
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers / Bertozzi, D.; DI CARLO,
Stefano; Galfano, S.; Indaco, M.; O. l. i. v. o., P.; Prinetto, Paolo Ernesto; Zambelli, C.. - In: ACM TRANSACTIONS ON
EMBEDDED COMPUTING SYSTEMS. - ISSN 1539-9087. - ELETTRONICO. - 14:1 - Article 7(2015), pp. 1-24.
[10.1145/2629562]

Original

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers

Publisher:

Published
DOI:10.1145/2629562

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2543311 since: 2016-09-19T10:54:38Z

ACM

A

Performance and Reliability Analysis of Cross-Layer Optimizations of
NAND Flash Controllers1

BERTOZZI DAVIDE, Università di Ferrara
STEFANO DI CARLO, SALVATORE GALFANO, and MARCO INDACO, Politecnico di Torino
PIERO OLIVO, Università di Ferrara
PAOLO PRINETTO, Politecnico di Torino
CRISTIAN ZAMBELLI, Università di Ferrara

NAND flash memories are becoming the predominant technology in the implementation of mass storage
systems for both embedded and high-performance applications. However, when considering data and code
storage in non-volatile memories (NVMs), such as NAND flash memories, reliability and performance be-
come a serious concern for systems’ designer. Designing NAND flash based systems based on worst-case
scenarios leads to waste of resources in terms of performance, power consumption, and storage capacity.
This is clearly in contrast with the request for run-time reconfigurability, adaptivity, and resource optimiza-
tion in nowadays computing systems. There is a clear trend toward supporting differentiated access modes
in flash memory controllers, each one setting a differentiated trade-off point in the performance-reliability
optimization space. This is supported by the possibility of tuning the NAND flash memory performance, reli-
ability and power consumption acting on several tuning knobs such as the flash programming algorithm and
the flash error correcting code. However, to successfully exploit these degrees of freedom, it is mandatory to
clearly understand the effect the combined tuning of these parameters have on the full NVM sub-system.

This paper performs a comprehensive quantitative analysis of the benefits provided by the run-time
reconfigurability of an MLC NAND flash controller through the combined effect of an adaptable memory
programming circuitry coupled with run-time adaptation of the ECC correction capability. The full non-
volatile memory (NVM) sub-system is taken into account, starting from the characterization of the low level
circuitry to the effect of the adaptation on a wide set of realistic benchmarks in order to provide the readers
a clear figure of the benefit this combined adaptation would provide at the system level.

Categories and Subject Descriptors: C.4 [PERFORMANCE OF SYSTEMS]: Design studies

General Terms: Reliability, Performance, Design

Additional Key Words and Phrases: Adaptable memory controllers, ECC, NAND flash memories

ACM Reference Format:
Davide Bertozzi, Stefano Di Carlo, Salvatore Galfano, Marco Indaco, Piero Olivo, Paolo Prinetto, and Cris-
tian Zambelli, 2013. Performance and reliability analysis of Cross-Layer Optimizations of NAND Flash
Controllers Providing Differentiated Flash Access Modes for Adaptive Computing ACM Trans. Embedd.

1This research has been partly supported by the 7th Framework Program of the European Union through
the CLERECO Project, under Grant Agreement 611404.

Author’s addresses: Di Carlo S., Galfano S., Indaco M. and Prinetto P. are with the Department of Con-
trol and Computer Engineering, Politecnico di Torino, I-10129 Torino, Italy. E-mail: {stefano.dicarlo, sal-
vatore.galfano, marco.indaco, paolo.prinetto}@polito.it. Bertozzi D., Olivo P. and Zambelli C. are with the
Engineering Department, University of Ferrara, I-44122 Ferrara, Italy. E-mail: {davide.bertozzi,piero.olivo,
cristian.zambelli}@unife.it
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c� YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 D. Bertozzi et al.

Comput. Syst. V, N, Article A (January YYYY), 25 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:3

1. INTRODUCTION
The application of the NAND flash memory technology [Atwood et al. 1997] has faced
a surprising increment, far beyond what was expected when it was originally intro-
duced. One popular example are the solid state disks (SSD) that feature the advent of
multi-level cell (MLC) NAND flash memories to store a large amount of data in flash
[Ouyang et al. 2014]. However, with the flash memory storage capacity that roughly
doubles every 18 months, designers face challenging performance and reliability prob-
lems [Micheloni et al. 2010; Mielke et al. 2008; Lee et al. 2003; Bez et al. 2003; Irom
and Nguyen 2007]. MLC flash memories require high programming time and provide
reduced endurance when compared to old single-level cell (SLC) devices. The raw bit
error rate (RBER) of a MLC flash memory is around 10�6 [Cooke 2007], at least two
orders of magnitude worse than the one of a SLC device [Dan and Singer 2003]. These
problems are further amplified by the flash file systems that are often stressed by
frequent write requests of small amount of data [Di Carlo et al. 2011].

State-of-the-art NAND flash memories are tightly cost-optimized. The internal op-
erations of the memory are mostly defined at design-time based on worst-case scenar-
ios able to comply with the industry standards (i.e., ONFI [ONFI Workgroup 2012]).
However, a fixed system configuration based on worst-case scenarios leads to waste
of resources in terms of performance, power consumption, and storage capacity. This
is clearly in contrast with the request for run-time reconfigurability, adaptivity, and
resource optimization in nowadays computing systems [Cardoso and Hübner 2011].
New mobile usage models in today’s complex embedded systems require the execution
of multiple use cases on the same device and require to adapt to often non-predictive
behaviors of today’s complex applications [Henkel et al. 2011]. They require seamless
integration of safety/time-critical functionalities with non-critical functionalities, each
one demanding for different requirements from the storage system [Sampson et al.
2013]. Moreover, NAND flash reliability is not constant; it changes over the device life-
time. This must be taken into account to enable high optimization of these devices. We
clearly see a trend toward supporting differentiated access modes in flash memory con-
trollers for MLC NAND flash devices, each one setting a differentiated trade-off point
in the performance-reliability optimization space. This trend is confirmed by some
commercial devices that already enable additional levels of flexibility selectable by the
user at boot-time. Mainly, these devices enable speed/power consumption optimization
by changing the memory bus interface speed (e.g., Micron MT29F16G08ABABA NAND
Flash), and the storage model (i.e., choosing SLC or MLC writing schemes [Samsung
2012]). Concurrently with these solutions, several researchers focused on the optimiza-
tion of the flash write algorithms [Liu et al. 2012] to guarantee performance/reliability
trade-off and on the use of adaptive ECC schemes to trade-off storage space and per-
formance for higher error correction capability [Chen et al. 2009; Fabiano et al. 2013].
Some studies also investigated how mechanisms that enable applications to store data
approximately enable to improve performance whenever high-precision storage is not
required [Sampson et al. 2013]. However, a clear analysis of the benefits of combin-
ing optimized write algorithms with run-time adaptable ECC schemes is still missing
in the literature thus preventing a clear understanding of the benefits a MLC NAND
flash controller would achieve by implementing this higher level of configurability.
Only a few studies tried to work in this direction. Pan et al. [2011] presented a first
attempt of analyzing joined limited adaptation of the flash programming step voltage
coupled with programmability of the ECC, while a very preliminary study presented
by Zambelli et al. [2012] introduced increased adaptation at the flash physical layer.

The goal of this paper is to perform a comprehensive analysis of the benefits
achievable exploiting the run-time reconfigurability of an MLC NAND flash controller

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 D. Bertozzi et al.

through the combined effect of an adaptable memory programming circuitry coupled
with run-time adaptation of the ECC correction capability. Run-time reconfigurability
is implemented through the definition of a set of access modes, each one setting a spe-
cific trade-off between read throughput, write throughput, uncorrectable bit error rate
(UBER) and power consumption. Rather than focusing on the architectural implemen-
tation of the considered access modes, this paper focuses on the characterization of the
performance/reliability tuning range achievable with them. To the best of our knowl-
edge, this is the first time that run-time adaptation is extended to the full non-volatile
memory (NVM) sub-system and a comprehensive study to quantitatively analyze the
effect of this adaptability considering a wide set of benchmarks is carried out.

