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taps EMLE detector with an EML chip spacing of 1 is an adequate PD as presented in

Section 3.4.4.5, whereas a four taps VEMLE detector with an EML chip spacing of 0.5

and a Very Early Minus Late (VEML) chip spacing of 1 is used for Galileo E1 signals.

As discussed in Section 3.4.4.4, the linear range of the 4 taps VEMLE discriminator

using an early minus late chip spacing of 0.5 extends over +/ − 0.5 chips albeit with

some undulations while the linear range of a simple EMLE discriminator using an early

minus late chip spacing of unity extends over +/− 0.5 chips.

3.5.3.5 Carrier and code tracking

Following the scheme of signal simulation described in Section 2.3.4, a carrier signal

modulated by Galileo E1 and E5a OS signals is generated over 5 seconds with a CNR of

30 dB-Hz and a ramp Doppler frequency of -0.8 Hz/s rate and an initial value of 2 kHz.

Subsequently, the simulated signal is fed into the carrier and code tracking loops made

up by an ATAN2 carrier PD and an appropriate code PD, one of the aforementioned

first order loop filters and a frequency NCO which is equivalent to a phase and rate

NCO. The code PD is selected as either the standard EMLE PD for Galileo E5a or the

4 taps VEMLE PD as described in Section 3.4.4.4 for the Galileo E1 signal. No loop

gain compensation is implemented.

As for the individual carrier tracking case, an initial frequency error of 3 Hz is set

for the range of considered BL values. Similarly, an initial code phase error of a few

samples and an almost zero initial code rate error is applied while testing all PDI val-

ues. Again, the carrier and code tracking loops are governed by the Nyquist sampling

bound BN < 1/(2TI) as explained in Section 3.4.2.1. Subsequently, the noise equivalent

bandwidth design parameter in the code tracking loop has been set to BN = 5 Hz in

general, with the exception of TI = 60 ms case where BN = 3.33 Hz to yield BL = 0.2

one of the considered values in the theoretical analysis put forth in Sections 3.5.3.1 and

3.5.3.2. Conversely, the noise equivalent bandwidth design parameter in the carrier

tracking loop has been bounded with the increase of the integration interval, such that

BN = 10 Hz is chosen for integration intervals less than 40 ms. On the other hand,

PDI values of 60 80 and 100 ms were used with a BN = 8, 6 and 5 Hz.
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Figure 3.71: EMLE PD output in chips with a constant code rate input on

Galileo E5a band - testing different loop filters to track the effect of a constant 2 kHz

Doppler frequency on the Galileo E5a code rate with a CNR of 45 dB-Hz and using different

BN and PDI values yielding a range of BL values a) TI = 16 ms and BL = 0.08 b) TI =

20 ms and BL = 0.1 c) TI = 40 ms and BL = 0.2 d) TI = 60 ms and BL = 0.2 e) TI = 80

ms and BL = 0.4 f) TI = 100 ms and BL = 0.5.
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Figure 3.72: Loop filter constant code rate estimation on Galileo E5a band -

testing different loop filters to track the effect of a constant 2 kHz Doppler frequency on

the Galileo E5a code rate with a CNR of 45 dB-Hz and using different BN and PDI values

yielding a range of BL values a) TI = 16 ms and BL = 0.08 b) TI = 20 ms and BL = 0.1

c) TI = 40 ms and BL = 0.2 d) TI = 60 ms and BL = 0.2 e) TI = 80 ms and BL = 0.4 f)

TI = 100 ms and BL = 0.5.
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Figure 3.73: CNR estimate in dB-Hz with a constant code rate input on Galileo

E5a band - testing different loop filters to track the effect of a constant 2 kHz Doppler

frequency on the Galileo E5a code rate with a CNR of 45 dB-Hz and using different BN

and PDI values yielding a range of BL values a) TI = 16 ms and BL = 0.08 b) TI = 20

ms and BL = 0.1 c) TI = 40 ms and BL = 0.2 d) TI = 60 ms and BL = 0.2 e) TI = 80

ms and BL = 0.4 f) TI = 100 ms and BL = 0.5.
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Figure 3.74: EMLE PD output in chips with a ramp code rate input on Galileo

E5a band - testing different loop filters to track the effect of a variable Doppler frequency

on the Galileo E5a code rate with a CNR of 45 dB-Hz and using different BN and PDI

values yielding a range of BL values a) TI = 16 ms and BL = 0.08 b) TI = 20 ms and BL

= 0.1 c) TI = 40 ms and BL = 0.2 d) TI = 60 ms and BL = 0.2 e) TI = 80 ms and BL =

0.4 f) TI = 100 ms and BL = 0.5.
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Figure 3.75: Loop filter ramp code rate estimation on Galileo E5a band - testing

different loop filters to track the effect of a variable Doppler frequency on the Galileo E5a

code rate with a CNR of 45 dB-Hz and using different BN and PDI values yielding a range

of BL values a) TI = 16 ms and BL = 0.08 b) TI = 20 ms and BL = 0.1 c) TI = 40 ms

and BL = 0.2 d) TI = 60 ms and BL = 0.2 e) TI = 80 ms and BL = 0.4 f) TI = 100 ms

and BL = 0.5.
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Figure 3.76: CNR estimate in dB-Hz with a ramp code rate input on Galileo

E5a band - testing different loop filters to track the effect of a variable Doppler frequency

on the Galileo E5a code rate with a CNR of 45 dB-Hz and using different BN and PDI

values yielding a range of BL values a) TI = 16 ms and BL = 0.08 b) TI = 20 ms and BL

= 0.1 c) TI = 40 ms and BL = 0.2 d) TI = 60 ms and BL = 0.2 e) TI = 80 ms and BL =

0.4 f) TI = 100 ms and BL = 0.5.
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Figure 3.77: PLL PD estimated error with a ramp carrier frequency input

signal modulated by a Galileo E1 OS signal - a CNR of 30 dB-Hz, testing different

loop filters while using different BN and PDI values yielding a range of BL values a) TI =

16 ms and BL = 0.16 b) TI = 20 ms and BL = 0.2 c) TI = 40 ms and BL = 0.4 d) TI =

60 ms and BL = 0.48 e) TI = 80 ms and BL = 0.48 f) TI = 100 ms and BL = 0.5.
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Figure 3.78: PLI with a ramp carrier frequency input signal modulated by a

Galileo E1 OS signal - a CNR of 30 dB-Hz, testing different loop filters while using

different BN and PDI values yielding a range of BL values a) TI = 16 ms and BL = 0.16

b) TI = 20 ms and BL = 0.2 c) TI = 40 ms and BL = 0.4 d) TI = 60 ms and BL = 0.48

e) TI = 80 ms and BL = 0.48 f) TI = 100 ms and BL = 0.5.
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Figure 3.79: PLL Loop filter outputs with a ramp carrier frequency input signal

modulated by a Galileo E1 OS signal - a CNR of 30 dB-Hz, testing different loop

filters while using different BN and PDI values yielding a range of BL values a) TI = 16

ms and BL = 0.16 b) TI = 20 ms and BL = 0.2 c) TI = 40 ms and BL = 0.4 d) TI = 60

ms and BL = 0.48 e) TI = 80 ms and BL = 0.48 f) TI = 100 ms and BL = 0.5.
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Figures 3.77 to 3.82 look into the Galileo E1, E5a PLL PD outputs, phase lock in-

dicators and loop filter carrier frequency estimates. Figures 3.77 and 3.79 related to

Galileo E1 signals show that for the loop normalized noise equivalent bandwidth BL

values less than 0.2, all four loop filters exhibit similar phase and frequency tracking

performance. On the other hand, higher BL values yield false or loss of tracking for

methods 1 and 3, while method 2 and 4 show stable tracking for a BL as high as 0.5

even though the case where method 2 is used with an integration time of 60 ms seems

initially out of lock, it is able to go in lock after 3 seconds. It is interesting to compare

the PLL tracking performance with Galileo E5a signals to that of Galileo E1 signals.

In fact, methods 2 and 4 seem to endure cycle slips with Galileo E5a signals but even-

tually approach to lock to the correct frequency. The results agree with the theoretical

analysis performed earlier where the Bode plots have shown that for methods 1 and

3, the closed loop system becomes an all pass filter for BL > 0.2 while the low pass

filter characteristics remain for methods 2 and 4. Root locus plots on the other hand

have shown the progress of the nature of the loop response where the initially designed

underdamped response moves towards critically damped and overdamped for methods

1 and 3 respectively, while complex conjugate poles characteristic of an underdamped

response hold for high BL values using methods 2 and 4.

Similarly, Figures 3.83 to 3.88 are the result of tracking the aforementioned simulated

Galileo E1 and E5a signals and look into the DLL PD outputs, code lock indicators

represented by the CNR and incremental loop filter code rate estimates. The same

conclusions are drawn as before.
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Figure 3.80: PLL PD estimated error with a ramp carrier frequency input

signal modulated by a Galileo E5a OS signal - a CNR of 30 dB-Hz, testing different

loop filters while using different BN and PDI values yielding a range of BL values a) TI =

16 ms and BL = 0.16 b) TI = 20 ms and BL = 0.2 c) TI = 40 ms and BL = 0.4 d) TI =

60 ms and BL = 0.48 e) TI = 80 ms and BL = 0.48 f) TI = 100 ms and BL = 0.5.
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Figure 3.81: PLI with a ramp carrier frequency input signal modulated by a

Galileo E5a OS signal - a CNR of 30 dB-Hz, testing different loop filters while using

different BN and PDI values yielding a range of BL values a) TI = 16 ms and BL = 0.16

b) TI = 20 ms and BL = 0.2 c) TI = 40 ms and BL = 0.4 d) TI = 60 ms and BL = 0.48

e) TI = 80 ms and BL = 0.48 f) TI = 100 ms and BL = 0.5.
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Figure 3.82: PLL Loop filter outputs with a ramp carrier frequency input signal

modulated by a Galileo E5a OS signal - a CNR of 30 dB-Hz, testing different loop

filters while using different BN and PDI values yielding a range of BL values a) TI = 16

ms and BL = 0.16 b) TI = 20 ms and BL = 0.2 c) TI = 40 ms and BL = 0.4 d) TI = 60

ms and BL = 0.48 e) TI = 80 ms and BL = 0.48 f) TI = 100 ms and BL = 0.5.
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Figure 3.83: DLL Four taps EMLE PD output in chips with a ramp carrier

frequency input signal modulated by a Galileo E1 OS signal - a CNR of 30 dB-Hz,

testing different loop filters while using different BN and PDI values yielding a range of

BL values a) TI = 16 ms and BL = 0.08 b) TI = 20 ms and BL = 0.1 c) TI = 40 ms and

BL = 0.2 d) TI = 60 ms and BL = 0.2 e) TI = 80 ms and BL = 0.4 f) TI = 100 ms and

BL = 0.5.
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Figure 3.84: DLL Loop filter outputs with a ramp carrier frequency input

signal modulated by a Galileo E1 OS signal - a CNR of 30 dB-Hz, testing different

loop filters while using different BN and PDI values yielding a range of BL values a) TI =

16 ms and BL = 0.08 b) TI = 20 ms and BL = 0.1 c) TI = 40 ms and BL = 0.2 d) TI =

60 ms and BL = 0.2 e) TI = 80 ms and BL = 0.4 f) TI = 100 ms and BL = 0.5.
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Figure 3.85: CNR estimate in dB-Hz with a ramp carrier frequency input

signal modulated by a Galileo E1 OS signal - a CNR of 30 dB-Hz, testing different

loop filters while using different BN and PDI values yielding a range of BL values a) TI =

16 ms and BL = 0.08 b) TI = 20 ms and BL = 0.1 c) TI = 40 ms and BL = 0.2 d) TI =

60 ms and BL = 0.2 e) TI = 80 ms and BL = 0.4 f) TI = 100 ms and BL = 0.5.
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Figure 3.86: DLL Four taps VEMLE PD output in chips with a ramp carrier

frequency input signal modulated by a Galileo E5a OS signal - a CNR of 30 dB-

Hz, testing different loop filters while using different BN and PDI values yielding a range

of BL values a) TI = 16 ms and BL = 0.08 b) TI = 20 ms and BL = 0.1 c) TI = 40 ms

and BL = 0.2 d) TI = 60 ms and BL = 0.2 e) TI = 80 ms and BL = 0.4 f) TI = 100 ms

and BL = 0.5.
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Figure 3.87: DLL Loop filter outputs with a ramp carrier frequency input

signal modulated by a Galileo E5a OS signal - a CNR of 30 dB-Hz, testing different

loop filters while using different BN and PDI values yielding a range of BL values a) TI =

16 ms and BL = 0.08 b) TI = 20 ms and BL = 0.1 c) TI = 40 ms and BL = 0.2 d) TI =

60 ms and BL = 0.2 e) TI = 80 ms and BL = 0.4 f) TI = 100 ms and BL = 0.5.
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Figure 3.88: CNR estimate in dB-Hz with a ramp carrier frequency input

signal modulated by a Galileo E5a OS signal - a CNR of 30 dB-Hz, testing different

loop filters while using different BN and PDI values yielding a range of BL values a) TI =

16 ms and BL = 0.08 b) TI = 20 ms and BL = 0.1 c) TI = 40 ms and BL = 0.2 d) TI =

60 ms and BL = 0.2 e) TI = 80 ms and BL = 0.4 f) TI = 100 ms and BL = 0.5.
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3.6 Bandlimiting effects

In practice, the front-end bandwidth is finite and depending on the applications and

receiver limitations, it can be set to arbitrarily low values. For instance, the Galileo E1

OS signal is specified in the Galileo ICD [21] to have a reference bandwidth of 24.552

MHz. However, a theoretical bandwidth of 14.322 MHz = 2 ∗ (6.138 + 1.023) MHz,

that accomodates the two BOC signals, BOC(6,1) and BOC(1,1), may cover a large

percentage of the signal power spectrum. In the following, we will undertake the task

of indicating the losses incurred by limited bandwidth receivers. The normalized PSD

of a baseband signal using a BOC modulation, defined as BOC(m,n) is expressed as

[46]:

Gs(f) = fc

⎛
⎝sin

(
πf
2fsc

)
sin
(
πf
fc

)
πf cos

(
πf
2fsc

)
⎞
⎠

2

(3.163)

where fsc = m · 1.023 MHz is the subcarrier frequency and fc = n · 1.023 MHz is the

chip rate. The Galileo E1 OS signal is an MBOC(6,1,1/11) modulated signal, having

a PSD Gs(f) as defined in Section 2.2.1. On the other hand, the normalized PSD of a

baseband signal using a BPSK modulation, defined as BPSK(m) is expressed as:

Gs(f) = fc

(
sin(πffc )

πf

)2

(3.164)

Using this equation, the PSD of the Galileo E5a/b OS signals which are BPSK(10)

signals can be computed. Figure 3.89 plots the PSD of the aforementioned Galileo

E1 MBOC(6,1,1/11) and E5a/b OS BPSK(10) signals together with the reference

BOC(1,1) and BPSK(1) signals.

