, Andrei Terechko e,
Miguel Glassee f, Manuel Prieto g

a University of Cantabria, Santander, Spain
b Thales Communications & Security, Gennevilliers, France
c INRIA and École Normale Supérieure, Paris, France
d Politecnico di Torino, Torino, Italy
e Vector Fabrics, Eindhoven, The Netherlands
f IMEC, Leuven, Belgium
g Tedesys, Santander, Spain
a b s t r a c t

In this article, we present the work-in-
2011. The first objective of the project i
and assist the designer in the develop
debug on multicore platform. This tool c
parallelization strategies and drive the
project is to develop monitoring and con
matically adapt platform services to app
in a transparent manner for application
s of the EU FP7 PHARAON project, started in September
velopment of new techniques and tools capable to guide
rocess, from UML specifications to implementation and
ill offer the possibility to propose and implement several
r into implementation steps. The second objective of the
hniques in the middleware of the system capable to auto-
s requirements and therefore reduce power consumption
1. Introduction through 3G and WIFI connections while running other applications
Recent market data show that a critical increase in the number
of multicore architectures used in projects is currently taking place
[1]. During the last decade, those architectures have expanded
from only targeting some very specific domains with very high
processing needs (e.g. engine control), to become the actual imple-
mentation paradigm for mainstream embedded systems. This kind
of architectures is getting increasing acceptance into the comput-
ing industry, and has become very common in the notebook and
tablet markets, among others. This enabled the latest and greatest
embedded systems to integrate a growing range of complex func-
tionalities. A smart phone, for example, is capable to communicate
on Android or Windows Phone. It integrates phone services with
high performance graphics and sophisticated software applications
such as real-time video and audio.

Designers are facing challenging problems as hardware architec-
tures are evolving faster than multicore software development
techniques. These techniques are not yet capable to provide efficient
methodologies to exploit the full potential of multicore architec-
tures satisfying all the requirements of embedded systems, includ-
ing performance and power consumption. Accurately predicting the
performance of an application implemented on such architectures
has become very difficult, because of numerous factors such as
cache coherency. Moreover, commonly taught programming mod-
els, that are generally based on sequential languages, are no longer
sufficient, since early consideration of parallelism in applications
has become critical. The lack of efficient software design techniques
increases both software development costs and implementation
risk in terms of costs and delays. Parallelism, heterogeneity, com-
plex memory structures, efficient power monitors and controllers,
are among the list of new functionalities provided by recent multi-
core systems that require to be adequately tackled by new design

tools, as proposed by the PHARAON (Parallel and Heterogeneous
Architecture for Real-time ApplicatiONs) project.

1.1. The PHARAON project

The PHARAON project is a European collaborative initiative
between universities, research labs and companies that is aimed
at proposing solutions to overcome these limitations. It is spon-
sored by the European Commission that covers part of the costs
and assists partners in the project management.

The objective of PHARAON is to achieve a breakthrough towards
broader adoption of multicore architectures and to enable the
development of complex systems with high processing needs and
low-power requirements. For such purpose, the project focuses
on solving two major problems appearing in these types of sys-
tems. First, the development of parallel software, capable of
exploiting multiple processor cores, is much more complex and,
therefore, more expensive than traditional sequential software,
which increases the product cost. Second, the increased complexity
of services provided by the systems requires more energy and,
hence, is associated with a reduction of autonomy.

To overcome these problems, the PHARAON project targets the
development of two different sets of techniques and tools, aiming
at best exploiting the low-power capabilities of modern multi-core
processors, both at design time and at runtime (Fig. 1). These tech-
niques and tools tackle both the programming and power manage-
ment challenges mentioned previously.

The first set directly affects the design flow, from UML/MARTE
specifications to implementation on multicore platforms. The
objective is to assist the designer in finding the most adequate soft-
ware architecture while taking into account hardware constraints at
design time. To do so, tools developed in PHARAON can evaluate the
parallel structure of an application and propose improvements, in
terms of parallelization constructs. At the same time, the toolset will
be able of automatically generating the multi-processor embedded
code required to deploy the communicating SW components on the
processing cores of the system, including DSPs and GP–GPUs.

The second set of techniques and tools affect the runtime
behavior of the application. The objective is to adapt the perfor-
mance of the platform (frequency and voltage, for example) in
Fig. 1. PHARAON global approa
order to consume only the required energy. For this purpose, pro-
ject partners are developing monitoring and control techniques
that are integrated in the code generated at design time to map
the SW to the processors of the platform. This middleware auto-
matically adapts platform services to application requirements
during execution, and therefore reduces power consumption. A
reconfiguration system and a low power scheduler are integrated
with other run-time components on top of the platform to do so.

As a result, the PHARAON project has the goal of reducing the
software development cost by 25% and to increase the battery life
of embedded systems by nearly 20%.

The project is coordinated by Thales Communications & Secu-
rity which is a large French company. Tedesys (Spain) and Vector
Fabrics (Netherlands) are two SMEs completing the industrial part-
ners. Academic partners include Politecnico di Torino (Italy), Ecole
Normale Supérieure (France) and University of Cantabria (Spain).
Finally, the Interuniversitary Micro-Electronics Centrum research
institute (Belgium) completes the consortium.

As a result, the next sections present the improvements
achieved during the first two years of the project, in which design
tools have been developed and their application to the project use
cases have started. The second section summarizes the state of the
art in the area. Then, the design flow proposed in the project is
detailed in the third section. The fourth section presents the
design-time tools developed during the project, including their
results. The fifth section is devoted to the runtime management
tools. Then the application of the tools to several industrial use
cases is described. Finally the conclusions highlight the project
perspectives.

2. Evolution beyond the state of the art

Code parallelization is one of the most widely studied topics in
compilers for parallel machines since the 1970s. However, the level
of parallelism that can be identified using automated techniques is
very limited, since they require specific coding styles (e.g. perfectly
nested loops, no conditionals and affine indexing) and hence have
limited applicability.

Recent approaches like the Compaan project at the University of
Leiden [2], or the Pico Express high-level synthesis software from
ch and tools interactions.

Synopsys [3] are interesting examples in this area. Other efforts
like MORPHEUS [5], CRISP [6] and MEGHA [7], produce parallel
code for execution on embedded or other special type platforms
but usually are tailored to the target architecture. Several compila-
tion and debugging tools, often based on dedicated extensions of
the C language like OpenCL and CUDA, have also been proposed
for GPU architectures.

The ARTEMIS ASAM project [8] is aimed at performing efficient
design space exploration in order to optimize Application Specific
Instruction-set Processors (ASIPs) to specific applications. The goal
of the ALMA project [4] is to tailor the application to the available
hardware. The FP7 TERAFLUX project [9] proposes new program-
ming models and solutions for harnessing large-scale multicore
platforms in the area of thousand cores in an efficient way by
exploiting data-flow parallelism.

On the other hand, the goal of the PHARAON project is not lim-
ited to parallelism discovery and exploitation, but integrates it
with solutions oriented at optimizing power consumption, while
using heterogeneous cores of the target platform. The PHARAON
flow starts from UML/MARTE models and combines code synthesis,
parallelism analysis and stream-oriented OpenMP extensions with
power and performance evaluation tools and run-time managers.
That combination of design-time and run-time tools enables solv-
ing the trade-off between performance improvements and power
consumption minimization.

UML is a very common solution for high-level system design.
[20] pays special attention to the importance of UML models for
industrial applications and the effort that they require. UML is a
very broad and flexible language. Hence different profiles have been
derived for specific application area. Currently MARTE [21] is the
OMG standard profile for Modeling and Analysis of Real-Time and
Embedded systems. Several UML-based methodologies also focus
on HW/SW communication synthesis. In [22], a semi-automatic
solution using Remote Method Invocation (RMI) semantics for
generating HW/SW infrastructure from UML models is presented.
Similarly, [23] describes a flow to generate code from high-level
MARTE for implementation on dynamically reconfigurable SoCs.

