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Abstract: 

Literature datasets showed that gigacycle fatigue properties of materials may be affected by the 

specimen risk-volume, i.e. the part of the specimen subjected to stress amplitudes above a 

prescribed percentage of the maximum stress. The paper proposes a Gaussian specimen shape able 

to attain large risk-volumes for gigacycle fatigue tests, together with a general procedure for its 

design: wave propagation equations are analytically solved in order to obtain a specimen shape 

characterized by a uniform stress distribution on an extended length and, as a consequence, by a 

larger risk-volume. The uniformity of the stress distribution in the Gaussian specimen is numerically 

verified through a finite element analysis and experimentally validated by means of strain gage 

measurements. 

Keywords: 

Very-high-cycle fatigue; Ultra-high-cycle fatigue; Ultrasonic testing machine; Risk-volume; Wave 

propagation equations 
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Nomenclature  

𝐴, 𝐵, 𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝑎, 𝑏, 𝑐, 𝑆0 = constant coefficients 

𝐷1, 𝐷2 = characteristic diameters of the specimen 

𝑑3(∙) = diameter function in specimen part 3 

𝐸𝑑 = dynamic Young’s modulus 

erf(∙) = error function 

𝑓0 = resonance frequency 

𝐾𝑡 = stress concentration factor 

𝑘 = wave number 

𝐿1, 𝐿2, 𝐿3 = characteristic lengths of the specimen 

𝑀𝜎 = stress amplification factor 

𝑁 = diameter ratio 

𝜐 = Poisson’s ratio 

𝜌 = density 

𝑠(∙) = cross-section function 

𝜎(∙) = stress amplitude function 

𝜎, 𝜎1, 𝜎𝑐𝑒𝑛𝑡𝑒𝑟 , 𝜎𝑚𝑎𝑥,𝑙𝑜𝑛𝑔,3, 𝜎𝑚𝑎𝑥,𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = characteristic stress values 

𝑈𝑖𝑛 = displacement amplitude at the interface between horn and specimen 

𝑢(∙), 𝑢1(∙), 𝑢2(∙), 𝑢3(∙) = displacement amplitude functions 

𝑉 = theoretical volume with constant stress amplitude 

𝑧 = longitudinal coordinate of the specimen 
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1. Introduction 

In recent years, the interest in very-high-cycle fatigue (VHCF) behavior of metallic materials is 

significantly increased. Design requirements in specific industrial fields (aerospace, mechanical and 

energy industry) for structural components characterized by even larger fatigue lives, up to 1010 

cycles (gigacycle region), lead to a more detailed investigation on material properties in the 

gigacycle region. 

Gigacycle fatigue tests are commonly performed using resonance fatigue testing machines (see [1] 

and [2] for an updated review) with a loading frequency of 20 kHz (ultrasonic tests). Experimental 

results show that failure is due to cracks which nucleate at the specimen surface if the stress 

amplitude is above the conventional fatigue limit (surface nucleation) and that failure is generally 

due to cracks which nucleate from inclusions or internal defects (internal nucleation) when 

specimens are subjected to stress amplitudes below the conventional fatigue limit. 

In the gigacycle region, several factors (e.g., load type [3], stress ratio [4,5], surface finishing [6], 

environment [7]) were found to significantly influence the fatigue strength of metallic materials. 

The effect of the specimen size on the fatigue strength was recently investigated by Furuya [8-10]. 

The experimental results in [8-10] seem to disagree with previous studies carried out by Bathias (see 

pp. 97 and 105 in [1]) on hourglass specimens with different minimum diameters (i.e., with different 

sizes), made of spring steel or spheroidal graphite cast iron. In particular, differently from what 

showed by Bathias (i.e., no significant difference exists between specimens with different sizes), 

Furuya [8-10] found that, in high strength steel, the fatigue strength strongly decreases when the 

specimen size significantly increases: he finally concluded that “using small specimens is very 

dangerous, since they are likely to show misleadingly high VHCF strength” [10]. The decrement in 

fatigue strength was physically justified by Furuya [10] considering that the larger the risk-volume 

(region subjected to a stress amplitude above the 90% of the maximum stress amplitude [8]), the 

larger the probability of finding inclusions causing failure. In order to increase the risk-volume of the 

hourglass-shaped specimens commonly used for gigacycle fatigue tests (about 33 mm3), Furuya [8-

10] adopted dog-bone shaped specimens characterized by large risk-volumes (about 900 mm3). In 

this respect, the different results found in the literature on the influence of the size effect require 

further investigation: the experimental results showed in [1] are obtained by testing hourglass 

specimens with a limited increment in the risk-volume; in [8-10] the size effect is more relevant, 

since the studied range of variation of the risk-volume is significantly larger. Therefore, it would be 

extremely interesting to further increase the investigated range of variation of the risk-volume. 

However, due to the non-uniform stress distribution along the specimen part with constant cross 

section, a further increment of the risk-volume remains extremely limited with dog-bone shaped 

specimens. 

