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Abstract—One of the main research directions along which the
future Internet is evolving can be identified in the paradigmatic
shift from a network of hosts toward a network of caches. Yet,
several questions remain concerning the scalability of individual
algorithms (e.g., name based lookup and routing) and components
(e.g., caches) of these novel Information Centric Networking (ICN)
architectures. Exploiting a peculiar characteristics of ICN (i.e., the
fact that contents are split in chunks), and the nature of video
streaming (which dominates Internet traffic), this paper proposes a
novel two-layers caching scheme that allows multi-Terabyte caches
to sustain content streaming at multi-Gbps speed. We model the
system as an extension, to the case of chunked contents, of the well
known Che approximation, that has the advantage of being very
simple and accurate at the same time. Simulations under synthetic
and realistic trace-driven traffic confirm the accuracy of the analysis
and the feasibility of the proposed architecture.

I. INTRODUCTION

Recently, a healthy and hearty scientific discussion has sprout
around the feasibility and interest of Information Centric Net-
works (ICN). Shortly, ICN architectures propose to recenter
network design around named content, rather than the address-
able entities of the current TCP/IP inter-networking paradigm.
To allow efficient dissemination, content is split in chunks,
transparently (and possibly pervasively) cached at intermediate
routers along the path that leads user requests to a permanent
copy of the content of interest.

Fervents of ICN have adopted this new paradigm with some-
times unjustified enthusiasm. Opponents of ICN have shown
an equally strong pugnacity. On the one hand, the benefits of
ICN may be exaggerated, in that most performance evaluation
studies consider rather small catalogs, exiguous caches and large
popularity skews [1], [2]. On the other hand, the limits of
ICN may be exaggerated as well, in that they mostly rely on
the argument that the cache to catalog size ratio is extremely
unfavorable, given technological limits of the former and the
restless growth of digital data [3].

In practice, the success of ICN architectures depends on their
ability to provide (i) large caches, able to (ii) process data traffic
at line speed. It has been pointed out that these two require-
ments tradeoff: due to technological limits of currently available
memory technologies, state-of-the-art sizes to about 10GB [4],
[5] the largest cache size that can sustain over 10Gbps speeds.
Our work breaks this limit by proposing a novel scheme for
the management of two-layer caches that exploits a peculiarity
of ICN. Taking advantage of correlation among chunks, we use

request arrivals in the ICN data plane as predictors of requests
for subsequent chunks. We then proactively move from a large
but slow memory (e.g., SSD) a number of chunks to a fast
but small memory swap area (e.g., DRAM). Additionally, by
batching memory transfer operations over multiple chunks, we
transition from an operational point where SSD is dominated by
memory access time, to an operational point where SSD external
data rate is the bottleneck – gaining over an order of magnitude
in terms of sustainable data rates. Finally, we optimize the system
to yield low startup latency (e.g., for video streaming) by storing
the first chunk of a large portion of the catalog directly in fast
memory (trading with swap area).

Summarizing our contributions, we (i) propose a simple yet
effective hierarchical scheme that scales up ICN caches to multi-
Terabyte size while maintaining multi-Gbps line-speed operation,
(ii) model the system with a simple yet instructive extension of
the Che approximation for chunked content, and (iii) perform a
thorough evaluation of system performance, comparing analyti-
cal results to trace-driven and synthetic simulation results.

II. BACKGROUND

The aim of this section is not only to overview related work
(Sec. II-A), but also to present a realistic operational point we can
expect our system to work at. Given the tremendous importance
of video – see the well known Cisco Visual Networking Index
for often cited figures and trends – it makes sense to consider
Video-on-Demand (VoD) as the main driver for ICN, or at least
as a very popular service ICN will have to deal with. While
nowadays Internet video is mostly low quality, we point out
(Sec. II-B) that any technological shift, such as the one toward
ICN, must be future-proof with respect to the likely video quality
evolution (and hence bitrate increase). We furthermore argue
(Sec. II-C) that ICN devices that are built today will have to
last for several years, so that our design conservatively employs
memory technologies that are currently on the market.

A. State of the art

Much work on ICN has focused on algorithms and protocols
for a network of caches. Among the different ICN proposals
overviewed in [6], CCN is the one that has gained more
popularity in the scientific community [7]. While our work has
a broader scope than CCN, however due to CCN popularity and
to the lack of a commonly agreed ICN terminology, in this work
we adopt the CCN jargon, that we briefly introduce.
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CCN clients request Data in a pull-based fashion sending
Interests for named contents. Requests are forwarded hop-by-hop
toward a permanent copy of the requested Data: for each Interest,
CCN nodes perform lookup for content names in a Forwarding
Information Base (FIB), that stores the set of interfaces through
which any given content can be reached. As multiple paths
are possibly stored for any given name, a Strategy Layer is
responsible for the selection of one (or more) next-hop interface
among the set of possible ones. CCN nodes along this path may
possess cached copies of the content of interest within their own
Content Store: in this case, Interests do not need to reach the
permanent copy stored at the repository, and the temporary copy
in cache is directly sent back to the client along the reverse path.
Indeed, Data travels back toward the requester following a trail
of bread-crumbs, that are stored in a Pending Interest Table (PIT)
at every network node.