Regarding code parallelism analysis, the ParTools toolset has
been developed during the PHARAON project. It goes beyond pre-
vious techniques, such as the one proposed in [41] by providing
techniques based on data compaction and advanced visualization.
They are meant to effectively display huge trace data sets, and thus
improve the developer analysis time while searching for the best
parallelization opportunities. In the same vein, the tools from Crit-
icalBlue can predict application performance under different
thread decompositions, and display the corresponding inter-thread
dependencies. Like in our case, the assessment of parallelization
opportunities is bound by the quality of the test bench used. How-
ever, the visualization capabilities are closer to those of a tradi-
tional profiler.

After analyzing parallelization opportunities, solutions to
implement them are required. OpenMP has been selected as a
background technology, since, it is the de facto standard to pro-
gram shared memory parallel computers. An extension of OpenMP
for data-flow and stream computing, called OpenStream, has been
developed in the project, leveraging previous results in the area
[48,49].

Finally, in the context of run-time management for low-power
design, different task-scheduling techniques have been also devel-
oped before the project. These techniques cover solutions such as
the proportional, integral and derivative (PID) controllers [24], or
fuzzy logic controllers [25]. Again, various European projects have
tackled these issues [26–31]. Traditional approaches can be
roughly classified into either pure design-time approaches or pure
run-time approaches. In general, they suffer from the following
drawbacks.
First, some of them are applicable only for single-processor plat-
forms [44], or for homogeneous multi-processor platforms [45], but
not for heterogeneous multi-processor platforms. Second, none of
the existing approaches proposes a complete framework. Some of
them are based only on task mapping and scheduling (a good over-
view of traditional scheduling algorithms can be found in [46]).
Some others are based only on slowing or shutting down the plat-
form resources [32] and on Dynamic Voltage and Frequency Scaling
(DVFS) [33–36]. Third, the objective of the majority of these
approaches is performance optimization [37–40,50], and not power
consumption optimization. Finally, design-time approaches involve
slow heuristics [36,42,43] using Integer Linear Programming (ILP)
algorithms and cannot be used at run time.

The addition of parallelism to the set of platform parameters
significantly increases the design space of application implementa-
tions. Thus, the PHARAON project developed innovative and effi-
cient techniques for run-time power management, which are
needed to extend the traditional approaches for power consump-
tion optimization [47].

3. PHARAON system design flow

The targeted design flow in PHARAON drives the design from
UML specifications to implementation of cross-compiled code onto
the target platform. During this process, parallelization analysis,
code synthesis and power management components are added to
the original functional code in order to optimize the use of the tar-
get platform.

As depicted in Fig. 2, the proposed flow starts by modeling the
top-level application architecture with a high level component-
based approach (UML/MARTE). The use of this methodology
enables the PHARAON flow to separately map various application
components to resources within homogeneous, heterogeneous
and distributed platforms. In order to enable this, the business
code for each component (C/C++ files) has to be provided.

This approach enables a two level design approach, combining a
coarse grain, and a fine grain level. The component-based approach
allows the user to select different coarse-grained deployment
strategies and to explore parallelization between relatively large
components (e.g. the layers of a protocol stack) though automatic
code generation. Then, the internals of each component (e.g. a spe-
cific MAC or PHY algorithm) can be analyzed and optimized at a
finer grain using the following tools of the flow.

For the coarse grain level, a code generator has been developed
to automatically generate the wrapper code used for deployment
of and communication among the different SW components. The
tool produces the source files that are used as inputs to the subse-
quent stages of the toolchain, including analysis and optimization
on the host computer and later target platform mapping.

In a first stage, the C code of a UML component to be further
parallelized is sent to a performance simulator in order to evaluate
the execution time and power cost of the different statements of
the code.

In a second stage, the parallelization tool allows the designer to
understand the underlying computational structure of the C code,
and use this to further parallelize the internal code of the compo-
nent. Based on user decisions, the parallelization tool then gener-
ates code integrating OpenMP/OpenStream parallelization
directives.

In a third stage, the optimized code is simulated again on the
performance evaluation tool both to evaluate the quality of the
parallelization (and optionally improve it by using the paralleliza-
tion tool again), and to obtain the information required for run-
time optimization. Alternatively, the code can be implemented
and measured onto the physical platform, if that is already
available.

Inputs

Eclipse

infrastructure

UML/

MARTE

model XML files

Code Generator
Simulation

Files
Performance

simulator

Performance

metrics

Code Generator

Parallelization

tool

Parallelized

C/C++ files

Performance

simulator

Performance

metrics

Platform

Binary

Physical platform

Power

scheduler

Run-time

manager

OpenMP

cross-compiler

Simulation

Files

Platform

Source

Files

1

2

3

4

C/C++ files

1

2

3

4

Fig. 2. PHARAON design flow.
Finally, different runtime managers (a reconfiguration manager
and a low-power scheduler) are deployed on the physical platform
in order to reduce power consumption while ensuring required
application performance. Here, performance and power traces col-
lected by the simulator help to refine the power management
strategy.

The project has been organized around 6 different workpackag-
es, as detailed in Fig. 3. The first step in the project has been to list
all industrial requirements and to specify both the interfaces
among the tools and the demonstrators that will be used to assess
them. This work is covered in the first workpackage of the project,
and constitutes the skeleton of the project and produces all the ref-
erence documents that will drive the development in the following
workpackages. Secondly (WP2), the project focuses on the imple-
mentation of design-time methods and tools that facilitate the
development and implementation of applications targeting paral-
lel and heterogeneous platforms, as described in Section 4.

At the same time, WP3 is aimed at runtime resource and power
management. One goal of these run-time solutions is to develop
techniques to schedule multiple applications on the platform.
Another goal is to develop software components, integrated in
the middleware of the system, capable to adapt hardware platform
configuration to application needs depending on the required qual-
ity of service.

To evaluate the validity of these tools, three case studies are
begin designed to demonstrate the efficiency, validity and applica-
bility of the developed tools and methods. It also integrates an
industrial evaluation that ensures the industrial viability of the
proposed solutions. This work focuses WP4.
Fig. 3. PHARAON workpackages organization.
Dissemination and exploitation of results is covered in WP5,
with main focus on ensuring the widest visibility of the project
results and promoting the industrial exploitation of the most
promising results. Finally, WP6 deals with project management
and integrates scientific and technical management as well as
communications with the European Commission.
4. Design-time tools for parallelization and heterogeneous
platform support

4.1. UML/MARTE modeling

In order to support all the different stages of the flow, a power-
ful high-level modeling methodology has been defined. It is based
on UML and it follows a component-based approach applying the
Model-Driven Architecture (MDA) principles to the development
of HW/SW embedded systems. Additionally, the MARTE profile
has been used to consider all the specific characteristics specifically
related to embedded system design (Fig. 4).

The proposed methodology is software centric, as it assumes an
allocation of components to programmable processors.

Following the proposed methodology designers can completely
describe the system, enabling automatic generation of the input
code required by the different tools of the design flow. For such
purpose, designers must describe in various UML/MARTE views
the system functionality, the target platform and the resource
allocation.

However, since the methodology has to support a broad variety
of platforms, several extensions to the basic UML/MARTE profile
were required. The main new issues to be covered are heterogene-
ity, parallelization, I/O support and run-time power management.
Thus, specific enhancements are proposed for all these points.

In order to support adequate mapping to heterogeneous sys-
tems, three major issues have been detected. First, it is required
to generate different executables with the components mapped
to each resource. Second, it is required to ensure the correct access
to shared information, maintaining the memory architecture of the
original source code. And third, the model must handle multiple
file versions for the same component, each one optimized for each
possible mapped resource (e.g. GPU, DSP and CPU), including files
for host simulation.

