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Abstract—In a context of ever-increasing demand for network
capacity, many scheduling algorithms and offloading techniques
leverage content locality, i.e., the fact that nearby-located users
tend to request the same content. In many cases, this phenomenon
is linked to the fact that people with the same background, e.g.,
immigrants from the same country, tend to live close to each
other. By exploiting real-world communication traces, we study
the significance of such a clustering effect, and the extent to which
it is linked to continent of origin of each community. We extend
our study to Italian provinces, and see that, although similar
to foreign communities in size, the people coming from a same
province show no tendency to cluster together. We complete our
paper with a discussion of the implementation techniques and
programming models that are a better fit for such “big data”
manipulation.

I. INTRODUCTION

It has been often observed that humans react to relocation

by seeking the familiar. Newcomer immigrants to London, for

example, have been reported to either live half a mile from

most of their fellow nationals, i.e., in the same neighbor or

area, or go half a world back to their country of origin.

Recent data show that such a pattern is not true for modern

immigrants; in particular, they tend to follow their job rather

than their community [1]. However, immigration in London

is an ancient and, in many ways, successful story; other

cities, such as Milan, are widely believed to be following the

same path. This prompts the question – how are immigrants

distributed within Milan? Do they follow the “half a mile,

half a world” pattern? Do immigrants from different areas,

e.g., from different continents, behave differently?

In addition to foreign immigrants, Milan is home to a large

number of immigrants from other parts of Italy. Do they show

any tendency to cluster, or are such phenomena only associated

to non-Italians, whose linguistic and cultural differences are

more significant?

We do not ask such questions out of sheer curiosity. In

addition to obvious economic and social implications, studying

locality patterns of international communication has a direct

impact on the operation of current and future cellular networks

– and on their very profitability. Both are endangered by the

raise in bandwidth demand [2], which also caused several

recent connectivity shortages [3]. Among the many approaches

that have been proposed to cope with this issue, most seek

to leverage content locality, i.e., the fact that nearby-located

users tend to request the same content. These users can

thus be served through device-to-device LTE links [4], LTE

broadcast [5], or opportunistic networking [6].

To network engineers, content locality is largely a fact, to

be taken advantage of whenever possible. By studying the

location of international callers, we seek to shed some light

over its causes, making the phenomenon easier to understand,

predict, and exploit.

Studying call locality patterns is difficult for several reasons.

The foremost one is that all call information is confidential,

collected by mobile operators and stored in deep vaults, in-

accessible to ordinary researchers. Thankfully, Telecom Italia

decided to share a valuable set of traces with the participants

of the Big Data Challenge [7] they launched in 2014.

As essential as it is, obtaining the traces is but a first step.

The next ones include identifying the meaningful information,

processing it efficiently, and make sense of the result. There

is also another, more technical challenge: “big data” such as

our traces are, well, big: dealing with them requires special

care, optimized tools, and tailored algorithms.

We begin by describing our traces in Sec. II. Then, we

present the metrics we compute in Sec. III, along with the

relevant implementation details. We discuss the results we

obtain in Sec. IV, and draw our conclusions in Sec. V.

II. THE TRACES

A rich set of traces, covering the months of November and

December 2013 and the Italian cities of Milan and Trento,

have been shared by Telecom Italia with the participants to its

Big Data Challenge [7].

Space is divided into 10,000 235-meter tiles; time is divided

into 10-minute periods. For each tile and time period, the

traces contain a value proportional to the number of calls and

SMS messages send and received, as well as Internet activity.

Notice that we do not know the actual number of messages,

duration of calls, amount of Internet traffic; this is due to

privacy (and, possibly, commercial) reasons.

Information is further disaggregated by international prefix

and Italian province. As an example, we can know whether

there have been incoming calls from the province of Palermo

to Piazza Duomo on Wednesday, Dec. 18th between 6:30 and

6:40, or on the same day between 19:10 and 19:20. Such level

of detail has an impact on the size of traces: the full set of
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TABLE I
Telecommunications MI TRACE: FIELDS.