The present paper proposes a specimen shape (Gaussian specimen) able to attain larger risk-

volumes for gigacycle fatigue tests, together with a general procedure for its design: wave 

propagation equations are analytically solved in order to obtain a specimen shape characterized by 

a uniform stress distribution on an extended length and, as a consequence, by a larger risk-volume. 
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The stress distribution along the specimen profile is verified through a Finite Element Analysis (FEA) 

and validated experimentally through strain gage measurements. Given the same theoretical risk-

volume, a dog-bone shaped specimen and a Gaussian specimen are also designed and compared. 

2. Specimen shape with uniform stress distribution 

Specimens for ultrasonic tests are obtained on the basis of the equations for wave propagation in 

an elastic solid. In deriving the basic design relationships, the specimen is modeled as a one 

dimension linear elastic body: stresses are considered as uniformly distributed on the cross section 

and transverse displacements are considered as negligible if compared to longitudinal 

displacements. In case of a specimen with variable cross-section, according to these assumptions, 

the displacement amplitude along the specimen 𝑢(𝑧) can be obtained by solving the Webster’s 

equation for a plane wave: 

𝑢′′(𝑧) + 
𝑠′(𝑧)

𝑠(𝑧)
𝑢′(𝑧) + 𝑘2𝑢(𝑧) =  0, (1) 

where 𝑢′′(𝑧) = 𝑑2𝑢(𝑧) 𝑑𝑧2⁄ ,  𝑠(𝑧) is the specimen cross-section, 𝑠′(𝑧) = 𝑑𝑠(𝑧) 𝑑𝑧⁄ ,  

𝑢′(𝑧) = 𝑑𝑢(𝑧) 𝑑𝑧⁄  and 𝑘 =  2𝜋𝑓0 √𝐸𝑑 𝜌⁄⁄  is the wave number, being 𝑓0 the resonance frequency, 

𝜌 the specimen density and 𝐸𝑑 the dynamic elastic modulus of the specimen. It is worth noting that, 

for a constant cross-section specimen (i.e., 𝑠′(𝑧) = 0), Equation (1) simplifies significantly and can 

be easily satisfied by considering a sinusoidal displacement distribution (see Appendix A). 

By applying an inverse design procedure (see e.g., [11,12]), the specimen cross-section which 

assures an imposed displacement distribution is given by: 

𝑠(𝑧) = 𝑆0 ∙ 𝑒
−∫

𝑘2𝑢(𝑧)+𝑢′′(𝑧)

𝑢′(𝑧)
𝑑𝑧

, (2) 

where 𝑆0 is a constant of integration whose value depends on the boundary conditions. For a linear 

elastic body, according to the kinematic equations, the stress distribution 𝜎(𝑧) is given by 𝜎(𝑧) =

𝐸𝑑𝑢
′(𝑧). Since 𝜎(𝑧) is proportional to 𝑢′(𝑧), a linear displacement distribution has to be taken into 

consideration in order to obtain a uniform stress distribution: 

𝑢(𝑧) = 𝐴(𝑘 ∙ 𝑧) + 𝐵, (3) 

where 𝐴 and 𝐵 are constant coefficients that depend on the boundary conditions. With easy 

passages and by taking into account Equation (3), Equation (2) becomes: 

𝑠(𝑧) = 𝑎 ∙ 𝑒
−
(𝑧−𝑏)2

2𝑐2 , (4) 

being 𝑎 = 𝑆0 ∙ 𝑒
𝐵2

2𝐴2, 𝑏 = −
𝐵

𝑘𝐴
 and 𝑐 = 𝑘−1. 

According to Equation (4), the specimen cross-section able to provide a uniform stress distribution 

for different values of 𝑧 entails the typical Gaussian form [11,12] with parameters 𝑎, 𝑏 and 𝑐. Since 

[11], resonant vibrators with a Gaussian shape are commonly considered in the literature (see e.g., 
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[12] and, more recently, [13]) as concentrators or horns aiming at amplifying the vibration amplitude 

while limiting and controlling the stress amplitude. The Gaussian resonant vibrators proposed in this 

paper are originally conceived as risk-volume amplifiers characterized by a full Gaussian form which 

differs from the vibrator ampullaceus commonly considered in the literature. 

In order to completely define the Gaussian specimen cross-section, the values of the parameters 𝑎, 

𝑏 and 𝑐 in Equation (4) must be determined. For a given specimen material and resonance 

frequency, the 𝑘 value and, as a consequence, the parameter 𝑐 can be easily computed. As for the 

parameters 𝑎 and 𝑏, it is necessary to determine the value of the ratio 𝐵 𝐴⁄  and the value of the 

integration constant 𝑆0. These values can be obtained by imposing proper boundary conditions for 

the displacement distribution. 

In particular, let 𝑢3(𝑧) denote the displacement amplitude along the Gaussian shaped part of the 

specimen (part 3 in Figure 1). 

 

Figure 1: Geometry of a Gaussian specimen and its subdivision in parts. 