In order to solve the first two points, the system mapping is per-
formed in two steps: first components are mapped to memory
spaces and then these memory spaces are mapped to resources
(Fig. 5). As a result, different executables are generated for the sys-
tem, one for each memory space. Additionally, to support different

Fig. 4. Excerpt of PIM of the stereovision application.
files for the same component, different attributes have been added
to the ‘‘file’’ stereotype.

Additionally, the information described in the UML model also
enables the automatic generation of ad-hoc communications infra-
structures. To optimize it, different channel semantics (listed
below) have been added to MARTE profile. This allows designer
to optimize the system concurrent architecture at a coarse grain,
by modifying the relationships between the system components.

4.2. Code generator

From the information included in the UML/MARTE graphical
model, the inputs for the different tools of the flow are created.
This generation process is performed in two steps. First, an Eclipse
plugin has been developed, capable of transforming the graphical
model into a set of XML files. From these files, the generator pro-
duces a set of C files that includes the code required to initialize
all the components mapped to each memory space, the C wrappers
that enable the communication among the application compo-
nents, the different agents handling incoming communication
requests, and the platform-specific compilation scripts.

The interface wrappers use the facilities provided by a commu-
nication library that has been specifically developed to implement
the various communication mechanisms. These wrappers are
implemented in a three layer structure, in order to have enough
Fig. 5. Platform ma
flexibility to support multiple communication semantics and map-
pings. One layer implements communication semantics. Character-
istics such as synchronous or asynchronous calls, FIFOs, data
joining or splitting and synchronized or prioritized accesses from
different clients are implemented in this step. Then, arguments
are adapted to be transferred depending on the communication
type (within the memory space, in different spaces of the same
OS, in different OSs or resource types). Finally, the infrastructure
obtains from the communication library the generic transfer func-
tions for the required communication types required on each case.

At the same time, the automatic generation of wrappers enables
easy mapping of components to different resources, considering
distributed platforms and heterogeneous systems, which can con-
tain devices such as DSPs, co-processors such as the NEON or GP–
GPUs. The mapping to these heterogeneous resources has been
thoroughly verified with the project use cases, as described in Sec-
tion 6.

This work has been described through several papers, such as
[51–56], where more details and specific results can be found.

4.3. Pareon’s performance and energy simulator

Within the PHARAON project, the performance analysis of C
applications on the target hardware platform is performed by the
Pareon tool, which also estimates energy consumption. The
pping example.

Fig. 6. Pareon performance analysis toolflow.

Fig. 7. ParTools toolset parallelization flow.
estimates are fed into the parallelization tool to help parallelize
performance and optimize memory bottlenecks of the code, while
tracking effects on power consumption. Furthermore, the energy
estimates are used by the low power scheduler that can select
the most power-efficient operating mode of the system. The mod-
eled target hardware in the context of PHARAON includes ARM
Cortex A9 and Intel Core 5 multicore processors. The Pareon
tool-suite also features leading-edge interactive parallelization
capabilities (akin to those described in the next section), which
are, however, outside the project’s scope.

The Pareon tool is a collection of command line interface (CLI)
tools and a GUI. Within the PHARAON project the CLI tools are used
in the automated toolchain, while the GUI enables human inspec-
tion of the modeling results. The input to the tools is the source
code of a C or C++ program. The input program should comply with
the ANSI C99 or ANSI C++98 standards and may contain selected
POSIX function calls. In particular, parallel programs with POSIX
threads such as pthread_create() and pthread_join() can be ana-
lyzed in terms of their timing and energy consumption. Further-
more, the latest release of Pareon supports OpenMP pragmas, in
order to handle the fine grained parallelization strategy used in
PHARAON. Overall, analysis of parallel code enables closing the
loop in the PHARAON toolchain and optimizing already parallel-
ized applications by looking at their performance and energy con-
sumption estimates.

The vfcc compiler translates the input source code into a generic
executable for an intermediate instruction set architecture, which
is independent of the target processor. Then the generic executable
is run in the Pareon simulator with the provided execution envi-
ronment, including necessary test data, input files, environment
variables, etc. During the execution various statistics such as
instruction counts and memory behavior are collected. Finally,
the Pareon report command converts these statistics into estimates
for a particular hardware target platform and generates an XML
output file with performance and power estimates of the input
program, to be used by the parallelization tool.

The internal Pareon toolflow for performance analysis is shown
in Fig. 6 and an extensive documentation of the Pareon functional-
ity is available online at [10].

Pareon has been successfully used with PHARAON case studies,
such the Software Defined Radio and the depth estimation algo-
rithm, as described in Section 6. Furthermore, Pareon’s paralleliza-
tion capabilities were applied to analyze available concurrency in
complex industrial applications of the project, as well as to con-
struct their multithreaded implementations. Currently Pareon
results are being integrated in the PHARAON optimization flow
to steer parallelization and power management.

4.4. ParTools parallelisation toolset

The ParTools toolset [16,17] addresses the parallelization of leg-
acy sequential C software that can include also complex control
structures, pointer operations, and dynamic memory allocation. It
can discover both task and data parallelization opportunities and
can be used for any parallelization technique, including in particu-
lar both the UML/MARTE-based method used in the PHARAON flow
for coarse grain parallelization the OpenMP/OpenStream pragmas
used for fine grain parallelization.

The toolset flow shown in Fig. 7 is divided in four stages: (I)
source instrumentation, (II) run-time execution trace profile and
data dependency collection and compaction, (III) graphical visual-
ization and analysis of execution data, and (IV) source code parall-
elization. Its operation is controlled from the Code::Blocks IDE for C
and C++. The IDE supports also cross-referencing between the exe-
cution trace visualized in stage III and the sequential C project
source.
The automatic annotator used in stage I instruments the
sequential source for run-time data dependency collection and
can be easily integrated into make-based projects. During program
run, the data retrieved by the instrumentation are collected, ana-
lyzed and compacted by a library linked with the instrumented
program. At the end of program execution, the data collected are
saved for use by the graphical visualization and analysis interface.

The graphical visualization interface displays both the program
execution profile and the data dependencies to facilitate the search
for parallelization opportunities. These are shown as a graph with
nodes representing program control (e.g., statements, loops,

function calls) and edges representing the data dependencies. All
elements are uniquified based on the execution call stack. In order
to make the huge data dependency graph easy to visualize and
understand, the nodes for complex program structures (e.g., loops,
function calls) can be ‘‘folded’’ to represent the cumulative data
(both execution and data dependencies) for all the execution call
stacks rooted there.

Figs. 8 and 9 show an analysis view for the stereovision applica-
tion presented in Section 6. The rectangular nodes correspond to
loops (folded with their underlying call stack), while the elliptic
ones represent function calls (also folded with their underlying call
stack). Both types of nodes (loops and functions) that fold all data
dependencies below them are called node folds in the following.
The two loop folds with stronger colorization include 53% and
18% of the program execution time respectively, which makes
them significant candidates for parallelization. Moreover, they
have no strong data dependency among them and may be suitable
for data-parallel rewriting.

This abstraction mechanism, including graph re-rooting at any
level of interest, is essential to compactly show the most important
points for parallelization opportunities of a DDG (Data Dependence
Graph) that can have millions of nodes and edges in its fully
exploded form.