The paper first analyzes the trade-off that can be achieved by considering the write
algorithm adaptivity and the ECC adaptivity in isolation and then analyzes the combi-
nation of the two adaptation mechanisms. For this purpose, a comprehensive modeling
and simulation framework has been set up for both the analog and the digital parts
of an MLC NAND flash memory sub-system in an homogeneous 45nm industrial tech-
nology substrate. Furthermore, the benefit of the defined access modes on the software
stack have been evaluated within a simulation framework based on the YAFFS2 (Yet
Another Flash File System version 2) flash file system. A set of different software
benchmarks, with different requirements in terms of storage system have been sim-
ulated, highlighting the benefits they can achieve in terms of performance (i.e., read
throughput and write throughput on the flash memory) and power consumption of the
full NAND Flash memory subsystem.

The paper is organized as follows: Section 2 and Section 3 respectively propose the
result of the characterization of different flash programming algorithms and of an
adaptive ECC sub-system in isolation. Section 4 explores the trade-offs proposed by
the cross-layer optimization in the NAND memory controller. Section 5 shows the per-
formance of the proposed system on a set of real-life applications and finally Section 6
summarizes the main contributions of this work and concludes the paper.

2. CHARACTERIZATION OF ADAPTIVE FLASH PROGRAMMING ALGORITHMS
The physical management sub-system of the memory controller interacts with the
high-voltage (HV) analog circuitry of the NAND flash memory, which is the block in
charge of generating the voltage waveforms required to read/program/erase the mem-
ory cells. It issues commands to a control FSM or to an embedded microcontroller in the
flash device. Without lack of generality in this work we target a 2-bit per cell NAND
flash memory [Mielke et al. 2008]. It stores two bits of information per cell by defining
a set of threshold voltage levels (VTH) identified by the statistical distributions L0-L3
of Fig. 1.

An erase operation places all cells of a block at level L0. The following program
operations set the threshold voltages of the selected cells at one of the three levels
L1-L3 according to the data that must be programmed. The cell programing operation
is achieved through a standard algorithm named Incremental Step Pulse Program-
ming Standard Verify (ISPP-SV) [Micheloni et al. 2010]. A voltage pulse of predefined
amplitude and duration is applied to the gate of each programmed cell. Afterwards,
a verify operation takes place. It verifies whether the VTH of the programmed cells
exceeds a predefined verify level VV FY as depicted in Fig. 2. Since we work with a 2-
bit per cell MLC architecture three verify levels (i.e., VFY1, VFY2, VFY3) are defined
and must be verified. If the verify is successful, the cells have reached the desired dis-
tribution level and they are excluded from the following pulses through the so-called
program-inhibition technique [Micheloni et al. 2010]. Otherwise, another cycle of ISPP
is applied after incrementing the programming voltage of �ISPP.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:5

L3

VFY1 OPVFY3R3VFY2R2R1

L0 L1 L2

Fig. 1. Threshold voltage distributions in a MLC NAND flash. Read levels (R1, R2, and R3), Verify levels
(VFY1, VFY2, VFY3), and over-programming level (OP) are pointed out.

Due to the technological variations, VTH is not perfectly related to the amplitude
of the ISPP pulse. There are ”fast” cells that reach the verify level with few program
pulses and ”slow” cells that require more pulses. Both behaviors represent a threat for
the reliability of the program operation. In fact, the threshold voltage distributions of
the L1-L3 levels significantly deviate from an ideal Gaussian shape. They often cross
the distribution read levels (R1-R3) and cause bit errors. A solution for increasing ISPP
programming accuracy is the ISPP Double Verify (ISPP-DV) algorithm presented by
Micheloni et al. [2010] and Miccoli et al. [2011]. The bit-line voltage of the selected cells
is modulated in order to partially decrease the �ISPP step using a prior verify level
with slightly lower voltage than the original verify level. As a result, a more compact
threshold voltage distribution can be obtained (see Fig. 2).

Another concern of MLC architectures is to decrease the gap in terms of write-
throughput with respect to SLC memories. Both the ISPP-SV and to a larger extent
the ISPP-DV require a large number of verify operations per single ISPP step. An in-
teresting solution to avoid unnecessary verify operations is to use the ISPP Reduced
Verify (ISPP-RV) write algorithm proposed by Micheloni et al. [2010]. In the ISPP-RV
algorithm, the number of verify operations is initially small and is automatically in-
creased based on the number of ISPP steps the algorithm performs (see Fig. 2). This
algorithm is able to provide increased programming speed at the cost of reduced ro-
bustness against page-errors.

Currently, the flash programming algorithm is set at fabrication time in the flash
controller. It is stored in a code-ROM integrated in the same memory die, and executed
by an embedded microcontroller. Implementing more than one write algorithm simply
requires to store more than one algorithm in the code-ROM by slightly increasing its
capacity. Having more than one programming algorithm stored in the code-ROM re-
quires also a mechanism to select the desired algorithm for a transaction or a set of
transactions. The ONFI 3.0 standard for NAND Flash memories [ONFI Workgroup
2012] envisions the possibility of implementing both new vendor-specific commands
and special commands in case of development of innovative writing methodologies. It
could therefore be exploited to implement the write algorithm selection through three
dedicated commands such as: 0x80 = Program with ISPP-SV, 0x81 = Program with
ISPP-DV, and 0x82 = Program with ISPP-RV. The choice of the programming algo-
rithm can be also implemented through dedicated configuration registers. This ap-
proach is consistent with the methodologies exploited in today’s NAND flash memory
controllers to provide reconfiguration options (e.g., changing the DDR protocol timings
[Evatronix 2012], or the storage paradigm [Samsung 2012]).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 D. Bertozzi et al.

Fig. 2. Comparison of the different ISPP algorithms exploited to expose NAND Flash reliabil-
ity/performance trade-offs

It is worth to mention here that the scaling of the flash cell geometry poses several
threats to the reconfigurability of the NAND flash programming algorithms that must
be carefully considered. Especially when moving to ultra-scaled devices it is easier
to incur in reliability side-effects. However, for technology nodes such as the 4X nm
(considered in this work) and the 3X nm it is still possible to leverage on the number of
verify pulses to expose trade-offs in the reliability/performance domain. When moving
to the 2X nm technology nodes and beyond a refinement of the entire programming
algorithms is required due to an increased complexity of the internal NAND flash
micro-controller. However, even for these devices it is common practice for the industry
to provide on the same chip more than one programming, erasing, and even reading
algorithm to be chosen by the NAND flash controller manufacturer acting upon results
from test modes that are not accessible by the final users [Micheloni et al. 2010]. This
suggests that programming algorithm adaptation will be exploitable also for these
devices.

The next sections illustrate the models and the simulations performed to character-
ize how different programming algorithms impact the raw bit error rate (RBER) and
the power consumption of the memory 2.

2.1. Compact and accurate NAND flash Model
Our case study targets a 2-bit per cell NAND flash memory featuring a 45 nm man-
ufacturing process designed for low-power applications. The simulation environment
includes two modules: (1) the high-voltage (HV) sub-system exploited to generate the
voltages required for the programming algorithms (including the verify stage), and (2)
a compact model of the NAND flash memory with array simulation capability.