Due to symmetry, the condition 𝑢3(𝐿3) = 0 must be fulfilled, being 𝐿3 half of the total length of 

specimen part 3. By taking into account Equation (3), the symmetry condition yields: 

𝐵 𝐴⁄ = −𝑘𝐿3. (5) 

By substituting Equation (5) in Equation (4), the cross-section of specimen part 3, 𝑠3(𝑧), can be 

finally expressed as follows: 

𝑠3(𝑧) = 𝑆0 ∙ 𝑒
(
𝑘𝐿3
√2
)
2

𝑒
−(

𝑘(𝑧−𝐿3)

√2
)
2

. (6) 

Equation (6) can be used to evaluate the variation of the cross-section area depending on the 

longitudinal coordinate 𝑧, being 0 ≤ 𝑧 ≤ 𝐿3. In particular, for 𝑧 = 0, Equation (6) gives 𝑠3(0) = 𝑆0. 

By taking into account Equation (6) and the diameter corresponding to 𝑠3(0) (i.e., 𝐷2 in Figure 1), 

the cross-section diameter 𝑑3(𝑧) along part 3 of the specimen can be easily obtained: 

𝑑3(𝑧) = 𝐷2 ∙ 𝑒
(
𝑘𝐿3
2
)
2

𝑒−(
𝑘(𝑧−𝐿3)

2
)
2

. (7) 
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The total volume 𝑉 of the Gaussian part of the specimen can be computed by integrating Equation 

(6) with respect to 𝑧 from 0 to 2𝐿3: 

𝑉 = ∫ 𝑠3(𝑧)𝑑𝑧
2𝐿3

0
=

𝐷2
2

𝑘
(
𝜋

2
)
3 2⁄

𝑒
(
𝑘𝐿3
√2
)
2

erf (
𝑘𝐿3

√2
), (8) 

where erf(∙) denotes the Error Function (i.e., erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0
). 

Once the wave number 𝑘 and the diameter 𝐷2 are defined, Equation (8) allows to compute the 

length 𝐿3 that provides the desired volume with a theoretical uniform stress distribution (i.e., the 

theoretical risk-volume). Figure 2 shows the variation of the non-dimensional parameter 𝑘𝑉 𝐷2
2⁄  

with respect to the non-dimensional variable 𝑘𝐿3. 

 

Figure 2: Plot of the parameter 𝑘𝑉 𝐷2
2⁄  vs. 𝑘𝐿3. 

Figure 2 can also be used for a rapid graphical estimation of the specimen length 𝐿3 corresponding 

to a theoretical risk-volume equal to 𝑉. 

3. Gaussian specimen: overall design 

Once 𝐷2 and 𝐿3 are determined according to Section 2, part 3 of the specimen (Figure 1) is 

completely defined. In order to design part 1 and part 2 of the specimen (Figure 1), the following 

boundary conditions must be imposed: 

 the displacement at the interface between the horn and the specimen (i.e., at 

𝑧 = −(𝐿1 + 𝐿2) in Figure 1) is maximum (or minimum) and equal to 𝑈𝑖𝑛: 

{
𝑢1(−(𝐿1 + 𝐿2)) = 𝑈𝑖𝑛

𝑢1
′ (−(𝐿1 + 𝐿2)) = 0

, (9a) 

where 𝑢1(∙) and 𝑢1
′ (∙) denote the displacement and strain amplitude in the cylindrical 

specimen part (part 1 in Figure 1); 
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 displacement and strain have to be continuous at the interface between part 1 and part 2 of 

the specimen (i.e., at 𝑧 = −𝐿2 in Figure 1): 

{
𝑢1(−𝐿2) = 𝑢2(−𝐿2)

𝑢1
′ (−𝐿2) = 𝑢2

′ (−𝐿2)
, (9b) 

where 𝑢2(∙) and 𝑢2
′ (∙) denote the displacement and strain amplitudes in the catenoidal 

specimen part [1] (part 2 in Figure 1); 

 displacement and strain have to be continuous at the interface between part 2 and part 3 of 

the specimen (i.e., at 𝑧 = 0): 

{
𝑢2(0) = 𝑢3(0)

𝑢2
′ (0) = 𝑢3

′ (0)
. (9c) 

A further boundary condition has to be taken into account concerning the required stress amplitude 

in the risk-volume. Let define the stress amplification factor of the specimen, 𝑀𝜎, as the ratio 

between the maximum stress amplitude 𝜎 in part 3 of the specimen and the maximum stress 

amplitude 𝜎1 attainable in a cylindrical specimen with diameter equal to 𝐷1 (part 1 in Figure 1), wave 

number equal to 𝑘 and initial displacement equal to 𝑈𝑖𝑛 (see [1]). The stress amplification factor can 

be expressed as: 

𝑀𝜎 =
𝜎

𝜎1
=

𝜎

𝑘𝑈𝑖𝑛𝐸𝑑
= 𝐴 𝑈𝑖𝑛⁄ , (10) 

where, according to Equation (3) and by taking into account the assumption of linear elasticity, the 

stress amplitude in part 3 of the specimen is uniform and equal to the product 𝑘𝐴𝐸𝑑, while the 

maximum stress amplitude 𝜎1 is equal to the product 𝑘𝑈𝑖𝑛𝐸𝑑 (see [1]). 