The data dependency view of a selected DDG node is another
important feature for parallelization candidate analysis. As men-
tioned above, a DDG node often represents not just a C statement,
but rather the fold of a whole call stack, i.e., a collapsed view of the
statement and its descendants in the call tree, including its nested
statements, and those of all functions called by it. For any fold in
the current scope of interest (i.e. not included in a fold above it),
the data dependency view shows a summary of the input and out-
put data dependencies only of that node. This is an essential infor-
mation for any parallelization mechanism, language and style. The
data dependency view of a given call stack (i.e., folded node), as
shown in Fig. 10, is organized in layers:

1. The top layer displays the leaf nodes (C statements) that pro-
duce the incoming data dependencies.

2. The next layer displays the data produced by these statements,
in parallelogram-shaped boxes.

3. The middle layer displays the statements in the selected fold
node that consume or produce data.

4. The next layer displays the data produced by selected fold state-
ments, again in parallelogram-shaped boxes.

5. The bottom layer displays the leaf nodes that consume the out-
bound data dependencies.

This view can substantially speed up the parallelization deci-
sions made by the developers. Note that these dependencies are
typically difficult to extract through code inspection or static code
analysis, since the producers and consumers can be at various
depths in different call stacks, and the dependencies can be
Fig. 8. Initial view folds all execution and dependencies under main() function.
through any type of data (dynamic, local, global, etc.) and complex
control structures. The ParTools toolset tracks data dependencies
through variables inside any scope or storage class, including those
that are dynamically allocated on the heap.

4.5. OpenMP extension for data-flow and stream parallelism

OpenStream (http://www.di.ens.fr/OpenStream) is a stream
programming language, designed as an incremental extension to
the OpenMP parallel programming language [12]. It allows
expressing arbitrary task-level data flow dependence patterns. Pro-
grammers expose task parallelism and provide data-flow informa-
tion to the compiler through compiler annotations (pragmas), used
to generate code that dynamically builds a streaming program. The
language supports nested task creation, modular composition, var-
iable and unbounded sets of producers/consumers, and first-class
streams. These features, enabled by an original GCC-based compi-
lation flow, allow translating high-level parallel programming pat-
terns into efficient data-flow code.

Data-flow execution is essential to reduce energy consumption,
one of the primary focuses of the PHARAON project, by reducing
the severity of the memory wall. This is achieved in two comple-
mentary ways: (1) thread-level data flow naturally hides latency;
and (2) decoupled producer–consumer pipelines favor on-chip
communication, bypassing global memory. Furthermore, Open-
Stream has shown excellent performance in comparison with
state-of-the-art parallel programming environments like StarSs,
as illustrated in Fig. 11, showing1 the speedups achieved by Open-
Stream (red) and StarSs (blue) against sequential execution for a
block-sparse matrix LU factorization on a dual-socket AMD Opter-
on 6164HE machine with 2 � 12 cores at 1.7 GHz. Key to the effi-
cient execution of OpenStream programs is our optimized
runtime system, providing low-overhead synchronization and
work-stealing scheduling.

Work stealing is a central component of the OpenStream run-
time library, allowing for efficient lock-free scheduling of light-
weight tasks. The dynamic scheduler has been ported to the �86
and ARM architectures, with a focus on correctness and perfor-
mance. Improving on Chase and Lev’s concurrent doubly-ended
queue, OpenStream includes a state-of-the-art work stealing
implementation. The ARM version of the algorithm is specifically
optimized for its weak memory model. Moreover, based on recent
progress in the formalization of memory consistency, we estab-
lished the first proof of the relaxed double-ended queue for such
a processor [11].

Our experiments show that the optimized ARM code, of which
two versions have been written in C11 and native inline assembly,
generally outperforms the original sequentially consistent Chase-
Lev in a variety of benchmarks, including a selection of standard
fine-grained task-parallel computations (Fig. 12). These results
provide the foundation for a robust parallel library, and pave the
way for further research into correct lock-free algorithms for
run-time support.

From this successful experience, we went on with one other crit-
ical concurrent data structure for parallel languages and embedded
multiprocessors: Single-Producer, Single-Consumer (SPSC) FIFO
queues. They arise from a variety of parallel design patterns and
from the distribution of Kahn process networks over multiproces-
sor architectures. A fine-tuned FIFO implementation translates into
higher communication bandwidth and lower communication
latency. The latter is key to facilitate the satisfaction of real-time
constraints and reduce the memory footprint of in-flight computa-
tions, a critical asset for memory-starved embedded processors and
1 For interpretation of color in Fig. 11, the reader is referred to the web version of
is article.
th

Fig. 9. Analysis of the stereovision application. The two loop folds with stronger colourization include 53% and 18% of the program execution time, which makes them
significant candidates for parallelization. Moreover, they have no strong data dependency among them and may be suitable for data-parallel rewriting.
many-core architectures. This motivates the search for the FIFO
queue with the highest throughput for a given buffer and batch size.

Formal reasoning about SPSC bounded queues dates back to the
seminal work of Lamport, who proved that this algorithm does not
need any additional synchronization primitives such as locks to
work properly. Our goal is twofold: to offer portability and correct-
ness through a proven, concurrent implementation in C11, and to
offer performance through advanced caching and batching exten-
sions of the algorithm, as well as relaxing the hypotheses on mem-
ory ordering, leveraging the low-level atomics in C11 with relaxed
memory consistency.

The solution we propose is called WeakRB [19]. Along with a
complete proof using an axiomatic memory model of C11, we val-
idate its portability and performance is validated over 3 architec-
tures with diverse hardware memory models, including 2
embedded platforms. Our experiments demonstrate consistent
improvements over state-of-the-art algorithms for a wide range
of buffer and batch sizes. As shown in Fig. 13, WeakRB outperforms
one of the state of the art algorithms, MCRB [18], sustaining close-
to peak throughput in core-to-core streaming communications.

Overall, our foray into streaming data-flow languages has led to
the design of a tightly integrated collection of compilation, code
generation, and concurrent runtime algorithms for task-level
parallel programming. The complete design has proven particu-
larly effective on embedded multicores. In the future, we will work
on complementing these techniques with real-time scheduling
policies and low-power adaptation schemes.

4.6. Data-flow synchronous programming of parallel embedded
systems

The PHARAON project also investigates longer-term research
directions, such as the design and implementation of safety–critical
embedded software running on parallel multicore processors. Hep-
tagon is a data-flow synchronous language devoted to the design
and implementation of embedded software. Its ancestors Lustre
and Scade have met a large success in the field of safety–critical
real-time systems, offering a clean semantics, with a robust, effi-
cient, and traceable compilation flow, while enforcing bounded
resource and bounded reaction-time guarantees. However, compi-
lation schemes for such languages lead to very efficient, but sequen-
tial code. Various distribution and parallelization approaches can be
applied a posteriori, at the price of performing a non-modular and
hardly scalable static analysis of the generated code to guarantee
efficiency and correctness. We provide a clean alternative to these
approaches, giving the designer explicit control on the de-synchro-
nization and on the distribution of the program (or model) [13].

Classical issues are summed up in the classical ‘‘slow_fast’’
example sketched in Figs. 14 and 15. A slow process communicates
with a faster one at the rate of the slow process. Parallel execution

Fig. 10. Detail of the data dependency view.

Fig. 11. Speed-up comparison OpenStream and StarSs.

Fig. 12. Speed-up Vs Seq-Cst
is clearly possible, from the observation of the dependence graph,
but the effective distribution mandates decoupling processes exe-
cuting at different rates. Usual synchronous compilation leads to
poor performance with the fast process waiting for the completion
of the slower one, as seen in the first figure.

To leverage all the advantages of Heptagon while allowing for
parallel code generation, we extend it with futures. At the source
code level, futures may be seen as simple annotations leaving the
functional semantics of the program unchanged. During the com-
pilation phase, they are key to enable asynchronous calls while
preserving memory boundedness. As seen in the second figure,
our example can be efficiently compiled to parallel code by adding
lightweight, semantics-preserving future annotations.