Field Description Type

Square id Tile number (1 to 10,000) Numeric

Province Name of the province Text

Time interval Start of the 10-minute period
of interest

Timestamp

Incoming calls Value proportional to the num-
ber of incoming calls

Numeric

Outgoing calls Value proportional to the num-
ber of outgoing calls

Numeric

TABLE II
Telecommunications MI to Provinces TRACE: FIELDS.

Field Description Type

Square id Tile number (1 to 10,000) Numeric

Time interval Start of the 10-minute period of
interest

Timestamp

Country code International prefix of the coun-
try

Numeric

SMS-in Value proportional to the num-
ber SMS messages from the
country to the tile

Numeric

SMS-out Value proportional to the num-
ber SMS messages from the tile
to the country

Numeric

Call-in Value proportional to the num-
ber calls from the country to the
tile

Numeric

Call-out Value proportional to the num-
ber calls messages from the tile
to the country

Numeric

Internet Value proportional to the
amount of Internet traffic
generated from roaming phones
of the country

Numeric

compressed archives weighs around 190 GByte and includes

tens of billions of rows.

In addition to these communication traces, contestants have

been given access to a significant amount of additional infor-

mation, including road traffic, weather conditions, and geo-

tagged tweets. These auxiliary traces share the same time and

space reference of the main one, making it remarkably easy

to correlate them.

Traces are distributed as compressed archives, containing a

file (typically in TSV format) for each day.

In this work, we will be using only two of the

traces, named Telecommunications MI and Telecommunica-

tions MI to Provinces. The information they include is shown

in Tab. I and II respectively.

III. METRICS AND IMPLEMENTATION DETAILS

We start this section by describing and defining the metrics

we are interested into (Sec. III-A). Then, in Sec. III-B, we

provide further details on how to efficiently compute such

metrics and process the traces.

A. Metrics

Ideally, we would like to know the average distance between

two nationals of a given country (or two persons coming from

the same province) and living in Milan – this would enable

us to directly verify the “half a mile or half a world” pattern.

Clearly, computing such a metric is unfeasible with the data

at our disposal.

What we can compute is the average distance between

people calling the same nation or province. Therefore, our first

problem is to infer where a person lives from where she makes

(or receives) calls. We cope with this issue by restricting our

attention to the calls that take place after 8pm, and assume that

(most) of such calls are made from one’s house. Also, most

likely these are personal, rather than business, calls. As simple

as they are, such an assumptions are not overly simplistic:

while it is true that one makes plenty of calls, e.g., on a night

out, the calls we are looking at are international (or to another

province) – this excludes, e.g., all calls made to a friend to

know whether she wants to hang out that very night.

Let T be the set of all tiles, and C the set of all countries.

We call pct the amount of (relevant) calls made between

country c ∈ C and tile t ∈ T in either Milan or Trento. Also,

let duv be the distance between tiles u and v.

We begin by estimating the fraction fct of people from

country c that are in tile t at the time the traces are recorded.

As discussed above, we do so by exploiting the amount of

calls pct:

fct =
pct∑

u∈T
pcu

. (III.1)

Now, we can compute the average distance δct at which a

person from country c staying in tile t will find her fellow

nationals:

δct =
∑

u∈T

fcudtu. (III.2)

Finally, the average distance δ̄c between nationals of country c
can simply be computed through a weighted sum:

δ̄c =
∑

t∈T

pctδct. (III.3)

It is important to stress the meaning of the metric δ̄c: if

the pct values were the number of people from country c in

tile t, then δ̄c would represent the average distance between

two such people. In practice, we estimate the number of people

through the calls they make; nevertheless, δ̄c is a good measure

of how much communities tend to cluster together.

Finally, we stress that the average distance between people

making calls to/from Italian provinces is computed in exactly

the same way.

B. Implementation details

Having defined the metrics, one may think most of the job

is done – we only have to implement the equations in any

language of our choice, and feed the data to the resulting

program. Sadly, when it comes to big data, how algorithms are

implemented becomes a crucial issue. It is not merely a matter

of doing operations faster – selecting the right tools impacts

the scale of problems one can solve. Efficient implementation

does not mean selecting “fast” languages, such as C/C++,

but rather using optimized libraries and efficient paradigms,

whichever the language.
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TABLE III
OUTPUT OF THE map STEP.