According to the boundary conditions described by Equations (9), the stress amplification factor of 

the specimen can also be described as (see Appendix 1): 

𝑀𝜎 = |𝑁(𝛽 𝑘⁄ ) cos(𝑘𝐿1) ( 
cos(𝛽𝐿2)+tan(𝛽𝐿2)sin(𝛽𝐿2)

tan(𝛽𝐿2)+(𝛽 𝑘⁄ )(𝑘𝐿3)
)|, (11) 

where 𝑁 = 𝐷1 𝐷2⁄ , 𝛽 = √(𝑘𝐿2)2 − acosh2(𝑁) 𝐿2⁄  and: 

𝑘𝐿1 = atan (−(
(𝛽 𝑘⁄ )(𝑘𝐿3)tan(𝛽𝐿2)−1

tan(𝛽𝐿2) (𝛽 𝑘⁄ )⁄ +(𝑘𝐿3)
+
acosh(𝑁)

𝑘𝐿2
√1 − 𝑁−2)). (12) 

According to Equations (11) and (12), for a given value of 𝑘𝐿3, both 𝑀𝜎 and 𝑘𝐿1 depend on the 

diameter ratio 𝑁 and on the non-dimensional variable 𝑘𝐿2. As a consequence, once part 3 of the 

specimen (see Section 2), the value of the initial displacement 𝑈𝑖𝑛, the desired maximum stress 

amplitude 𝜎 and the diameter value 𝐷1 have been defined, part 1 and part 2 of the specimen can 

be completely attained. 

Figure 3 shows the variation of 𝑀𝜎 = 𝜎 (𝑘𝑈𝑖𝑛𝐸𝑑)⁄  and 𝑘𝐿1 with respect to 𝑘𝐿2 for different 

diameter ratios, 𝑁 (each graph has been obtained for a specific value of 𝑘𝐿3). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3: Plots of 𝑀𝜎 and 𝑘𝐿1 vs. 𝑘𝐿2 for different values of 𝑘𝐿3: (a) 𝑘𝐿3 = 0 (hourglass specimen); (b) 

𝑘𝐿3 = 0.25; (c) 𝑘𝐿3 = 0.50; (d) 𝑘𝐿3 = 0.75. 

Figure 3 can be used for a quick graphical estimation of the lengths 𝐿2 and 𝐿1. 

4. Illustrative example 

The procedure proposed in Sections 2 and 3 is used to design a Gaussian specimen with a large 

theoretical risk-volume (Section 4.1). The stress distribution along part 3 of the designed Gaussian 

specimen is verified through a FEA (Section 4.2) and validated experimentally by means of strain 

gage measurements (Section 4.3). A dog-bone shaped specimen with the same theoretical risk-

volume is also analyzed in order to compare the stress distributions in the central specimen parts. 

4.1. Analytical design procedure 

A steel specimen (𝐸𝑑 = 206 GPa, 𝜐 = 0.29 and 𝜌 = 7800 kg m3⁄ ) with diameter 𝐷2 equal to 

10 mm and theoretical risk-volume 𝑉 equal to 5000 mm3 is considered for the analytical design 

procedure. The resonance frequency is set equal to the resonance frequency of the piezoelectric 

transducer (20 kHz). As a consequence, the wave number 𝑘 is equal to 24.45 rad m⁄ . 

Given 𝑉, 𝑘 and 𝐷2, Equation (8) permits to compute the length 𝐿3: 𝐿3 = 27.4 mm. 
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According to Equation (10), given the initial displacement (𝑈𝑖𝑛 = 33 μm), a stress amplification 

factor 𝑀𝜎 equal to 1.2 must be guaranteed in order to obtain a desired maximum stress amplitude 

𝜎 equal to 200 MPa. 

For a diameter ratio 𝑁 equal to 2 (i.e., 𝐷1 = 20 mm) and for given values of 𝐿3 and 𝑀𝜎, Equation 

(11) can be solved in order to obtain the length 𝐿2: 𝐿2 = 10.1 mm. 

Finally, length 𝐿1 can be obtained from Equation (12): 𝐿1 = 8.0 mm. 

The same specimen geometry can be defined through a graphical procedure (Figures 2 and 3). Given 

𝑉, 𝑘 and 𝐷2, the non-dimensional parameter 𝑘𝑉 𝐷2
2⁄  is equal to 1.22. The corresponding value of 

𝑘𝐿3 is 0.67 (Figure 2), yielding to 𝐿3 = 27.4 mm. Given the amplification factor 𝑀𝜎 = 1.2, two 

values of the non-dimensional variable 𝑘𝐿2 can be obtained through the graphs in Figure 3 with 

𝑘𝐿3 = 0.5 and 𝑘𝐿3 = 0.75. A linear interpolation allows to determine the value of 𝑘𝐿2 = 0.26 

corresponding to 𝑘𝐿3 = 0.67. The estimated value of 𝑘𝐿2 yields 𝐿2 = 10.6 mm. Given 𝑘𝐿2, the 

same procedure can be repeated in order to obtain 𝑘𝐿1. The final estimated value of 𝑘𝐿1 is 0.19 

which yields 𝐿1 = 7.8 mm. 