3.6.1 Correlation loss

The overall power loss due to bandlimiting, also termed correlation loss [46], can be

computed over a limiting double-sided complex bandwidth β as:

Lc =

∫ β/2

−β/2
Gs(f)df (3.165)

The reason why Lc is called correlation loss, lies in the definition of the autocorrelation

function which is the inverse Fourier transform of the PSD. Consequently, any change
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Figure 3.89: Theoretical PSD of the Galileo E1 and E5a/b OS signals -

MBOC(6,1,1/11), BPSK(10), and two reference signals BOC(1,1) and BPSK(1)

in the PSD reflects in the shape of the autocorrelation function which is pivotal in

the carrier and code tracking stage. It is thus imperative to assess the correlation

loss in order to choose an appropriate front-end bandwidth. Figure 3.90 shows the

behavior of the correlation loss as given by Equation 3.165 for BOC(1,1), BPSK(10) and

MBOC(6,1,1/11) modulated signals. In case of MBOC signals as defined for the Galileo

E1 OS signal, a correlation loss of 1.7 dB is incurred for using a 4 MHz bandwidth

instead of 14.322 MHz while 1 dB loss corresponds to using 8 MHz bandwidth instead

of 14.322 MHz. Beyond 14.322 MHz, the correlation losses for the MBOC signal are

negligible (less than 0.5 dB). For Galileo E5a/b BPSK(10) signals, the correlation losses

are negligible beyond 20 MHz (less than 1 dB). Table 3.8 summarizes the Galileo E1

and E5a/b OS signals bandlimiting results in terms of correlation loss in dB.

3.6.2 Impact on PLL tracking threshold

It is informative to now look at the impact of the correlation loss on the carrier phase

tracking ability of digital loops. The phase tracking jitter or phase error standard

deviation at the output of the carrier tracking loop or PLL depends on the phase
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FE bandwidth [MHz] E1 Correlation Loss [dB] E5a/b Correlation Loss [dB]

4 2.2 8.7

8 1.5 3.7

16 0.5 1.2

20 0.4 1

30 0.3 0.8

∞ 0 0

Table 3.8: Galileo E1 MBOC(6,1,1/11) and Galileo E5a/b BPSK(10) correlation loss due

to finite front-end bandwidth
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Figure 3.90: Correlation loss due to bandlimiting - of BOC(1,1), MBOC(6,1,1/11)

and BPSK(10) modulated signals as a function of the double-sided complex front-end

bandwidth expressed in dB.
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detector or discriminator used in these loops. In case of carrier tracking loops, it is

shown in [9] that the thermal noise tracking jitter at the PLL output using either

ATAN or ATAN2 discriminator is well approximated by that resulting from the use

of a DP discriminator (a noise equivalent loop bandwidth BN of 10 Hz is assumed).

The tracking jitter expression takes into account the bandlimiting effects as well, and

is given by:

σ2
φ,DP =

BN (1− 0.5BNTI)

LcC/N0

(
1 +

1

2LcC/N0TI

)
(3.166)

The coherent discriminator for a PLL has a more simplified expression for the tracking

error variance due to the absence of the squaring loss:

σ2
φ,Coh =

BN (1− 0.5BNTI)

LcC/N0
(3.167)

It is straightforward to note that the tracking jitter as computed from 3.166 and 3.167

increases with decreasing CNR values but depending on the chosen FE bandwidth, and

for the same CNR this jitter slightly decreases or remains the same as plotted in Figures

3.91 and 3.92. Consequently, the chosen bandwidth may or may not have an impact

on decreasing the probability of losing lock which is normally considered to occur when

the total tracking jitter exceeds 15 degrees [47]. More precisely, the tracking threshold

depends on the two-sided phase discriminator linear tracking region Lφ and the loss of

lock condition entails that [9, 47]:

σφ +
θe
3
≤ Lφ

6
(3.168)

where θe is the dynamic stress error of the receiver. Considering a static receiver, and

using the aforementioned inequality, Table 3.9 summarizes the different tracking jitter

thresholds for different discriminators.

3.6.2.1 Galileo E1 OS signal

Due to the aforementioned considerations, it is possible to plot the thermal noise carrier

phase jitter alone by ignoring the other components of the total tracking jitter σφ.

Figures 3.91 and 3.92 depict the behavior of the thermal noise carrier phase jitter for

Galileo E1 OS signals. It is worth noting that considering a 16 MHz bandwidth instead

of 4 MHz brings an additional margin of 1 dB-Hz weaker signal tracking for CNR lower
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Discriminator Angular threshold [degrees]

DD 20

DP 15

Rat 10

Atan 30

Coh 30

Atan2 60

Table 3.9: PLL tracking jitter thresholds in angular degrees according to various PLL

discriminators
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Figure 3.91: Galileo E1 Tracking jitter at PLL output using an ATAN2 dis-

criminator for a range of CNR values - a loop bandwidth of 10 Hz and an integration

time of 20 ms.
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Figure 3.92: Galileo E1 Tracking jitter at PLL output using a COH discrimi-

nator for a range of CNR values - a loop bandwidth of 10 Hz and an integration time

of 20 ms.

than 25 dB-Hz. On the other hand, the choice of 24 MHz bandwidth instead of a 16

MHz bandwidth yields no significant improvement even for low CNR.

Moreover, for a certain CNR value of 25 dB-Hz, the tracking jitter can differ by as high

as a unit degree when choosing a FE bandwidth of 16 MHz instead of 4 MHz as shown

in Figure 3.93. This difference is almost the same for an integration time of either 20

ms or 80 ms as shown in Figure 3.94, but the latter shows an overall lower tracking

jitter due to better noise averaging.

We can conclude by saying that the bandlimiting impact is degrading when the CNR

and the choice of bandwidth are both low. For an overall good performance, a good

choice of the bandwidth for Galileo E1 OS signal, CBOC(6,1,1/11) is greater than 16

MHz. However, if the situation is grasped firmly such that the dynamic stress error

and the oscillator noise do not pose a major threat in terms of high tracking jitter, the

additional 1-5 degrees margin of weak signal tracking can be ignored. In this case only,

the bandlimiting effect does not introduce any loss in terms of tracking performance.
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Figure 3.93: E1 weak signal PLL tracking jitter as a function of FE bandwidth

using an integration time of 20 ms - with a C/N0 of 25 dB-Hz, a loop bandwidth of

10 Hz considering ATAN2 and COH discriminators.
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Figure 3.94: E1 weak signal PLL tracking jitter as a function of FE bandwidth

using an integration time of 80 ms - with a C/N0 of 25 dB-Hz, a loop bandwidth of

10 Hz considering ATAN2 and COH discriminators.
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3.6.2.2 Galileo E5a/b OS signal

Similarly to the Galileo E1 OS signal case, let us consider the thermal noise jitter alone

by ignoring the other components of the total tracking jitter σφ. Figures 3.95 and 3.96

show that considering the Galileo OS E5a signal and the choice of a 30 MHz bandwidth

instead of 25 or even 20 MHz brings a very small additional margin of 0.1 dB-Hz weaker

signal tracking for CNR lower than 25 dB-Hz.
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Figure 3.95: Galileo E5a Tracking jitter at PLL output using an ATAN2 dis-

criminator for a range of CNR values - a loop bandwidth of 10 Hz and an integration

time of 20 ms.

Moreover, for a certain situation characterized by a CNR of 25 dB-Hz, the tracking

jitter as shown in Figure 3.97 differs by as much as 1 degree when choosing a FE

bandwidth of 10 MHz instead of 20 MHz but lower than 0.2 degree when using 20 MHz

instead of 30 MHz. This difference is almost the same for an integration time of either

20 ms or 80 ms as shown in Figure 3.98, but the latter case shows an overall lower

tracking jitter due to better noise averaging.

We can conclude by saying that the bandlimiting impact is degrading when the CNR

and the choice of bandwidth are both low. For an overall good performance, a good

choice of the bandwidth for Galileo E5a/b OS signal is set greater than 20 MHz.
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Figure 3.96: Galileo E5a Tracking jitter at PLL output using a COH discrimi-

nator for a range of CNR values - a loop bandwidth of 10 Hz and an integration time

of 20 ms.
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Figure 3.97: E5a weak signal PLL tracking jitter as a function of FE bandwidth

using an integration time of 20 ms - with a C/N0 of 25 dB-Hz, a loop bandwidth of

10 Hz considering ATAN2 and COH discriminators.
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Figure 3.98: E5a weak signal PLL tracking jitter as a function of FE bandwidth

using an integration time of 80 ms - with a C/N0 of 25 dB-Hz, a loop bandwidth of

10 Hz considering ATAN2 and COH discriminators.

3.6.3 Impact on DLL tracking threshold

Switching our attention to the code or subcarrier tracking loop DLL/SLL, it is also

worth noting what is the impact of the correlation loss or in a general sense, bandlim-

iting effect on the code delay tracking ability of digital loops. The code delay tracking

jitter at the output of the DLL or SLL depends on the PD or discriminator used in the

DLL/SLL loops. Considering the bandlimiting effects, it is shown in [48] that the ther-

mal noise tracking jitter at the DLL/SLL output using a coherent EML discriminator

is:

σ2
τ,EML =

BN (1− 0.5BNTI)
∫ β/2
−β/2Gs(f) sin

2(πfds)df

C/N0

(∫ β/2
−β/2 fGs(f) sin(πfds)df

)2 (3.169)

where ds is the early minus late correlator spacing and BN is the code tracking loop

noise equivalent bandwidth. Similarly, the expression of the thermal noise tracking

jitter at the DLL/SLL output using a noncoherent EMLP discriminator is derived in

[49]. The result is an additional weighting factor which accounts for the squaring loss
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due to the noncoherent processing:

σ2
τ,EMLP = σ2

τ,EML

⎛
⎝1 +

∫ β/2
−β/2Gs(f) cos

2(πfds)df

C/N0TI

∫ β/2
−β/2Gs(f) cos(πfds)df

⎞
⎠ (3.170)

On the other hand, the noncoherent DP discriminator yields a different weighting factor

as shown by [9]:

σ2
τ,DP = σ2

τ,EML

⎛
⎝1 +

1

C/N0TI

∫ β/2
−β/2Gs(f)df

⎞
⎠ (3.171)

As in the PLL, the rule of thumb for DLL/SLL tracking threshold beyond which the

loop is assumed to go out of lock is defined in terms of the 3-sigma of all errors and

the linear region of the discriminator or PD. In theory, the linear region of the PD is

half the early late correlator spacing ±ds/2 and so considering the thermal noise jitter

contribution on its own, the tracking threshold condition is:

3στ ≤ ds
2

(3.172)

3.6.3.1 Galileo E1 OS signal

Due to the aforementioned equations, it is possible to plot the theoretical thermal noise

code delay tracking jitter alone by ignoring the other components of the total tracking

jitter στ . In the following, in both cases of Galileo E1 and E5a/b OS signals, an

integration time of 20 ms has been assumed unless otherwise noted, a correlator spacing

of 0.1 chip together with a code tracking loop noise equivalent bandwidth BN = 5 Hz.

Figure 3.99 depicts the behavior of the Galileo E1 OS signals thermal noise code delay

tracking jitter testing the DP discriminator as well as the coherent and noncoherent

EML and EMLP discriminators. On the other hand, Figures 3.100 and 3.101 show the

tracking performance with the same parameters but for different front-end bandwidths.

It is worth noting that considering a 16 MHz bandwidth instead of 4 MHz brings an

additional margin of 8 dB-Hz weaker signal tracking. On the other hand, the choice of

24 MHz bandwidth instead of a 16 MHz bandwidth yields no significant improvement

even for low CNR.

