Investigation on the Photovoltaic Performance of Quantum Dot Solar Cells through Self-Consistent Modeling of Transport and Quantum Dot Carrier Dynamics

Original

Availability: This version is available at: 11583/2543946 since:

Publisher:

Published
DOI:

Terms of use: openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Investigation on the Photovoltaic Performance of Quantum Dot Solar Cells through Self-Consistent Modeling of Transport and Quantum Dot Carrier Dynamics

Federica Cappelluti1, Ariel P. Cedola2, Mariangela Gioannini1

1Politecnico di Torino, Dept. of Electronics and Telecommunications, Torino, 10129, Italy

2National University of La Plata, Faculty of Engineering, La Plata 1900, Argentina
Outline

- Motivation
- Physics-based model coupling transport and carrier dynamics
- Results
 - Model Validation: case study
 - Impact of QD e and h dynamics on J_{sc} and V_{oc}
 - Modulation doped structures
- Conclusions
III-V Quantum Dots

- Attractive technology to enhance the efficiency of GaAs single- and multi-junction solar cells through bandgap and carrier dynamics engineering
- Possible method for the realization of Intermediate Band solar cells
- The actual potentiality is yet to be assessed
- Underlying physics involves a complex interplay between microscopic and nanoscopic processes → physics-based models are key to understanding the QD role on device performance

Typical device structure
State of art performance: undoped cells

- Small J_{sc} increase, mainly due to WL photogeneration (from EQE measurements)
- V_{oc} degradation
- Room Temperature performance dominated by thermal escape
State of art performance: doped cells

- **n-doping** (d-doping, direct doping) beneficial for V_{oc} recovery
- some results have shown an increase of J_{sc} with **n-doping**, whereas others do not show any significant improvement; **p-doping** kills J_{sc}
- The effect of **doping** is thought to modify the dynamics of capture and escape processes in/out the QDs ⇒ a model including **inter-sub-band carrier dynamics** may be useful to get deeper insight

Sablons’s group: Sablon et al. Nano Lett, 11, 2011

Hubbards’s group: to be published in IEEE JPV 2014
State-of-art modeling approaches

- Most models developed within the IB theory
 - Detailed balance principle, not suitable for device-level analysis
 - Device-level models based on drift diffusion complemented by a discrete energy level associated to the QD array ->
 - does not allow to describe inter-sub-band charge transfer between the QD states
 - suitable only for superlattice structures
This work: drift-diffusion + QD carrier dynamics *

- Tunneling escape from WL \(\rightarrow \) B can be included
- Considered only uncoupled QD layers

* M. Gioannini et al., IEEE JPV, 2013
Results

- Model Validation – Case study
 - Impact of QD e and h dynamics on J_{sc} and V_{oc}
 - Modulation doped structures
Case study: correlation between QD size and photovoltaic performance

- ΔJ_{sc} with respect to ref cell ~ integrated QD’s photogeneration rate: almost full collection efficiency
- Voc degradation larger for the larger QDs, i.e. with higher B-WL barrier
Results

- Model Validation – Case study

- Impact of QD e and h dynamics on J_{sc} and V_{oc}

- Modulation doped structures
High collection efficiency despite slow electron dynamics \rightarrow hole-driven dynamics!

$G_{ph}(WL)$

@ short circuit: high field \rightarrow short sweep-out time in the Barrier

![Graph showing rates and time]
Escape/sweep-out “bottleneck” $\rightarrow V_{oc}$ degradation

- Under forward bias: lower electric field \rightarrow higher barrier sweep-out time
- Capture/recombination becomes dominant over escape/sweep-out
- Effect as stronger as (higher) lower is the individual e/h (capture) escape
More on effect of e/h dynamics: “excitonic-like” case
QD contribution to J_{sc} vs. e/h dynamics

hole dynamics much faster than electrons
→ linear (additive) behavior

“excitonic-like” case
→ NON linear behavior
QD contribution to J_{sc} vs. e/h dynamics