While most ICN work focuses on algorithmic, protocol or
performance aspects, fewer studies exist that address system
design [4], [5], [8]–[12], and that are thus closer in spirit
to our work. Specifically, seminal papers [4], [5] tackle the
design of an ICN router by considering FIB, PIT and caching
scalability, with more recent work refining aspects of FIB [5],
PIT management [9]–[11] and name lookup [12]. As work on
caches [4], [5] is closer to ours, we will provide a more detailed
comparison later on.

Other works on caching systems such as Fawn [13] and
HashCache [14] are worth citing, since we leverage memory
indexing techniques employed there, similarly to what was done
in [5]. At the same time, the operational point considered in Fawn
and HashCache is rather far from high-performance ICN, so a
direct comparison does not apply. Conversely, we emphasize that
work on hierarchical caches [15], [16], is not quite related to our
proposal, as “hierarchy” relates there to the topological position
in a cache “network”. Furthermore, while hierarchical memory
systems have been long studied in the context of computer
architectures [17], the typical workload in that context (e.g.,
reading inputs, dot product, shuffle exchange, merging two sorted
lists, etc.) is rather different from the sequence of interests
generated by video traffic portals that we consider here. Hence,
we point out that none of previous works proposes a specialized
two-layer architecture like ours, that increases by several orders
of magnitude the storage capacity of router caches, leading to
tangible advantages for ICN architectures.

B. Video

Nowadays Internet streaming is dominated by portals such
as YouTube, Kankan, Hulu, etc. In terms of networking, video
traffic can be specified by the (average) streaming rate ρ that the
network needs to sustain in order to avoid stutter in the playback.
The streaming rate ρ depends, on the one hand, on technological
limitations of the physical display, and, on the other hand, on
the availability of content encoded at that resolution.

Despite physical resolution steadily increases (e.g., 4K dis-
plays were recently shown at CES2013), such extremely high-
definition content is not readily available in the consumer market.
As such, most of the freely available Internet content is generally
streamed at a much lower rate. For instance, the default video

TABLE I
MEMORY TECHNOLOGIES CHARACTERISTICS

HDD SSD DRAM SRAM
[22] [23], [24] [5] [5]

Ext data rate (Gbps) 1.4 20-24 - -
(64-128KB) - -

I/O data rate (Gbps) 6 64 - -
I/O interface SATA PCIe - -
Max Capacity (GB) 4000 2000 10 0.026
Avg latency (µs) 4000 30-78 0.05 0.00045

(4KB) -
Speed (rpm) 7200 - - -
Block size (KB) 4-32 4-512 - -
Allocation unit Sector Page - -
Allocation size 512B 4KB - -
Price (USD/MB) [5] 0.00005 0.003 0.02 27

resolution of popular free services such as YouTube is 640×360,
is encoded with H264 at a median rate of 500Kbps, according
to measurements in [18]. Even popular paying services such
as Netflix [19], offer only a minor part of their content at
HD (1280×720, 5Mbps) or FHD quality (1920×1080, 7Mbps).
Additionally, advances in video codecs will likely reduce the
streaming rate required for the same perceptual video quality
(e.g., H265/HEVC encoding of FHD videos requires 3Mbps, or
less than half than H264 at the same perceptual quality [20]).
Overall, we argue that an explosion of bandwidth requirement is
unlikely owning to the fact that changes in screen sizes happen
very slowly [21], and we can expect the resolution growth to be
compensated by advances in encoding technologies.

Based on the above observations, we consider two operational
points: a current one with ρ = 500Kbps video streaming rate,
and a future one with ρ = 5Mbps. Additionally, given increasing
user adoption, we consider advanced viewing functionalities,
such as the ability to pause, rewind or fast-forward the video, as
essential features of a VoD service – hence, these functionalities
are explicitly accounted for in our system design and evaluation.

C. Storage

Opponents of ICN pinpoint the disproportion between the raw
volume of digital data consumed worldwide against the size
of memory technologies available for real-time ICN operations.
Their critic is however hitting the right spot, as ICN success is
conditioned to the feasibility of large content stores. As such,
it would be desirable to include technologies such as SSD (or
HDD) to scale up the cache size up to some TB (see Tab. I).

However, as pointed out in [4], [5], technological constraints
nowadays imply a tradeoff between the size of the storage
and its access speed. Both [4], [5] identify the single-layer
system comprising a fast-but-small SRAM index addressing a
large-but-slower DRAM cache storage, as the largest and fastest
architecture for today’s ICN caches, which practically limits to
about 10GB the size of caches that can operate above 10Gbps.

Notably, two main performance aspects need to be considered
for ICN caches. First (i), ICN routers perform lookup on the
content names, in order to decide whether an interest can be
satisfied locally by cached content, or whether it needs to be
forwarded. In case of a match, (ii) the lookup returns a pointer
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Fig. 1. Synopsis of 2-layer ICN caching architecture.

to the memory region storing the content itself, that needs to be
transferred to assemble a response packet.

Operation (i) requires to move small amount of data, and its
main performance indicator is thus the memory access latency.
In order to sustain line rate operations, the memory index must
be accessed at a frequency that in the worst case matches the
throughput of the maximum sustainable data rate. In other words,
assume that the aggregate router data rate is R, that data chunks
have size Sc, then the maximum number of chunks that can be
transferred in the time unit is dR/Sce, that also upperbounds the
number of accesses to the index, so that taccess ≤ 1/dR/Sce.
Operation (ii), instead, depends on the chunk size, and can be
either driven by access latency (in case of small chunks) or by the
external data rate, i.e., the sustainable throughput when reading
random memory blocks (in case of large chunks).