Looking at the thermal noise code delay tracking jitter as a function of the FE band-

width for a low CNR value equal to 25 dB-Hz as shown in Figure 3.102, it can be
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Figure 3.99: Comparison of Galileo E1 DLL tracking jitter performance as a

function of CNR with different PD - using a correlator spacing of 0.1 chip and a

front-end bandwidth of 24.552 MHz.
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Figure 3.100: Comparison of Galileo E1 DLL tracking jitter performance as

a function of CNR using coherent EML discriminator - for different front-end

bandwidths.
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Figure 3.101: Comparison of Galileo E1 DLL tracking jitter performance as a

function of CNR using noncoherent EMLP discriminator - for different front-end

bandwidths.

noticed that using an integration time of 20 ms and selecting a 16 MHz FE bandwidth

instead of 4 MHz brings the standard deviation of the code tracking error down by 0.07

chips or 20 meters. It is also important to note that the usual 4 MHz bandwidth is not

enough to respect the rule of thumb code tracking threshold. Increasing the integration

time to 80 ms as shown in Figure 3.103, results in a lower overall code tracking jitter

and selecting a 16 MHz FE bandwidth vs 4 MHz brings the code tracking error down

by 0.015 chips or 4 meters. Increasing the FE bandwidth beyond 16 MHz does not

bring any significant change.

In conclusion, it has been shown that for Galileo E1 OS signals, selecting a minimum

of 16 MHz bandwidth instead of a 4 MHz bandwidth, provides an additional 8 dB-Hz

weaker signal tracking. Moreover, selecting this wider bandwidth ensures that the rule

of thumb code tracking threshold condition is met for very low CNR signals with an

appropriately selected integration time. In fact, increasing the integration time lowers

the standard deviation of the code tracking error, but does not guarantee tracking

robustness if the FE bandwidth is not wide enough.
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Figure 3.102: E1 weak signal DLL tracking jitter as a function of FE band-

width using an integration time of 20 ms - with a C/N0 of 25 dB-Hz considering a

noncoherent EMLP discriminator.
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Figure 3.103: E1 weak signal DLL tracking jitter as a function of FE band-

width using an integration time of 80 ms - with a C/N0 of 25 dB-Hz considering a

noncoherent EMLP discriminator.
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3.6.3.2 Galileo E5a/b OS signal

Similarly to the Galileo E1 OS signal, the thermal noise code delay tracking jitter is

analyzed on its own ignoring the other components of the total tracking jitter στ . Figure

3.104 depicts the behavior of the Galileo E5a/b OS signals thermal noise code delay

tracking jitter testing the DP discriminator as well as the coherent and noncoherent

EML and EMLP discriminators. On the other hand, Figures 3.105 and 3.106 show the

tracking performance with the same parameters but for different front-end bandwidths.

It is worth noting that considering a 20 MHz bandwidth instead of 30 MHz brings an

additional margin of 1 dB-Hz weaker signal tracking. On the other hand, the choice of

25 MHz bandwidth instead of a 20 MHz bandwidth yields no significant improvement

even for low CNR.
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Figure 3.104: Comparison of Galileo E5a DLL tracking jitter performance as

a function of CNR with different PD - using a front-end bandwidth of 24.552 MHz.

Looking at the thermal noise code delay jitter as a function of the FE bandwidth for a

low CNR value equal to 25 dB-Hz as shown in Figure 3.107, it can be noticed that using

an integration time of 20 ms and selecting a FE bandwidth of 20 MHz instead of 25 or

even 30 MHz does not quite improve the standard deviation of the code tracking error.

Increasing the integration time to 80 ms as shown in Figure 3.108, results in a lower
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Figure 3.105: Comparison of Galileo E5a DLL tracking jitter performance as

a function of CNR using coherent EML discriminator - for different front-end

bandwidths.
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Figure 3.106: Comparison of Galileo E5a DLL tracking jitter performance as a

function of CNR using noncoherent EMLP discriminator - for different front-end

bandwidths.
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overall code tracking jitter but still no significant change between a FE bandwidth of

20 MHz instead of 25 MHz or even 30 MHz.
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Figure 3.107: E5a weak signal DLL tracking jitter as a function of FE band-

width using an integration time of 20 ms - with a C/N0 of 25 dB-Hz considering a

noncoherent EMLP discriminator.

In conclusion, it has been shown that for Galileo E5a/b OS signals, a minimum band-

width of 20 MHz does not suffer from bandlimiting effects. Moreover, selecting this

minimum bandwidth wider than 10.23 MHz ensures that the rule of thumb code track-

ing threshold condition is met for very low CNR signals with an appropriately selected

integration time. In fact, increasing the integration time lowers the standard devia-

tion of the code tracking error, but does not guarantee tracking robustness if the FE

bandwidth is not wide enough.
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Figure 3.108: E5a weak signal DLL tracking jitter as a function of FE band-

width using an integration time of 80 ms - with a C/N0 of 25 dB-Hz considering a

noncoherent EMLP discriminator.
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Chapter 4

Applications

As more and more awareness is gained in space weather and ionosphere disturbances

impact on our Earth’s technical infrastructure, more interest is shed on studying the un-

derlying physical phenomena related to the Sun’s activity and consequently ionosphere

scintillation. In that respect, there are many goals to be achieved on the ground, mainly

to curb the potentially damaging effects of technical equipment such as electric grids

or even avoid outages of GNSS which the economy and world order is increasingly

dependent upon. Moreover, with the advent of new GNSS systems going towards a

multi-constellation GNSS, such as Galileo and Beidou, the possibility of exploiting the

availability of a big number of satellites for the end of a global ionosphere scintillation

monitoring system is becoming more realistic and very much appealing.

Radio frequency signals undergo amplitude/phase/ frequency scintillation as they pass

through the ionosphere region as a result of solar winds erupted from the Sun charac-

terized by turbulent ionized gases called plasma. These ionized gases are dispersive,

meaning that they have a different impact on different frequencies. Radio signals at

the lower frequencies suffer more from the plasma irregularities. GNSS receivers are

offering an effective tool to monitor the state of these irregularities in the sky as by

recovering signals transmitted on different frequency bands from one or more of its

spacecrafts. This can be achieved by monitoring the power of the recovered signal

after performing carrier/code tracking and examining the resulting detrended carrier

phase fluctuations. The objective of this chapter is to evaluate the performance of the

tracking algorithms described in Chapter 3 using both simulation and real scintillation
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GNSS data.

Tracking GNSS signals is very useful in another application involving scatterometry

and reflectometry. In fact, the underlying passive potential of GNSS signals encom-

passes water surface identification and aircraft altimetry evaluation. This is possible

thanks to the high reflectivity of L-band frequency GNSS signals on water, ice and

snow covered surfaces. This high reflectivity on certain surfaces compensates for the

otherwise low signal intensity and allows the detection of reflected signal components.

GNSS reflectometry belongs to the class of bistatic radar systems where transmitter

and receiver reside at different locations and signals pass through a reflecting surface.

Code phase and carrier phase based time delay measurements between the direct path

and reflected signals, are used to determine an amateur aircraft’s height with respect to

the reflecting surface and cm level height estimates are obtained. On the other hand,

specular reflection points are computed, and a comparison of the reflected power to the

direct received power is shown to yield a good water surface identification performance.

4.1 Ionosphere scintillated signals tracking

In this section, the objective is to investigate the ionosphere scintillation impact on the

Galileo E1 and E5 OS signals through the comparison of CNR, amplitude and phase

scintillation indices. Galileo signal simulation as well as code acquisition and tracking

routines described in Chapter 2 and 3 are implemented and run in a customized Galileo

simulation tool and software receiver written in Matlab R©. The scintillation indices are

obtained by processing correlator and phase measurement outputs of this customized

Galileo software receiver on one side, and a Septentrio PolaRxS PRO R©receiver on the

other. The collection of GNSS data is carried out in an equatorial region in Ascension

Islands where ionosphere scintillation is known to be a common event.

4.1.1 Tracking methodology of customized Galileo software receiver

Throughout this work, pilot channels deprived of a navigation message were consid-

ered, and thus the PLL makes use of a coherent extended arctangent discriminator

to accept a wider carrier phase error. Due to the threat of ambiguous code tracking

when dealing with BOC modulated signals as in the case of Galileo E1 OS signal, the
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unambiguous VEMLE code phase detector is used in a two-step DLL. Galileo E5a/b

signals are treated like binary phase shift keying BPSK signals when separate frequency

bands are considered, and so typical BPSK DLL tracking is applied. To harness the

superior tracking capability offered by BOC signals, it has been proven in Section 3.6

that a wideband front-end greater than 16 MHz is needed to capture the entire tracking

capability of Galileo E1 signals. To that end, baseband complex signals are simulated

and recorded with an intermediate frequency of 0 Hz and a sampling frequency of 25

Msamples/s. It is expected that Galileo wideband signals exhibit superior tracking

permeability during scintillation events.

After performing acquisition and successfully solving for the secondary code delay as

described in Section 2.4.1, the receiver moves to the tracking stage where an integra-

tion time of 4 ms and 1 ms are used for Galileo E1 and E5a OS signals respectively

for the time being. The in-phase and quadra-phase correlator outputs are stored to

estimate the CNR using the power ratio method as described in Section 2.3.3. The am-

plitude scintillation index is computed over an averaging interval of 60 seconds whereas

the phase scintillation index over 30 seconds following the methodology presented in

Section 2.3.6.

4.1.2 Tracking outputs of Galileo simulated signals

A sample Galileo E1 signal is simulated setting the input parameters to some arbitrary

values, i.e. fD = 2 kHz, AD = -0.2 Hz/s, a code delay of 20560 chips (5 secondary

chips and 100 primary chips), a CNR of 45 dB-Hz over a time duration Tg = 2 seconds.

Applying the tracking scheme described in the previous section yields the results shown

in Figure 4.1, where the true and estimated carrier frequency are shown during each

integration interval. The total phase error is also plotted with the steady state 95

percentile yielding +/- 1.25 degrees. In addition, the DDLL tracking outputs are shown

where the estimated code frequency error 95 percentile lies between +/- 1 degree. The

code phase steady state error 95 percentile lies between +/- 0.1 samples. It is worth

noting that the higher jitter in code phase/frequency estimation error at the beginning

is due to the early coarse tracking algorithm and the transition to fine tracking results

in a much lower tracking jitter. A similar tracking test with E5a/b signals is performed

where carrier/code frequency and phase errors are shown in Figure 4.2.
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Figure 4.1: Tracking performance of simulated Galileo E1 OS signal - a) As-

sessment of carrier frequency b) Carrier phase error at end of each integration interval c)

Assessment of code frequency d) Code phase error at end of each integration interval
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Figure 4.2: Tracking performance of simulated Galileo E5a OS signal - a) As-

sessment of carrier frequency b) Carrier phase error at end of each integration interval c)

Assessment of code frequency d) Code phase error at end of each integration interval
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4.1.3 Tracking of simulated ionosphere scintillation on Galileo E1 and

E5a OS signals

In order to assess tracking performance over ionosphere scintillation signals, similar

Galileo E1 and E5a OS signals are generated where the scintillation amplitude and

phase time history is incorporated in the original signal as described in Section 2.3.5.

The S4 index is set to 0.8 and the channel decorrelation time τ0 0.8 seconds. Moreover,

the scintillation indices are derived using the tracking outputs, mainly the correlation

values and the ADR as described in Section 2.3.6.

Figure 4.3 shows that a good estimate of the S4 index (0.55-0.7 compared to 0.8)

is reached at every minute for both frequency bands. An accurate estimate of 0.8 is

not possible because of the statistical nature of the input signal due to both noise and

scintillation history. The impact of the tracking loop itself is also not to be discarded

[50]. The S4 estimate discrepancy between the E1 and E5a frequency bands ranges

between 0.02 and 0.1. On the other hand, a τ0 value of 0.8 results in a σΔφ estimate in

the range of 0.4 to 1 radians. The theoretical σΔφ range between 0.4 and 0.7 radians

is computed using the standard deviation of the scintillation phase time history for

every 30 seconds and a good estimate is evaluated on both frequency bands (almost

the same) with an error in the range of 0-0.5 rad. The first two minutes σΔφ outputs

are discarded due to the ADR detrending filter transient.

4.1.4 Tracking of real ionosphere scintillation affected Galileo E1 and

E5a OS signals

Experimental GNSS data has been collected on the 7th to 10th of March 2013 at As-

cension Island which is located in the Equatorial region at a longitude of 14.4 ◦ W and

latitude of 7.9 ◦ S. The data collection has been performed using flexible and reconfig-

urable Universal Software Radio Peripheral (USRP) devices, the USRP N210 acting as

an RF front-end. A common antenna, the Novatel GPS-703-GGG wideband antenna is

shared among five different USRPs acting on different frequency bands to collect GPS,

Galileo E1 and E5, GLONASS, and Beidou data. In fact, an 8 way splitter delivers

the same data to five USRP N210 and a Septentrio PolaRxS which houses an oven

controlled crystal oscillator (OCXO) characterized by low noise on the phase measure-

ments. The OCXO timing signal is distributed to the various USRPs through an 8
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Figure 4.3: Estimated scintillation indices of a simulated scintillation signal -

with an S4 intensity of 0.8 and a τ0 value of 0.8 on top of Galileo E1 and E5a OS simulated

signals
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way passive splitter. The USRP N210 sampling frequency is set to 25 Msamples/s and

delivers a complex signal such that the effective sampling frequency is 50 Msamples/s.

The Septentrio tracking outputs (I/Q correlator values and ADR) are saved and used

to generate the S4 and σΔφ indices as well as the CNR values for a later comparison

with those obtained using the tracking outputs of a customized receiver as designed

and described in the previous chapters.