Field Description Type

Square id Tile number (1 to 10,000) Numeric

Country Name of the country Text

Traffic Number of incoming/outgoing calls Numeric

1) Vectorized computation: Numpy [8] is a Python library

aimed at scientific computing. It provides a ndarray type to

represent multidimensional arrays (including matrices), and a

highly optimized implementation of array operations (includ-

ing matrix product). Such a power comes at a cost in terms

of flexibility: in order to profit by Numpy’s speed, operations

must be vectorized, i.e., expressed in matrix form.

Our next task is thus to compute the metric δ̄c through

matrix operations alone. Notice that such a need for vectorized

operations is not exclusive to Python and Numpy: R and

MATLAB users face the same issue.

We group the p-values in matrix P = (pct), and the d-

values in matrix D = (duv). Then, we proceed as shown in

Alg. 1.

Algorithm 1 Vectorized computation of the metric.

Require: P,D
1: F ← P/P.sum(axis=1)
2: ∆ = (δct)← FD
3: δ̄ = (δ̄c)← (∆ · F ).sum(axis=1)
4: return δ̄.

In line 1 we compute matrix F , containing the frequency

values defined in (III.1). Summing a matrix over axis 1 means,

in Numpy syntax, computing a column vector where each

element is the sum of the corresponding matrix row – in our

case, the total amount of calls to/from country c. Also notice

that the division between a matrix and a column vector is

permitted in Numpy: each element pct of P is thus divided

by the corresponding value of the column – in other words,

exactly the operation we do in (III.1).

Computing the average distances δct defined in (III.2) is

again done as a matrix operation, specifically, a row-by-

column product between F and D (line 2).

Finally, the country-wise distances δ̄c are computed by

multiplying element-wise ∆ and F , and then computing the

sum of each row of the resulting matrix. This is done in line 3:

the · symbol indicates element-wise multiplication, and the

sum over axis 1 has the same meaning as in line 1.

2) Map-reduce processing: Even with the vectorized im-

plementation presented in Alg. 1, processing the whole trace

at once is impossible: due to its sheer size, the trace cannot

be loaded into memory. While it is true that there are ways

to perform disk-based operations (most eminently, database

indices), in-memory operations are typically faster and more

flexible.

As mentioned in Sec. II, traces are distributed as compressed

archives, containing one file per day. The size of these files
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Fig. 1. Size and average distance for Italian provinces and foreign countries.

averages 350 MByte, very convenient to load and process in-

memory. Our approach is the following:

1) load each file into memory;

2) select and aggregate the relevant information in each file

(map pass) and save it;

3) process the aggregate information of all files (reduce

pass);

4) output the result.

Steps 2-3 above correspond to the map and reduce passes

of the MapReduce programming model. Introduced by

Google [9] and implemented by several open-source frame-

works such as Apache Hadoop, MapReduce is one of the most

popular and effective approaches to deal with “big data”. The

basic idea behind it is processing data one piece at the time,

and then aggregating the resulting piece-wise outputs.

In our case, the input to the map pass is represented by

individual trace files, whose format is shown in Tab. I and

Tab. II. We remove the information we do not need, e.g.,

activities before 8pm, SMS and Internet. Then, we sum the

volumes of incoming and outgoing calls, and we further

sum over time intervals (the equivalent of a SQL GROUP

BY operation). The output of the map step has the format

summarized in Tab. III; its size is less than 1/100 of the input

(mostly due to the fact that we discard time information).

In the reduce pass, we take the output of individual map

passes, and again perform a GROUP BY-like operation, obtain-

ing the pct values needed to compute our metric, as detailed

in Sec. III-A.