The approximated result is a consequence of the approximated evaluation of 𝑘𝐿1 and 𝑘𝐿2 through 

linear interpolation. Anyway, it has been verified that the geometrical errors due to the 

interpolation process have been verified and are generally characterized by a relative error smaller 

than 5%. 

4.2. Finite element analysis 

In order to verify the uniformity of the stress distribution in a Gaussian specimen along its central 

part (part 3 in Figure 1) at the first longitudinal frequency, the specimen geometry identified in 

Section 4.1 is used to create a numerical model for a modal FEA. The stress distribution along the 

specimen is also compared to that obtained by considering a dog-bone shaped specimen with the 

same theoretical risk-volume, wave number and diameters 𝐷1 and 𝐷2. 

The numerical analyses are carried out by using the commercial FEA program ANSYS. Half of the 

geometric specimen model is considered due to its symmetry and eight-node quadrilateral elements 

(plane 82) with the axisymmetric option are used for the FEA. The numerical models count for 18630 

elements for the dog-bone shaped specimen and for 16800 elements for the Gaussian specimen. 

The same material properties (𝐸𝑑, 𝜐 and 𝜌) introduced in Section 4.1 are considered for both 

numerical specimen models. 

Figure 4 shows the variation of the non-dimensional stress amplitude (stress amplitude normalized 

by the maximum stress value 𝜎𝑚𝑎𝑥,𝑙𝑜𝑛𝑔,3 reached along the longitudinal axis in part 3 of the 

specimen) with respect to the non-dimensional coordinate 𝑧 𝐿3⁄ . According to the definition of risk-

volume considered in [8-10], a non-dimensional stress amplitude variation of 0.1 (dash-dot line in 

Figure 4) represents a possible tolerance limit for assuming the stress amplitude to be risky for crack 

nucleation. 
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Figure 4: Stress distribution in central specimen part (numerical results) along the longitudinal axis. 

According to Figure 4 and considering the Gaussian specimen, the stress amplitude along the 

longitudinal axis is larger than the 90% of 𝜎𝑚𝑎𝑥,𝑙𝑜𝑛𝑔,3 for the 100% of 𝐿3 (corresponding to an actual 

risk-volume equal to 97% of the theoretical risk-volume). As for the dog-bone shaped specimen, the 

stress amplitude along the longitudinal axis is larger than the 90% of 𝜎𝑚𝑎𝑥,𝑙𝑜𝑛𝑔,3 for about the 60% 

of 𝐿3 (corresponding to an actual risk-volume equal to 58% of the theoretical risk-volume). 

Finally, the variation of the longitudinal stress along the radial direction is also verified in the 

analysis. For both specimens, the maximum stress amplitude is reached in correspondence of the 

longitudinal axis. The stress amplitude decreases from the longitudinal axis to the surface of the 

specimens with a very limited variation: when the specimen mid-section is considered, FEA results 

show a 1.1% stress amplitude reduction for the Gaussian specimen and a 0.2% stress amplitude 

reduction for the dog-bone shaped specimen. It should be noted that the larger the diameter of the 

central part of the specimen, the larger the stress amplitude reduction along the radial direction. 

This effect obviously limits the maximum risk-volume attainable with a Gaussian specimen. Since 

this kind of limitation could be a significant drawback for the practical application of the Gaussian 

specimens, the consequences of the stress amplitude reduction on the maximum attainable risk-

volume were investigated with a number of FEA. The results obtained with FEA showed that 

specimens with significantly large risk-volumes (up to 20000 mm3) can be designed, regardless of 

the stress amplitude variation along the radial direction (risk-volumes were computed by 

considering the stress amplitude variation along any direction in the specimen). 

4.3. Experimental validation 

The stress distribution along the central part of the specimens is validated through an experimental 

test. The dog-bone shaped and Gaussian specimens which have been designed in Section 4.1 are 

produced in AISI 1040 carbon steel. Three T-rosettes strain gages (HBM 1-XY31-1.5/350), each with 

two strain gages connected at half bridge, are used for the evaluation of strain values at the 

specimen surface. For both specimens, the rosettes are bonded along the central specimen part: 
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the first rosette is bonded at the specimen mid-section, the second rosette at the 70% of 𝐿3 and the 

third rosette at the 85% of 𝐿3. Figure 5 shows the specimens after the application of the rosettes. 

 

(a) 

 

(b) 

Figure 5: Specimens after application of strain gage rosettes: (a) dog-bone shaped specimen; (b) Gaussian 

specimen. 

A strain gage amplifier (EL-SGA-2/B by Elsys AG) is used for the completion of the Wheatstone bridge 

of each rosette and for the amplification of the signal. The measurement is acquired at a sample 

rate of 600 kHz by a National Instruments data acquisition card (PCIe-6363). 

An ultrasonic testing machine for fully reversed tension compression tests developed by the authors 

[14] is used for the test: specimens are subjected to load cycles for 3 seconds. Figures 6 and 7 show 

the strain measured at each point normalized by the value detected at the specimen mid-section, 

𝜎𝑐𝑒𝑛𝑡𝑒𝑟. 