2The programming of MLC NAND flash also depends on the strategy adopted for loading the data to write
into the memory. Without loss of generality, we chose to investigate and explore the ISPP full sequence
strategy [Micheloni et al. 2010] instead of the two-rounds one since it reduces the simulation time and
provides faster post-processing of the experimental results

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:7

The HV module is the analog core of a NAND flash memory. Modifying or reading the
number of electrons stored into the floating gate requires the generation of a set of bias
voltages with a desired precision, timing and granularity. Moreover, since many volt-
ages have a value larger than the NAND power supply, several charge pumps are re-
quired. To obtain highly accurate estimations of the energy consumption of each ISPP
algorithm considered in this work, we simulated the program charge pump, the inhibit
charge pump, the verify charge pump and the regulators/limiting systems according to
the guidelines proposed by Kang et al. [2008]. All blocks have been implemented in
HSPICE using STM-45nm technology library [CMP 2012]. The power consumption of
each pump extracted from the SPICE simulation during the various stages of the ISPP
algorithms has been then fed into a NAND flash power modeling framework based on
the equation set provided by Mohan et al. [2010]. As input parameters of the model, we
assumed a low-power NAND flash supplied with VDD = 1.8V using an ISPP algorithm
starting from 14V to 19V, using �ISPP steps of 250mV. The same settings hold for all
considered programming algorithms. The simulated HV sub-system has been designed
to work with all algorithms. In fact, in a NAND flash device, the timing and sequence
of the analog circuitry operations are driven by the embedded microcontroller/FSM by
means of a set of interface registers required to generate the enable signals for the
charge pumps. Switching from one ISPP algorithm to another does not require a mod-
ification of the HV sub-system. It only implies a different sequence of enable signals
notified through the same register interface.

Together with the HV module we developed a compact model of the NAND flash
cells partially based on Spessot et al. [2010]. It includes variability effects typical of
nanoscaled memories and it allows us to simulate array functionalities during a page
programming operation. The considered variability effects include: width and length
geometrical variations of FG-MOS transistors; non-homogeneity of tunnel oxide and
substrate doping; tunneling caused by the electron injection granularity process into
the cells floating gate; cell-to-cell interference caused by cross-talk between adjacent
floating gates; aging effects due to repeated program/erase cycling, which typically
degrades the RBER. All these effects contribute to significantly broaden the gaussian
distributions related to the programmed threshold voltage levels within the array, neg-
atively impacting the RBER. A comprehensive description of the considered model is
provided in the Appendix of this paper. The model has been validated by fitting it
against experimental data collected from Spessot et al. [2010] as showed in Fig. 3,
where the cell voltage threshold is plotted during an ISPP operation for a 41nm NAND
flash technology. The experimental data provided by Spessot et al. [2010] consider
the study of the cell threshold voltage evolution after the application of an ISPP that
ranges between 6V and 24V using �ISPP=1V, which is different from the specification
of our flash memory. Nevertheless, our ISPP range (14V - 19V) represents a subset
of the one proposed in Spessot et al. [2010]. Moreover, modifications of �ISPP do not
change the physical structure of the memory cells [Cooke 2007], thus allowing to fit
our model against the data provided Spessot et al. [2010].

It is worth to mention here that the proposed model does not take into account relia-
bility issues due to retention errors. Retention errors are one of the major contributors
in NAND flash memory reliability. However, the guidelines provided by JEDEC Solid
State Technology Association [2011] about the modeling of the NAND RBER during
retention clearly indicate that this value is an offset of the RBER obtained at a specific
program/erase cycle according to the following model:

RBER (PE, tret) = RBERwr(PE) + Bo (PEn · tret)
m (1)

where tret is the page retention time measured in hours, PE is the instantaneous pro-
gram/erase cycles count of the page, m is a coefficient whose numerical value is usually

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 D. Bertozzi et al.

Fig. 3. Fitting results of the NAND flash compact model with experimental data during an ISPP-SV oper-
ation featuring 7µs pulses, 1V �ISPP.

between 1 and 2, n is a power-law coefficient for program/erase cycles, RBERwr is the
error rate observed at tret = 0, and Bo is a scale factor, which depends on the target
technological process. Therefore, in order to capture the impact of retention errors a
prior characterization of RBERwr is required. Adding the retention contribution will
introduce an offset that would not significantly change the definition of the trade-off
points while increasing the computational complexity of the model. Moreover, the sim-
ulations performed in this paper consider continuous benchmarks that feature short
relaxation time between read and write operations, therefore limiting the impact of
the retention errors.

2.2. Characterization of programming algorithms
Power consumption, RBER and the average page write time of the flash when using
the ISPP-SV, the ISPP-DV, and the ISPP-RV algorithms have been characterized by
means of the models presented in Section 2.1. Such parameters are derived as a func-
tion of the program/erase cycles of the memory and reported in Fig. 4. Fig. 4a, 4c and
4e provide average results obtained by simulating a random write pattern on a 4KB
memory page, while Fig. 4b, 4d and 4f show equivalent results considering all cells of
the page programmed at one of the three threshold voltage distributions presented in
Fig. 1. This allows us to highlight how the flash performance changes depending on
the written data.

Fig. 4a and 4b show the RBER estimated when programming the considered mem-
ory page. The two figures clearly show that the choice of a particular programming
algorithm produces a significant modification (up to one order of magnitude) of the
RBER of the page. The power consumption of the memory device during a program op-
eration with different programming algorithms is instead reported in Fig. 4c and 4d.
Power measures do not include I/O pins and digital portions of the flash, which are ir-
relevant in the comparative analysis. The most power demanding write strategy is the
ISPP-DV. It introduces a 4% power consumption increment with respect to the stan-
dard ISPP-SV algorithm.This is due to the increased usage of the read charge pump
circuitry in the HV sub-system. Nevertheless, it does not represent a major source of
power drain in the overall system consumption context. The least power demanding
write strategy is instead the ISPP-RV, since the HV circuitry is enabled for a shorter
lapse of time due to the reduced number of verify operations. The page write time has
been calculated considering a fixed cell verify time (i.e., page read operation) of 30µs.
Results reported in Fig. 4e and Fig. 4f show that the fastest algorithm is the ISPP-RV
due to the reduced number of verify operations, which generally slow down the writing

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:9

process. It is worth to point out that the average page write time decreases as the ag-
ing increases due to the fastest programming behavior of the memory cells [Micheloni
et al. 2010]. This effect is tightly coupled with a reduction of the overall memory relia-
bility since bit errors tend to be more frequent [Mielke et al. 2008]. Table I summarizes
the main results obtained from the characterization of the selected device.

Table I. NAND Flash simulation parameters.

Page write time (AVG) @ cycle 1
600us (RV)
800us (SV)
1400us(DV)

Page read time 75us
Block erase time 4ms

Maximum considered P/E cycles 100000
Page Size 4 KB + parity

Note: Programming timings are provided at cycle 1

The presented plots clearly show the potentials of an adaptive flash programming al-
gorithm. By selecting a programming algorithm among ISPP-SV, ISPP-DV, and ISPP-
RV we can easily trade-off among RBER, power, and write throughput, with only in-
cremental complexity of the memory controller architecture.

3. CHARACTERIZATION OF AN ADAPTIVE ECC SUB-SYSTEM
An adaptive ECC sub-system, enabling to modify the ECC correction capability in a se-
lected range is another way of trading-off NAND flash memory performance, reliability
and power consumption. In current SSDs, the ECC calculation time is often success-
fully hidden when the portion of errors is irrelevant compared the effective dimension
of the disk (e.g., at the beginning of disk lifetime). However, when the number of errors
due to aging of the NAND flash starts to increase, therefore forcing the usage of poli-
cies such as the read-retry to ease the role of the correction codes, the ECC becomes the
real system bottleneck. In this situation, multiple errors need to be corrected on multi-
ple NAND flash devices impacting both on SSD read and write throughput [Micheloni
et al. 2013].