Operations on arrays are frequent in embedded applications, as
example applications studied in the PHARAON project show. It is
thus very important when designing a dedicated programming
language to offer high-level support together with efficient compi-
lation techniques. In practice, this means reducing the number of
on various benchmarks.

Fig. 13. Comparison between MCRB and WeakRB on Cortex A9.

Fig. 14. ‘‘slow_fast’’ Async flow.

Fig. 15. ‘‘slow_fast’’ Sync flow.
array copies. The Heptagon compiler implements original tech-
niques to this aim, based on a programmer-guided, modular
inter-procedural memory allocation procedure [14].

Finally, we are now studying the marriage of the data-flow syn-
chronous paradigm with computational models dedicated to high-
performance regular algorithms, such as SDF/CSDF graphs, with the
intuition that the result will be more than the sum of its parts. We
believe that considering communication rates as a first class citizen
of a language semantics is key to next generation tools for embed-
ded platforms, reconciling programmer productivity, efficient and
predictable compilers and analyzers, and parallel hardware.

5. Runtime power management tools (RTPM)

After performing design-time optimizations, run-time manage-
ment gives additional capabilities to improve system operation.
Global run-time management methodology used in the context
of PHARAON project consists of two phases:

� Phase 1: a full design space is explored for each application at
design time to derive set of optimal design points. This phase
is out of scope of this paper.
� Phase 2: critical decisions about all active applications are taken
at run time. This run-time phase is explored in PHARAON
project.
Separating actions in two phases allows minimizing overhead
introduced by the runtime decisions through pre-defined optimal
configurations which are computed at design time. Then, at runtime,
only extra optimization based on dynamic inputs will be done to
improve power consumption gains with low performance overhead.

In this approach, the following assumptions on applications are
considered:

� Ideally, for any application, all functionalities should be accessi-
ble at any time. However, based on the user requirements, the
available platform resources, the limited power/energy budget
of the platform, and the platform autonomy, it may not be pos-
sible to integrate all these functionalities on the platform at the
same time. Hence the application developer has to organize the
application into application modes, each one specifying a differ-
ent subset of functionalities. For example, a video codec can be
implemented in many ways using different number of parallel
threads (single-threaded, 2-threaded, 4-threaded and so on).
In that case, each implementation (code version) will corre-
spond to a separate video codec mode.
� Whereas the functional specification of an application mode is

fixed, there may be several specific algorithms or implementa-
tions for a given task (e.g. a Fast Fourier Transform (FFT)).

Additionally, to alleviate the run-time decision making, the
RTPM must obtain information from design-time exploration. This
exploration is performed per application on a representative set of
available input data for all possible application modes, allowed QoS
requirements, application parallelizations and data managements.
This leads to a multi-dimensional set of Pareto-optimal application
configurations, illustrated in Fig. 16. The average costs and the
platform resource usage on this representative set are also
reported in the multi-dimension set. The Pareto set of each appli-
cation is an input for the RTPM.

5.1. RTPM approach

During the application run, various opportunities can be
exploited by the global run-time manager to optimize application
and hardware platform performance. Such run-time decisions dur-
ing the lifetime of applications are organized into two layers: the
coarse grained level L1 includes decisions triggered by dynamic
events, while the fine grained level L2 includes decisions to
improve application performance. L1 decisions include optimal
selection of application configurations and then mapping one or
more tasks in those configurations on the platform resources.
These decisions are more costly to perform and usually involve
reconfiguration of platform hardware. They are triggered by
dynamic events generated due to change in the environment e.g.
user moves from roaming with LTE network into a WiFI hotspot.
On the other hand, L2 decisions correspond to fine-tuning applica-
tion performance. The control knobs available with the platform
(e.g. DVFS) and with the application-specific parameters (e.g.
changing the frames per second rate in an MPEG4 encoder to
trade-off quality with performance) are tuned iteratively to opti-
mize application and platform performance.

5.2. Decision making at run-time

During the application run, there are various opportunities to
optimize application and hardware platform performance. The
Global Run-time Manager (GRM) can decide to change platform

Fig. 16. RTPM global approach.

Fig. 17. RTPM architecture.
and application parameters at run-time to exploit these opportuni-
ties. The GRM makes these decisions in a systematic way by using
coarse-grained and fine-grained decisions.

The high-level algorithm for the runtime decision making,
which will typically run on the control processor of the hardware
platform, is as follows.

Inputs:

A. Hardware platform information, e.g. available resources
(both for computation and for communication), and the dif-
ferent knobs of those resources that can be tuned.

B. Application information, e.g. deadlines (both hard and soft),
multiple optimal operating points and their corresponding
resource usage, Quality of Service (QoS) constraints.

C. External inputs regarding environment changes e.g. temper-
ature, remaining battery energy.

Algorithm:

1. Decide the allocation of platform resources to applications.
2. Select the optimum operating configuration for each applica-

tion using the allocated resources.
3. Decide for each application, how the platform resources will be

allocated for each task of the application.
4. Perform (partial or full) dynamic reconfiguration of the plat-

form to load application code on those chosen resources.
5. Start executing the application.
6. Monitor observable performance parameters both for applica-

tion and platform.
7. Perform fine-tuning of platform DVFS modes depending on

actual application slack time.
8. In case of environment changes, or dynamic events, or the

inability to achieve the expected performance, go to Step 1.
9. Go to Step 6.
In PHARAON, this run-time decision-making flow is enabled by
using the RTPM architecture shown in Fig. 17. The low-power
scheduler that is described next corresponds to the lower level
operations (layer 2).
5.3. Low power scheduler

The low-power scheduler takes as an input the selected applica-
tion configuration mode, defined by the RTPM. It takes into account
a predefined SW configuration (application mode, associated dead-
lines, tables with the expected timing for various code segments)
and HW configuration (number of active cores, voltage/frequency
mode, task affinity to specific cores). The low-power scheduler
developed in PHARAON actually combines a classical Earliest

Deadline First (EDF) policy with Dynamic Voltage and Frequency
Scaling (DVFS) mechanisms.

As depicted in Fig. 17, the power management policy relies on:
(1) monitoring the application Actual Execution Time (AET) and (2)
comparing it with the Worst Case Execution Time (WCET). To
reduce power consumption while still complying with the applica-
tion deadline, the scheduler tries to minimize the core idle time by:
(A) spreading tasks on as many active cores within the SMP as pos-
sible, and (B) lowering as much as possible the core voltages and
frequencies. The results in terms of energy savings depends on
the amount of application idle times and their duration (which
can be important if the WCET is very far from the AET) and are thus
actually very application dependent. For example, an H264 codec
executed on an ARM Cortex A8 shows gains from 20% to 80%
depending on the required application QoS (see Fig. 18).

The first task of the application is executed with the core config-
uration as applied by the dynamic reconfiguration manager. Then
modifications of the core state may occur during the task execution
only at some specific points, which mark the boundary between
‘‘segments’’.

A segment is a section of code with an associated timing con-
straint, which enables the scheduler to retrieve information about
worst-case and actual execution times at runtime. Thanks to this
method, it is possible to monitor and exploit the different execu-
tion paths taken by a task at runtime. By feeding the scheduler
with this information, the scheduler gets an accurate vision of
the portions of job which have already been done and which
remain to be done. For that purpose, specific APIs have been
defined as well as an extension of POSIX threads, to back-annotate
a task with timing information.

From a user perspective, applications that must benefit from
this power optimization must be instrumented with segment
Fig. 18. DVFS scheduling comp

Fig. 19. IMEC COBRA Software
boundaries through the above mentioned APIs call. The more seg-
ments are in task, the better the scheduler will be able to monitor
progress of this task, but also the more timing overheads are intro-
duced. A table used at runtime by the low-power scheduler must
also be provided by the user. It contains the names of all the seg-
ments in the application, together with their associated WCETs at
the different core operating points and their deadlines.