The acquired signals are fitted with a sine function (for each case, the correlation coefficient is larger 

than 99.99% and the mean value is equal to zero). As shown in Figures 6 and 7, the stress amplitude 

distribution is not uniform for the dog-bone shaped specimen while it is almost uniform for the 

Gaussian specimen. 

 

(a) 

 

(b) 

Figure 6: Stress variation measured by strain gage rosettes bonded to the dog-bone shaped specimen: (a) 

rosette at 70% of 𝐿3; (b) rosette at 85% of 𝐿3. 
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(a) 

 

(b) 

Figure 7: Stress variation measured by strain gage rosettes bonded to the Gaussian specimen: (a) rosette at 

70% of 𝐿3; (b) rosette at 85% of 𝐿3. 

In particular, Table 1 reports a comparison between the stress variation obtained with the FEA and 

the experimental test. 

Table 1: Comparison between numerical and experimental results: values of the 𝜎 𝜎𝑐𝑒𝑛𝑡𝑒𝑟⁄  percent ratio. 

Analysis type 
𝒛 𝑳𝟑⁄ = 𝟕𝟎 % 𝒛 𝑳𝟑⁄ = 𝟖𝟓 % 

Dog-bone Gaussian Dog-bone Gaussian 

Finite Element 85.8 % 100. 0% 80.2 % 100.2 % 

Experimental 
(95 % confidence interval) 

[85.4; 86.5] % [99.6; 100.8] % [80.1; 81.4] % [100.0; 101.1] % 

Note: Confidence intervals are obtained from 180 tests; for each experimental test, the stress amplitude is 

evaluated with a minimum of 1000 data points. 

According to Table 1, the FEA results are included in the experimental confidence intervals. 

Therefore, it can be concluded that no significant statistical difference exists between FEA and 

experimental results. It is worth to note that, for the Gaussian specimen, the values larger than the 

100% indicate a maximum stress amplitude not reached at the specimen mid-section (Figure 4). 

5. Discussion 

The numerical simulation and the experimental validation have raised some points of discussion 

which are dealt with in the following sub-sections. 

5.1. Stress concentration 

A stress concentration is present at the interface between part 2 and part 3 of the specimen (𝑧 = 0 

in Figure 1), even though an appropriate fillet radius is adopted. In order to evaluate the stress 

concentration effects, the stress concentration factor 𝐾𝑡 is conservatively considered in place of the 

fatigue strength reduction factor 𝐾𝑓. The 𝐾𝑡 value is computed as the ratio between the overall 
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maximum stress (i.e., 𝜎𝑚𝑎𝑥,𝑜𝑣𝑒𝑟𝑎𝑙𝑙) reached in the specimen and the maximum stress reached along 

the longitudinal axis in part 3 of the specimen (i.e., 𝜎𝑚𝑎𝑥,𝑙𝑜𝑛𝑔,3): 

𝐾𝑡 =
𝜎𝑚𝑎𝑥,𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝜎𝑚𝑎𝑥,𝑙𝑜𝑛𝑔,3
. (13) 

The experimental results shown in [8] demonstrate that no failure occurs in the region affected by 

the stress concentration, even if the 𝐾𝑡 value is equal to 1.08. Therefore, it could be concluded that, 

according to the experimental data in [8], the stress concentration effects does not influence the 

experimental results if 𝐾𝑡 is limited to 1.08. 

It is possible to obtain Gaussian specimens with 𝐾𝑡 smaller or equal to 1.08 if the diameter ratio 𝑁 

is properly chosen. For this purpose, the design procedure described in Sections 2 and 3 has to be 

iteratively carried out by varying the diameter ratio until a specimen with the desired amplification 

factor, risk-volume and stress concentration factor is obtained. As an example, if the specimen 

designed in Section 4 is taken into consideration, the FEA allows to calculate a stress concentration 

factor 𝐾𝑡 = 1.12, slightly larger than 1.08. A smaller 𝐾𝑡 value (𝐾𝑡 = 1.06) can be obtained if the 

diameter ratio 𝑁 is reduced to 1.6 by increasing the diameter 𝐷2 (see [15]). 

5.2. Practical application of Gaussian specimens 

It is generally acknowledged that planar acoustic waves assumed in Equation (1) are appropriate if 

specimens with smooth changes of the diameter are calculated. Indeed, local stress variations due 

to stress concentrations effects and radial stress variations cannot be considered with Equation (1) 

and they must be estimated through FEA. However, it is worth noting that results reported in the 

experimental validation showed that the errors in the overall design of the specimens are negligible 

even if the changes of diameter are not smooth (see e.g., part 2 of the specimen) and the radial 

dimension is not small if compared to the longitudinal dimension: in the Gaussian specimen case, 

the resonance frequency computed with FEA is 0.35% smaller than the theoretical one and the 

actual risk-volume is only 3% smaller than the theoretical one. In this respect, the analytical 

approach can be properly adopted in practical design of Gaussian specimens. 

