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Giulio Coluccia�, Aline Roumy†, Enrico Magli�

� Politecnico di Torino, Italy
† INRIA, France

ABSTRACT

A sparse or compressible signal can be recovered from
a certain number of noisy random projections, smaller than
what dictated by classic Shannon/Nyquist theory. In this pa-
per, we derive the closed–form expression of the mean square
error performance of the oracle receiver, knowing the spar-
sity pattern of the signal. With respect to existing bounds, our
result is exact and does not depend on a particular realization
of the sensing matrix. Moreover, our result holds irrespective
of whether the noise affecting the measurements is white or
correlated. Numerical results show a perfect match between
equations and simulations, confirming the validity of the re-
sult.

Index Terms— Compressed Sensing, Oracle Receiver,
Wishart Matrix

1. INTRODUCTION

Compressed sensing (CS) [1, 2] has emerged in past years as
an efficient technique for sensing a signal with fewer coeffi-
cients than dictated by classic Shannon/Nyquist theory. The
hypothesis underlying this approach is that the signal to be
sensed must have a sparse – or at least compressible – repre-
sentation in a convenient basis. In CS, sensing is performed
by taking a number of linear projections of the signal onto
pseudorandom sequences. Therefore, the acquisition presents
appealing properties. First, it requires low encoding complex-
ity, since no sorting of the sparse signal representation is re-
quired. Second, the choice of the sensing matrix distribution
is blind to the source distribution.

Several different techniques can be used to reconstruct
a signal from CS measurements. Often, for performance
assessment, the ideal oracle receiver, i.e., a receiver with per-
fect knowledge of the signal sparsity support, is considered
as a benchmark. But even for this ideal receiver, only upper
and lower performance bounds are available. For example,
in [3] a bound depending on a particular realization of the
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sensing matrix was derived. This bound represents a worst–
case scenario since it depends on the maximum norm of the
noise vector. An average (over noise) bound was presented
in [4] for white noise and in [5] for correlated noise. Both
bounds depend on the Restricted Isometry Property (RIP)
constant of the sensing matrix, a parameter taking different
values from realization to realization of the sensing matrix
and whose evaluation represents a combinatorial complexity
problem. Even if there exist classes of matrix respecting
the RIP with a certain constant with high probability, this
would give a probabilistic result, restricted to a specific class
of sensing matrices. Moreover, note that [5] overestimates
the reconstruction error giving a result which depends on the
maximum eigenvalue of the noise covariance matrix. Other
results can be found in [6] and [7].

In this paper, we present the exact average performance
of the oracle receiver. The average is taken over noise distri-
bution but also over the sensing matrix distribution, and does
not depend on the RIP constant of a specific sensing matrix
(or family of sensing matrices), but only on system or signal
parameters. Using some recent results about Wishart random
matrix theory [8], we show that the performance depends,
apart from system parameters, on the variance of the noise,
only, and not on its covariance. Hence, our result can be ap-
plied both to systems where measurements are corrupted by
either white or correlated noise.

2. BACKGROUND

2.1. Compressed Sensing

In the standard CS framework, introduced in [1, 2], the signal
x ∈ RN×1, having a K–sparse representation in some basis
Ψ ∈ RN×N , i.e.: x = Ψθ, �θ�0 = K, K � N , can be
recovered by a smaller vector of noisy linear measurements
y = Φx + z, y ∈ RM×1 and K < M < N , where Φ ∈
RM×N is the sensing matrix and z ∈ RM×1 is the vector
representing additive noise such that �z�2 < ε, by solving
the �1 minimization with inequality constraints

�θ = argmin
θ

�θ�1 s.t. �ΦΨθ − y�2 < ε (1)



and �x = Ψ�θ, known as basis pursuit denoising, provided that
M = O(K log(N/K)) and that each submatrix consisting of
K columns of ΦΨ is (almost) distance preserving [3, Def-
inition 1.3]. The latter condition is the Restricted Isometry
Property (RIP). Formally, the matrix ΦΨ satisfies the RIP of
order K if ∃δK ∈ (0, 1] such that, for any θ with �θ�0 ≤ K:

(1− δK) �θ�22 ≤ �ΦΨθ�22 ≤ (1 + δK) �θ�22 , (2)

where δK is the RIP constant of order K. It has been shown
in [9] that when Φ is an i.i.d. random matrix drawn from any
subgaussian distribution and Ψ is an orthogonal matrix, ΦΨ
satisfies the RIP with overwhelming probability.

