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Abstract 

A radiopaque mesoporous bioactive glass (named MBGZ-7) was obtained through a combined sol-gel 

and evaporation induced self-assembling (EISA) route, adding zirconium propoxide to the synthesis batch 

as the zirconia precursor. The nitrogen sorption analysis confirmed the mesoporous nature of the glass. 

The assessment of in vitro bioactivity by soaking in acellular simulated body fluid (SBF) and SEM 

observation showed the deposition of hydroxyapatite crystals on its surface after one week. The good 

radiopacity level was demonstrated by comparing X-Ray images of MBGZ-7 and a blank sample that did 

not contain radiopaque additives. It is envisaged the use of MBGZ-7 as a promising dispersed phase in 

composite materials for minimally invasive surgery procedures, such as injectable bone cements, in order 

to allow the visualization of the implant under fluoroscopic control, during both injection and follow-up. 
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1. Introduction 

Radiopacity is an essential feature of bone cements, in order to allow an easy follow-up of the treated 

patient and, in case of mini-invasive procedures such as vertebroplasty, to allow the injection of the 

material under fluoroscopic control [1]. Traditionally, the radiopacity of cements is gained through the 

addition of a radiopaque agent, such as particles of barium sulfate (BaSO4), zirconia (ZrO2) or iodine-

based organic molecules. This particulate dispersed phase has been proven to cause a worsening of the 

mechanical properties of the cement and to activate macrophages, thereby contributing to bone resorption 

[2, 3]; in case of release of the iodine-based monomer, a toxic effect on living organisms has also been 

observed [4, 5]. 

In order to overcome all these drawbacks, we developed an inherently radiopaque mesoporous bioactive 

glass meant to be used as a dispersed phase in injectable bone cements, avoiding the use of additional 

radiopaque particles. The addition of bioactive glass or glass-ceramic particles in bone cements is well 

known in literature for their ability to bond to the bone tissue [6, 7], as discovered by Hench in 1971 [8, 

9]; moreover, the interest on mesoporous bioactive glasses (MBGs) is growing fast because of their 

reported osteoinductive ability and their drug loading potential [10-13]. 

Herein, for the first time to the best of the Authors’ knowledge, radiopacity is gained through the addition 

of zirconia (ZrO2) into a mesoporous glass network, maintaining satisfactory bioactive properties. The 

production of mesoporous zirconia is widely described in literature [14-16] and, recently, Zhu et al. [17] 

produced Zr-incorporated MBGs scaffolds using zirconium tetrachloride as the zirconium precursor. We 

combined the work of Yan et al. [10] on the sol-gel synthesis of MBGs with the work of Liu et al. [15] on 

mesoporous zirconia in order to produce Zr-containing mesoporous bioactive glasses (named MBGZ-7) 

using zirconium propoxide as the zirconia precursor. The invention of this novel class of radiopaque 

mesoporous glasses and their future applications are disclosed in a patent application recently deposited 

by Vitale-Brovarone et al. [18]. 

2. Materials and methods 

Basing on the sol-gel synthesis described by Yan et al. [10], MBGZ-7 was synthesized by using the 

commercial non-ionic block copolymer Pluronic P123 (EO20PO70EO20, where “EO” is poly(ethylene 

glycol) and “PO” is poly(propylene glycol)) as an organic surfactant, which acts as structure-directing 
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agent for pores formation. In a typical synthesis of MBGZ-7 (SiO2/CaO/P2O5/ZrO2 = 73:15:5:7 molar 

ratio), a synthesis batch was prepared by dissolving P123 (4.0 g), tetraethyl orthosilicate (TEOS, 6.10 g), 

calcium nitrate tetrahydrate (Ca(NO3)2·4H2O, 1.42 g), triethyl phosphate (TEP, 0.73 g), zirconium 

propoxide (0.92 g), acetylacetone (Acac, which acts as a stabilizer to prevent the zirconium propoxide 

from uncontrollable hydrolysis and consequent precipitation, 0.10 g [15]) and HCl 0.5 M (1.0 g) in 

ethanol (60.0 g). All chemicals were purchased from Sigma-Aldrich, Italy, and used as received. This 

synthesis batch, continuously stirred at 35°C for 24 hours, resulted in a sol that, once casted into Petri 

dishes, underwent an ageing step (24 h at room temperature followed by 24 h at 120°C), during which the 

evaporation-induced self-assembly (EISA) process occurred. The dried gel was calcined at 750°C for 5 h 

in air to obtain the final MBGZ-7 product in form of thin membranes, which were then ground and sieved 

when needed. For comparison, a traditional mesoporous bioactive glass without zirconia (MBG, 

SiO2/CaO/P2O5 = 80:15:5 molar ratio) was synthesized by an identical process, avoiding the addition of 

zirconium propoxide and Acac. Another glass composition (referred to as MBGZ-15), in which the 

zirconia molar percentage was increased up to 15% to the detriment of the silica content, was also 

prepared maintaining unchanged the other synthesis and process parameters for purpose of comparison. 