It should also be noted that the effects of shape errors on the resonance frequency of the specimen 

must be taken into account for the practical application of Gaussian specimens. In this respect, in 

[16], the Authors analyzed the substitution of the Gaussian profile (part 3 of the specimen in Figure 

1) with an arc-of-circle. FEA results reported in [16] show that the profile modification induces 

negligible effects both on the resonance frequency and on the final risk-volume of the specimen. 

Some other aspects need to be considered when designing a Gaussian specimen characterized by a 

long Gaussian part. In particular, an increment of the length of the Gaussian specimen part generally 

reduces the stress amplification factor. As a consequence, in order to obtain the same stress 

amplitude in the Gaussian specimen part, the vibration amplitude and the absorbed power of the 

ultrasonic converter must significantly increase. 

As for the vibration amplitude, by designing ultrasonic horns with the desired amplification factor it 

is possible to reach maximum displacement amplitudes larger than 100 μm. The ultrasonic system 
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(piezoelectric converter, booster and catenoidal horn with amplification factor equal to 4) adopted 

for the experimental validation [14] can reach up to 110 μm with a maximum stress amplitude in 

the horn smaller than 120 MPa. If the Gaussian specimen considered for the experimental 

validation is excited by a vibration amplitude equal to 110 μm, the stress amplitude in the Gaussian 

specimen part reaches about 660 MPa, a value slightly larger than the maximum fatigue strength 

(620 MPa) obtain by Furuya in [8-10] for different high-strength steel specimens with maximum 

risk-volume equal to 912 mm3. However, it is worth noting that, according to the experimental 

results in [9], if the risk-volume increases from 254 mm3 to 780 mm3 (i.e., about 3 times larger 

than 254 mm3) the percent fatigue strength decrement becomes equal to 18% (from about 

680 MPa to 560 MPa). Therefore, it can be expected that, for a risk-volume equal to 5000 mm3 

(i.e., about 6 times larger than 780 mm3 and 5 times larger than 912 mm3), the fatigue strength 

reduces to a value significantly smaller than 660 MPa and, consequently, the experimental tests can 

be performed with a vibration amplitude significantly smaller than 110 μm. In this respect, it must 

be also considered that, since the distance between the transition stress (the stress differentiating 

surface and internal failure modes in a duplex S-N curve [17,18]) and the fatigue strength at a 

specific risk-volume increases with the risk-volume, for larger risk-volumes it is possible to accept 

larger stress concentration factors (which induce a surface failure mode) and, as a consequence, to 

increase the stress amplification factor of the specimen (see Figure 3). As a consequence, an 

increment of the stress amplification factor allows to further decrease the vibration amplitude that 

must be supplied by the ultrasonic system in case of gigacycle fatigue tests on specimens with large 

risk-volumes. 

As for the power absorption, the experimental validation performed on the Gaussian specimen 

showed that, for a vibration amplitude equal to 33 μm as measured at the free end of the specimen 

(laser displacement transducer Keyence type LK-G5000 with sensor head LK-H022), the absorbed 

power supplied by the generator is 18 W. Since, in case of hysteretic damping, the absorbed power 

is proportional to the square of the vibration amplitude, it can be expected that, for a maximum 

vibration amplitude equal to 110 μm, the maximum absorbed power is equal to about 200 W (10% 

of the maximum power supplied by the generator adopted for the experimental validation). It must 

be noted that the hysteretic damping could induce a significant temperature increment, when large 

risk-volumes are to be tested, as in the case of the Gaussian specimens. In this respect, the 

temperature should be carefully controlled during the test and its increment should not prevent the 

proper execution of the ultrasonic test. For this reason, temperature was measured during the 

validation test performed on the Gaussian specimen. The test was performed in air at room 

temperature and the maximum temperature (measured with an infrared sensor OPTRIS CT-LT-15) 

reached on the surface of the Gaussian part of the specimen at the end of the load cycle (about 3 

seconds) was smaller than 40 °C. The same increment was found when the load cycle was repeated 

after the cooling phase. However, it must be considered that such an increment was found when 

testing the specimen at a stress amplitude equal to 200 MPa. The temperature increment is 

expected to raise when testing at larger stress amplitudes. Further studies are needed in order to 

completely investigate the effect of the hysteretic damping in terms of specimen design and 

temperature increment. 
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Finally, when designing a Gaussian specimen, buckling effects must also be taken into consideration: 

indeed, the larger the length of the Gaussian specimen part, the smaller the critical buckling stress. 

As an example, by conservatively considering the Gaussian specimen part with a constant cross-

section equal to 𝜋𝐷2
2 4⁄  and a buckling length equal to 2.1 ∙ 2𝐿3, the critical buckling stress of the 

Gaussian specimen considered for the experimental validation is 960 MPa, a value significantly 

larger (i.e., not critical) than the maximum stress amplitude attainable with the ultrasonic system. 

6. Conclusions 

The proposed Gaussian shape allows to design specimens characterized by a very large range of risk-

volume values. The analytical stress distribution along the Gaussian part of the specimen has been 

verified numerically by FEA and experimentally on an ultrasonic testing machine by using strain 

gages. 