It is shown in Figure 4.4 that considering the same SV with PRN 19 and process-

ing two Galileo frequency bands E1 and E5a, the comparison between these outputs is

fairly satisfying. It can be seen from Figures 4.4 a) and b) that the amplitude scintilla-

tion is stronger on the lower frequency E5a band rather than E1; similarly Figures 4.4

c) and d) show that the phase scintillation is stronger on the E5a band, and Figures

4.4 e) and f) underline the possibility of losing lock after going to very low CNR values.

Similar plots can be obtained for SV with PRN 20, where the scintillation is found

to be of significantly lower intensity. In fact, this can be seen in Figure 4.5 where a

proportional relationship is found between the scintillation indices S4 and σΔφ on two

frequency bands, the E1 and E5a bands and for different visible satellites.

It is worth mentioning that during the data collection on March 10 2013, SV 19 was

following a path going from west to east with an elevation in the range of 30-40 degrees.

This can be seen in Figure 4.6 and 4.7 where a skyplot of the Galileo SVs is color

coded according to the ionosphere scintillation indices S4 and σΔφ as detected on the

E1 frequency band. Similarly SV 20 was following a path going from west to east,

passing almost through the same point in space as SV 19 with a delay of 2.5 hours, but

from then on with a steadily decreasing elevation angle from 50 to 15 degrees. These

are the key situations where the scintillation phenomenon can be studied with a time

resolution determined by the GNSS satellites path. Unfortunately, the Galileo SV with

PRN 11 became visible during only a short period of time, with an elevation angle

less than 15 degrees, and so had to be neglected. Finally Galileo SV with PRN 12

had an interesting path starting from an invisible state to an increasing elevation from

the horizon to a maximum of 40 degrees always in the west part of the sky and even

passing almost through the same point in space as SV 19 with a delay of 2 hours. It can

be thus concluded that in the same region of space the scintillation intensity becomes

considerably higher further later in time, after comparing the performance of PRN 19
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Figure 4.4: Estimated scintillation indices and CNR of real Galileo E1 and E5a

frequency bands for PRN 19 - a) Amplitude scintillation index on E1 b) Amplitude

scintillation index on E5a c) Phase scintillation index on E1 d) Phase scintillation index

on E5a e) CNR estimate on E1 f) CNR estimate on E5a.
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Figure 4.5: Comparison of estimated scintillation indices on two Galileo fre-

quency bands and three Galileo satellites - on March 7 2013 in Ascension Island

using a customized Galileo receiver.
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vs PRN 12 as can be seen in Figures 4.5 as well as the skyplots shown in Figures 4.6

and 4.7. The black color in these plots indicates instances where tracking has been

interrupted to avoid wrong estimation of scintillatin indices.
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Figure 4.6: Ascension Island skyplot of Galileo satellites showing amplitude

scintillation index - during the night of March 10 2013.

4.1.5 Conclusion

Space weather effects, mainly amplitude and phase scintillation impact has been shown

on recently collected UHF Galileo OS signals tracking as these signals passed through

the ionosphere and reached Ascension Island, an equatorial region. It has been seen that

the recently launched four Galileo satellites add further observability to the existent

block of GNSS satellites in view of a better time resolution in ionosphere scintillation

monitoring. Exploiting the full wide-bandwidth offered by the E1 and E5a Galileo

signals, carrier/code tracking has been tested on simulated signals with and without

amplitude/phase scintillation and performed on real Galileo signals as well. Scintillation

indices on three Galileo visible satellites during data collection have been computed and

compared to the indices generated by the tracking outputs of a professional Septentrio
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Figure 4.7: Ascension Island skyplot of Galileo satellites showing phase scin-

tillation index - during the night of March 10 2013.

PolaRxS PRO scintillation receiver. Finally, the empirical relationships of the scintil-

lation indices between different frequency bands have been verified with real Galileo

signals on the E1 and E5a bands.

4.2 Carrier phase measurements in dynamic conditions

GNSS (GPS, Galileo, GLONASS) reflectometry belongs to the class of bistatic radar

systems which can be used as a tool for Earth remote sensing purposes. In a bistatic

configuration, transmitter and receiver reside at different locations. The receiver pas-

sively uses emitted signals of sources of opportunity. Beside the direct line-of-sight

signals, a GNSS reflectometry receiver can potentially use all GNSS signals that are

reflected from the Earth’s surface. As the GNSS signals are transmitted continuously,

the receiver is allowed to perform continuous measurements of the reflecting surface.

Part of the transmitted GNSS signal is absorbed by the reflecting surface while the

rest is usually scattered in different directions including the receiver’s direction where

signals are captured with a certain power, and phase shift. In fact, the reflected signal
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arrives at the receiver with a certain time delay compared to the direct signal.

This time delay herein, is estimated to carry out two purposes: a surface characteriza-

tion below a flying aircraft and an altimetry study of the aircraft itself. The aircraft

is equipped with two GNSS receivers, a Right Hand Circularly Polarized (RHCP) an-

tenna for direct signal reception and a Left Hand Circularly Polarized (LHCP) antenna

for reflected signal reception. In fact, as the roughness of a reflecting sea surface scat-

ters the energy pattern of the reflected signal, significant surface characterization can

be derived from the temporal waveform development of the received reflected signal.

Observations of this kind belong to the field of GNSS scatterometry [51, 52, 53].

Moreover, the time delay between direct and reflected received signals determines the

height of the receiver with respect to the specular reflection point (the point visited by

the shortest reflected path). This is possible thanks to simple geometric considerations

which yield the receiver height as a function of time delay due to different signal paths

and the satellite elevation angle with respect to the receiver horizontal plane. Obser-

vations of this kind belong to the field of GNSS altimetry [54, 55].

The precision of altitude estimation can further be driven down to cm level if GNSS

carrier phase measurements are implemented [56]. To that end, mixed least square

estimation is performed using both code and carrier phase measurements on a single

frequency to compute float type ambiguities inherent in carrier phase measurements.

Integer ambiguities are then estimated using the lambda method [57] and finally the

integer ambiguities are used to compute the fixed height at each instant using exclu-

sively carrier phase measurements. Software receivers are essential tools in this type

of application, because they are able to process GNSS signals in real time. Moreover,

they are able to store in memory the raw samples at the output of the RF front-end

for post mission analysis.

In this work, a bistatic GPS receiver is used to mainly identify inland waters such

as lakes, rivers and rice fields immersed in water, but also to precisely estimate the

altitude of an aircraft flying over these water surfaces. The innovative aspects of this

work reside in the ability of carrying out altimetry measurements in dynamic conditions
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as well as in the usage of a low cost front end to perform the experiment. In fact most

of the altimetry studies reported in the literature have been done in static conditions

and with a very expensive equipment [58, 59].

4.2.1 Experiment description and considerations

The set-up design, shown in Figure 4.8, has a primary task which consists in combining

the RF signal received from a zenith looking RHCP antenna to that received from a

nadir looking LHCP antenna. The combined RF signal is then sent to a low cost, com-

mercial front end, that converts the signal in digital format and downsamples it to an

operating IF. The combiner’s task is to merge into a common stream of samples, both

direct and reflected signals. Traditional set-up approaches (as the one reported in [60]),

on the other hand, use a common clock to sample both the direct and the reflected

signals that are split on separate channels. With this approach, the two signals can be

easily processed separately (without losing synchronization) but it requires a common

clock for the two RF channels and a custom design of the RF part which is expensive.

Instead, adopting the simple approach shown in Fig. 4.8, the design of the RF part

is trivial pushing the challenge to the software receiver side by implementing ad-hoc

algorithms for the detection and analysis of the reflected signals, as they are mixed

with the direct ones.

The low cost front end is carried on board of a small aircraft and a laptop running

a fully GPS software receiver has been used to perform a data collection during the

flight. The flight route was planned to pass over lakes, rivers and rice fields in the

Piedmont region in Italy. An offline post processing analysis has been carried out on

the data stored during the flight. Two different analyses have been conducted. The

first is focused on the detection of water surfaces, while the latter consists in measuring

the aircraft’s altitude.

Given the limited position accuracy offered by code phase measurements, carrier phase

measurements are harnessed in this paper to reach a better position and height accuracy.

In fact, code and carrier phase measurements are typically affected by a noise variance

of the order of m and cm respectively. To that end, the Precise Point Positioning (PPP)

technique is implemented operating on a single receiver’s carrier phase measurements

to obtain centimeter level accuracy height. The challenge for PPP consists in cancelling
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Figure 4.8: Data collection setup

out propagation and timing errors without performing double differences as can be done

in relative positioning where normally an additional receiver acts as the reference point.

The basic model of the true range r in meters between satellite and local receiver using

code and carrier phase measurements ρ and φ, is expressed by Equations (4.1) and (4.2),

where errors due to the ionosphere I, troposphere T , receiver clock bias δtu, satellite

clock bias δts and multipath and receiver noise on code and phase measurements ερ

and εφ are considered [61]:

ρ = r + I + T + c(δtu − δts) + ερ, (4.1)

φ = λ−1[r − I + T ] +
c

λ
(δtu − δts) +N + εφ. (4.2)

and λ is the signal wavelength whereas c is the speed of light. It can be assumed that

ionospheric, tropospheric, receiver and satellite clock biases are almost fully cancelled

in such a reflectometry experiment where direct and reflected signals go through the

same initial path as they are transmitted from the satellites. Carrying out simple

geometrical analysis, at each instant of time, it is easy to express Δρ and Δφ single

difference measurements between direct and reflected signals in terms of the time delay

Δτ between direct and reflected signals as well as the receiver height over the reflecting

surface as shown in [62].

Δρ = cΔτ = 2h · sin(ψ) + ερ (4.3)

where ψ is the satellite elevation angle with respect to the horizontal plane at the re-

ceiver. The carrier phase measurement, on the other hand, measures the delay between
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the direct and reflected signals up to an integer number of cycles N .

Δφ = 2h · sin(ψ) +N ·λ+ εφ (4.4)

It is worth mentioning that the time delay is easily computed exploiting the prop-

erties of GNSS signals, that is by computing the time delay between the correlation

peaks of direct and reflected signals. In addition, estimating the height using Equations

(4.3) and (4.4) in a least squares sense raises several simplifying assumptions. It is thus

assumed that satellite elevation angle is already estimated with a good quality, that the

receiver noise and multipath propagation error due to many reflection points are not

significant. And finally, that the error introduced by the bias effects in the measured

time delay is not that significant. These biases are due to possibly multiple reflection

points, not just the specular reflection point, especially when the relative height above

the reflection point is very high. After solving the system in the least squares sense, the

height and float carrier ambiguities are estimated. To obtain integer ambiguities, the

lambda method is applied and the carrier ambiguities are then fixed. Using these fixed

values, the system composed of Equations (4.3) and (4.4) is again solved in the least

square sense. However, only carrier phase measurements are incorporated in the system

to estimate the height of the receiver over the reflecting surface at each time instant.

Code phase measurements are excluded in this final step and the height estimation

relies solely on carrier phase measurements.

4.2.2 Surface characterization results

As previously mentioned, the front end makes a collection of combined direct and

reflected signals. It is intuitive therefore that the first task of the acquisition block is

to detect the two peaks corresponding to each one of them. For scattering purposes,

the next step is to track the peak corresponding to the reflected signal only, and then

evaluate the carrier to noise ratio. It is concluded that the aircraft is flying over inland

waters whenever the carrier to noise ratio of the reflected signal is significantly higher

than the usual value when the reflecting surface is ground.

To assess the reliability of this technique, specular reflection points for each satellite in

view are computed in post-processing using the method described in [63]. The specular

reflection points of two satellites in view are then plotted on a map as shown in Fig. 4.9.

Fig. 4.10 shows the reflected signal power as a function of time for these two satellites.
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Figure 4.9: Flight route specular reflection points for two satellites.

In this way, water surfaces are identified by looking at the power level. Moreover, the

power magnitude of the reflected signal was superimposed on the reflection points along

the flight route as shown in Fig. 4.9. Significant high reflected power is mapped to

orange/red colors while poor reflections were mapped to yellow. It can be clearly seen

from Fig. 4.9 that red colors indicating the presence of water surfaces conform to the

reality shown on the map. It is worth noting that we were able to identify very narrow

water surfaces like rivers and canals. Moreover, in case of rice crop detection, we were

able to detect the size of the rice field with a precision of less than one meter.

4.2.3 Altimetry estimation results

The second analysis regarding altimetry used both the direct and reflected signals

combined together with the measurement of the delay between the two signals; it is
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Figure 4.10: Water surface identification looking at the estimated CNR during acquisition

of two GPS satellites, PRN 5 and 10.

expected that a better computation of the delay between direct and reflected signals,

yields a more precise estimation of the aircraft’s height above the reflecting surface. For

this purpose, single frequency single difference carrier phase measurements were used

and we were able to have cm level precision in the estimation of the altitude as plotted

in Fig. 4.11. Such measurements were performed only when the reflected signal power

was high enough and the aircraft was moving at a constant speed. This was to ensure

correct tracking, avoiding the presence of cycle slips. Together with the carrier phase

measurements height estimation, Fig. 4.11 also shows height estimates using single

difference code phase measurements and a smoothed version or a moving average of

height estimates using the direct signal code phase measurements. Comparing the latter

to the estimated height using carrier phase measurements, the mean height estimation

discrepancy is less than 2 meters. Moreover, the height standard deviation due to
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Figure 4.11: Comparison of aircraft altitude estimation over 9 seconds either using single

differenced code phase, carrier phase or moving average undifferenced code phase measure-

ments.

carrier phase measurements is less than 50 cm. This can be roughly considered a good

result, however good altimetry reference measurements should be collected to assess

the true nature of the errors incorporated in these height estimates using carrier phase

measurements.