In [5], a core ICN router is designed to support 8x40Gbps
interfaces serving SC=1500B chunks, stored on a 10GB DRAM
cache implementing sequential access and LRU replacement
policy, indexed on a 100MB SRAM chip by employing H=40bits
long content names hashes. Interestingly, [5] also proposes an
edge router design where a 1TB SSD cache is indexed by a
10GB DRAM chip. As [5] employs small size chunks, in both
cases operations (i) and (ii) are bottlenecked by memory access
latency: for the edge router case, [5] reports a maximum access
rate of 0.417Mbps, corresponding to 5Gbps when SC=1500B
(this figure may vary as RamSan-70 [24] has 30µs latency, so it
would only support 0.5Gbps).

Yet, from Tab. I we notice that a relatively larger memory read
size (64KB-128KB) would allow to achieve high SSD memory
throughput (20Gbps-24Gbps). HDD technology is instead not
so appealing due to limits on both the achievable data rate
(1.4Gbps), and the maximum data rate of the SATA intercon-
nection (6Gpbs), so we disregard it in the following. Hence, we
argue that a system design moving SSD bottleneck from memory
access time to external transfer rate could possibly gain over an
order of magnitude in terms of the sustainable rate (e.g., from
4x-5x considering the unspecified memory in [5] to 40x-48x
considering the RamSan-70). Additionally, given large SSD size,
we expect favorable performance in terms of caching as well.

III. SYSTEM ARCHITECTURE

Especially, [5] implicitly states an important paradox in ICN
that raises due to the tradeoff between memory size and speed:
while in principle as the cache size grows so does the cache

hit probability, however in practice the cache would need
to be accessed more frequently, which is only possible for
small caches. We argue that the above limits can be worked
around by (i) exploiting temporal correlation in the interest
request stream to compensate for memory access latency, by
(ii) batching operations on consecutive chunks to ensure high-
speed memory transfers and by (iii) introducing a multi-layer
hierarchical caching system exploiting the intrinsic differences
of heterogeneous memory technologies (Tab. I).

We overview the system design with the help of Fig. 1. At
high level, the system is organized as a hierarchy of caches:
a (multi-Terabyte) L2 cache masked behind a small L1 cache
able to operate at (multi-Gbps) line rate. The idea is that L1
should contain chunks of ongoing videos for fast service in the
data plane. Conversely, L2 is large but slow, so it can store
a significant portion of the catalog, that it needs however to
opportunely prefetch to L1.

In ICN, objects are split in multiple named chunks, so that a
request for a named chunk can be used as predictor of subsequent
requests for other chunks belonging to the same object. This
suggests to proactively trigger prefetching operations, operating
over batches of chunks, so as to sustain high transfer throughput
at L2. At the upper level, as the content has been prefetched,
operations on index and cache memory happen at line speed. At
the lower level, cache operations happen before the request for
the next batch comes. This effectively decouples the timescale of
the lower, slower, level from the timescale of the network data
path on the upper level.

At each level, caches are organized into a classical (in-
dex,storage) pair: at L1 a SRAM chip indexes a DRAM cache,
while at L2 a DRAM chip indexes an SSD cache. Cache indexes
are accessed at each name lookup in the data-plane: whenever an
interest packet hits the router, if the name is present in the index,
the index contains the memory location of the corresponding
named data in the storage memory. While it is out of the scope
of this paper to select an indexing technique, that could be any
among the hash-based exact-match lookup techniques proposed
in [14], with hash sizes opportunely tuned as in [4], [5].

To further optimize for ICN specificities, we divide L1 storage
in two areas: (i) Start of Video (SoV), that is rather static and
keeps the first chunk of popular videos, and (ii) a Swap area,
that is rather dynamic and prefetches from L2 chunks of ongoing
downloads. Without loss of generality, we consider that L1 SoV,
L1 Swap and L2 caches are managed by a Least Recently Used
(LRU) replacement policy.

A. System design

Let us denote with ci the i-th chunk of object m in a catalog
M comprising M movies. We consider all chunks to have equal
size Sc (possibly using padding for, e.g., the last chunk of an
object). Requests for the first chunk c1 of an object m ∈ M
can be assumed to be independent of previous chunk requests,
whereas requests for subsequent chunks ci (i > 1) of the same
object are highly correlated in time: in the case of video, we
can loosely assume chunks to be separated by a gap δt = Sc/ρ
related to the streaming rate (we will deal with the chunk arrival
process in Sec. IV).
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Let us consider the first chunk c1 of a new object. Whenever
an interest for c1 hits the ICN router, a lookup() is issued to the
L1 cache first: in case of a hit in the SoV cache (i) a frame
containing c1 data is assembled and returned via send(); (ii) the
system signals L2 to prefetch() a batch of B consecutive chunks
to the L1 Swap (and the L1 index is updated accordingly). Notice
that especially critical to our design is the ability to move video
chunks from L2 to the L1 swap and update the L1 index before
the corresponding requests effectively hits the cache.