The ECC sub-system exploited in this paper implements the adaptable Bose-
Chaudhuri-Hocquenghem (BCH) ECC architecture presented by Fabiano et al. [2013].
BCH codes belong to the larger class of cyclic codes, which have efficient decoding algo-
rithms due to their strict algebraic architecture [Bose and Ray-Chaudhuri 1960]. BCH
codes perform correction over single-bit symbols and better perform when bit errors
are not correlated, or randomly distributed. Several studies have reported that NAND
flash memories manifest non-correlated or randomly distributed bit errors over a page
[Yaakobi et al. 2009]. BCH codes are therefore a perfect choice for correcting errors in
these devices. The construction of a BCH code is based on Galois field GF(2m). Given
a finite Galois field GF (2m) (with m � 3), a t-error-correcting BCH code, denoted as
BCH [n, k, t], encodes a k-bit message to a n-bit codeword by adding r parity bits to the
original message. The value of m is selected by finding the minimum value that solves
the inequality n�k  m ·t, where n = 2m�1 and r = m ·t. Whenever n = k+r < 2m�1,
the BCH code is called shortened or polynomial. In a shortened BCH code the codeword
includes less binary symbols than the ones the selected Galois field would allow. The
missing information symbols are imagined to be at the beginning of the codeword and
are considered to be 0.

The hardware BCH architecture exploited in this paper enables to encode/decode
a full memory page selecting the desired correction capability t in a given range of
values. A detailed description of the employed ECC hardware architecture is out of

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 D. Bertozzi et al.

102 103 104 105 106

Program/Erase Cycles
10-5

10-4

10-3

10-2

10-1

R
BE

R

RBER ISPP-SV
RBER ISPP-DV
RBER ISPP-RV

(a) Average RBER characterization with random write
pattern

102 103 104 105 106

Program/Erase Cycles
10-5

10-4

10-3

10-2

10-1

R
BE

R

L1 distribution
L2 distribution
L3 distribution

ISPP-DV

ISPP-SV

ISPP-RV

(b) RBER characterization with all cells programmed
with the same distribution level (i.e., L1, L2 or L3)

100 101 102 103 104 105

Program/Erase Cycles
0.13

0.14

0.15

0.16

0.17

0.18

Po
w

er
 C

on
su

m
pt

io
n

[W
]

ISPP-SV
ISPP-DV
ISPP-RV

(c) Power consumption characterization with random
write pattern

102 103 104 105 106

Program/Erase Cycles
10-5

10-4

10-3

10-2

10-1

R
BE

R

L1 distribution
L2 distribution
L3 distribution

ISPP-DV

ISPP-SV

ISPP-RV

(d) Power consumption characterization with all cells pro-
grammed with the same distribution level (i.e., L1, L2 or
L3)

100 101 102 103 104 105

Program/Erase Cycles
0

400

800

1200

1600

2000

Pa
ge

 W
ri

te
 T

im
e

[µ
s]

ISPP-SV
ISPP-DV
ISPP-RV

(e) Average page write time characterization with random
write pattern

100 101 102 103 104 105

Program/Erase Cycles
0

400

800

1200

1600

2000

Pa
ge

 W
ri

te
 T

im
e

[µ
s]

ISPP-SV L1 Distribution
ISPP-SV L2 Distribution
ISPP-SV L3 Distribution
ISPP-DV L1 Distribution
ISPP-DV L2 Distribution
ISPP-DV L3 Distribution
ISPP-RV L1 Distribution
ISPP-RV L2 Distribution
ISPP-RV L3 Distribution

(f) Average page write time characterization with all cells
programmed with the same distribution level (i.e., L1, L2
or L3)

Fig. 4. RBER, power consumption and average write time characterization for ISPP-SV, ISPP-DV, and
ISPP-RV algorithms for a page of the flash. For each measured parameter two characterizations are per-
formed based on the type of data programmed in the page. The left column reports an average characteri-
zation obtained writing a random pattern in the memory page, while the right column reports a characteri-
zation obtain programming all cells of the page at one of the three available distribution levels (L1, L2 and
L3) in order to highlight the effect of the data pattern on the measured parameters.

the scope of this paper and can be found in [Fabiano et al. 2013]. The equation that
governs the relation among t, RBER and UBER of the flash device for a selected code

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:11

is:

UBER =
1
n

nX

i=t+1

✓
n

i

◆
· RBERi · (1�RBER)n�i (2)

In our specific design, the ECC sub-system has been implemented to work on a full
page of the flash (i.e., k = 4KB). We considered a target UBER equal to 1E-13, as in
Mielke et al. [2008]. Based on equation (2), Table II reports the correction capability
required to achieve the target UBER considering the RBERs of the various program-
ming algorithms characterized in Section 2. Clearly the correction capability required
to satisfy the target UBER constraints increases over time. As expected, from the reli-
ability standpoint, the worst performance is provided by the ISPP-RV algorithm. This
algorithm requires at the end of the life of the device a correction capability of 399
errors per page. This value would require a considerable amount of hardware and per-
formance resources that leads to the conclusion that memory pages using the ISPP-RV
algorithm necessarily provide a reduced endurance. This result is in line with current
trends for MLC memories endurance that report a typical limit of 10,000 or less pro-
gram/erase cycles [Yaakobi et al. 2010; Grochowski and Fontana 2012]. For this reason
we selected a target maximum correction capability of 93 errors per page correspond-
ing to the requirement of the ISPP-RV algorithm at the end of life. Given the selected
value of k and t the resulting code is designed over GF(216) (i.e., m = 16).

Table II. Correction capability required by the ECC to achieve a target UBER=1E-13.

Alg/progr. cycles 1 100 1,000 10,000 100,000
ISPP-RV 1.000E-06 / 4 6.104E-05 / 13 3.052E-04 / 31 1.526E-03 / 93 9.0332 E-03 / 399
ISPP-SV 1.000E-06 / 4 1.000E-06 / 4 2.747E-04 / 30 3.357E-04/ 33 1.000E-03 / 70
ISPP-DV 1.000E-06 / 4 1.000E-06 / 4 3.052E-05 / 10 3.052E-05 / 10 9.155E-05 / 17

Note: Every element of the table reports the memory RBERs for the different programming algo-
rithms (random data pattern) as characterized in Section 2, and the required correction capability.

In the remaining of this section the ECC sub-system will be characterized to show
the different trade-offs offered by its programmability. It is worth to mention here that
our ECC implementation features a 8-bit parallelism to meet the I/O parallelism of
the target flash, and a 8-bit parallelism of the Chien machine allowing 8 evaluations
per clock cycle to speed-up the decoding process. Moreover, both the encoder and the
decoder are pipelined with the flash memory in order to optimize the performance of
the block. Table III reports the area required for this block synthesized using Synopsys
DesignCompiler with the STM-45nm [CMP 2012] technology library. The full design
works at 100MHz clock frequency.

Table III. ECC encoder and de-
coder area footprint.

Area (µm2)
Encoder 179586.97
Decoder 543625.58

Note: Synthesis has been per-
formed using the STM-45nm
technology library.

Let us start with the evaluation of the amount of redundancy (i.e., parity bits)
introduced by the ECC. In the worst case (e.g., t = 93) the code requires to store
m·t = 16·93 = 1488bits = 186B. This accounts for about 83% of the spare area available
on our device that corresponds to 224B per page. ECC parity bits, are not the only extra

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 D. Bertozzi et al.

information stored in a flash memory. High-level functions such as filesystem manage-
ment, bad blocks management and wear-leveling need to save considerable amount of
information. When the spare are is not enough, a certain amount of pages of the flash
must be reserved, thus reducing the overall flash capacity. As an example, YAFFS2,
the filesystem selected for our analysis, requires to save 18 bytes of information for
each data chunk of 2KB. Every page of our flash can store 2 chunks and requires 36
spare bytes. With UBER=1E-13 and t = 93, there are 38 spare bytes available to the
filesystem that is just enough for the YAFFS2 requirement. If additional functions
such as the wear leveling need to be managed, or increased reliability is required, the
spare are may become too small. Looking at Fig. 5, if reduced correction capability is
required, either because the device is in the early stage of its life, or because a more re-
liable programming algorithm is applied, the spare area occupation can be reduced up
to 78% (4.46% occupation for t = 4). This provides a high degree of freedom for the flash
memory controller. It is worth to mention here that this does not represent the main
parameter to take into account when optimizing the ECC subsystem, nevertheless it
is worth to be considered in the optimization of the full flash sub-system design.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Correction capability (t)

0

10

20

30

40

50

60

70

80

90

100

%
 S

pa
re

 a
re

a
fo

r
pa

ri
ty

 b
its

Fig. 5. Percentage of spare area dedicated for storing parity bits as a function of the selected correction
capability.