4.2.4 Conclusion

The preliminary results of this reflectometry and scatterometry study show fairly good

performance in terms of water surface detection and aircraft height estimation exploit-

ing direct and reflected signals off a water surface. These results are highly encouraging

given that only single frequency measurements are used without any reference receiver.

Further tests and analysis have to be carried out to accurately assess the system per-

formance as well as improve height estimates using carrier phase measurements.
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Chapter 5

Summary and conclusions

This research has focused on the design of pilot channel scalar tracking loop systems

for high sensitivity Galileo receivers. First, an introduction of GNSS systems and the

frequency plan of the multi-constellation GNSS signals is put forward. The motivation

behind this work is unveiled in the need to provide LBS in indoor environments, as well

as to detect ionosphere scintillation and eventually be immune towards this phenomena.

A description of Galileo OS signals is then provided together with an implementation

of a software simulation tool generating Galileo OS signals affected by ionosphere scin-

tillation. Extra features of this tool permit the control of the output signal properties.

The design, performance assessment and implementation of the tracking loops is car-

ried out and tested on simulated and real Galileo signals.

Scalar tracking loops (control loops) are discrete sampling systems which require a

full design in the digital domain. This is crucial in challenging signal conditions where

an inevitable increase of the integration interval results in either pushing the classically

designed closed loop poles towards instability or yielding an undesired type of loop

response. The enhanced tracking performance brought about by optimum loop filters

designed in the digital domain have been verified both theoretically and experimentally

where integration intervals as high as 100 ms have yielded stable tracking performance.

The designed pilot channel scalar tracking loop is tested on simulated Galileo signals

with or without scintillation using short integration intervals as well and the tracking

performance is assessed. A carrier tracking frequency error of around ±1 Hz and ±3

211



5. SUMMARY AND CONCLUSIONS

is reached with Galileo E1 and E5a OS signals respectively, while a carrier tracking

phase error of ±1 degree is accomplished on both frequency bands. The code track-

ing frequency error, on the other hand, ranges between ±1 Hz and ±10 Hz for these

frequency bands due to a ten times larger chipping rate on E5a signals with respect

to E1 signals. Similarly, the code tracking phase error ranges between ±0.2 samples

and ±0.02 samples for E1 and E5a signals respectively. The reason behind the 10 fold

decrease is the same as that presented for the code frequency except that the effect is

inversely proportional.

Including ionosphere scintillation on the simulated signals and applying the developed

pilot channel tracking loop design yields close agreement of estimated scintillation in-

dices with the true values. A tracking performance comparison between the developed

tracking loop engine and a professional receiver is carried out as well, where similar

results are achieved. Complete loss of tracking have not been fully analyzed in our

customized receiver where successful tracking is proceeded even if going through inter-

mittent cycle slips.

Future work will concentrate on testing the designed pilot channel scalar tracking loop

with scintillation affected signals using extended integration intervals. In an effort to

maintain phase lock during severe scintillation events, the afore-mentioned work will

be performed both on simulated and real Galileo signals affected by equatorial scin-

tillation. Moreover, it will be interesting to assess the performance enhancement in

terms of positioning accuracy during scintillation events, due to the special measures

and designs brought forth on the pilot channel tracking loop system.
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Appendix A

Technique for MAT analysis

using serial search and

performance assessment of P2P

acquisition engines

In this appendix, particular interest is expressed in the potential search space aidings

received by a network of peers. To that end, the focus is on the serial TC criterion

in light of the P2P context and an analysis of the MAT is performed under weak

and strong signal conditions. A similar study is carried out in [13] where additional

search strategies are considered as the MAX/TC criterion and the MAX search, with

or without verification. The P2P paradigm consists in the exploitation of inherent

communication links between nodes or peers equipped with GNSS receivers, to share

and disseminate valuable GNSS information in the context of a cooperative localization.

A new technical tool in the form of acquisition time and MAT diagrams is introduced

which mainly serves in deriving and analyzing the MAT effectively and intuitively. In

addition, an analysis is carried out with the aim of identifying the terms that contribute

to the MAT, realizing that the starting cell from which the search process initiates can

have an impact on the performance of the MAT. In fact, two factors are considered

in the P2P acquisition engine, mainly the reduction of the search space as well as

the search order. In general, the search order is assumed to be following either a

uniform Probability Density Function (PDF) of starting from any cell, or a worst-
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case PDF where the correct cell is scanned in the last position. A Gaussian probability

distribution order is analyzed herein, taking into account the potential aiding in terms of

Doppler frequency and code delay that synchronized P2P networks are able to provide.

A new zig-zag search order based on P2P aidings is analyzed and an expression of the

MAT contributing term due to the starting cell and zig-zag search strategy is derived.

Furthermore, an example case is studied to compare uniform and Gaussian search

orders with a reduced search space in the P2P context.

A.1 Acquisition and probabilities

A.1.1 Acquisition systems

An acquisition engine is mainly a cross-correlation engine coupled with a decision sys-

tem. In the cross-correlation engine, the received SIS is multiplied by a locally generated

signal using an estimated code delay τ̂ and Doppler frequency f̂D. The Cross-Ambiguity

Function (CAF) is a two-dimensional function in terms of a combination (τ̂ , f̂D) and

is equal to the cross-correlation evaluation for every possible cell. The total number of

cells makes up the search space. This search space is reduced in certain conditions, as

in a warm or hot start but even in Assisted-GNSS (A-GNSS) and P2P systems. P2P

networks inherently are equipped with communication and synchronization capabili-

ties that consent in highly accurate aiding in terms of both code delay and Doppler

frequency so as to considerably reduce the search space. The serial acquisition engine

will obtain most of the attention here, as the aiding provided by a P2P network is

usually accurate enough to scan a few cells depending on a number of parameters. In

a serial search, it is assumed that the CAF is evaluated or scanned in a starting cell

and compared to an acquisition threshold (detection process). If the signal is declared

present in the cell, the search process is stopped. If the signal is declared absent in

that cell, the search continues by moving to the next cell, evaluating the CAF on that

cell and applying the detection process cell after cell. The MAT is computed assuming

that the search continues indefinitely until the signal is declared present in a particular

cell. In such a setting, the concept of probability of detection and false alarm is fun-

damental in evaluating any acquisition time. Cell probabilities of detection and false

alarm are the major players in the expression of the MAT of a serial search strategy,
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however, system probabilities have a more significant behaviour in terms of the overall

acquisition system.

A.1.2 Cell and system probabilities

In an acquisition system, it is important to distinguish between cell and system prob-

abilities before conducting any study dealing with the MAT. Indeed, according to the

search and detection strategy, system probabilities, cell probabilities or even both are

used in the expression of the MAT. In the following, the probabilities relative to the

whole detection system would be denoted by a subscript in uppercase letters i.e. the

system probability of false alarm PFA, detection PD, missed detection PMD and correct

rejection PCR, whereas those relative to a single cell would be identified by a subscript

in lower case letters.

A.1.2.1 Cell probabilities

In assessing the MAT, as far as probabilities are concerned, the cell probabilities are

exclusively significant in a context of a serial search. In this case, two hypotheses can

be defined over each cell:

• Hypothesis H0: the chosen cell is a wrong cell named H0 cell or node, i.e. it does

not correspond to the right code delay and Doppler frequency alignment of the

received SIS and so

Pfa + Pcr = 1, |H0. (A.1)

• Hypothesis H1: the chosen cell named H1 cell or node does correspond to the

right code delay and Doppler frequency alignment of the received SIS and so

Pd + Pmd = 1, |H1. (A.2)

In case of a coherent integration, and a CAF envelope evaluated as R = I2 + Q2

(non-normalized summation of the in-phase and quadrature phase signal at the output

of the correlators), the cell probabilities assume the following expressions [64]:

Pfa(B) = exp

(
− B

2σ2

)
, (A.3)
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where B is the acquisition threshold over the search space, and σ2 is the bandlimited

noise variance given by:

σ2 =
N0BIF

2
Hc, (A.4)

where BIF is the IF bandwidth, N0/2 is the noise spectral density and Hc is the

number of samples in an integration interval Ti, i.e. Hc = fsTi where fs is the sampling

frequency. The probability of detection, on the other hand, is expressed as [64]:

Pd(B) = Q1

(
α

σ
;

√
B

σ

)
, (A.5)

where Q1( · , · ) is Marcum’s Q-function and α is a parameter related to C the signal’s

amplitude and is given by:

α =

√
2C

2
Hc. (A.6)

A.1.2.2 System probabilities

On the other hand, system probabilities are used while assessing the MAT in a context

of maximum or hybrid maximum search. In this case, two hypotheses are defined,

mainly:

• Hypothesis H2: the PRN code that is being tested is actually present in the

received signal, and so the probability rule is:

Pp
FA + PMD + PD = 1, |H2, (A.7)

where P p
FA is the system probability of false alarm in presence of the PRN code

in question. This probability is also called system probability of error PE and

represents the case where a positive affirmation of the presence of the signal is

declared in a wrong cell.

• Hypothesis H3: the PRN code that is being tested is absent in the received signal,

and the system probability rule becomes:

Pa
FA + PCR = 1, |H3, (A.8)

where P a
FA is the system probability of false alarm in absence of the PRN code

in question.
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Figure A.1: Cell and system probabilities vs acquisition threshold B for a C/N0 equal

to 40 dB-Hz

In conclusion, system probabilities are more appropriate to describe the detection

situation in a wider sense and as such the system PD is used in the following analysis

in conjunction with the MAT. In fact, even if the MAT of a serial search depends on

cell probabilities Pfa and Pd, it is the system PD that summarizes the behaviour of

both cell probabilities as can be seen in Figure A.1.

A.2 Analysis of the MAT

In this section, the MAT is introduced considering the serial search TC scheme. A

generic review is undertaken describing the principal method for MAT computation

found in literature which is mainly based on the Probability Generating Function

(PGF). A new intuitive method is devised based on time and probability-weighted ac-

quisition time diagrams also called MAT diagrams in order to derive MAT expressions

for different search orders (uniform probability, worst-case and Gaussian probability

search order). Moreover, new acquisition engines, specially tailored for a P2P architec-

ture are designed taking into considering the P2P aiding which simultaneously reduces

the search space and assigns a scanning order over the cells in consideration.
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A.2.1 Standard acquisition engines

Standard acquisition engines using standard acquisition algorithms are considered herein.

Standard, in the sense that the whole possible search space is considered with no par-

ticular hint on the scanning order of the cells or even the starting cell. Moreover, a

coherent integration is used to compute the search space, and the acquisition threshold

is derived as a function of the desired cell Pfa in order to test if the scanned cell holds

the signal.

A.2.1.1 Probability generating functions

The standard serial single-dwell time search strategy consists in starting from a specific

cell in the search space and serially examining the remaining cells in some arbitrary

direction and order until theH1 cell is found, the cell which contains the right PRN code

with the correct Doppler frequency and code delay. In the literature, the procedure to

determine the MAT for a specific scenario is to draw the decision flow graph as shown

in Figure A.2, define the gain functions that consent the transition from one node to

another, and finally derive the system PGF PACQ(z) [28]. The MAT is then given by

the flow graph technique described in [28] as:

E[TA] =

∣∣∣∣ ddzPACQ(z)

∣∣∣∣
z=1

. (A.9)

The black dots in Figure A.2 called “nodes” hereafter represent the cells of the search

space where there are Nc cells in total. Node (Nc) or node H1 is designed differently

from other nodes, noting that it holds the H1 state corresponding to the H1 hypothesis.

It can be shown that the PGF corresponding to the flow graph in Figure A.2 is equal

to:

PACQ(z) =
HD(z)

1−HM (z)HNc−1
0 (z)

Nc∑
i=1

πiH
Nc−i
0 (z), (A.10)

where the gain functions are defined as HD(z) = Pd · zTc leading from node H1 to node

Acquisition (ACQ), HM (z) = (1− Pd) · zTc leading from node H1 to an H0 node, and

H0(z) = (1−Pfa) · zTc +Pfa · zTc+Tp leading from every H0 node to the successive node

where Tc and Tp are the single cell scanning time and the penalty time respectively.

Moreover, πi is the probability to start the search from cell i. Two alternatives are
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Figure A.2: Acquisition flow graph or state diagram of a standard serial approach.

considered in general, uniform probability where the probability to start from a specific

cell is the same for all cells, i.e. πi = 1/Nc ∀i and worst-case probability, i.e. scanning

the H1 cell in the last position, i.e. πNc = 1 and πi = 0 ∀i [29].

A.2.1.2 Mean acquisition time diagrams

In this section, a new technique to derive the expression of the MAT is described.

This technique is based on acquisition time and mean acquisition time diagrams also

called probability-weighted acquisition time diagrams. The acquisition time diagram

as shown in Figure A.3 describes the time it takes to move from the starting cell N0

to the acquisition state taking into consideration every possible path. Every cell is

represented by a square box with its number inside. The cells are assumed to be

scanned in a clockwise direction with an increasing cell number order, until the Nc cell

or H1 cell is reached. A generic H0 cell with a number i is shown to spend a time

duration T0 to move to the next H0 cell with a number i + 1. A more detailed block

diagram of the phenomenon is shown in Figure A.4 where both a false acquisition and

a correct acquisition (signal is declared absent in an H0 cell) spend Tc seconds. This
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Figure A.3: Acquisition time diagram showing the time necessary to move from one cell

to another across all possible paths.
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Figure A.4: Block scheme of a serial detector over two successive H0 cells showing the

false alarm and penalty time contribution to T0.
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is the time needed to test a single cell and is a function of the integration time Ti.