In case of a L1 miss for c1, content search continues both
(i) in the L2 cache within the ICN router via a lookdown()
and/or (ii) in the router vicinity via interest forward(). Operations
(i)-(ii) can be performed in parallel (to optimize user delay)
or in sequence (to save network traffic). Sequential operations
trigger network traffic only in case of a L2 miss, but add in
this case a delay proportional to the lookdown() time in the L2
index. Parallel operations avoid this delay but possibly generate
unnecessary network traffic in the case of a L2 hit. We argue
that parallel operations are preferable as they lead to better
user experience, and since the overhead is limited to the first
chunk of an object (in our settings, 10KB of a 10MB video
corresponds to a 0.1% overhead). Moreover, parallel operations
can also simplify system implementation. Casting our design to
CCN, in case of a miss, the node adds an item to the PIT and
forwards the request. Internally, the L2 cache can then be simply
seen as another CCN “face” along which to forward the request
(i.e., lookdown()), and in case of a hit, the corresponding data
will satisfy the PIT request. This again decouples operation of
L1 and L2, ensuring that data-plane forwarding operations can
be performed at line rate.

Pushing the decoupling of L1 and L2 further, we notice that in
principle it would be more efficient to let L1 SoV and L2 store
completely disjoint chunk sets. Otherwise stated, from caching
purposes, it would be useless to store a redundant copy of the
first chunk in both L1 and L2, since the latter will never be used.
However we also note that L2 cache is much larger than L1, and
especially persistent: as such, this slight redundancy allows the
system to easily recover after a failure, and promptly re-initialize
the L1 SoV by transferring the first chunk of the most popular
objects.

After having consumed the first chunk, the user will start re-
questing subsequent chunks. Due to prefetching, chunks c2 . . . cB
are now to be found in L1, so that whenever a request for
chunk cB−1 arrives, the system can proactively lookdown for
cB+1 . . . c2B . In CCN terms, since the last portion of a chunk
name represents the chunk sequence number, this is easy to
do since upon reception of chunk ck the lookdown() decision
requires checking a simple modulus division k%B = B − 1.

B. System optimization

This behavior holds as long as the user does not jump ahead
in time, breaking the sequential view mode. While we expect
sequential behavior to be vastly predominant, still we recognize
that users increasingly depend on added value-services such as
advanced VCR functionalities allowing them to pause, rewind or
fast-forward, possibly generating non-sequential chunk request
patterns. We therefore suggest additional system optimization

that, while non-necessary for the correct operation, can provide
benefits by pushing a moderate complexity to the edge of the
ICN network.

Pause. In case the pause time is long enough (i.e., larger than L1
Swap characteristic time, see Sec. IV-B), content will disappear
from L1 Swap. Thus, when the user restarts, typically the first
interest packet sent by the user for the next chunk not yet on
the user buffer will be propagated upstream. To increase the
efficiency of the system, prefetching should extend to the user
cache. When a user pauses a video, the decoder automatically
goes on retrieving a few extra chunks before suspending the
download. Such extra chunks are stored locally in the playout
buffer of the user, and thus they are already available when the
user wants to watch beyond the point of the suspension. As
soon as playback resumes, the player should proactively send an
interest for the next chunk not yet on the user buffer: this allows
the system to restart the prefetching mechanism, transferring
chunks from the slow cache to the swap area in the usual way.
As a side note, as the content is very likely stored on L2, the
player can avoid an unnecessary lookup to propagate beyond the
first ICN router by limiting the scope (e.g., setting a low TTL)
for the first interest after a pause (and only in case the scoped
interest has failed to hit content in L2, after a time-out the user
will send a new interest packet with unlimited TTL).

Fast-forward. In case of forward jumps larger than B · δt, the
request for the new chunk will generate a L1 cache miss, and
operations occur as previously explained for the first chunk c1.
Yet, as the playback is not paused, nothing can prevent a small
buffering delay in this case.

Rewind. This can be completely masked by the user cache: as
previous chunks have already been played, they are still available
in the user device, so no specific action is needed.

C. System dimensioning

Our system relies on a number of parameters that need to be
set, notably the chunk and batch sizes, as well as the partition
between SoV and Swap areas in L1 cache. Additionally, the
feasibility of the operations outlined in the previous section, in
terms of access latency and speed in the L2/L1 swap operations,
needs to be checked.

Chunk and batch size. The chunk size is the minimum data
object granularity. Small chunk sizes are preferable (e.g., to avoid
paying a padding penalty for a myriad of small objects), though
not necessarily so small to be fit in current MTUs (as initially
proposed by CCN [7]). Clearly, as the chunk size determines
the frequency of all system operations, a larger chunk size is
also beneficial as it relaxes the system complexity. Currently
ongoing effort [25] already employs larger chunk sizes of about
4KB, so that we consider chunk sizes of Sc = 10 KB to be a
reasonable compromise. Yet, efficient memory transfers require
larger read/write size, so that it is necessary to batch B chunks in
order to achieve a batch size that allows sustaining high external
data rates. As SSD achieves 20-24Gbps in random read of 64-
128KB from Tab. I, it is safe to set B = 10 chunks.
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SoV vs. Swap size. Observe that: (i) SoV relates to properties
of the catalog, whereas Swap size reflects the maximum number
of active flows; (ii) Swap must be sufficiently large to guarantee
that prefetched chunks are not evicted before a time lapse equal
to the watching time of a batch (i.e., 1.6s when ρ = 500Kbps
and 160ms when ρ = 5Mbps).

Let us consider for simplicity an equal partitioning of L1 SoV
and Swap. With 5GB worth of cache space, the SoV could
keep the first chunk for 500,000 videos1, while 5GB worth
of L1 Swap space allows for 50,000 concurrent flows when
BSc=100KB, thus, potentially sustaining up to 20-24Gbps of
aggregate streaming. Notice that these figures refer to the case
in which all remaining chunks requested by users are retrieved
from the L2 cache, and thus temporarily placed in the Swap.
This is, indeed, the worst case for the Swap sizing.