"excitonic-like" case → NON linear behavior

Rates under full & filtered illumination

filtered ill., $\lambda > 870$ nm

full sun ill.
Results

- Model Validation – Case study
- Impact of QD e and h dynamics on J_{sc} and V_{oc}
- Modulation doped structures
Modulation doping structures: V_{oc} recovery in n-doped samples

- Dominant effect is suppressed electron capture from QDs
- Simulated V_{oc} recovery ~ 70 mV for 8e/dot; p-doping quite ininfluent
- Experiments: 121 mV for 8e/dot δ-doping (Polly et al., to appear in JPV 2014); 105 mV for 18e/dot direct doping (Lam et al., NanoEnergy 2014,)
Modulation doping structures: J_{sc} and EQE
Conclusions

- Developed a device-level model including QD intersubband carrier dynamics and transport
- Simulated results in good agreement with typical experimental performance
- Highlighted impact of e/h individual dynamics and de-synchronization on apparent sub-bandgap collection efficiency and Voc degradation
- Preliminary analysis of modulation doped structures
Coupled drift-diffusion / QD model

\[
\frac{\partial E}{\partial x} = \frac{q}{\varepsilon} \left(p - n + N_d^+ - N_a^- + p_{WL} - n_{WL} + p_{ES_i} - n_{ES_i} + p_{GS_i} - n_{GS_i} \right)
\]

\[
\frac{\partial n}{\partial t} = \frac{\partial}{\partial x} \left(\mu_n n E + D_n \frac{\partial n}{\partial x} \right) - R_{TOT} + G_{PH} - R_{N_{CAP}} + R_{N_{ESC}}
\]

Photo-generation in the barrier

Capture from the barrier in the QDs

Photo-generation of carriers in the QDs

Escape of photo-generated carriers from the QDs to the barrier
QD Rate Equations

\[\frac{\partial n_{WL_i}}{\partial t} = \frac{n_{WL_i}}{\tau_{nCAP}} - \frac{n_{WL_i}}{\tau_{nESC}} - \frac{n_{WL_i}}{\tau_{nCAP}} \left(1 - \frac{n_{ES_i}}{N_D \mu_{ES}} \right) + \frac{n_{ES_i}}{\tau_{nESC}} + G_{PHWL} \]

\[\frac{\partial n_{ES_i}}{\partial t} = \frac{n_{WL_i}}{\tau_{ES_i}} \left(1 - \frac{n_{ES_i}}{N_D \mu_{ES}} \right) - \frac{n_{ES_i}}{\tau_{nESC}} - \frac{n_{ES_i}}{\tau_{nCAP}} \left(1 - \frac{n_{GS_i}}{N_D \mu_{GS}} \right) + \frac{n_{GS_i}}{\tau_{nESC}} \left(1 - \frac{n_{ES_i}}{N_D \mu_{ES}} \right) \]

\[\frac{\partial n_{GS_i}}{\partial t} = \frac{n_{ES_i}}{\tau_{GS_i}} \left(1 - \frac{n_{GS_i}}{N_D \mu_{GS}} \right) - \frac{n_{GS_i}}{\tau_{nESC}} \left(1 - \frac{n_{ES_i}}{N_D \mu_{ES}} \right) \]

\[G_{PHWL}(x, \lambda) = \int \alpha_{WL}(\lambda) \cdot \Phi_{AMI,SG}(\lambda) \cdot \exp \left(-\alpha_{WL}(\lambda) \cdot x \right) \cdot d\lambda \]

\[G_{PHES}(x, \lambda) = \int \alpha_{ES}(\lambda, f_e, f_h) \cdot \Phi_{AMI,SG}(\lambda) \cdot \exp \left(-\alpha_{ES}(\lambda, f_e, f_h) \cdot x \right) \cdot d\lambda \]

\[G_{PHGS}(x, \lambda) = \int \alpha_{GS}(\lambda, f_e, f_h) \cdot \Phi_{AMI,SG}(\lambda) \cdot \exp \left(-\alpha_{GS}(\lambda, f_e, f_h) \cdot x \right) \cdot d\lambda \]