The choice of t also makes it possible to tune the ECC latency. Fig. 6 shows that,
carefully tuning the correction capability, the ECC subsystem can significantly save in
decoding time compared to the worst case (t = 93). Simulations have been performed
in the worst case conditions, i.e., t errors injected into the last bits of the page to make
sure that the full page must be checked in order to find the corrupted bits. The encoding
latency is instead almost constant regardless of the selected correction capability.

Similarly to the ECC latency also the ECC power consumption can be traded-off by
carefully selecting the correction capability. Fig. 7 shows that, also in this case, we
can save up to ⇠55% of decoding power consumption when reducing the correction
capability.

To conclude the characterization of the designed programmable ECC sub-system,
Fig. 8 reports the relation between UBER and RBER for the selected correction mode
obtained by plotting equation (2). The figure shows an additional degree of freedom the
controller can achieve in which also the UBER can be tuned together with the other
parameters.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:13

0 10 20 30 40 50 60 70 80 90
Correction Capability (t)

0

100

200

300

400

En
c.

/D
ec

. L
at

en
cy

 [µ
s] Decoding Latency

Encoding Latency

Fig. 6. Worst case ECC encoding and decoding latency. Simulations have been performed at a clock fre-
quency of 100MHz.

0 20 40 60 80
Correction Capability (t)

2
3
4
5
6
7
8
9

10
11

To
ta

l P
ow

er
 [m

W
]

Decoder
Encoder

Fig. 7. Worst case ECC power consumption.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-13

10
-12

10
-11

RBER

U
B

E
R

t = 4

t = 8

t = 11

t = 14

t = 26

t = 28

t = 65

t = 88

t = 93

Fig. 8. RBER vs. UBER relationship for the selected code and selected correction modes.

4. CROSS-LAYER OPTIMIZED NAND FLASH ACCESS MODES
So far we have considered the flexibility and the trade-offs that can be achieved by
reconfiguring the flash programming algorithm and the ECC sub-system in isolation.
However, acting upon their parameters at the same time we want to show that it is
possible obtain higher optimization in terms of reliability, performance and power con-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 D. Bertozzi et al.

sumption, thus identifying a set of differentiated access modes that can be configured
in the memory controller and made available to the software stack.

Fig. 9 provides an overview of how the NAND flash sub-system reacts when select-
ing different programming algorithms and ECC correction capabilities. Three main
parameters of the flash are considered in Fig. 9: (1) the UBER of the flash, (2) the
read throughput (RT), i.e., the number of page read requests per second the system is
able to serve, and (3) the write throughput (WT), i.e., the number of write requests per
second the system is able to serve.

Reduced&t& Standard&t& Enhanced&t&

ISPP$–$RV$$
UBER$worst$
RT$best$
WT$best$

UBER$worsens$
RT$=$

WT$improves$

UBER$trade<off$
RT$worsens$
WT$improves$

ISPP$–$SV$
UBER$worsens$
RT$improves$
WT$almost$=$

Reference$level$
UBER$improves$
RT$worsens$
WT$almost$=$

ISPP$–$DV$
UBER$trade<off$
RT$improves$
WT$worsens$

UBER$improves$
RT$=$

WT$worsens$

UBER$best$
RT$worst$
WT$worst$

RT$=$Read$Throughput$(Flash$Page$Read$Time$+ECCDecoding$Time)$
$

WT$=$Write$Throughput$(Flash$Page$Write$Time$+ECCEncoding$Time)$

Best$Reliability$
$Corner$

Best$Performance$
$Corner$

W
TW

T$

RT$

UBER$

U
BE

R$

Po
w
er
$

Power$

Fig. 9. Set of access modes provided when tuning the programming algorithm and the ECC correction
capability in a cross-layer adaptation framework.

If we consider the ISPP-SV programming algorithm with an ECC designed for UBER
of 1E-13 as a reference operating point, the following behaviors can be foreseen:

— UBER worsens when lower values of t, or programming algorithms with reduced
verifications are used.

— WT is mainly affected by the programming algorithm. As pointed out in Fig. 6 the
ECC encoding time is almost constant regardless the selected correction capability.

— RT is mainly affected by the selected ECC correction capability that directly affects
the ECC decoding time (see Fig. 6). It increases if a lower t is used.

— The combination of reduced t and ISPP-RV represents the best performance corner,
but offers the worst reliability.

— The combination of increased t and ISPP-DV represents the best reliability corner,
but offers the worst performances.

— In the bottom-left and upper-right access modes of the table, the UBER is adapted
acting on the correction strength and the chosen algorithm.

4.1. Access modes characterization
An example of the optimization that can be achieved by selecting the considered access
modes is reported in Fig. 10. It shows how the modulation effect of the RT and WT (for
a target UBER=10�13) achievable by changing the programming algorithm and the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:15

ECC correction capability, varies over time along with memory aging. The correction
capability of the ECC is adapted as aging increases according to Table 3 to preserve
the target UBER in spite of memory aging. For the sake of comparison, the figure
shows the performance of a non-adaptive controller using the ISPP-SV programming
algorithm and a fixed correction capability t = 70 required to meet the target UBER at
the end of the memory lifetime.

Table IV. Adaptation of the ECC correction capability to the
flash aging for different programming algorithms and target
UBER

PE cycles
UBER ISPP alg. 1 102 103 104 105

RV 3 11 28 88 >93
10�11 SV 3 3 26 29 65

DV 3 3 8 8 14
RV 4 13 31 93 399

10�13 SV 4 4 30 33 70
DV 4 4 10 10 17
RV 4 17 34 >93 >93

10�15 SV 4 4 34 37 74
DV 4 4 12 12 20

Fig. 10a clearly shows that, acting on the programming algorithm, we can modify
the write performance of the flash with 30% improvement obtained with ISPP-RV
prog. t used instead of ISPP-SV fixed t at the end of life of the flash. Moreover WT
modulation capability is preserved over memory cycling. The non-adaptive and the
adaptive ISPP-SV solutions are almost overlapped because the encoding latency is
barely affected by the ECC correction capability. Fig. 10b instead shows that we can
tune the RT of the system by using ISPP-DV as opposed to ISPP-RV. In these cases
the RT can be improved by 83% or degraded by 20% calculated at program/erase (PE)
cycle 10k, respectively, and compared to the reference adaptive ISPP-SV solution. Of
course, the RT degradation of ISPP-RV is the price to pay for its WT improvement.
The comparison of the ISPP-SV prog. t curve with the baseline ISPP-SV fixed t curve
shows that tuning the ECC correction capability over the life of the flash enables a
significant improvement of the RT with no penalty on the WT.