We emphasize that, considering an average video size of
10MB, about 5TB would be needed to keep the top 500,000
videos of the nowadays YouTube catalog.

Since we expect caching performance to be mainly driven by
L2 size, when routers operate at a data rate slower than 20-
24 Gbps, it also makes sense to consider a smaller L1 DRAM
cache, as this translates into cost reduction (mainly as L1 SRAM
index shrinks) that could compensate, if not entirely cover,
the additional SSD cost. For example, 1 GB of Swap would
correspond to the minimum size needed to sustain a data rate of
4-4.5 Gbps. A 1 GB SoV, instead, would be able to store initial
chunks for 100,000 top videos, responsible for over 58% of the
requests.

L2 prefetching throughput. Our system is designed and en-
gineered so that the L2 external data rate is the bottleneck:
in practice, the internal L2 to L1 prefetching rate limits the
aggregate data rate that can be transparently sustained by the
hierarchical system. Indeed, since video chunks need to be
prefetched from L2 to L1, the system can reasonably sustain
about 20-24Gbps worth of aggregate streaming rate, corre-
sponding to about 40,000-48,000 concurrent flows streamed at
500Kbps (coherent with the L1 Swap size). While the sustainable
aggregate rate is already larger with respect to a mono-layer
DRAM+SSD configuration [5], we also notice that the PCIe bus
supports IO data rates up to 64Gbps, so that it may be worth
investigating whether the use of multiple parallel SSD could
translate into an additional gain.

L2 access latency. As L2 operations occur at a lower rate due
to prefetching, these face less strict performance constraints.
Roughly speaking, the batching factor B = 10 decimates the
number of operations per second at L2 with respect to L1.
The reception of a batch of chunks from the network triggers
a store() operation (that also implies a DRAM index update) (as
store() operation takes 50ns access latency, it does not constitute
a bottleneck). To group chunks belonging to the same batch,
individual chunks received from the network are first temporarily

1For a catalog size of M =500,000,000 videos with Zipf’s exponent α = 1,
the SoV would store the initial chunk of top videos responsible for over 65% of
the requests.

collected in the L1 Swap. Upon reception of the last chunk of
a batch, the batch is atomically copied from L1 Swap to L2.
Note that this does not invalidate previous Swap dimensioning
considerations: indeed, by construction, the aggregate rate (i.e.,
from the network plus L2) at which chunks are written into the
Swap does not exceed the line-speed. The reception of interests
from the network triggers, in case of a L1 swap miss, a prefetch()
operation for B chunks. At an external rate of 20Gbps, the first
prefetched chunks would be transferred to L1 Swap after 4µs,
i.e., significantly in advance with respect to the expected arrival
time of the corresponding interest at the ICN node. Indeed, recall
that inter-chunk arrival time δt = Sc/ρ is about 160ms (16ms)
in case of 500Kbps (5Mbps) videos.

L2 lifetime. While [4], [5] do not mention any drawback of
SSDs, it has to be pointed out that as NAND dies shrink close
to physical limits, this creates endurance and reliability issues:
the lifetime of NAND based on SLC technology is estimated to
100K write cycles, fact that can be problematic for a caching
architecture. Yet we notice that L2 to L1 transfers mostly read
data from L2, that is written on L2 on a slower basis: as writing
happens in random positions, it will take long before the SSD
worns out (we estimate this time in Sec. V-C). Alternatively,
algorithmic techniques to limit the data coming into L2 are easily
envisionable (e.g., on the first miss, cache the content name on
a DRAM; then, on a content name hit, cache the content itself
on the SSD). Finally newer technologies such as PCM (phase-
change memory) and ReRAM (resistive RAM), are expected to
overcome those limits [26].

IV. SYSTEM MODEL

We introduce a simple analytical model that describes the
performance of our 2-layer ICN router architecture, with special
attention to the bandwidth required from the rest of the ICN
network (i.e., from the upper nodes of the cache network). For
simplicity, we consider an edge (leaf) router that directly serves
user-generated requests. Yet, the model could be used to analyze
the performance of a core router receiving an aggregate miss
stream of requests forwarded by one or more children nodes –
hence it could serve as basic building block for the performance
analysis of the whole network.

A. Traffic and user model

As previously stated, we focus on video traffic and assume
that users request videos from a large fixed catalog M having
size M videos, and that requests for each video 1 ≤ m ≤ M
arrive according to a homogeneous Poisson process of rate λm.
Let Λ =

∑
m λm be the aggregate arrival rate of video requests.

Notice that our traffic assumptions are equivalent to describing
the sequence of requests arriving at the cache by the well known
Independent Reference Model (IRM), according to which object
requests are i.i.d., following an assigned popularity law (usually
Zipf). Without lack of generality we assume that videos are
sorted in decreasing order of their request rate.

All VCR functionalities can be jointly modeled by specifying,
for each chunk c of content m, a pair of probabilities (pm,c,qm,c).
pm,c denotes the probability that chunk c will be eventually
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downloaded by the user as a result of its entire watching
experience (i.e., including the impact of abandon and all jumps).
Notice that 1 − pm,c represents by construction the probability
that chunk c is either skipped, or the content m download is
aborted before chunk c is requested.