Implementation of this scheduler has been done in user space
for portability reasons, but implementation in kernel space could
also be possible. It requires a FIFO priority-based task scheduler,
a hardware platform with DVFS capabilities and an application
with POSIX threads. In PHARAON, experimentations will be done
on a multicore Cortex-A9 platform with a Linux-SMP OS and the
CPUfreq framework. Relying on CPUfreq, which provides a stan-
dard HW layer abstraction, allows the approach to be transparently
compatible, among others, with future HMP platforms based on
big.LITTLE architectures.

In the scope of the PHARAON project, applications must be man-
ually instrumented with the defined APIs. There is some ongoing
work on: (1) generating automatically these calls thanks to the code
generator previously presented; (2) estimating the application
segment WCET via the Pareon tool; (3) integrating the APIs in the
OpenStream runtime.
6. Use cases

As previously described, PHARAON targets the development of a
set of methods and tools enabling the industrial use of parallel and
heterogeneous platforms. Industrial use-cases are thus required to
demonstrate both the efficiency of the developed methods and
their applicability in an industrial flow.
ared to regular scheduling.

Defined Radio platform.

Fig. 20. Radio use case #2.
To ensure a wide coverage of research activities and developed
methods, PHARAON targets several application domains: namely
advanced 3D video processing and radio communications. On the
one hand, most multimedia applications have inherent parallelism
and their implementation on a parallel platform is rather direct. On
the other hand, radio applications have strong real-time require-
ments and hard-to-parallelize data dependencies.

Moreover, because of heavy processing loads, implementing
real-time 3D video applications with high-definition features
becomes more and more difficult on single core architectures. As
a consequence, their implementation on a parallel platform is more
challenging and the need for automation-assisted parallelization
stronger. Furthermore, the two proposed radio applications are
complementary. The first one targets the implementation of a
physical layer (L1) with real time reconfiguration and multi-stream
capabilities, while the second one concentrates on the implemen-
tation of the MAC layer (L2 and L3) with a cross-layering approach
Fig. 21. Stereovis
offering more flexibility. Thus, the three use cases covered (two
radio applications and video processing) are described now.

6.1. Radio applications

Two complementary radio applications (use case 1 and 2) are
being applied to study the effects of the techniques and tools
described in the previous sections. The first one targets the imple-
mentation of a physical layer (PHY) with real-time reconfiguration
and multi-stream capabilities. The platform architecture for PHY
implementation is shown in Fig. 19 [15]. It contains digital front-
end (DIFFS) connected to antennas, a baseband processor (ADRES)
and an outer modem (OMD) containing Forward Error Correcting
(FEC) blocks. The data are exchanged between the blocks in a flexi-
ble and programmable way by the 256-bit wide AMBA AHB buses
and the interconnect controllers (ICC). All these platform blocks
contain in-house developed domain-specific processors which can
be programmed by the ARM processor in the Control plane. This
programmability of the components makes the platform capable
of handling multiple and/or concurrent data streams. The applica-
tion chosen to show the full capability of this platform switches
from receiving a WLAN 802.11n packet to receiving an LTE Cat 4
packet. Our wireless receiver platform can achieve this switch in
52 ls by reconfiguring the firmware of the all platform components.

The second test application (use case 2) concentrates on the
implementation of upper protocol layers. It handles IP packets with
a TDMA (Time Division Multiple Access) protocol and targets ad-
hoc networks. The use of the PHARAON tool suite will help to
improve civil protection services (police, fire brigades, medical ser-
vices), by improvements in the battery life and quality of the radio
communications (see Fig. 20).

Although the application behaves at the high level as a dataflow
pipeline, it is in fact fully control flow based, with potential cross-
layer optimizations, including inter-layer data dependencies. This
class of radio protocol applications must be implemented on mul-
ticore heterogeneous platforms with new power consumption
monitoring capabilities. Both the mapping to a specific platform
and the addition of the power management calls to also ensure sat-
isfaction of timing constraints are not straightforward. The applica-
tion of the PHARAON design flow presented in Section 3 helps the
system engineers to perform a proper analysis to find the best
mapping to a given platform.
ion use case.

Table 1
Overview of PHARAON tools used for industrial use cases.

Radio
applications

Stereovision
application

UML specification and code generation (UC) X X
PAREON Tool (VF) X (partially) X
ParTool (POLITO) X X
OpenMP extension (ENS) X X
Heptagon language (ENS) X (partially)
Low-power scheduler (TCS) X X (partially)
Run-time manager (IMEC) X

Fig. 23. Performance comparison of sequential and manually parallelized versions
of the stereovision use case on a 2 core machine.
6.2. Stereovision application

Another demonstrator (use case 3) relies on advanced 3D
stereoscopic applications with real-time and high definition
constraints, targeting the automotive domain for human and
obstacle detection (see Fig. 21).

The application infers the 3D scene geometry from the images
provided by two twin cameras placed in a known configuration.
Several steps are required in order to compensate the distortion
introduced by the physical characteristics of the sensors, to align
the images and find the depth map with enough accuracy to be
used in safety critical environments. The application of the design
flow described in Section 3 will allow finding the optimal solution
to be implemented on a multicore platform. This use case will
demonstrate the impact of our system design flow on critical
aspects of embedded systems design.

6.3. Design flow application to use cases

Table 1 gives an overview on the tools in the PHARAON design
flow being applied on the three use cases (the two radio applica-
tions and the stereovision application). Although the project is still
on-going, various tests have been performed using the tools pre-
sented above. Their results are described next.

Considering use case 1, the application code for the wireless
communication modes has been parallelized and optimized for
the Software Defined Radio platform and this use case is being pri-
marily used with the global run-time manager to validate the
potential for energy savings.

The integration of the application code with the run-time man-
ager showed that the reconfiguration from an 802.11n scenario to
a 3GPP-LTE scenario can be successfully executed by the run-time
manager.
Fig. 22. Current status of experime
Considering use case 2, the following steps have been success-
fully executed or are currently in progress:

– UML modeling with the structural and deployment view.
– Performance analysis of the first version of the application

provided.
– Preliminary steps of low-power scheduling.
– Preliminary steps of parallelization opportunity identification,

namely performance analysis and data/control dependency
analysis.

The use of GP–GPUs for performance optimization has also been
explored for the physical layer application (see Fig. 22).

Finally, regarding the stereo vision use case 3, some initial man-
ual parallelization has also been completed. It is used as a baseline
reference of effort and performance to evaluate the tools provided
by the partners.

Fig. 23 shows that on a 2 core platform the performance gain of
the initial manual parallelization is slightly above 1.7X. Note that
since the target platform will be a 4 core machine, this should be
considered just a preliminary estimate of the manual paralleliza-
tion quality.
nts done on THALES use cases.

Table 2
Execution times of the stereovision use case.

HW platform Original code (sec) Optimized code (sec)

I/O type Test-bench Camera Test-bench Camera

Intel platform 16.3 – 25.2 –
Beagle: no Neon compilation flags 305.2 313.9 199.7 202.9
Beagle-Panda: no Neon comp. flags 278.7 286.8 164.8 165.8
Beagle: Neon compilation flags 84.7 85.2 68.8 74.8
Beagle-Panda: Neon comp. flags 23.5 26.6 31.3 32.40
SPEAr-600 262.6 265.8 – –

Table 3
Processing times of the stereovision application for different parallelization solutions.