1 10 100 1000 10000 1e+005
PE cycles

600

800

1000

1200

1400

1600

1800

2000

W
ri

te
 T

hr
ou

gh
pu

t [
O

pe
ra

tio
ns

/s
]

ISPP - RV, prog. t
ISPP - SV, fixed t=70
ISPP - SV, prog. t
ISPP - DV, prog. t

(a) Write throughput

1 10 100 1000 10000 1e+005
PE cycles

2000

3000

4000

5000

6000

7000

R
ea

d
T

hr
ou

gh
pu

t [
O

pe
ra

tio
ns

/s
]

ISPP - RV, prog. t
ISPP - SV, fixed t=70
ISPP - SV, prog. t
ISPP - DV, prog. t

(b) Read throughput

Fig. 10. WT and RT comparison among different configurations of the controller for a target UBER=10�13

Fig. 10b also shows that, in the early stage of the memory life, the modulation ca-
pability of the RT is marginal. The reason lies in the similar RBER figures of the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 D. Bertozzi et al.

programming algorithms in fresh devices. On the one hand this means that the RT
improvement with respect to the reference case will be achieved only after hundreds
of PE cycles. On the other hand, this also means that in fresh devices the WT can be
broadly modulated at marginal RT penalty. Overall, Fig. 10 shows a usage model of
the access modes: the correction capability is used to preserve a target UBER over the
flash life, whereas the programming algorithm is used to trade the WT with the RT. At
a given PE cycle a higher RT can be achieved by switching the programming algorithm
(i.e., from ISPP-SV prog. t to ISPP-DV prog. t), and the ECC correction capability (since
ISPP-DV needs a lower t to preserve the target UBER with respect to ISPP-SV). The
WT can be traded-off similarly. Regardless the selected programming algorithm, Fig.
10b clearly shows that for most of the memory life the non-adaptive approach produces
a significant device under-utilization from the RT standpoint.

Other usage models are clearly feasible. For instance, switching from ISPP-SV prog.
t to ISPP-DV prog. t, while keeping t unchanged, minimizes the UBER beyond 10�13

leaving the RT unaltered at the cost of the WT. Similarly, switching to ISPP-RV progr.
t achieves a WT improvement. If at the same time we decrease t the UBER is largely
degraded while the RT is improved. Otherwise with a constant t the UBER is degraded
to the lower extent but RT is unaltered. Finally, the upper-left access mode in Fig. 9
can be used in those cases where an ultra-low power operating mode is required while,
at the same time, largely degrading UBER and therefore application-perceived low
reliability are accepted. Approximately storage of data to improve performance when-
ever high-precision storage is not required has been already investigated in previous
studies [Sampson et al. 2013] and the considered service represents a very efficient
way for its implementation. In contrast, the lower-right access mode in Fig. 9 provides
the best achievable reliability at the cost of increased power consumption and largely
degraded performance.

Fig. 11 summarizes the way UBER can be tuned by selecting different ECC correc-
tion capability or programming algorithm. Values in the figure are computed consid-
ering the RBER of the flash at 10,000 PE cycles, i.e., quite late in the flash lifetime.
Similarly to the performance characterization, Fig. 11 shows that we can achieve im-
portant trade-offs in the reliability of the access modes, with the possibility of varying
the UBER of the NVM system of several orders of magnitude.

1 10 20 30 40 50 60 70 80 90
Correction capability (t)

1e-018

1e-016

1e-014

1e-012

1e-010

1e-008

1e-006

1e-004
1e-003

U
B

E
R

ISPP - RV
ISPP - SV
ISPP - DV

Fig. 11. Trade-off on the storage reliability by selecting different programming algorithms and different
ECC correction capability. UBER is computed at 10,000 PE cycles of the flash.

4.2. Implementation of the access modes
In order to properly exploit the advantages provided by the combined adaptation of
the flash programming algorithm and the ECC correction capability, a strategy to de-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:17

cide which memory access mode to use at run-time is mandatory. While a complete
discussion of this topic is out of the scope of this paper a set of preliminary insights
can be provided here. There are essentially two factors that must be considered, at
run-time, to properly select the optimal flash storage options: (i) the application relia-
bility/performance/power requirements, and (ii) the memory aging.

The first factor is static for a given application or for selected portions of data of
an application. Even if not straightforward, applications can be carefully profiled in
order to assign different reliability/performance/power requirements to the different
set of data they manage. The application profile can be then exploited to choose the
best storage service for each type of information.

We envision in this paper to split the flash memory into different partitions provid-
ing different storage services according to Fig. 12.

StorageI/O
requests$

Storage$service$

Flash&file&system&

R/W$flash$API$ PagePEstatus$cache$

PE$vs.$ECC$correcQon$
capability$hash$table$

OS&

Applica8on&

Driver&
Flash$access$

mode$

Access$mode:$
Write$alg.$
ECC$corr.$cap.$

Flash&controller&
ECC$correcQon$capability$

Flash$write$algorithm$

PageECCPE$

PageECCPE$

PageECCPE$

High<performance$
Low<reliability$
ISPP<RV$

Low<performance$
High<reliability$
ISPP<DV$

Mid<performance$
mid<reliability$
ISPP<SV$

Flash&memory&
So<ware&layer&

Hardware&layer&

Fig. 12. Exporting storage services to the software layer.

The flash filesystem can therefore be extended in order to provide dedicated API to
request different classes of storage services and to properly redirect the data to the
partition implementing the requested access mode. Each application can be then in-
strumented in order to request for each flash memory access the storage service that
is more suited for the specific data that is going to be accessed. A single application
can therefore benefit from data stored in different partitions with different services
in order to optimize the overall reliability/performance. Moreover, considering a dif-
ferent scenario, the choice of the target service may be also handled by the operating
system to shield the user from details of the hardware implementation and to avoid
erroneous selection of the target service. The operating system may be delegated to
select different access modes for an application by exploiting routines that continu-
ously analyze the behavior of the application in order to determine the optimum per-
formance/reliability/power trade-off configuration for the problem, and supervise the
program execution. Using program instrumentation gives the programmer flexibility
in choosing the system configuration needed for a particular non-functional require-
ment, while, the implicit approach reduces programming effort and speeds up program
development.

While for a given access mode the selected programming algorithm is in general
constant over the memory life-time, the ECC correction capability must be continu-
ously tuned at run-time to compensate for the memory aging. Several models in the
literature correlate the RBER of a page to the number of performed PE cycles [Sun
et al. 2011], and enable to build models fitted on experimental data to compute the
best ECC correction capability to apply when a page is programmed. If the PE count

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 D. Bertozzi et al.

is constantly tracked during flash operations it can be exploited to adapt the ECC cor-
rection capability according to the selected aging model. In this context, one of the
most efficient and easy solutions is to demand this operation to the flash file system
in cooperation with the flash driver. At each programming operation the PE count of
the target page is incremented and stored together with other file system related in-
formation. This value can be then exploited at run-time to select the best correction
capability every time the page is programmed. The PE count of each page is cached
in RAM using a common practice implemented by the flash file system to store man-
agement information. Every time a page must be programmed, this value is retrieved
from the cache and it is used to search the best correction capability to apply into a
correction capability hash table stored in the flash drivers and containing aging infor-
mation related to the specific flash technology. This value is then used to encode the
target page. Similarly, whenever a page must be read, the same procedure is used to
retrieve the correction capability used to encode the page and this information is used
during the ECC decoding phase.

5. STORAGE SERVICES AT WORK
To appreciate the benefits of differentiated flash access modes on the execution of a set
of real applications we constructed a simulation environment running under the Linux
operating system using YAFFS2 (Yet Another Flash File System version 2) as flash file
system. The Linux Memory Technology Device (MTD) driver has been instrumented
to emulate operations on a NAND flash memory with 4096 blocks of 128 pages, with
a page size of 4 kB for a total of 2GB of available storage. YAFFS2 has been also
instrumented to trace the list of operations performed through the MTD. Read, write
and erase operations have been traced. The log essentially contains information about
the sequence of operations, the target page address and the timing. To obtain unbiased
measurements of the flash performances the YAFFS2 caches have been disabled.