Instead, qm,c denotes the probability that chunk c is requested
as a result of a jump-forward operation to a totally new point,
such that chunks immediately preceding c have not been down-
loaded and locally cached by the user. In such a case we say that
chunk c is delivered out of sequence. Notice that not all forward
jumps necessarily contribute to qm,c, but only those ending at a
portion of video not yet downloaded. These jumps are especially
critical because we assume that no prefetching is possible in this
case before restarting the playback. In our performance analysis
we will assume for simplicity that the above probabilities pm,c
and qm,c are given2.

B. Preliminary: the Che approximation
We briefly recall a simple yet powerful approach [15] to

analyze the behavior of an LRU cache under the IRM, upon
which our model builds on. Consider an LRU cache capable of
storing C objects. Let TC(m) be the characteristic time needed
for C distinct objects (not including m) to be requested by users.
Therefore, TC(m) represents the cache eviction time for content
m, i.e., the time since the last request after which object m will
be evicted from the cache.

Che’s approximation [15] assumes TC(m) to be a constant
independent of the selected content m. This assumption has
been given a theoretical justification in [27], where it is shown
that, under a Zipf-like popularity distribution, the coefficient of
variation of the random variable representing TC(m) tends to
vanish as the cache size grows. Furthermore, the dependence of
the eviction time on m becomes negligible when the catalog size
is sufficiently large. Che’s approximation greatly simplifies the
analysis of caching systems because it decouples the dynamics
of different contents: interaction among contents is summarized
by TC , which acts as a single primitive quantity representing the
response of the cache to each individual object request.

More in detail, Che’s approximation states that an object m
is in the cache at time t, if and only if a time smaller than TC
has elapsed since the last request for object m, i.e., if at least
a request for m has arrived in the interval (t − Tc, t]. Under
the assumption that requests for object m arrive according to a
Poisson process of rate λm, the time-average probability pin(m)
to find object m in the cache is given by:

pin(m) = 1− e−λmTc (1)

As immediate consequence of PASTA property for Poisson
arrivals, observe that pin(m) represents, by construction, also
the hit probability phit(m), i.e., the probability that a request for
object m finds object m in the cache. Considering a cache of
size C, by construction:

C =
∑
m,c

I{m in cache}

2pm,c and qm,c could be computed by developing a detailed microscopic
model to account for user behavior, which is out of the scope of this paper.

After averaging both sides, we obtain:

C =
∑
m

E[I{m in cache}] =
∑
m

pin(m). (2)

The only unknown quantity in the above equality is actually TC ,
which can be obtained with arbitrary precision by a fixed point
procedure. The average hit probability of the cache is then:

phit =
∑
m

λm
Λ

phit(m) (3)

C. Analytical model of two-layer caching architecture
To analyze the performance of a router based on our proposed

architecture, we extend and generalize the Che approximation
recalled above. With respect to the existing model, which has
been developed for a single LRU cache under IRM, we need to
take into account: (i) the separation of video m into lm chunks of
size Sc; (ii) the impact of VCR functionalities; (iii) the presence
of three different LRU caches: the SoV and Swap L1 DRAM
caches, and the L2 SSD cache.

Let pSoV
hit (m, c), pSwap

hit (m, c) and pL2
hit(m, c) the hit probability

of chunk (m, c) in the SoV, Swap and L2 cache, respectively.
We denote by T SoV

C , T Swap
C and T L2

C the cache eviction time of
SoV, Swap and L2, respectively.

Observe that SoV receives, by construction, only requests for
the initial chunk of each video, i.e., λSoV

m,c = 0 if c > 1 and
λSoV
m,c = λm if c = 1. On the contrary, the Swap and L2 memories

receive only the requests for non-initial, actually downloaded
chunks, hence we have λL2

m,c = λSwap
m,c = λmpm,c if c > 1,

whereas λL2
m,c = λSwap

m,c = 0 if c = 1.
Now, the SoV cache can be modeled as a standard LRU cache

storing only the first chunk of each video, for which we can apply
exactly the model described in Sec. IV-B. Hence,

pSoV
hit (m, 1) =

λm
Λ

(1− e−λmT
SoV
c ) (4)

The Swap area and the L2 cache are also managed by LRU
and they are organized in chunks, but to analyze their behavior
we need to consider that (i) the arrival process of chunks does not
follow the IRM model, as well as the impact of (ii) prefetching
and (iii) VCR functionalities.

With respect to point (i) above, the request for the first chunk
of video m triggers the subsequent arrival of other lm − 1
requests, equally spaced by δt, for the other chunks belonging
to the video: hence the aggregate sequence of requests is not
i.i.d. Yet, we can observe that, independently from the detailed
structure of the process according to which requests for the
different chunks of a video arrive at the cache, as immediate
consequence of the fact that videos are initially requested by
users according to a Poisson process, also the request process
of each individual chunk (m, c) turns out to form a Poisson
process with rate λm,c = λm pm,c. This key observation allows
us to immediately extend the classical Che’s approximation to
the Swap and L2 caches:

pSwap
hit (m, c) =

λmpm,c
Λ′

(1− e−λmpm,cT
Swap
c ) (c > 1) (5)
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pL2
hit(m, c) =

λmpm,c
Λ′

(1− e−λmpm,cT
L2
c ) (c > 1) (6)

where Λ′ =
∑
m

∑
c>1 λmpm,c.