Moreover, after a false acquisition, the system goes through a penalty time Tp in the

tracking stage which is usually taken to be the tracking transient time (around 500

ms) of a successful tracking operation. In fact, the tracking block, after waiting for Tp

seconds, realizes that it is not able to track the signal and moves to the next cell i+1.

The transition time of going from an H0 cell to a subsequent cell is T0 seconds:

T0 = Tc + PfaTp. (A.11)

Starting from a specific H0 cell N0, the time spent to arrive to the H1 cell, is represented

in Figure A.5 by the outer incomplete circle as (Nc−N0)T0. Moreover, once the H1 cell

is reached, it is possible to scan the whole search space again (a complete lap) with a

probability 1−Pd. This is represented more generically by the interior concentric circle,

showing the possibility of undergoing K complete laps, i.e. K(Nc − 1)T0 + (K + 1)Tc

seconds before going to the acquisition state.

A.2.1.3 Deriving the MAT

The MAT becomes very intuitive looking into the MAT diagram Figure A.5, as it

is only the summation of all possible paths weighted by their respective probabilities.

Assuming that the start cell number N0 can be anything between 1 · · ·Nc with a certain

probability πi, a summation term S is introduced which sums over all the probabilities

of starting from a specific cell:

S =

Nc∑
i=1

πi(Nc − i)T0. (A.12)

The MAT for a standard serial detector can thus be written in its general form as:

T̄A = S +
∞∑
k=0

[k(Nc − 1)T0 + (k + 1)Tc] (1− Pd)
kPd

= S +
1− Pd

Pd
(Nc − 1)T0 +

Tc

Pd
, (A.13)

which is obtained after noticing the presence of a simple and modified power series
∞∑
i=0

xi =
1

1− x
and

∞∑
i=0

ixi =
x

(1− x)2
with |x| < 1.
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Figure A.5: Mean acquisition time diagram or probability-weighted acquisition time

diagram weighting the possible paths by the corresponding probabilities, mainly Pd and

Pmd = 1− Pd.
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Table A.1: MAT for serial search approach

Strategy MAT

Serial
1

Pd
[Tc + (Nc − 1)(Tc + TpPfa)]

Worst-case

Serial
1

Pd

{
Tc +

(
Nc − 1

2

)
(2− Pd) (Tc + TpPfa)

}
Uniform

Equation (A.13) holds the summation term S and a constant term (constant with

respect to the starting cell strategy) which is due to full laps undergone by the search

process plus going to the acquisition state “ACQ”. The summation term S, on the

other hand, depends on the starting cell and is fundamental for studying specific start-

ing cell probabilities as will be shown in the following. Obviously, the worst-case start

cell number is 1, and the corresponding MAT can be written in the form of (A.13) with

S:

S = (Nc − 1)T0. (A.14)

It is fairly easy to derive the expression of the MAT in Table B.1 corresponding to the

worst-case search order by substituting (A.14) into (A.13). For a uniform probability

search order, the MAT can be rewritten in the same form as in (A.13), replacing πi by

1/Nc in the S factor and using the sum identity

Nc∑
i=1

i =
Nc(Nc + 1)

2
such that:

S =
1

Nc

Nc∑
i=1

(Nc − i)T0 =
Nc − 1

2
T0. (A.15)

This is fairly reasonable as the summation term is a function of the mean of the total

number of cells Nc. The expression of the MAT in Table B.1 corresponding to the

uniform probability search order can be obtained after substituting (A.15) in (A.13).
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A.2.2 P2P acquisition engines

The study of the MAT in P2P acquisition engines involves new acquisition approaches

which exploit the aiding coming from nearby peers. The accuracy of the aiding depends

on the topology and synchronization quality of the P2P network [65]. The benefit

conveyed by P2P acquisition engines, stems from two factors. One is the reduced search

space due to the aiding information in terms of code delay and Doppler frequency and

the second is the specific order with which cells are analyzed i.e. cells most likely

to hold the signal, “candidate cells”, are scanned following a specific order according

to the information made available by aiding peers. In this study, the first factor is

analyzed by testing L ≤ Nc candidate cells until successful acquisition. Similar to the

standalone GNSS acquisition engines, the worst-case and uniform probability search

strategies indicating the cell from which to start the search are considered. Moreover,

the second factor is analyzed by considering a new search order based on a Gaussian

probability of finding the signal in a specific cell.

A.2.2.1 L candidate cells with uniform and worst-case search order

The serial L candidate cells search strategy exploits the reduced search space due to

P2P aiding. Indeed, it is very much like the standard serial search strategy with the

exception that the L candidate cells for the P2P aquisition engine are much less than

the Nc total cells in the standard acquisition engine. In this case, the MAT as defined

in (A.13) becomes:

T̄A
P2P

= S +
1− Pd

Pd
(L− 1)T0 +

Tc

Pd
, (A.16)

where

S =
L∑
i=1

πi(L− i)T0. (A.17)

Numerical figures of a possible number of candidate cells in function of the Doppler

step and the code delay step are documented in [65]. It can be seen that for a time

and frequency synchronized network to less than a μs and less than a tenth of Hertz,

the discrepancy between pairs of receivers in the P2P architecture is of the order of a

few μs and a few Hz. This translates into a few chips and most likely a single Doppler

step. The number of candidate cells would then be easily derived assuming a certain

code delay step and a certain Doppler frequency step which defines the resolution of
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Table A.2: Search space resolution and dimensions for a 40 dB-Hz signal.

ACQ Δf Rf Nf Δτ Rτ Nτ Nc or

type [Hz] [Hz] [μs] [μs] L

Standard 667 10 000 15 1/2 1023 2046 30690

P2P 667 20 1 1/2 6 12 12

Table A.3: Search space resolution and dimensions for a 30 dB-Hz signal.

ACQ Δf Rf Nf Δτ Rτ Nτ Nc or

type [Hz] [Hz] [μs] [μs] L

Standard 56 10 000 180 1/2 1023 2046 368280

P2P 56 20 1 1/2 6 12 12

the search space. The code delay step is usually taken to be half a chip whereas the

Doppler frequency step depends on the integration time given by [47]:

Δf = 2/(3Ti). (A.18)

The P2P MAT as shown in (A.16) is a very similar expression as that found for the

standard case in (A.13) with a slight difference: L cells are considered in total instead

of Nc. Cell probabilities of detection and false alarm remain exactly the same as they

depend on three parameters, B the acquisition threshold, α the signal amplitude and

σ related to the noise variance, the last two of which are function of Hc, the number

of samples in a single integration interval which remains the same. Consequently, the

expression of the P2P MAT is similar to that introduced in Table B.1, except that

Nc is replaced by a hopefully much smaller L. Nc and L are the result of the chosen

resolution of the search space (A.18), as well as its uncertainty region (Rf in the

frequency domain and Rτ in the code delay domain) as shown in Tables A.2 and A.3.

Moreover, the chosen resolution of the search space is a consequence of the coherent

integration time Ti, which in turn is determined by the C/N0 of the received signal.

The number of considered cells Nc or L is given by the product of the number of code

delay bins Nτ and the number of Doppler frequency bins Nf , that is Nc = Nτ ·Nf . For

standard as well as P2P acquisition engines, the C/N0 is taken to be either equal to

30 or 40 dB-Hz. Accordingly, the integration time Ti is set to 12 and 1 ms respectively

such that the maximum system PD is around 0.4 in both cases.
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The values of Nc and L found in Tables A.2 and A.3 are used in the expressions

found in Table B.1 to obtain the plots in Figures A.6 and A.7. These plots correspond

to 30 and 40 dB-Hz signals, where the system PD is superimposed on the MAT curves

of a P2P aided serial search with uniform or worst-case search order, for all possible

values of the acquisition threshold B (Pfa is a function of B given by (A.3)). Moreover,

Figures A.8 and A.9 superimpose the same curves relative to a standard acquisition

engine, showing the performance increase in terms of MAT, due to the P2P aiding

where L = 12 candidate cells are considered instead of the standard Nc = 30690 or

Nc = 368280 cells of a standard acquisition engine in a cold start. It is interesting

to note that the optimum acquisition threshold satisfying a minimum MAT does not

correspond to the maximum system PD as the latter does not include neither Tc nor Tp

the penalty time. It can be seen that the MAT relative to the P2P acquisition engine

is increased by an order of magnitude going from a strong to weak signal (40 to 30

dB-Hz) while the MAT of a standard acquisition engine is increased by two orders of

magnitude in these conditions. This is assuming that the accuracy of the P2P aid-

ing remains the same for both conditions, which is a valid assumption. In fact, the

P2P aiding does not depend on the aided receiver’s carrier-to-noise ratio, but rather on

the aiding peers positioning accuracy and the overall network synchronization accuracy.

In conclusion, it is shown that the benefit of using a P2P acquisition engine instead

of a standard one, is more clearly seen when operating on a weak signal (30 dB-Hz)

rather than a strong one (40 dB-Hz). This is somehow expected as the search space

size increases together with the coherent integration time which is due to a low carrier-

to-noise ratio. Consequently, a good reduction of the search space coming from P2P

aiding leaves the number of cells intact even if the coherent integration time increases.

In this case, the performance increase in terms of MAT due to P2P aiding, differs by

an order of magnitude looking at both cases of carrier-to-noise ratio.

A.2.2.2 L candidate cells with Gaussian probability distribution order

Apart from search space reduction, one of the benefits of P2P networks is the search

order information. In fact, the accuracy of aiding can be exploited to determine the

search order by noticing that the suggested cell by the P2P network can be considered

to follow a Gaussian PDF with a mean value equal to ce ∈ {1, 2, ..., Nc} and a standard
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Figure A.6: MAT and PD vs acquisition threshold for a P2P acquisition engine using a

serial search in both cases of uniform probability and worst case search order with a C/N0

of 40 dB-Hz.
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Figure A.7: MAT and PD vs acquisition threshold for a P2P acquisition engine using a

serial search in both cases of uniform probability and worst case search order with a C/N0

of 30 dB-Hz.
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Figure A.8: Comparison of a standard serial acquisition engine to a P2P engine in terms

of MAT vs acquisition threshold, with a reduced search space of L = 12 candidate cells in

case of P2P aiding and a C/N0 of 40 dB-Hz.
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Figure A.9: Comparison of a standard serial acquisition engine to a P2P engine in terms

of MAT vs acquisition threshold, with a reduced search space of L = 12 candidate cells in

case of P2P aiding and a C/N0 of 30 dB-Hz.
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deviation σc (number of cells to be searched around the mean value ce). Therefore, the

acquisition strategy assumes a reduced search space of size L candidate cells, scanned

in the order suggested by a truncated discrete normalized Gaussian PDF:

πG
ij =

1√
2πσc

e
−

(kj − ce)
2

2σc2

1√
2πσc

c=ce+σc∑
c=ce−σc

e
−

(c− ce)
2

2σc2

=
1

M
e
−

(kj − ce)
2

2σc2 , (A.19)

where M is a normalization factor, kj ∈ {ce− σc, · · · , ce + σc} and ij its corresponding

cell number such that ij = kj for kj ≤ Nc and ij = kj − Nc if kj > Nc. The aiding

can be biased inducing that the most likely cell to hold the signal is ce 	= Nc or can be

unbiased ce = Nc. On the other hand, σc is an integer number denoting the quality of

P2P aiding in terms of number of cells to be searched to the left and right of the cell

ce. Both ce and σc are function of the P2P aiding strategy. Moreover, cj is a possible

starting cell number suggested by the P2P aiding, from which the distance dj can be

computed, the number of cells distant from the H1 cell. This distance dj can be either

positive or negative, because the cells to be searched are organized in a circular manner

as seen in Table A.4. The cells in the left have cell numbers Nc − 1, Nc − 2, · · · , Nc/2

and distance values −1,−2, · · · ,−Nc/2 while the cells on the right have cell numbers

1, 2, · · · , Nc/2 − 1 and distance values 1, 2, · · · , Nc/2 − 1. In Table A.4, the normal

path cj and an example of a P2P aiding search path are depicted, together with their

corresponding distances dj . The normal path can start from any cell from {1, ..., Nc}
and the search order is in one direction scanning subsequent neighboring cells. These

cells are naturally ordered according to an increasing value of code delay and Doppler

values. The P2P path on the other hand is characterized by a zig-zag search order and

starts from any cj numbered cell and scans cells cj − 1, cj + 1, cj − 2, cj + 2, etc...

In the example shown in the table, it is assumed that the P2P aiding suggests values

of ce = 98 and σc = 2 assuming that Nc = 100 such that cell number ij = 100 is the

H1 cell. It is intuitive to see that the distance dj of a particular cell number ij can be

expressed as:

dj =

{
ij if ij < 
Nc/2�
ij −Nc if ij ≥ 
Nc/2�.
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Table A.4: P2P search order considerations showing the number of scans pj of an H0 cell

as a function of the cell number ij .