Several file system benchmarks are available on the Internet (e.g. IOzone [iozone.org
2012], Postmark [Katcher 1997], SPEC benchmarks [Standard Performance Evalua-
tion Corporation 2013], Filebench [Wilson 2008], etc.). In this paper, we selected the
Filebench benchmark [Wilson 2008] that provides a large variety of behaviors that
can be exploited for our analysis. They either perform simple file I/O operations, or
emulate complex I/O activities. Among the available benchmarks we selected three
applications:

— varmail: has different threads performing create-append-sync, read-append-sync,
read and delete operations on the files (representing emails) contained in a single
directory;

— webserver: opens, reads and closes multiple files in a directory tree while appending
data in log file;

— videoserver: reads a file set containing videos that are actively served, and writes
another file set containing videos that are available but currently inactive.

One of the main characteristic that differentiate the three selected benchmarks is
the ratio between the number of read operations (#R) and the number of write op-
erations (#W). This is a critical parameter that influences the type of access mode
required by the application to maximize its performance. Table V summarizes this in-
formation. It reports the #R/#W ratio for each benchmark, as well as the average
number of actual read and write operations generated by each benchmark during the
simulations. varmail is a typical example of write intensive application requiring fast
programming of the flash. On the contrary videoserver is a read intensive application
requiring fast read access to the data stored in flash. Finally webserver is between the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:19

other two benchmarks and performs a more equalized set of read and write operations
to the flash.

Table V. #R/#W ratios of different Filebench person-
alities

Personality #R/#W Avg. #R Avg. #W

varmail 32.5% 48,536 149,081
webserver 153.5% 100,708 65,581

videoserver 1077.9% 457,138 42,410

Fig. 13,14 and 15 show the opportunities the controller programmability provides to
the three applications for a target UBER=10�13. All figures report the overall appli-
cation throughput, i.e., number of operations (read or program operations) performed
on the flash per unit of time. Comparison is again performed with a non-adaptive
controller using the ISPP-SV programming algorithm and fixed ECC with t=70. Sim-
ulations have been performed in order to emulate a steady state with all flash pages
written at least once. This generates an average of one erase operation every 128 pro-
grammed pages corresponding to the number of pages in a block.

1 10 100 1000 10000 1e+005
PE cycles

1000

1500

2000

2500

T
hr

ou
gh

pu
t [

O
pe

ra
tio

ns
/s

] ISPP - RV, prog. t
ISPP - SV, fixed t=70
ISPP - SV, prog. t
ISPP - DV, prog. t

Fig. 13. Varmail throughput for a fixed UBER=10�13

1 10 100 1000 10000 1e+005
PE cycles

1000

1500

2000

2500

3000

T
hr

ou
gh

pu
t [

O
pe

ra
tio

ns
/s

]

ISPP - RV, prog. t
ISPP - SV, fixed t=70
ISPP - SV, prog. t
ISPP - DV, prog. t

Fig. 14. Webserver throughput fixed UBER=10�13

Looking at Fig. 13, that reports the throughput of varmail, it is evident that ISPP-
RV prog. t enables a significant improvement of the overall performance of the appli-
cation. This improvement comes however with a reduced endurance of the flash due
to the high RBER introduced by this programming algorithm when the number of PE
cycles exceeds 10,000.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 D. Bertozzi et al.

1 10 100 1000 10000 1e+005
PE cycles

2500

3000

3500

4000

4500

5000

T
hr

ou
gh

pu
t [

O
pe

ra
tio

ns
/s

] ISPP - RV, prog. t
ISPP - SV, fixed t=70
ISPP - SV, prog. t
ISPP - DV, prog. t

Fig. 15. Videoserver throughput fixed UBER=10�13

If we move instead to the opposite application profile represented by the read inten-
sive videoserver reported in Fig. 15 we can notice an interesting result. Looking at the
overall flash lifetime, the ISPP-SV prog. t seems the best option for this application
even if looking at Fig. 10b we could expect better performances from ISPP-DV prog. t.
The main motivation for this behavior is that the flash programming time is dominant
over the flash read time and therefore negatively influences the overall application
performances. This opens new opportunities for the proposed controller. In fact, Fig. 15
suggests that not only the ECC correction capability must be adapted to compensate
for page aging. In this specific application profile, the ISPP-DV can be selected when
the flash reaches more then 10,000 PE cycles to sustain the overall performance and
reliability level.

The last situation represented by webserver (Fig. 14) obviously provides an interme-
diate behavior. In this situation ISPP-DV prog. t reduces the overall performances and
is therefore not a good choice for the application. However, both ISPP-SV prog. t and
ISPP-RV prog. t introduce significant performance improvements.

The analysis performed so far highlights how the proposed adaptation strategy
improves the performance of selected applications when mapped to dedicated ac-
cess modes. The same programmability can be also exploited to provide access
modes with different reliability levels as reported in Fig. 16, 17, and 18 for the
videoserver application. In this comparison we considered a standard reliability service
(UBER=10�13), an enhanced reliability service (UBER=10�15) and a reduced reliability
service (UBER=10�11).

1 10 100 1000 10000 1e+005
PE cycles

2000

2500

3000

3500

4000

4500

5000

T
hr

ou
gh

pu
t [

O
pe

ra
tio

ns
/s

]

ISPP - RV, UBER=1e-11
ISPP - RV, UBER=1e-13
ISPP - RV, UBER=1e-15

Fig. 16. Videoserver throughput with ISPP-RV program. t at different target UBER

When analyzing the results reported in Fig. 16, 17, and 18 it is important to take
into account that the videoserver application is a read intensive application. When

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:21

1 10 100 1000 10000 1e+005
PE cycles

2500

3000

3500

4000

4500

5000

T
hr

ou
gh

pu
t [

O
pe

ra
tio

ns
/s

]

ISPP - SV, UBER=1e-11
ISPP - SV, UBER=1e-13
ISPP - SV, UBER=1e-15

Fig. 17. Videoserver throughput with ISPP-SV program. t at different target UBER

1 10 100 1000 10000 1e+005
PE cycles

3500

4000

4500

T
hr

ou
gh

pu
t [

O
pe

ra
tio

ns
/s

] ISPP - DV, UBER=1e-11
ISPP - DV, UBER=1e-13
ISPP - DV, UBER=1e-15

Fig. 18. Videoserver throughput with ISPP-DV program. t at different target UBER

exploiting the ISPP-RV prog. t (Fig. 16) and the ISPP-SV prog. t (Fig. 17) writing al-
gorithms, that provide reduced reliability compared to the ISPP-DV prog. t algorithm,
the ECC subsystem is particularly stressed to guarantee error-free data during the
intensive read activity of the application. Since the ECC correction capability must be
increased with the flash aging, the throughput of the application with these two al-
gorithms decreases over time. Differently, when considering the ISPP-DV prog. t, the
high reliability of this algorithm strongly relaxes the ECC requirements. This strongly
improves the read throughput of the flash at the cost of a decreased write through-
put. Write operations become therefore critical for this operation mode and overall the
throughput of the application decreases. Nevertheless, it is interesting to note that
since the write performance of the flash increases with aging (see Fig. 4e) we observe
a slight improvement in the performance of the application at the end of the flash life-
time. Considering the increased reliability service the target choice will be between
ISPP-SV prog. t and ISPP-DV prog. t. In both cases switching to a higher reliability
level does not introduce major penalties in the performances. However, ISPP-DV prog.
t guarantees performances that are more constant over the full flash lifetime. This
could be a benefit especially when real-time applications are considered. When mov-
ing to the reduced reliability service, instead the choice can be between the ISPP-RV
prog. t and ISPP-SV prog. t. In this case however the choice is a trade-off between
performance and memory endurance.

Finally, Fig. 19 reports how the reliability of the memory sub-system can now be
traded for the reduced power consumption. In power savings scenarios the function-
alities of the system need to be preserved in order to either prolong battery life for
portable and embedded systems or to reduce cooling issues in high performance com-
puting systems. Under such conditions the quality of service (QoS) of a target appli-
cation (i.e., video playback) can be degraded to a minimum acceptance level. This is

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 D. Bertozzi et al.

the case of the ISPP-RV prog. t access mode, which can significantly reduce the mem-
ory energy consumption by a 10% factor at the beginning of the memory lifetime with
respect to the non-adaptive ISPP-SV case.