2.2. Wishart Matrices

Let xi be a zero–mean Gaussian random vector with covari-
ance matrix Σ. Collect n realizations of xi as rows of the
n×p matrix X. Hence, XTX is distributed as a p-dimensional
Wishart matrix with scale matrix Σ and n degrees of freedom
[10]:

W = XTX ∼ Wp (Σ, n) .

When n > p, W can be inverted. The distribution of W−1

is the Inverse Wishart, whose distribution and moments were
derived in [11]:

W−1 ∼ W−1
p

�
Σ−1, n

�
.

On the other hand, when n < p, W is rank–deficient, hence
not invertible. Its Moore–Penrose pseudoinverse W† follows
a generalized inverse Wishart distribution, whose distribution
is given in [12] and mean and variance were recently derived
in [8, Theorem 2.1], under the assumptions that p > n + 3
and Σ = I.

3. PERFORMANCE OF THE ORACLE RECEIVER

3.1. System model

Consider the vector x = Ψθ ∈ RN . The nonzero compo-
nents of the K–sparse vector θ are modeled as i.i.d. centred
random variables with variance σ2

θ .
The vector x is observed through a smaller vector of noisy

Gaussian measurements defined as the vector y ∈ RM such
that y = Φx + z, where the sensing matrix Φ ∈ RM×N ,
with M < N , is a random matrix with i.i.d. entries drawn
from a zero–mean Gaussian distribution with variance σ2

Φ and
z ∈ RM×1, representing the noise, is drawn from a zero–
mean multivariate random distribution with covariance matrix
Σz .

We remark here that in our analysis we consider mea-
surements affected both by white noise, i.e., the case where
Σz = I, like thermal noise or quantization noise deriving
from uniform scalar quantizer in the high–rate regime, as well
as correlated noise, like the one affecting measurements quan-
tized using vector quantization or the noise at the output of a
low–pass filter.

3.2. Error affecting the oracle reconstruction

We now evaluate the performance of CS reconstruction
with noisy measurements. The performance depends on
the amount of noise affecting the measurements. In partic-
ular, the distortion ��x− x�22 is upper bounded by the noise
variance up to a scaling factor [13, 14] ��x− x�22 ≤ c2ε2,
where the constant c depends on the realization of the mea-
surement matrix, since it is a function of the RIP constant.
Since we consider the average1 performance, we need to con-
sider the worst case c and this upper bound will be very loose
[3, Theorem 1.9].

Here, we consider the oracle estimator, which is the esti-
mator knowing exactly the sparsity support Ω = {i|θi �= 0}
of the signal x.

Let UΩ be the submatrix of U obtained by keeping the
columns of ΦΨ indexed by Ω, and let Ωc denote the com-
plementary set of indexes. The optimal reconstruction is then
obtained by using the pseudo–inverse of UΩ, denoted by U†

Ω:





�θΩ = U†
Ωy :=

�
UT

ΩUΩ

�−1

UT
Ωy

�θΩc = 0
(3)

�x = Ψ�θ (4)

For the oracle estimator, upper and lower bounds depend-
ing on the RIP constant can be found, for example in [4] when
the noise affecting the measurements is white and in [5] when
the noise is correlated. Unlike [4, 5], in this paper the average
performance of the oracle, depending on system parameters
only, is derived exactly. Relations with previous work will be
thoroughly described in section 3.2.1.

As we will show in the following sections, the charac-
terization of the ideal oracle estimator allows to derive the
reconstruction RD functions with results holding also when
non ideal estimators are used.

Theorem 1. Let x and y be defined as in section 3.1. Assume
reconstruction by the oracle estimator, when the support Ω
of x is available at the receiver. The average reconstruction
error of any reconstruction algorithm is lower bounded by
that of the oracle estimator that satisfies

E
�
��x− x�22

�
=

K

M(M −K − 1)

Tr (Σz)

σ2
Φ

(5)

Proof. We derive a lower bound on the achievable distortion
by assuming that the sparsity support Ω of x is known at the
decoder.