Standard Path

Index j · · · Nc − 1 Nc 1 · · ·
Standard dj · · · -1 0 1 · · ·
P2P Index j 0 1 2 · · · L− 1

P2P Path cj 98 97 99 96 100

P2P cell # ij 96 97 98 99 100

P2P dj -4 -3 -2 -1 0

P2P pj 8 6 4 2 0

In addition, the maximum number of scanned cells is given by L, which is typically

less than Nc, as it is the size of the aiding vector {ce − σc, · · · , ce + σc}. Indeed,

L = 2σc + 1 and is always odd. Moreover, the number of scanned H0 cells (no SIS

present) prior to reaching the H1 cell can be written as a function of dj or even in terms

of the cell number ij :

pj =

{
2dj − 1 if dj > 0

−2dj if dj ≤ 0,

pj =

{
2ij − 1 if ij < 
Nc/2�
2(Nc − ij) if ij ≥ 
Nc/2�.

Obviously, pj is the factor in the summation term (A.17) by which the transition

time is multiplied. In this case, S is written as a function of the cell index j:

S =
L−1∑
j=0

πG
ijpijT0. (A.20)

It can be noticed that this factor is expressed as an odd value for cell numbers lying on

the right half-circle with respect to the H1 cell, and as an even number for cell numbers

lying in the left half-circle. The expression of the MAT becomes more intuitive when

we consider that the PDF of the aiding cell is centered around ce = Nc. In fact, Table

A.5 shows that pij = j such that the summation term can be rewritten as:

S =
L−1∑
j=0

jπG
ijT0. (A.21)
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Table A.5: P2P pj of a simple case where cell aiding has a PDF centered around the true

cell.

P2P Index j 0 1 2 3 4 · · · L− 1

Simple P2P Nc Nc − 1 1 Nc − 2 2 · · · (L− 1)/2

Path cj

P2P cell # ij Nc 1 Nc − 1 2 Nc − 2 · · · Nc − (L− 1)/2

P2P dj 0 1 -1 2 -2 · · · (1− L)/2

P2P pj 0 1 2 3 4 · · · L− 1

If L is replaced by Nc and the probabilities πG
ij

by 1/Nc in (A.21), a uniform prob-

ability search order is simulated for a standard acquisition engine, and the summation

term S equates to:

S =
1

Nc

Nc−1∑
j=0

jT0 =
1

Nc

Nc(Nc − 1)

2
T0 =

Nc − 1

2
T0, (A.22)

which is in accordance with the expression (A.17) for a standard acquisition engine.

Finally, it is worthwile comparing the performance of the different probability search

orders, i.e. uniform probability search order, Gaussian probability search order and

worst-case search order. For the comparison to be fair, it is assumed that the P2P aiding

includes the H1 cell and that the Gaussian probability function is centered around it,

i.e. ce = Nc. Moreover, it is assumed that σc = 6 such that L = 13 candidate cells are

scanned for all three strategies. Figure A.10 shows the performance in terms of MAT

of a P2P serial search with the three possible search orders, assuming a C/N0 of 30

dB-Hz. It is seen that the Gaussian probability distribution order demonstrates the

best performance even if by a slight factor with respect to the uniform order. Moreover,

it is interesting to study the ratio of the MAT relative to a uniform probability order

with respect to a Gaussian search order:

RUG =
T̄A

P2P
U

T̄A
P2P
G

=

1− Pd

Pd
(L− 1)T0 +

Tc

Pd
+

L− 1

2
T0

1− Pd

Pd
(L− 1)T0 +

Tc

Pd
+

L−1∑
j=0

jπG
ijT0

. (A.23)
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Figure A.10: Comparison of a uniform, worst-case and a Gaussian probability search

orders in terms of MAT and PD vs acquisition threshold for a P2P serial acquisition

engine.

In fact, it is shown in FigureA.11 that in general, the constant component in (A.16)

is greater than the S components for both a uniform and a Gaussian probability search

orders. This is not true for a certain range of the acquisition threshold where the acqui-

sition threshold is relatively low. Anyhow, as shown in Figure A.12, even if the ratio of

the sums of both strategies is constant and in favour of the Gaussian probability order

by a slight margin 1.11, the corresponding ratio of pMAT is even lower and approaches

1 for high acquisition threshold values. This is in accordance with Figure A.10 where

the Gaussian probability search order demonstrates a slightly better performance in

terms of MAT than the uniform probability order in a P2P acquisition engine.

A.3 Conclusion

The merit of P2P networks in decreasing the MAT is thoroughly explored in this

appendix. The serial search TC criterion is used to derive the expression of MAT

relative to standard and P2P acquisition engines. To that effect, an innovative tool

is developed in the form of acquisition time and MAT diagrams which help derive,

in an intuitive manner, the expression of the MAT depending on the search strategy.

Furthermore, the terms contributing to the MAT are carefully analyzed and a reduced
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Figure A.11: Comparison of the constant component in the MAT to the sum S compo-

nents (uniform and Gaussian) vs acquisition threshold for a P2P acquisition engine with a

C/N0 of 30 dB-Hz.
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search space as well as a new search order is modelled based on a Gaussian probability

distribution of P2P aiding errors.
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Appendix B

Mean acquisition time of GNSS

peer-to-peer networks

As previously mentioned, the acquisition engine is the most critical block within a

GNSS receiver as all subsequent blocks in the receiver chain depend on it. To that end,

the P2P architecture is studied again in this appendix, where nearby peers share an

additional GNSS aiding information, that is the CNR together with estimates of the

code delay, and Doppler frequency. As previously noted, this results in a reduction of

the search space over which the CAF is evaluated but also helps to initialize the correct

integration time a-priori. The performance improvement in terms of MAT as a result

of the P2P setting is tested against the standard acquisition engine in a comprehensive

way. Indeed, the MAT of a standard acquisition engine is compared to that of a P2P

engine with a thorough investigation of several search strategies including the serial,

MAX and MAX/TC with or without verification. The best strategy yielding the opti-

mum MAT is chosen for each acquisition engine.

The innovative aspect in the MAT study presented in this appendix lies in consid-

ering the aforementioned three search strategies in light of the P2P context coupled

with a verification procedure; a double-dwell time detection in the form of an M over

N detector. The impact of this detector declaring the signal present if M out of N tests

are positive is also examined by comparing it to a single-dwell time detector where the

verification process is nonexistent. The use of a verification process is justified accord-

ing to the penalty time and the optimum acquisition threshold. It is worth mentioning
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that at the time of writing this thesis, almost all literature on the computation of the

MAT was either focused on the standard serial search TC criterion [28], [29], a MAX

criterion [30] or a hybrid MAX/TC criterion [31]. All these strategies do not show any

particular interest in the potential aidings received by a P2P network as in [12] where

simulations are performed to assess the MAT using a serial search in the context of a

P2P setting.

In this section, closed form expressions of the MAT relative to the MAX and MAX/TC

criterion with or without verification procedure are derived and used to perform signif-

icant comparisons of a standard acquisition engine with respect to various versions of a

P2P acquisition engine. In these comparisons, maximum search strategies are adopted

for a standard acquisition engine with a typically large search space, whereas a serial

search strategy is most appropriate for the P2P acquisition where the search space is

reduced significantly. Moreover, the analysis of the MAT is carried out under weak and

strong signal conditions and the P2P architecture benefits are demonstrated using a

combination of code delay, Doppler frequency aiding and CNR aiding.

B.1 Acquisition and probabilities

B.1.1 Acquisition systems

In the following, a serial P2P ACQ engine is used and compared to a standard acqui-

sition engine which uses maximum search strategies. In a serial search, it is assumed

that the CAF is evaluated or scanned in a starting cell and compared to an ACQ

threshold. If the signal is declared present in the cell, the search process is stopped. If

the signal is declared absent in that cell, the search continues by moving to the next

cell, evaluating the CAF on that cell and applying the detection process cell after cell.

For maximum search strategies, the CAF is evaluated in the whole search space in

parallel and then the decision is made based on the maximum value of the CAF or the

maximum value that passes the ACQ threshold. The MAT for all search strategies is

computed assuming that the search continues indefinitely until the signal is declared

present in a particular cell. In such a setting, the concept of probability of detection

and false alarm is fundamental in evaluating any acquisition time.

236



B.1 Acquisition and probabilities

B.1.2 Cell and system probabilities

Cell and system probabilities are essentially the major cornerstones in the study of

the MAT. Indeed, system probabilities, cell probabilities or even both are used in the

expression of the MAT depending on the search and detection strategy. Cell proba-

bilities are typically used in a serial search but also in a MAX and MAX/TC search

whenever coupled with a double-dwell time detector. While a single-dwell time detector

performs no verification, a double-dwell time detector performs a verification procedure

on a single cell where the received SIS is believed to be present.

B.1.2.1 Cell probabilities

Two hypotheses are defined over each cell, H0 where the chosen cell is called an H0 cell

and does not correspond to the right code delay and Doppler frequency alignment of the

received SIS (Pfa+Pcr = 1) and H1 where the chosen cell is called an H1 cell and does

correspond to the right alignment (Pd+Pmd = 1). Pfa is the cell false alarm probability,

Pcr is the cell probability of correct rejection, Pd is the cell probability of detection

and Pmd is the cell missed detection probability. Coherent integrations are considered

herein, and the CAF envelope is evaluated as R = I2+Q2 (non-normalized summation

of the in-phase and quadrature phase signal at the output of the correlators). The cell

and system probabilities expressions can be found in [64]. Moreover, a double-dwell

time detector is considered and represented by an M over N detector. The detection

outcome being the result of a Bernoulli process with probabilities Pd and Pfa, the cell

probabilities of detection and false alarm in verification mode can be written as:

Pd,v =
N∑

m=M

(
N

m

)
Pd

m(1− Pd)
N−m (B.1)

and

Pfa,v =
N∑

m=M

(
N

m

)
Pm
fa(1− Pfa)

N−m (B.2)

B.1.2.2 System probabilities

System probabilities are used when assessing the MAT in the context of a MAX or a

MAX/TC search but also in a serial search whenever coupled with a double-dwell time

detector. In this case, two different hypotheses are defined. Hypothesis H2 applies to
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Figure B.1: Cell and system probabilities vs ACQ threshold B for various search strate-

gies and a C/N0 equal to 40 dB-Hz

the case where the PRN code that is being tested is actually present in the received

signal, and so the probability rule is P p
FA + PMD + PD = 1 where P p

FA is the system

probability of false alarm in presence of the PRN code in question. This probability

is also called system probability of error PE . Hypothesis H3 on the other hand, is

defined when the PRN code that is being tested is absent in the received signal, and

the system probability rule becomes P a
FA+PCR = 1 where P a

FA is the system probability

of false alarm in absence of the PRN code in question. System probabilities summarize

the detection situation in an efficient way and as such the system PD is plotted in

conjunction with the MAT in the following figures. In fact, even if the MAT for a serial

search depends on cell probabilities Pfa and Pd, it is the system PD that summarizes

the behaviour of both cell probabilities. The behaviour in terms of system PD of all

search strategies is summarized in Figure B.1 where all curves are plotted vs the ACQ

threshold except the pure MAX search which is plotted against the possible maximum

value in the CAF. It is intuitive to see that the system PMD and P a
FA do not depend

on the search strategy as both entail the search of all cells in any case. However,

PD and P p
FA = PE highly depend on the search and detection strategy [64] and are

derived in terms of the acquisition threshold B, the number of cells Nc in the search

space, and the two parameters α and σ relating to signal and noise power. For a

serial as well as MAX/TC search strategy, where the verification is performed over a
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single cell, the overall system probabilities are defined as the product of the system

and cell probabilities, i.e. overall probability of detection is P Tot
D,v = PDPd,v and overall

probability of error as P Tot
E,v = PEPfa,v. However, the system probabilities are expressed

differently for a pure MAX search strategy where the maximum is chosen without

comparing it to a threshold. In fact, in this case, the PMD is null (PD + PE = 1), and

the verification process is performed by searching the whole search space all over again

(instead of just a single cell) and verifying that the maximum corresponds to the same

cell in consideration for at least M times:

P Tot
D,v = PDPD,v = PD

N∑
m=M

(
N

m

)
Pm
D (1− PD)

N−m (B.3)

and

P Tot
E,v = PEPE,v = PE

N∑
m=M

(
N

m

)
Pm
E (1− PE)

N−m. (B.4)

B.2 MAT analysis using different search strategies

In this section, the MAT is introduced considering different search strategies, from

serial to pure MAX as well as MAX/TC coupled with a double-dwell time detector, i.e.

the M over N detector as a verification process. In the literature, a robust procedure

to compute the MAT is mainly based on the pgf. The whole procedure to derive the

MAT is presented for a MAX/TC with single as well as double-dwell time verification

and all search strategies are confronted amongst themselves. Moreover, MAT curves as

a function of the acquisition threshold are used to justify the presence or absence of a

verification procedure.

B.2.1 Serial search

The serial single-dwell time search strategy consists in evaluating the CAF in a specific

cell and serially moving to the next cells in some specified direction and order until

the H1 cell is found, i.e. the cell which holds the correct PRN code, Doppler frequency

and code delay. A double-dwell time detector on the other hand, applies a further

verification procedure only on the cells where it is believed that the signal is present.