Optimisations Time Speedup

Sequential code (no OMP & no SIMD) 3.4 s Baseline
OpenMP parallelization but no SIMD 1.9 s 1.8�
SIMD vectorization but no OpenMP 1.15 s 3�
Both OpenMP parallelization and SIMD vectorization 0.8 s 4.�
Two platforms, both the initially proposed OMAP4 platform
(Panda board, with dual-core ARM and GPU) and an ASUS
P8H77-I powered by an Intel I5-3570T, have been tried for use case
3. These two possibilities were motivated by the preliminary per-
formance analysis of the application and the recent availability of
quad-core architectures. On the one hand, the OMAP4 enables
the verification of various mappings of components to DSP cores,
or the use of NEON co-processors, in order to check heterogeneity
support. On the other hand, the Intel platform enables increasing
the computational power and physical parallelism to better check
the effectiveness of the parallelization tools.

The UML/MARTE modeling and code generation infrastructure
has been applied to the stereovision use case, enabling the explo-
ration of different platforms, and supporting the generation of
optimized code for each platform. As a result, not only the pro-
posed platforms, but also other platforms, as Beagle and SPEAr
boards have been evaluated, which demonstrates the flexibility
of the approach. Some results are shown in the next table (see
Table 2).

At the same time, the ParTools suite was used to discover the
best parallelization candidates and to analyze their data dependen-
cies for the stereo vision use case. Based on these results, two par-
allelization strategies were decided for a target architecture made
of 2 i5 cores running at 1.20 GHz (i5-3230 M):

1. Four data-parallel hotspots, using OpenMP.
2. Several SIMD conversions using the target architecture support

for vector operations.

The processing times of the test images of 1024�768 pixels can
be found in Table 3. As can be shown, the combined optimizations
achieved a maximum speed-up of 4 times.
7. Conclusions

In this work various tools, techniques and runtime solutions
developed to help mapping applications to multiprocessor plat-
forms have been presented. These tools implement a complete
flow, from UML modeling to final implementation. The goals of
the flow are to reduce development time, increase performance
and reduce power consumption.

To facilitate the usage of this methodology, a model-driven
design methodology starting from UML is used to generate auto-
matically the various data files used by the design-time tools and
the runtime environment. The use of a component-based approach
enables to separately handle different parts of the system, enabling
different mappings to homogeneous, heterogeneous and distrib-
uted systems.

This approach also enables a two level design flow, combining a
coarse grain and a fine grain level. The component-based approach
allows the user to select different deployment strategies and to
explore parallelization between components though automatic
code generation. Then, the internals of each component can be
analyzed and optimized using the parallelization tools.

Our code generation, parallelization analysis and implementa-
tion tools have been developed in combination with fast perfor-
mance estimations to improve design-time results and speed up
the design cycle.

Finally, different runtime managers (a reconfiguration manager
and a low-power scheduler) are deployed on the target physical
platform in order to reduce power consumption while ensuring
the fulfillment of real-time constraints. Furthermore, timing and
power traces collected by the performance simulator help to refine
the power management strategy.

Till now, several results have been obtained separately for the
different tools. The rest of the project will be devoted to further
integration tests and to measure more globally the quality of the
achieved results.

Acknowledgments

This work is being performed in the framework of the FP7-
288307 project PHARAON.

References

[1] Steve Balacco, Next generation embedded hardware architectures: driving
onset of project delays, cost overruns, and software development challenges,
Klockwork Inc.

[2] Bart Kienhuis, Compaan: Deriving process networks from Matlab for
embedded signal processing architectures, in: Proceedings of the 8th
International Workshop on Hardware/Software Codesign, 2000.

[3] Vinod Kathail, Shail Aditya, Rob Schreiber, B. Ramakrisha (Bob) Rau, Darren
Cronquist, Mukund Sivaraman, PICO (Program In, Chip Out): automatically
designing custom computers, IEEE Computer 35 (9) (2002) 39–47.

[4] Timo Stripf et al., Compiling Scilab to high performance embedded multicore
systems, Microprocessors Microsyst. (2013).

[5] F. Thoma, et al., MORPHEUS: Heterogeneous Reconfigurable Computing, in:
Field Programmable Logic and Applications (FPL). International Conference on,
aug. 2007, pp. 409–414.

[6] T. Ahonen et al., CRISP: cutting edge reconfigurable ICs for stream processing,
in: J.M.P. Cardoso, M. Hübner (Eds.), Reconfigurable Computing:From FPGAs to
Hardware/Software Codesign, Springer Verlag, London, 2011, pp. 211–238.

[7] A. Prasad, J. Anantpur, R. Govindarajan, Automatic compilation of matlab
programs for synergistic execution on heterogeneous processors, SIGPLAN Not.
46 (6) (2011) 152–163.

[8] L. J́ózwiak et al., ASAM: Automatic Architecture Synthesis and Application
Mapping, in: 15th Euromicro Conference on Digital System Design (DSD),
Cesme, Izmir, Turkey, September 2012, pp. 216–225.

[9] Marco Solinas, Rosa M. Badia, Francois Bodin, Albert Cohen, The TERAFLUX
Project: Exploiting the DataFlow Paradigm in Next Generation Teradevices,
Euromicro Conference on Digital System Design (DSD), 2013.

[10] Pareon documentation, <http://www.vectorfabrics.com/docs/pareon/current/>.
[11] Nhat Minh Lê, Antoniu Pop, Albert Cohen, Francesco Zappa Nardelli, Correct

and efficient work-stealing for weak memory models, in: Symp. on Principles
and Practice of Parallel Programming(PPoPP), Shenzhen, China, February 2013.

[12] Antoniu Pop, Albert Cohen, OpenStream: Expressiveness and data-flow
compilation of OpenMP-streaming programs, ACM Transactions on
Architecture and Code Optimization (TACO), January 2013. HiPEAC 2013 Conf.

[13] Albert Cohen, Léonard Gérard, Marc Pouzet, Programming parallelism with
futures in Lustre, in: ACM Conf. on Embedded Software (EMSOFT), Tampere,
Finland, October 2012. Best paper award.

[14] L. Gérard, A. Guatto, C. Pasteur et M. Pouzet, Modular Memory Optimization
for Synchronous Data-flow Languages, in: Languages, Compilers and Tools for
Embedded Systems (LCTES), Taipei, Taiwan, June 2012, Best paper award.

[15] J. Declerck, P. Avasare, M. Glassee, A. Amin, E. Umans, A. Dewilde, P. Raghavan,
M. Palkovic, A flexible platform architecture for Gbps Wireless
Communication, International Symposium on System-on-Chip (SoC),
Tampere, Finland, 2012.

[16] M.T. Lazarescu, L. Lavagno, Dynamic trace-based data dependency analysis for
parallelization of C programs, in: Proceedings of 12th IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM), Riva
del Garda, Italy, September 2012.

[17] L. Lavagno, M.T. Lazarescu, I. Papaefstathiou, A. Brokalakis, J. Walters, B.
Kienhuis, F. Schäfer, HEAP: a highly efficient adaptive multi-processor
framework, in: Microprocessors and Microsystems: Embedded Hardware
Design (MICPRO), 2013.

[18] P.P.C. Lee, T. Bu, G. Chandranmenon, A lock-free, cache-efficient shared ring
buffer for multi-core architectures, in: Proc. of the 5th Symp. on Architectures
for Networking and Communications Systems, New York, NY, 2009.

[19] N.M. Lê, A. Guatto, A. Cohen, A. Pop, Correct and Efficient Bounded FIFO
Queues, Research Report RR-8365, INRIA, Sept. 2013.

[20] W. Mueller, Y. Vanderperren, UML and model driven development for SoC
design, CODES+ISSS’06.

[21] OMG: ‘‘UML Profile for MARTE’’, <www.omgmarte.org>, 2013.
[22] J. Barba, F. Rincón, F. Moya, J.D. Dondo, J.C. López, A comprehensive integration

infrastructure for embedded system design, Microprocessors Microsyst.
(2012).

[23] S. Kang, H. Kim, J. Baik, H. Choi, C. Keum, Transformation Rules for Synthesis of
UML Activity Diagram from Scenario-Based Specification, 34th Annual
Computer Software and Applications Conference (COMPSAC), 2010.