The obtained powders underwent wide-angle (2θ within 10-70°) X-Ray diffraction (XRD) through a 

Philips X’Pert diffractometer (Bragg-Brentano camera geometry with Cu Kα incident radiation; working 

conditions: 40 kV, 30 mA). Long-range order was assessed through low-angle XRD (2θ within 0.6-5°), 

whereas specific surface area (SSA) and porosity were characterized by N2 adsorption/desorption 

measurements at -196°C performed using a Quantachrome Autosorb1. BET SSA was calculated in the 

relative pressure range 0.04-0.1 and the pore size was evaluated through the BJH method on the isotherm 

desorption branch. 

In vitro bioactivity tests were carried out by soaking MBGZ-7 in simulated body fluid (SBF) [19] at 37°C 

for 1, 3 and 7 days with refresh of the solution every 48 h to simulate fluid circulation in the human body. 

After soaking, the samples were dried at room temperature and then investigated through scanning 

electron microscopy (SEM, FEI Quanta Inspect 200LV) equipped with electron dispersive spectrometer 

(EDS, EDAX Genesis) for compositional analysis, to monitor the formation of hydroxyapatite (HA) on 

their surface over time. 



4 

 

X-Ray images of MBG, MBGZ-7 and MBGZ-15 powders were taken with Digital Radiography 

equipment (Philips PCR Eleva, Philips Medical System DMC GmbH, Hamburg - Germany) with 

exposure parameters of 45 kV and 100 mA and exposure time of 0.4 s. Plain X-Rays were post-processed 

with Osirix software for Mac (Pixmeo SARL, Switzerland). A semi-quantitative analysis of radiopacity 

was performed drawing a round region of interest (ROI) on the center of each sample with a fixed surface 

area. The program analyzed the radiopacity of the samples obtaining a whole number that was not 

influenced by the grayscale visualization window. A single plain X-Ray could contain all samples, thus 

any possible bias due to exposure parameters could not influence the ratio of radiopacity between the 

different samples. 

3. Results  

A type IV N2 sorption isotherm is observed for MBGZ-7 and MBGZ-15 samples, with a hysteresis loop 

representing the filling of mesopores (Fig. 1). This finding is further supported by low-angle XRD 

patterns (Supplementary information (SI) – Fig. A), which show a single low-angle XRD peak (2θ = 

1.45°, 1.53° and 1.35° for MBG, MBGZ-7 and MBGZ-15, respectively), characteristic of a wormhole 

structure. A comparison among MBG, MBGZ-7 and MBGZ-15 in terms of specific surface area (SSA), 

specific volume (Vol), average pore size (dBJH) and XRD basal d-spacing (dXRD), calculated through the 

Bragg law, is reported in Table 1. A broad halo within the range 2θ = 20-30°, typical of amorphous silica, 

is visible in wide-angle XRD pattern of MBGZ-7 and MBGZ-15 (SI – Fig. B); no signals due to 

crystalline ZrO2 phases are observed in any case.  

SEM images of MBGZ-7 surface before and after 1 and 7 days of soaking in SBF (Fig. 2a-b-c, 

respectively) show the progressive nucleation of HA particles, whose composition is confirmed by the 

EDS spectrum (Fig. 2d). A quantification of Ca/P ratio is not possible because zirconium and phosphorus 

peaks are overlapped; however, it is clear that, by incrementing the soaking time, the amount of 

precipitates increases and the structure of HA changes, determining the formation of HA microcrystals 

after 1 week (Fig. 2c).  

From the X-Ray image reported in Fig. 3 it is evident that an increase in zirconia percentage within glass 

composition determines an enhancement in radiopacity: considering an analogous ROI for all samples 

(equal to 0.223 cm
2
), MBGZ-7 and MBGZ-15 show an increase of 11% and 17% in radiopacity intensity, 
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respectively, if compared to MBG, whose radiopacity is given only by Ca and P and which therefore 

cannot be distinguished from bone. 

4. Discussion 

N2 sorption isotherms (Fig. 1) and low-angle XRD analyses confirmed that mesoporous bioactive glasses 

containing zirconia were successfully synthesized. The addition of ZrO2 (up to 15 mol% with respect to 

oxides ratio) does not affect the peculiar features of the starting glass structure: both MBGZ-7 and 

MBGZ-15 show an amorphous microstructure (SI – Fig. B) and maintains an open mesoporous network. 