Concerning prefetching (ii), we remark that the hit probability
of the Swap area, as computed above, must be given a special
interpretation. Indeed, in terms of hit probability the Swap
behaves as if it received an arrival process of requests analo-
gous to the one arriving at L2. However, this (virtual) process
includes also the fictitious requests generated by the prefetching
mechanism. Thus, actual requests for prefetched chunks do not
actually generate any miss (i.e., chunks are deterministically
found in the Swap area). Instead, phit,swap(m, c) represents a real
hit probability for those chunks for which prefetching is not
possible (i.e., chunks that are requested out-of-sequence).

Finally, we incorporate VCR functions (iii) observing that: the
request for the first chunk of any video m must be forwarded
whenever it is not found in the SoV cache; every chunk c >
1 downloaded by the user, which is not present in L2, must
be proactively retrieved by the router and stored into L2; every
chunk c > 1, which is requested out-of-sequence (e.g., for effect
of a jump-forward operation) must also be retrieved externally,
except in the fortuitous case in which it is found in the Swap
area (for effect of other users requesting it nearly at the same
time). Notice that out-of-sequence requests must be forwarded
even if the corresponding chunks are present in the L2 cache
(as requests must be served in the data plane, interest forward()
operation in the network is performed in parallel to lookdown()
in L2).

Overall, we can compute the aggregate bandwidth requested
by the router from the rest of the cache networks:

Bs =
∑
m

λmSc(1− pSoV
hit (m, 1))+

+
∑
m,c>1

λm,c Sc qm,c(1− pSwap
hit (m, c))+

+
∑
m,c>1

λm,c Sc (1− qm,c) (1− pL2
hit(m, c)) (7)

where the first term accounts for forward() operations due to
misses in SoV, the second term is due to forward jumps and
the third term, that we expect to be dominant over the formers,
accounts for misses in L2 cache.

V. PERFORMANCE EVALUATION

We now validate the model (Sec. V-A), and contrast its pre-
dictions against simulation results obtained under both synthetic
(Sec. V-B) and realistic (trace driven) arrival patterns (Sec. V-C).

We carefully build a synthetic scenario as follows. The
YouTube catalog was observed having about 100 million videos
[28] (much larger than what considered in [29]), having average
size 10 MB [30] and median rate of 500Kbps [18]. To gather
conservative results, we consider catalogs of over M = 108

videos (up to M = 5 · 108 to account for catalog growth). We
also consider two video streaming rates: a current scenario with
low video quality (500Kbps, 10MB average video size) and a

future one with very high quality (5Mbps, 100MB average video
size).

In terms of video popularity, it is worth noticing that values
of Zipf’s exponent α close to 1 have been recently shown [29]
to provide best fitting with experimental data over daily time
scales (which are the most relevant for caching)3. Yet, to gather
more conservative results, we also consider less skewed Zipf’s
exponents α ∈ [0.8, 1].

In reason of our system dimensioning, we consider a L1
SoV+Swap cache in the range 2-10GB and a L2 cache in
the range 1-10TB range, while we fix the chunk size to
Sc=10KB, and batch operations in groups of B =10 chunks.
We highlight that, as long as the Swap area size meets the
minimum requirement early discussed and the popularity law
is stationary, L2 cache performance are completely insensitive
to the requests arrival rate (both in terms of hit probability and
normalized bandwidth saving). For these reasons, in what follows
we consider a normalized average request rate Λ = 1.

A. Model validation

We first validate a fundamental property of our model, namely,
the insensitivity of analytical results with respect to the inter-
chunk arrival time δt. This is indeed a key feature of our analysis,
as it allows us to apply Che’s approximation even if the chunk
arrival process does not satisfy the IRM. We consider the current
streaming scenario, with Zipf’s law exponent α = {0.8, 1.0}. For
the time being, we do not account for VCR functions and set
pm,c = 1 for each chunk.
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Fig. 2. Hit probabilities obtained by analysis and simulation for chunk inter-
arrival time δt = {0.001, 0.1}, catalog size M = 108, Zipf α = {0.8, 1}.

We then set δt equal to either 0.001 or 0.1, to consider two
very different scenarios: the first one corresponds to the case
in which all chunks are requested within an interval equal to
the average video inter-request time (strong correlation in the
chunk arrival process), while in the second scenario chunks
belonging, on average, to 100 different flows arrive intermingled
together4 (weak correlation in the chunk arrival process). Results
are reported in Fig. 2, in which analytical prediction is compared
against 95%–level confidence intervals obtained from detailed
event-driven simulations at chunk level. The excellent agreement

3Note that estimates of α over daily time scale can differ significantly from
values of α estimated over much longer time scales (months).

4Note that in our setting 1000 · δt equals the average number of video
downloads in progress.
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Fig. 3. Comparison between the performance of a standard cache and our two-layer cache: Normalized bandwidth in the (a) current and (b) future scenarios.

between analysis and simulation confirms the validity of the
system insensitivity property to the chunk inter-arrival time.

B. Bandwidth performance

We contrast our proposed two-layer cache architecture against
a conventional single-layer cache. As main performance index,
we evaluate the bandwidth externally requested by the router as
computed in (7). We set pm,c and qm,c by experimental charac-
terization of YouTube users reported in [18]. In particular pm,c
decreases linearly from 1 to about 0.2, and we furthermore stress
the system by selecting qm,c uniformly with

∑
c qm,c = 2. This

corresponds to assume that users pause, rewind or fast-forward
any video two times on average (conservatively overestimating
the occurrence of VCR-events with respect to [18]).