1The average performance is obtained averaging over all random vari-
ables i.e. the measurement matrix, the non-zero components θ and noise, as
for example in [5].



Hence,

E
�
��x− x�22

�
= E

�����θ − θ
���
2

2

�
= E

�����θΩ − θΩ

���
2

2

�
(6)

= E
����U†

Ωz
���
2

2

�
(7)

= E
�
zTE

�
(UΩU

T
Ω)

†
�
z
�

(8)

The first equality in (6) follows from the orthogonality of
the matrix Ψ, whereas the second one follows from the as-
sumption that Ω is the true support of θ. (7) comes from
the definition of the pseudo-inverse, and (8) from the equality
U† T

Ω U†
Ω = (UΩU

T
Ω)

† and from the statistical independence
of U and z. Then, if M > K + 3,

E
�
��x− x�22

�
= E

�
zT

K

M(M −K − 1)

1

σ2
Φ

I z

�
(9)

=
K

M(M −K − 1)

Tr (Σz)

σ2
Φ

(10)

where (9) comes from the fact that, since M > K, UΩU
T
Ω is

rank deficient and follows a singular M -variate Wishart dis-
tribution with K degrees of freedom and scale matrix σ2

ΦI
[12]. Its pseudo-inverse follows a generalized inverse Wishart
distribution, whose distribution is given in [12] and the mean
value is given in [8, Theorem 2.1], under the assumption that
M > K + 3. Note that the condition M > K + 3 is not
restrictive since it holds for all K and M of practical interest.
It can be noticed that the distortion of the oracle only depends
on the variance of the elements of z and not on its covari-
ance matrix. Therefore, our result holds even if the noise is
correlated (for instance if vector quantization is used). As a
consequence, we can apply our result to any quantization al-
gorithm or to noise not resulting from quantization. Note that,
if the elements of z have the same variance, (5) reduces to

E
�
��x− x�22

�
=

K

M −K − 1

σ2
z

σ2
Φ

(11)

�

3.2.1. Relations with previous work

The results obtained in Theorem 1 provide a twofold contribu-
tion with respect to results already existing in literature about
the oracle reconstruction. First, they are exact and not given
as bounds. Second, they do not depend on parameters which
cannot be evaluated in practical systems, e.g., the RIP con-
stant of the sensing matrices. For example, in [3] the follow-
ing worst–case upper bound was derived

��x− x�22 ≤ 1

1− δ2K
�z�22 , (12)

which depends on a particular realization of the sensing ma-
trix, since it depends on its RIP constant δ2K , and is very con-
servative, since it is function of the maximum �2 norm of the

noise vector. An average evaluation (over noise) was given in
[4, Theorem 4.1] where the performance of the oracle receiver
with measurements affected by white noise was derived

K

1 + δK
σ2
z ≤ Ez

�
��x− x�22

�
≤ K

1− δK
σ2
z (13)

but still the equation depends on the RIP constant of the sens-
ing matrix and hence, on a particular realization. The result
of (13) was generalized in [5] to correlated noise

Ez

�
��x− x�22

�
≤ K

1− δK
λmax(Σz) , (14)

where Σz is the covariance matrix of z and λmax(·) represents
the maximum eigenvalue of the argument. Hence, (14) repre-
sents an even looser bound, since the contribution of the noise
correlation is upper bounded by using its biggest eigenvalue.

Finally, the results of Theorem 1 can help to generalize
related results, e.g., the Rate–Distortion performance of sys-
tems based on Compressed Sensing. See for example [15,
section III.C], where a lower bound is derived, or [16], where
the exact RD performance is derived.

4. NUMERICAL RESULTS

In this section, we show the validity of the results of The-
orem 1 by comparing the equations to the results of simu-
lations. Here and in the following sections, signal length is
N = 512 with sparsity K = 16. M = 128 measurements
are taken. The nonzero elements of the signal are distributed
as N (0, 1). The sparsity basis Ψ is the DCT matrix. The
sensing matrix is composed by i.i.d. elements distributed as
zero–mean Gaussian with variance 1/M . The noise vector
is Gaussian with zero mean, while the covariance matrix de-
pends on the specific test and will be discussed later. The
reconstructed signal �x is obtained using the oracle estimator.
A different realization of the signal, noise and sensing matrix
is drawn for each trial, and the reconstruction error, evaluated
as E

�
��x− x�22

�
, is averaged over 1,000 trials.