[24] E. Karl, D. Blaauw, D. Sylvester, T. Mudge, Reliability Modeling and
Management in Dynamic Microprocessor-Based System, Proc. Design and
Automation Conf. (DAC), pp. 1057–1060, 2006.

[25] H.R. Pourshaghaghi, J.P. de Gyvez, Fuzzy-controlled voltage scaling based on
supply current tracking, IEEE Trans. Comput. 62 (12) (2013) 2397–2410.

[26] MULTICUBE FP7-216693 project, Multi-objective Design Space Exploration of
Multiprocessor SOC Architectures for Embedded Multimedia Applications,
<http://www.multicube.eu>, January 2008 – June 2010.

[27] 2PARMA FP7-248716 project, PARallel PAradigms and Run-time MAnagement
techniques for Many-core Architectures, <http://www.2parma.eu>, January
2010 – March 2012.

[28] Kim Grüttner et al., The COMPLEX reference framework for HW/SW co-design
and power management supporting platform-based design-space exploration,
Microprocessors Microsyst. (2013).

[29] GEODES ITEA2-07013 project, Global Energy Optimization for Distributed
Embedded Systems, <http://geodes.ict.tuwien.ac.at>, September 2008 –
September 2011.

[30] PHERMA ANR project, Parallel Heterogeneous Energy efficient Real-time
Multiprocessor Architecture, <http://pherma.irccyn.ec-nantes.fr/>, September
2007 – September 2010.

[31] SCALOPES ARTEMIS project, SCAlable Low Power Platforms, <http://
www.scalopes.eu/>, January 2009 – January 2011.

[32] L. Benini, R. Bogliolo, G. De Micheli, A survey of design techniques for system-
level dynamic power management, IEEE Trans. VLSI Syst. 8 (2000) 299–316.

[33] J.J. Chen, C.Y. Yang, T.W. Kuo, C.S. Shih, Energy-Efficient Real-Time Task
Scheduling in Multiprocessor DVS Systems, IEEE ASP DAC, Yokohama, Japan,
January 2007, pp. 342–349.

[34] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, M. Martonosi, An analysis of
efficient multi-core global power management policies: maximizing
performance for a given power budget, 39th Annual IEEE/ACM International
Symposium on Microarchitecture, 2006, pp. 347–358.

[35] J. Luo, N.K. Jha, Static and dynamic variable voltage scheduling algorithms for
real-time heterogeneous distributed embedded systems, IEEE ASP-DAC (2002)
719.

[36] V.K. Prasanna, Power-aware resource allocation for independent tasks in
heterogeneous real-time systems, IEEE ICPADS (2002) 341.

[37] T.P. Baker, An analysis of EDF schedulability on a multiprocessor, IEEE Trans.
Parallel Distributed Syst. (2005).

[38] A. Buchard, Assigning Real-Time Tasks to Homogeneous Multiprocessor
Systems, Technical Report, University of Virginia, Charlottesville, VA, USA,
1994.

[39] H.L. Chan, Non-Migratory Online Deadline Scheduling on Multiprocessors,
SODA, 2004, pp. 970–979.

[40] S. Lauzac, Comparison of Global and Partitioning Schemes for Scheduling Rate
Monotonic Tasks on a Multiprocessor, EUROMICRO, 1998, pp. 188–195.
[41] W. Thies, V. Chandrasekhar, S. Amarasinghe, A practical approach to exploiting
coarse-grained pipeline parallelism in C programs, in: 40th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 2007.

[42] D. Shin, J. Kim, Power-Aware Scheduling of Conditional Task Graphs in Real-
Time Multiprocessor Systems, ACM International Symposium on Low Power
Electronics and Design, Augustus 2003, pp. 408–413.

[43] M. Schmitz, Energy-Efficient Mapping and Scheduling for DVS Enabled
Distributed Embedded Systems, IEEE DATE, 2002.

[44] A. Sinha, A. Chandrakasan, Jouletrack – a Web Based Tool for Software Energy
Profiling, IEEE DAC, 2001.

[45] Y. Zhang, X. Hu, D. Chen, Task Scheduling and Voltage Selection for Energy
Minimization, IEEE DAC, 2002, pp. 183–188.

[46] K. Ramamritham, G. Fohler, J.M. Adan, Issues in the static allocation and
scheduling of complex periodic tasks, IEEE Real-Time Systems Newsletter 9
(1993) 11–16.

[47] Ch. Ykman-Couvreur, V. Nollet, Fr. Catthoor, H. Corporaal, Fast Multi-
Dimension Multi-Choice Knapsack Heuristic for MP-SoC Run-Time
Management, aCM Transactions on Embedded Computing Systems, February
2011.

[48] A. Pop, A. Cohen, A stream-computing extension to OpenMP, in: Intl. Conf. on
High Performance Embedded Architectures and Compilers (HiPEAC’11),
January 2011.

[49] C. Miranda, P. Dumont, A. Cohen, M. Duranton, A. Pop, Erbium: A deterministic,
concurrent intermediate representation to map data-flow tasks to scalable,
persistent streaming processes, in: Intl. Conf. on Compilers Architectures and
Synthesis for Embedded Systems (CASES’10), October 2010.

[50] C. Liu, J. Layland, Scheduling algorithms for multiprogramming in a hard-real-
time environment, J. ACM 20 (1) (1973) 46–61.

[51] H. Posadas, P. Peñil, A. Nicolás, E. Villar, Automatic synthesis from UML/MARTE
models using channel semantics, ACM/IEEE 15th International Conference on
Model Driven Engineering Languages & Systems, MODELS, 2012.

[52] H. Posadas, P. Peñil, A. Nicolás, E. Villar, UML/MARTE methodology for high-
level system estimation and optimal synthesis, International Workshop on
Metamodelling and Code Generation for Embedded Systems, MeCoES 2012.

[53] H. Posadas, P. Peñil, A. Nicolás, E. Villar, System Synthesis from UML/MARTE
Models: The PHARAON approach, in: The Conference on Electronic System
Level Synthesis, ESLSyn 2013.

[54] H. Posadas, P. Peñil, A. Nicolás, E. Villar, Code Synthesis Of Uml/Marte Models
For Physical Platforms Considering Resource-Specific Optimized Codes, in: The
Embedded Computing Conference, JCE 2013.

[55] H. Posadas, P. Peñil, A. Nicolás, E. Villar, Automatic Concurrency Generation
Through Communication Data Splitting Based On Uml/Marte Models’’,
Conference on Design of Circuits and Integrated Systems, DCIS 2013.

[56] H. Posadas, P. Peñil, A. Nicolás, E. Villar, Automatic synthesis of embedded SW
Communications from UML/MARTE models supporting memory space
separation, Conference on Design of Circuits and Integrated Systems, DCIS,
2012.

	Improving the design flow for parallel and heterogeneous architectures running real-time applications: The PHARAON FP7 project
	1 Introduction
	1.1 The PHARAON project

	2 Evolution beyond the state of the art
	3 PHARAON system design flow
	4 Design-time tools for parallelization and heterogeneous platform support
	4.1 UML/MARTE modeling
	4.2 Code generator
	4.3 Pareon’s performance and energy simulator
	4.4 ParTools parallelisation toolset
	4.5 OpenMP extension for data-flow and stream parallelism
	4.6 Data-flow synchronous programming of parallel embedded systems

	5 Runtime power management tools (RTPM)
	5.1 RTPM approach
	5.2 Decision making at run-time
	5.3 Low power scheduler

	6 Use cases
	6.1 Radio applications
	6.2 Stereovision application
	6.3 Design flow application to use cases

	7 Conclusions
	Acknowledgments
	References