We limitedly consider the most challenging M = 5 · 108

catalog size to gather very conservative performance. We report
performance of our system in current and future streaming rate
scenarios, in Fig. 3-(a) and 3-(b), respectively. Left subplots
report the normalized (to the total demand) bandwidth externally
requested by a single-layer ICN router equipped with a DRAM
of size in the 1GB to 10GB range. Right subplots report
the normalized bandwidth of a two-layer ICN cache. In the
hierarchical system, we let L2 size vary from 1 TB to 10 TB, and
as L1 memory is more costly, we consider two different config-
urations with either 2GB or 10GB DRAM equally partitioned
between SoV and Swap (cost reduction mainly comes from
the shrinking SRAM index). We recall a substantial difference
between configurations employing a L1 Swap size of 2 GB vs
10 GB: the former, indeed, can sustain at most 4-4.5 Gbps of
aggregate video (and may be suitable for the network periphery),
while the latter can scale up to 20-24 Gbps (higher level).

As expected, our two-layer architecture significantly outper-
forms the monolithic cache architecture, leading to significant
bandwidth savings. More in details, bandwidth savings with
respect to a single-layer 10GB cache in the current scenario
depicted in Fig. 3-(a) range from 40% (α = 0.8) up to 100%
(α = 1.0) even when only 1TB is devoted to L2 storage.
Increasing the layer L2 cache to 10 TB yields an extra gain
from about 11% (α = 0.8) to 32% (α = 1). Additionally,
while in the future scenario the benefits of a single-layer cache
almost completely vanish for α < 1, our architecture still
leads to sizeable reduction of the upstream bandwidth (about
10% for the very unfavorable α = 0.8 scenario and 30% for

Fig. 4. Cache hit probability at L1-SoV.

α = 0.9). Under realistic α = 1 popularity settings [29], we
expect the hierarchical cache system to reduce current (future)
ISP bandwidth by 75% (50%) compared to a cacheless scenario.

Finally, provided that the Swap size satisfies minimal require-
ments, we observe that L1 dimension is not critical for what
concerns the upstream bandwidth: in the hierarchical L1+L2
system, performance corresponding to different L1 configura-
tions are hardly distinguishable. L1 dimensioning has, instead,
an impact on the latency incurred by first chunk requests, as
latency experienced by the first interest directly relates to the
hit probability experienced by SoV, that we report in Fig. 4.
Indeed, consider that interest packets served by L1-SoV cache
are served with negligible latency (the time to access a DRAM
is about 50ns), with respect to chunks that are to be found in
the ICN network (the time to retrieve a chunk is in this case
dominated by network propagation delay).

C. Trace-driven experiment

To gather an idea of realistic performance such a system could
achieve in an operational deployment, we resort to trace-driven
simulation. We collect a trace of YouTube video requests at a
PoP of a large Italian ISP, offering Internet access to residential
customers through ADSL and FTTH technologies. The trace has
been extracted by means of Tstat [31], a flow level logger capable
of DPI classification and advanced monitoring functionalities.
During a period of 35 days, from March 20th to April 25th 2012,
we recorded 3.8M requests for 1.76M videos coming from 31K
distinct IP addresses.

In our trace-driven simulations, we first fill caches during a
warmup phase by cyclically repeating requests from the trace.
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Fig. 5. Hit probability and L2 inter-write interval for the trace-driven experi-
ment.

Then we replay the trace once more to get hit statistics.
Fig. 5 reports, on the left y axes, the average hit probability

of the system. The plot highlights two regions: the left region
corresponds to cache sizes typical of a single-layer system,
whereas the right one corresponds to the L2 cache size (which
essentially drives the overall router performance) of a two-
layer system. Trace driven experiments confirm that, in the
range of values of L2 cache size which are made feasible
by our architecture (i.e., 1-10 TB), we achieve significant hit
probabilities (i.e., 27%-57%).

Fig. 5 also reports, on the right y axes, the average interval
∆Twrite between two consecutive write operations over the same
physical block in the L2 cache, computed as:

∆Twrite ≈
CB

ln(CB)ΛB(1− pL2
hit)

where CB is the cache size expressed in number of blocks,
whereas ΛB is the aggregate rate at which batches are requested.
The logarithmic factor in the above formula accounts for the fact
that blocks are written in random SSD positions, deviating thus
from an equal usage of each block. We conclude that, in an edge
scenario like the one considered in our experiment, the frequency
of write operations on the SSD disk is not really an issue (being
two consecutive writes in the 1-10TB range spaced by days, it
would take over 30 years for 100,000 write cycle to worn out a
1TB SSD cache).

VI. CONCLUSIONS

We design, model and analyze a two-layer caching system that
exploits memory technology diversity combining a multi-TB L2
cache to a multi-Gbps L1 cache. Keys to our remarkable perfor-
mance are (i) exploiting ICN chunks by triggering prefetching,
(ii) moving SSD bottleneck from access time to external data
rate by prefetching batches of chunks.

As brilliantly pointed out in [3] “changing the overall network
architecture in order to tame the exponentially growing world of
content with the logarithmic sword of caching seems a classical
example of taking a knife to a gunfight: it may make for a great
story, but it won’t end well.” Our work precisely goes in this
direction and, by climbing several orders of magnitude of the
cache size, it reequilibrate odds in the above gunfight: otherwise
stated, if guns are unloaded and the sword is long enough, it
makes sense to carry it around.

ADVERTISEMENT

The research leading to these results has received funding from
the European Union under the KIC EIT ICT Labs Project Smart
Ubiquitous Contents (SmartUC).
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