The analytical equations for designing Gaussian specimens are provided. Simplified plots for an 

easier and faster design of the specimens are also given. The numerical verification and the 

experimental validation showed that the simplistic hypotheses assumed for the analytical design of 

the specimen give raise to negligible design errors. The analytical design procedure can be thus 

properly adopted for practical applications. 

The stress concentration effect due to the cross section variation along the specimen length has 

been taken into account. A design procedure has been proposed in order to obtain specimens with 

the same risk-volume and a 𝐾𝑡 value equal or even smaller than that of the traditional dog-bone 

shaped specimens. 

Practical application of the Gaussian specimen in gigacycle fatigue test was discussed. Possible 

shape errors in the Gaussian profile are negligible both in terms of resonance frequency and in terms 

of final risk-volume of the specimen. The vibration amplitude and the power of ultrasonic 

converters, together with possible buckling effects were taken into account and were found to be 

not critical for the practical application of the Gaussian specimens. The temperature increment was 

also found to be moderate at small stress amplitudes. Further investigation is in progress, in order 

to evaluate the effects of the hysteretic damping on the specimen design as well as on the 

temperature increment during ultrasonic tests at large stress amplitudes. 
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A1. Appendix 1: Proofs of Equations (11) and (12) 

According to Equation (10), the stress amplification factor of the specimen, 𝑀𝜎, is equal to:  

𝑀𝜎 = 𝐴 𝑈𝑖𝑛⁄ , (A1) 

where 𝐴 is a constant value depending on the boundary conditions and 𝑈𝑖𝑛 represents the 

displacement amplitude at the interface between the horn and the specimen. The value of 𝐴 in 

Equation (A1) can be determined by taking into account Equations (9) and the displacement 

amplitude in each specimen part [1]: 

{
 
 

 
 𝑢1(𝑧) = 𝐴1cos (𝑘(𝑧 + (𝐿1 + 𝐿2))) + 𝐵1 sin (𝑘(𝑧 + (𝐿1 + 𝐿2)))

𝑢2(𝑧) =
𝐴2cos(𝛽(𝑧+𝐿2))+ 𝐵2sin(𝛽(𝑧+𝐿2))

cosh(𝑧∙acosh(𝑁) 𝐿2⁄ )

𝑢3(𝑧) = 𝐴𝑘(𝑧 − 𝐿3)

, (A2) 

where 𝐴1, 𝐵1, 𝐴2 and 𝐵2 are constant values. 𝐴1 and 𝐵1 can be obtained from the boundary 

conditions concerning part 1 of the specimen (Equation 9a) and, as a consequence, 𝑢1(𝑧) can be 

rewritten as: 

𝑢1(𝑧) = 𝑈𝑖𝑛 cos (𝑘(𝑧 + (𝐿1 + 𝐿2))). (A3) 

By considering Equations (9b) and (9c): 

{
𝑢1(−𝐿2) = 𝑢2(−𝐿2)

𝑢2(0) = 𝑢3(0)
, (A4) 

and by taking into account Equations (A2) and (A3), constant 𝐴 can be expressed as:  

𝐴 = −
𝑁

√1+(tan(𝑘𝐿1))2

𝑈𝑖𝑛(cos(𝛽𝐿2)+ 𝐵2 𝐴2⁄ sin(𝛽𝐿2))

𝑘𝐿3
. (A5) 

The ratio 𝐵2 𝐴2⁄  in Equation (A5) can be obtained by taking into account Equations (9c): 

𝑢2(0)

𝑢2
′ (0)

=
𝑢3(0)

𝑢3
′ (0)

. (A6) 

Equations (A2) and (A6) finally yield: 

𝐵2

𝐴2
=

(𝛽 𝑘⁄ )(𝑘𝐿3)tan(𝛽𝐿2)−1

tan(𝛽𝐿2)+(𝛽 𝑘⁄ )(𝑘𝐿3)
. (A7) 

By taking into consideration Equations (A1), (A5) and (A7), the stress amplification factor finally 

becomes: 

𝑀𝜎 = |𝑁
𝛽 𝑘⁄

√1+(tan(𝑘𝐿1))2
( 
cos(𝛽𝐿2)+tan(𝛽𝐿2)sin(𝛽𝐿2)

tan(𝛽𝐿2)+(𝛽 𝑘⁄ )(𝑘𝐿3)
)|. (A8) 

Equation (A8) corresponds to Equation (11). 
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The product 𝑘𝐿1 in Equation (A8) can be obtained by taking into account Equations (9b): 

𝑢1(−𝐿2)

𝑢1
′ (−𝐿2)

=
𝑢2(−𝐿2)

𝑢2
′ (−𝐿2)

. (A9) 

Equations (A2) and (A9) finally yield: 

𝑘𝐿1 = atan(−(
𝐵2

𝐴2

𝛽

𝑘
+
acosh(𝑁)

𝑘𝐿2
√1 − 𝑁−2)), (A10) 

which, if Equation (A7) is taken into consideration, corresponds to Equation (12). 
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