As expected for a mesoporous material, the corresponding exposed specific surface area (hundreds of 

m
2
g

-1
, Table 1) is one order of magnitude higher than the one exhibited by molten glasses (tens of m

2
g

-1
 

or even less [20]).  Consistently with the findings of Zhu et al. [17], MBGZ-7 shows a decrease in SSA if 

compared to MBG (174 m
2
g

-1
 vs. 307 m

2
g

-1
, respectively), ascribed to a lower degree of order of the 

mesostructure after zirconium addition. However, when a higher ZrO2 content is introduced (MBGZ-15), 

an opposite trend is observed, as a SSA increment (262 m
2
g

-1
), with respect to MBGZ-7, is measured. 

This observation is in contrast with results shown by Zhu et al., which reported a rather large decrease of 

surface area and pore volume upon the increase of ZrO2 up to 15 mol%, attributed to the presence of a 

large amount of crystalline ZrO2 inside pores after thermal treatment [17]. At variance, MBGZ-15, 

synthesized herein, maintains a completely amorphous structure, which suggests a high amount of 

incorporated Zr atoms and their rather uniform distribution throughout the framework. Due to larger size 

of Zr atoms compared with the other framework elements, an expansion of the mesostructure is retained 

to occur, affecting the inter-pores distance [21], with an increase of d spacing, as evidenced by low-angle 

XRD pattern, and pores size swelling, as evidenced by N2 adsorption-desorption isotherm, and a 

consequent increase of exposed surface area. 

A high exposed surface area plays a key role in the bioactive behavior of the resulting material. As 

already reported by Zhu et al. [17], in vitro tests revealed that the presence of ZrO2 slows the deposition 

of HA but MBGZ-7 maintains remarkablebioactive properties: indeed, HA particles were easily detected 

after 1 day of soaking in SBF, becoming a dense layer that completely covered MBGZ-7 surface after 1 

week (Fig. 2). Moreover, for the first time, the intrinsic radiopacity of the resulting glass was assessed: 

MBGZ-7 shows the unique additional value of being inherently radiopaque (Fig. 3), thanks to the 

introduction of a high atomic number element (Zr) into the network; once the material is implanted, this 
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feature allows to discriminate MBGZ-7 particles from the surrounding bone under X-Ray control. 

MBGZ-7 is preferred to MBGZ-15 because, even if they exhibit comparable mesoporous structure and 

radiopacity, the increase of ZrO2 content up to 15 mol% can affect the bioactive behavior: zirconia is an 

intermediate oxide, hence it stabilizes the glass network, reducing its surface reactivity and, consequently, 

its bioactivity. 

Therefore, MBGZ-7 represents a suitable material to be added into composite injectable bone cements, 

imparting both radiopacity and bioactive properties in only one dispersed phase. 

5. Conclusions 

A radiopaque mesoporous bioactive glass containing zirconia was successfully developed. It was 

demonstrated that the addition of zirconium oxide, up to 15 mol%, imparts radiopacity to the glass 

maintaining a suitable mesoporous structure and a satisfactory bioactive behavior. Therefore, MBGZ-7 

particles have the potential to be used as dispersed phase in composite injectable bone cements, which can 

be visualized under fluoroscopic control during injection and can stimulate in vivo bone regeneration. 
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Tables 

Table 1: Textural parameters of the synthesized glasses obtained from N2 sorption isotherms  

Glass SSA (m
2
g

-1
) Vol (cm

3
g

-1
) Average dBJH (nm) dXRD (nm) 

MBG 307 185 3.5 6.1 

MBGZ-7 174 111 3.3 5.8 

MBGZ-15 262 135 3.6 6.5 

 

 

Figure Captions 

Figure 1: Nitrogen sorption isotherms of MBG, MBGZ-7 and MBGZ-15. 

Figure 2: SEM and compositional analysis after in vitro bioactivity tests on MBGZ-7: a) surface of the 

starting glass as such; b) and c) HA deposition after soaking in SBF for 1 day and 1 week respectively; d) 

EDS spectrum (y-axis in a.u.) of HA agglomerates visible in c). Magnification of reported SEM 

micrographs are 4000x for 2a), 5000x for 2b) and 6000x for 2c). 

Figure 3: X-Ray image that shows the comparison of radiopacity of different glass powders: a) MBG; b) 

MBGZ-7; c) MBGZ-15. 
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Fig. 1 
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Fig. 2 
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Fig. 3 

 