4.1. White noise

In this first experiment, the measurement vector y is corrupted
by white Gaussian noise, i.e., z ∼ Np(0,σ

2
zIM ). Fig. 1

shows the comparison between the simulated reconstruction
error and (11). It can be easily noticed that the match between
simulated and theoretical curve is perfect. As a term of com-
parison, we plot also the upper and lower bounds of (13), for
δK = 0 (ideal case) and δK = 0.5. It can be noticed that for
δK = 0 the two bounds match and are close to the simulated
curve, but even the upper bound is lower than the real curve.
Instead, for δK = 0.5 the two bounds are almost symmetric
with respect to the realistic curve but quite far from it. The
conclusion is that bounds in the form of (13) are difficult to
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Fig. 1. Oracle reconstruction error. Simulations vs. Theorem 1.
N = 512, K = 16, M = 128. White noise: Σz = σ2

zIM .
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Fig. 2. Oracle reconstruction error. Simulations vs. Theorem 1.
N = 512, K = 16, M = 128. Measurements quantized with
Uniform Scalar Quantizer with step size Δ.

use due to the lack of knowledge of the RIP constant. Even
if the sensing matrix belongs to a class where a probabilistic
expression of the RIP constant exists, like the ones in [17], a
specific value depending on system parameters only is usually
difficult to obtain since it depends on constants whose value
is unknown or hard to compute. Tests with generic diagonal
Σz have also been run, confirming a perfect match with (5).

4.1.1. Uniform scalar quantization

A practical application of the white noise case is a system
where the measurement vector is quantized using an uniform
scalar quantizer with step size Δ. In this case, equation (11)
is very handy because it is well known that in the high–rate
regime the quantization noise can be considered as uncorre-
lated and its variance is equal to Δ2

12 . In Fig. 2, we plot the re-
construction error of the oracle from quantized measurements
vs. the step size Δ. It can be noticed that the match between
simulations and proposed equation is perfect in the high–rate
regime, i.e., when the step size gets small.
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Fig. 3. Oracle reconstruction error. Simulations vs. Theorem 1.
N = 512, K = 16, M = 128. Correlated noise: (Σz)i,j =
σ2
zρ

|i−j| and ρ = 0.9, 0.999.

4.2. Correlated noise

We also report in Fig. 3 the results obtained reconstructing
with the oracle receiver the measurements corrupted by cor-
related noise. In particular, the i, j-th element of the noise co-
variance matrix will be given by (Σz)i,j = σ2

zρ
|i−j|. The cor-

relation coefficient takes the values of ρ = 0.9 and 0.999. We
compare the simulations with (5) and with the upper bound
of (14), for δK = 0 (ideal case) and δK = 0.5. First, it can
be noticed from Fig. 3 that simulations confirm the result that
the performance of the oracle does not depend on noise co-
variance but only on its variance. This is shown by the fact
that simulations for ρ = 0.9 overlap the ones for ρ = 0.999,
and both match (5), confirming the validity of Theorem 1 even
in the correlated noise scenario. Second, Fig. 3 shows that the
upper bounds of (14) highly overestimate the real reconstruc-
tion error of the oracle, even for the ideal δK = 0 case. This
can be explained by considering that in (14), for the chosen
correlation model, λmax tends to σ2

zM when ρ tends to 1.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we derived the closed–form expression of the
average performance of the oracle receiver for Compressed
Sensing. Remarkably, this result is exact, and does not de-
pend on the RIP constant or the noise covariance matrix. We
showed that the theoretical results perfectly match the ones
obtained by numerical simulations. This represents a signifi-
cant improvement with respect to existing results, which con-
sist in bounds depending on parameters that are hardly avail-
able.

As a future activity, this work can be extended to non ideal
receivers, with a mismatched knowledge of the signal sparsity
pattern. In that case, the performance will depend both on the
noise affecting the signal and on the number of misestimated
position in the sparsity pattern.
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