This cell can be both an H0 or an H1 cell. A decision flow graph diagram has long

been adopted in the literature as a procedure to determine the MAT for a serial search

239



B. MEAN ACQUISITION TIME OF GNSS PEER-TO-PEER
NETWORKS

[28]. This method defines the gain functions that govern the transition from one cell to

another, in order derive the system pgf PACQ(z). The MAT is then given by the flow

graph technique described as:

E[TA] =

∣∣∣∣ ddzPACQ(z)

∣∣∣∣
z=1

. (B.5)

The time needed to test a single cell is denoted as Tc seconds, and is a function of

the integration time Ti. Moreover, after a false acquisition, the system goes through a

penalty time Tp in the tracking stage which is usually taken to be the tracking transient

time (around 500 ms) of a successful tracking operation. In general, two options are

considered for setting the starting cell; uniform probability where the probability to

start from a specific cell is the same for all cells, and worst-case probability which

is equivalent to scanning the H1 cell in the last position [29]. A similar analysis is

performed for a double-dwell time detector in [30] and the corresponding MAT is found

in Table B.1 where Tv is the duration of the verification procedure. The expressions in

Table B.1 are used to compute the MAT for a range of ACQ thresholds. The curves in

Figure B.2 are obtained, which yield an interesting comparison of the performance of

a single and double-dwell time detectors in terms of MAT. In fact, examining a single-

dwell time detector, the behavior of both curves relative to a uniform and worst-case

probability search orders are similar; the MAT decreases with increasing PD, continues

decreasing with decreasing PD and then unexpectedly starts increasing. This is the

point where the term TpPfa starts weighing on the system with respect to Tc (see

expression in Table B.1). It is worth mentioning that the curves are plotted assuming

a range of increasing cell Pfa values, to which corresponds a decreasing acquisition

threshold values and consequently an increasing and a decreasing system PD as can

be seen from Figure B.1. In fact, as the acquisition threshold is decreased, a higher

Pfa is expected together with a lower system PD. Consequently, in the absence of a

penalty time due to wrong acquisition, a decreasing MAT is expected corresponding to

an increasing Pd and a decreasing PD and B. Hence, at times where TpPfa is relatively

low with respect to Tc, the MAT and PD as well as B are directly proportional. The

opposite is true for relatively high values of TpPfa with respect to Tc, corresponding

to PD < 0.1 considered as the inflection point of the curve relative to the uniform

probability search order with Tp = 500 ms. In this portion of the plot, the MAT of

a single-dwell time detector and PD are inversely proportional. This inflection point
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Figure B.2: MAT vs ACQ threshold indicating the range of the ACQ threshold for which

a verification procedure is justified.

moves to the left as the penalty time increases. In this way, depending on the penalty

time, the use of a double-dwell time detector can be justified or not over a single dwell

time detector with no verification. In this case, the use of a double-dwell time detector

is not justified for the optimum value of B = Bopt, i.e. the value of B yielding the

minimum MAT. In fact, it can be seen that for B = Bopt the curve with verification

results in a slightly higher MAT value than that corresponding to a single-dwell time.

Conversely, beyond the inflection point, the MAT of a double-dwell time detector and

PD are directly proportional. This is of course due to the fact that when adopting a

verification process, even if the acquisition threshold is not set correctly, it is less likely

that the CAF crosses the threshold over a wrong cell for several consecutive instances,

and so the penalty time is avoided more often and does not weigh on the system for

high Pfa. In fact, looking at Table B.1, the term TpPfa becomes TpPfaPfa,v, making

it harder to be relatively bigger than Tc and TvPfa.

B.2.2 MAX search

The pure maximum or MAX search strategy is based on the evaluation of the whole

search space and picking the cell which holds the maximum value of the CAF without

comparing it to a threshold. This strategy is particularly useful in a P2P environment

where an indication of the presence of a particular SIS by nearby peers is most likely
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Table B.1: MAT of serial search strategies

Strategy MAT

Serial
Tc

Pd
+

(Nc − 1)

Pd
(Tc + TpPfa)

Worst-case

Serial
Tc

Pd
+

(
Nc − 1

2

)(
2− Pd

Pd

)
(Tc + TpPfa)

Uniform

Serial
Tc + TvPd

PdPd,v
+

(
Nc − 1

2

)
·

uniform with

verification

(
2− PdPd,v

PdPd,v

)
(Tc + TvPfa + TpPfaPfav)

to be true. In this case, there is no need to compare the maximum CAF value against

a threshold. To derive an expression of the MAT, a similar approach as presented

for the serial search can be followed, drawing a flow graph diagram and deriving the

corresponding pgf [30] to deduce the MAT with (B.5). This is a fairly simple procedure

for a single-dwell time detector, whereas the situation gets more complex for a double-

dwell time detector. In fact, as previously mentioned in Section B.1.2.2, the verification

process for a MAX approach consists in computing the whole search space at least N

times, instead of just a single cell. Assuming that Ts is the time spent to evaluate

the whole CAF, the pMAT for a MAX approach are reported in Table B.2 where

PMD,v = 1− PD(1− PD,v). As expected, the double-dwell time detector expression is

simplified to that of the single-dwell detector when PD,v and PE,v are replaced by 1

and Tv = 0 for a single-dwell time detector.

B.2.3 MAX/TC search

Unlike the MAX search, the MAX/TC search picks the cell relative to the maximum

of the CAF and compares its value to the acquisition threshold. In this case, the flow
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Figure B.3: MAX/TC single-dwell time acquisition flow graph.

Figure B.4: MAX/TC double-dwell time acquisition flow graph.

graph diagram includes an additional gain function HM (z) representing the case of an

immediate missed detection as seen in Figure B.3.

The gain functions here are HD(z) = PDz
Ts , H0(z) = HFA(z)Hp(z) = PE z(Ts+Tp),

HM (z) = PMDz
Ts and H0M (z) = HM (z) + HFA(z)Hp(z) with a pgf of PACQ(z) =

HD(z)/(1 − H0M (z)). As in the serial search, the verification procedure is applied

when the SIS is declared present, such that the acquisition flow graph for the double-

dwell time detector is represented in Figure B.4. In this case, the gain functions are

written as HD(z) = HD1(z)HDV (z) = PDPd,vz
(Ts+Tv) , HM (z) = HD1(z)HMV (z) =

PD(1−Pd,v)z
(Ts+Tv), and H0M (z) = HM1(z)+HFA1(z)[HNFAV (z)+HFAV (z)Hp(z)] =

PMDz
Ts+PE(1−Pfa,v)z

(Ts+Tv)+PEPfa,vz
(Ts+Tv+Tp) and the pgf is equal to PACQ(z) =

HD(z)/([1 − H0M (z)][1 − HM (z)]). The MAT for the single-dwell time detector as

reported in Table B.2 is obtained after substituting its pgf into (B.5). In a similar way,
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Table B.2: MAT of MAX and MAX/TC search strategies

MAX
Ts

PD
+

(
1− PD

PD

)
Tp

MAX/TC Ts + Ts
PMD

PD
+ (Ts + Tp)

PE

PD

MAX with
PD,v

PMD,v

[
Ts + Tv

PMD,v
+

1− PD

PD
(Ts + Tv + TpPE,v)

]
verification

MAX/TC with (B.6)

verification

the MAT of a double-dwell time detector is obtained:

T̄A =
Pd,v

PDPMD,v
[TsPMD + PE(Ts + Tv + TpPfa,v)]

+ (Ts + Tv)

(
Pd,v

PMD,v
+

PDPd,v(1− Pd,v)

P 2
MD,v

)
(B.6)

Figure B.5 shows the MAT curves vs ACQ threshold relative to all three considered

search strategies with a single-dwell time detector. In summary, for the minimum MAT

values of each strategy, the MAX/TC together with the MAX strategy is the most

performant strategy. The MAT values relative to both maximum search strategies are

less than those of the serial search by almost two orders of magnitude and so maximum

search strategies will be used in the next section as the optimum search strategy for a

standard ACQ engine.

B.3 Performance comparison of standard and P2P acqui-

sition engines

In this section, standard and special P2P acquisition engines are confronted in terms

of MAT. To guarantee a fair comparison, a MAX or MAX/TC approach is selected

for the standard ACQ engine whereas a serial search is opted for the P2P ACQ engine
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Figure B.5: Performance comparison of all three search strategies using a standard ACQ

engine and a single-dwell time detector with a C/N0 = 40 dB-Hz and a Ti = 1 ms.

such that the best possible search is adopted for each case. In fact, a serial search is

usually the best choice for a P2P architecture where the search space is reduced to

a few cells over which the CAF is computed. This is done by providing code delay

and Doppler frequency aiding with a certain accuracy, depending on the topology and

synchronization of the network [65]. Moreover, an innovative acquisition approach,

particularly favorable for weak signal conditions, is explored in a P2P setting where

the coherent integration time is set on the basis of the estimated C/N0 value made

available by the P2P network [65].

B.3.1 Standard MAX search vs P2P serial search

For a time and frequency synchronized network to less than a μs and less than a tenth

of Hertz, the P2P architecture offers an aiding which can reduce the search space to a

few chips and most likely a single Doppler step. The number of these candidate cells

depends on the code delay and Doppler frequency step used in the acquisition engine.

The code delay step is usually half a chip whereas the Doppler frequency step is set

empirically to Δf = 2/(3Ti). The MAT of a P2P network is computed using the same

system probabilities as those computed for a standard ACQ engine. This is because

although only L candidate cells are scanned in the P2P case, the remaining cells are

nontheless existent and associated with a certain cell Pfa and Pd. The only difference in
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Figure B.6: MAT and system PD performance of a P2P engine using a serial search with

a C/N0 = 40 dB-Hz and a Ti = 1 ms.

the MAT is the scanning time, and to account for that, Nc is replaced by L the number

of P2P candidate cells in the serial case, and Ts is replaced by the corresponding P2P

reduced search space scanning time for the MAX and MAX/TC case. Assuming a C/N0

equal to 40 dB-Hz, Figure B.7 compares the performance of a standard ACQ engine

(shown individually in Figure B.6) using a MAX search to that of a P2P ACQ engine

using a serial search. The plot also shows on the right vertical axis, the system PD for

each search strategy. First and foremost, the optimum MAT of a P2P serial search is

one order of magnitude lower than that of a standard MAX search (0.17 ms compared

to 17.5 ms). Moreover, the MAT curve of the MAX search grows exponentially with

decreasing maximum CAF value compared to the decreasing MAT of the P2P serial

search with decreasing acquisition threshold as shown in Figure B.6. In fact, when

the maximum value of the CAF is not so high, the MAT of a MAX search increases

drastically together with a decreasing system PD. This suggests that the MAX search

is not a controllable environment and can yield very bad results. Similarly, Figure

B.8 compares the performance of a standard ACQ engine using a MAX/TC search to

that of a P2P serial search engine. The superior performance conveyed by the P2P

architecture is demonstrated in this figure as well.
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Figure B.7: Performance of a P2P ACQ engine using a serial search compared to a

standard ACQ engine using a MAX search with a C/N0 = 40 dB-Hz and a Ti = 1 ms.
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Figure B.8: Performance of a P2P ACQ engine using a serial search compared to a

standard ACQ engine using a MAX/TC search with a C/N0 = 40 dB-Hz and a Ti = 1 ms.

247



B. MEAN ACQUISITION TIME OF GNSS PEER-TO-PEER
NETWORKS

B.3.2 Standard MAX search vs CNR aided P2P serial search

A new P2P acquisition approach is analyzed herein, based on the C/N0 aiding infor-

mation shared by nearby peers. This approach consists in setting the integration time

as a function of the weighted P2P CNR, the acquisition metric SNRc, noncoherent

accumulations L, and the receiver bandwidth B with the aim of decreasing the MAT

[65]. Using the equation reported in [65], the coherent integration time with no nonco-

herent accumulations can be obtained. In fact, Ti = 25 ms for a C/N0 = 20 dB-Hz, an

acquisition metric of 4 dB, an IF bandwidth B of 1.023 MHz and a sampling frequency

of 2.046 MHz. In order to assess the impact of the integration time setting according

to the CNR, it is worth checking the MAT performance in weak signal conditions.

For a CNR of 20 dB-Hz and a typical Ti = 1 ms, the MAT of both strategies, standard

MAX/TC and a P2P serial ACQ engine, significantly increases with a highly unreliable

system PD of the order of 10−5. Using this motivation, for the same C/N0 = 20 dB-Hz,

Figure B.9 shows the extent by which the CNR aided P2P acquisition is more perfor-

mant in terms of MAT than the usual P2P engine with no integration time setting.

It is worth noting how this figure summarizes the relationship between the system PD

and the MAT. Indeed, as the system PD relative to the usual P2P acquisition is much

lower than that of the CNR aided P2P acquisition, its corresponding MAT is higher

by an order of magnitude. Both curves show the same decreasing trend, which can be

interpreted, following the same line of thought presented in Section B.2.1, i.e. the fact

that TpPfa is relatively small with respect to Tc.

B.4 Conclusion

The MAT of a serial, MAX and MAX/TC search strategies with or without verification

have been analyzed herein, and closed form expressions have been derived using the

acquisition flow graph technique. The performance improvement contributed by a P2P

network in terms of MAT is thoroughly investigated by exploring two types of aiding,

code delay and Doppler frequency aiding from one side and CNR from another. It is

shown that together with the aiding available to reduce the search space, exploiting the

CNR aiding to set an appropriate integration time, further reduces the MAT especially

in weak signal conditions.

248



B.4 Conclusion

0 1 2 3 4 5 6 7
x 10

−5

0

0.4

0.8

1.2

1.6

2

M
A

T
 [s

]

Cell probability of false alarm P
fa

0 1 2 3 4 5 6 7
x 10

−5

0

0.4

0.8

1.2

1.6

2x 10
−3

P
D

P2P Serial MAT
P2P Serial C/N

0
 aided MAT

Serial P
D

Serial C/N
0
 aided P

D

Figure B.9: Performance of a P2P serial ACQ engine in both cases: Ti = 1 ms and an

integration time set according to the P2P C/N0 aiding, i.e. Ti = 25 ms with a C/N0 = 20

dB-Hz.
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