Thanks to our MapReduce-like procedure, the size of our

data never exceeds the one of our memory, making it possible

to use the fast, in-memory tools described above. It is worth

stressing, however, that we are not using MapReduce in a

cluster, e.g., through Hadoop: all our processing took place

on a single server – the total processing time was below

15 minutes, and the longest step was decompressing the
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Fig. 2. Size and average distance for foreign communities (a) and Italian provinces (b), with polynomial fit for each continent and zone.

archives.

IV. RESULTS

The first thing we are interested in is visualizing the

relationship between the size of a community and the tendency

of its people to cluster together.

In Fig. 1, each circle corresponds to an Italian province, and

each cross to a foreign country. The coordinates of each point

reflect the traffic generated by the corresponding community

and the average distance between its members.

A first thing we can observe is that smaller communities

tend, in general, to be more clustered – consistently with what

one might expect. However, this is nothing like a general rule.

Look, for example, at the communities whose traffic is sized

at 2 · 102: their average distance ranges anywhere between 5

and 20 tiles.

It is also interesting to look at Italian provinces, represented

by circles in Fig. 1. Their size and average distance are virtu-

ally equivalent to the ones of the biggest foreign communities.

This suggests that the level of integration of such communities

– or, at least, the tendency of their members to settle in various

part of the city – is very high, equivalent to the one of Italian

immigrants.

We have observed that the correlation between the size of

a community and the distance between its members is quite

loose. Now, we study how such a correlation changes for

communities from different continents.

In Fig. 2(a), we highlight how the size/distance relationship

changes for different continents. Asians seem to exhibit a

stronger tendency to cluster together, while Africans are more

evenly scattered throughout the city. Fig. 2(b) is built in the

same way, but focuses on Italian provinces. Here, we see no

clear trend: Italians from different parts of the country tend to

cluster together to similar extents.

Tab. IV(a) summarizes the biggest communities. Romania

and Senegal have the highest average distance, i.e., the weakest

tendency to cluster together; Bangladesh has the shortest one.

Also notice that, contrary to what one might expect, China

does not show up among the biggest communities – perhaps

the Chinese in Milan prefer landline phones or VoIP services.

Tab. IV(b) summarizes the communities with the shortest

average distance. Most, but not all, such communities are very

small. Exceptions include Haiti and Azerbaijan: their size is

not exceptionally small, but their members live remarkably

close to each other – recall that each tile is 235 meters in size.

TABLE IV
FOREIGN COMMUNITIES WITH HIGHEST TRAFFIC (A) AND SHORTEST AVERAGE DISTANCE (B).

(a)

Nation Total traffic Average distance Continent

Egypt 518550 14.89 Africa

Ukraine 127235 17.35 Europe

Senegal 117287 17.48 Africa

Ecuador 76894 16.81 Americas

Romania 63171 19.05 Europe

Peru 52347 15.71 Americas

Morocco 49291 18.64 Africa

Bangladesh 46858 10.07 Asia

(b)

Nation Total traffic Average distance Continent

Cambodia 6 0.49 Asia

Uzbekistan 15 2.53 Asia

Haiti 3237 3.21 Americas

Azerbaijan 386 5.42 Asia

Niger 6 5.53 Africa

Vietnam 28 5.89 Asia

Zambia 18 6.17 Africa

Indonesia 232 6.89 Asia
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Also notice how most of such ultra-clustered communities are

Asian, consistently with the trend we see in Fig. 2(a).

V. CONCLUSIONS

We have exploited the communication traces shared by Tele-

com Italia with the participants to their Big Data Challenge to

investigate the locality patterns of international calls in Milan.

We started by describing our metric of interest – the average

distance between nationals of the same country, adding further

details on how to efficiently compute it. Additionally, we

discussed the MapReduce-like way in which we processed our

traces.

Results highlighted that smaller communities have a slightly

stronger tendency to cluster together. More importantly, such

a tendency seems to depend on the continent of origin of

each community, being strongest for Asians and weakest for

Africans.

We ran the same analysis for Italian provinces, seeking for

similarities and differences with foreign communities. Indeed,

immigrants from Italian provinces are similar to the biggest

foreign communities for numbers and tendency to cluster.

However, there is no clear difference between immigrants from

different parts of Italy, e.g., North and South.
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