1 10 100 1000 10000 1e+005
PE cycles

0

0.005

0.01

0.015

0.02

0.025

T
ot

al
 P

ow
er

 C
on

su
m

pt
io

n
[W

]

ISPP - RV

ISPP - SV, fixed t=70

ISPP - SV

ISPP - DV

Fig. 19. Average power per operation during the execution of the videoserver benchmark

6. CONCLUSION
In this paper, we demonstrated that combining the selection of different flash pro-
gramming algorithms, with run-time adaptation of the ECC correction capability in
an MLC NAND flash sub-system holds promise of exposing interesting trade-offs be-
tween performance, reliability and power for memory access. This enabled us to define
differentiated access modes for ultra-high performance, for ultra-high reliability or in-
termediate trade-off requirements. When put at work for real-life workloads, the user-
selectable access modes prove capable of better adapting to application requirements
than non-adaptive controllers. By modeling memory endurance effects, we pointed out
that the most suitable access mode for each application is not the same through the
entire memory lifetime. Based on the results of this paper, the RTL coding of the run-
time reconfigurable memory controller will be our future work in order to obtain an
adaptive NVM sub-system that can complement the current ongoing efforts in adap-
tive computing.

7. AUTHORS CONTRIBUTIONS
D. Bertozzi, P. Olivo, and C. Zambelli mainly contributed one the characterization
of the flash programming algorithms while S. Di Carlo, S. Galfano, M. Indaco and
P. Prinetto focused on the characterization of the adaptive ECC performance and on
the setup of the software framework for the benchmark simulations. All authors con-
tributed to the overall storage service analysis.

APPENDIX
The flash model developed in this work is a SPICE-based compact model devised for
Monte Carlo simulation of a floating gate transistor. The model captures the threshold
voltage evolution of a NAND Flash cell during the ISPP algorithm within a memory
array, by adding to the calculated cell’s threshold voltage, at each time step of the
writing algorithm, the following variability sources:

— Geometrical variability: since the transistors within the array do not feature the
same geometrical parameters, mainly due to lithographic concerns, a displacement on
the channel length (L) and channel width (W) from their nominal values �L and �W is
considered in each Monte Carlo run. These latter parameters feature a Gaussian dis-
tribution with mean value equal to 1nm and standard deviation of 0.2 nm. Since the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:23

geometry of the transistor affects also the threshold voltage evolution, these param-
eters are calculated before the definition of the transistor structure to be simulated,
therefore affecting the final cell’s threshold voltage.

— Cell-to-Cell Coupling: the SPICE compact model for the NAND array includes
parasitic capacitive couplings between each cell and its first neighbors along the same
word- and bit-line. The capacitances are derived from 3D-TCAD simulations, and fea-
ture the typical values for a 45 nm technology (i.e., roughly about 20 aF). The cell’s
threshold voltage calculated at each ISPP step takes into account that the electron
tunneling current, and the channel potential of the transistor, deviates from the nom-
inal value by adding a �VTH to the voltages exploited for the writing operation.

— Injection statistics: the discrete nature of the electronic flow charging the floating
gate represents an additional variability source to be considered when dealing with
the program operation of nanoscale cells since the statistical process ruling discrete
electron injection into the floating gate introduces fluctuations in cell VTH after the
application of a writing pulse [Spessot et al. 2010]. On this basis we introduced this
additional variability contribution in our compact model for the program operation by
adding a displacement from the cell’s threshold voltage having the following spread:

��VT =
r

q

�CPP

⇣
1� e��(�VT)

⌘
(3)

where q is the electronic charge, � is the slope of the tunneling characteristic of the
floating gate transistor, Cpp is the floating gate capacitance calculated with geometrical
variability and (�VT)� is the voltage step magnitude of the ISPP algorithm.

— Random Dopant Fluctuation (RDF): The atomistic nature of substrate doping
has been clearly shown to result into a fundamental threshold voltage spread for MOS
field effect transistors (MOSFETs) given by:

�RDF = 3.19⇥ 10�8 ⇥

tox (NA)0.4

p
WL

!
(4)

where tox is the tunnel oxide thickness subjected to geometrical variability and equal
to 7.5 nm + 0.1 nm, and NA is the substrate doping of the cell which follows a profile
retrieved by TCAD simulations.

— Oxide Trap Fluctuation (OTF): Referring to traps placed at the substrate/oxide
interface (where they have the strongest impact on cell VTH) and assuming a Poisso-
nian fluctuation of their number due to process variability, a spread in cell VTH results
according to the following:

�OTF = KOX ⇥ tox ⇥
p

QOXp
WL

(5)

where Qox is the surface density of traps assumed equal to 10�11 cm�2 , tox is the
tunnel oxide thickness, and Kox is a constant equal to 10�6V ⇥ cm.

— Aging effect: The threshold voltage of a memory cell increases due to charge trap-
ping with the number of write cycles. There are two types of traps that form in the
tunnel oxide: interface traps and bulk traps, both of which contribute to the increase
in the threshold voltage. It has been shown that both these traps have a power-law
relation to the number of cycles on the memory cell [Spessot et al. 2010] as:

�Nit = A⇥ cycle0.62 (6)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 D. Bertozzi et al.

�Not = B ⇥ cycle0.30 (7)
where A and B are fitting constants, cycle is the number of write cycles on the cell,
and the terms �Nit and �Not are the interface and bulk trap densities respectively. In
addition to providing this power-law relationship. The authors calculated the values
of constants A and B to be 0.08 and 5, respectively for the considered technology. The
total threshold voltage increase due to trapping is divided into interface trap voltage
shift (�Vit) and bulk trap voltage shift (�Vot), by using the following equations.

�V it =
�Nit⇥ q

Cox
(8)

�V ot =
�Niot⇥ q

Cox
(9)

where Cox is the capacitance of the tunnel oxide.
All these variability sources contributes to the final threshold voltage value approxi-
mately with the following percentile values: geometrical variability (15%), oxide trap
fluctuations (15%), random dopant fluctuation (25%), parasitic coupling capacitances,
injection statistics, and aging (45%).

REFERENCES
G. Atwood, A. Fazio, D. Mills, and B. Reaves. 1997. Intel StrataFlash memory tech-

nology overview. Intel Technology Journal Q 4 (1997). https://noggin.intel.com/content/
intel-strataflash-memory-technology-overview

R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. 2003. Introduction to flash memory. Proc. IEEE 91, 4
(April 2003), 489–502.

R. C. Bose and D. K. Ray-Chaudhuri. 1960. On a class of error correcting binary group codes. Information
and Control 3, 1 (1960), 68–79.

J. M. P. Cardoso and Michael Hübner. 2011. Reconfigurable computing: From FPGAs to hardware/software
codesign. Springer, Germany.

T.-H. Chen, Y.-Y. Hsiao, Y.-T. Hsing, and C.-W. Wu. 2009. An adaptive-rate error correction scheme for NAND
flash memory. In Proceedings of the 27th IEEE VLSI Test Symposium (VTS). IEEE, USA, 53–58.

CMP. 2012. CMP Project. web available resource. (2012). http://cmp.imag.fr/
J. Cooke. 2007. The inconvenient truths of NAND flash memory. Flash Memory Summit.

(2007). http://download.micron.com/pdf/presentations/events/flash mem summit jcooke inconvenient
truths nand.pdf

R. Dan and R. Singer. 2003. Implementing MLC NAND flash for cost-effective, high-capacity memory. M-
Syst. White paper. (2003). http://tinyurl.com/o2443mh

S. Di Carlo, M. Fabiano, P. Prinetto, and M. Caramia. 2011. Design Issues and Challenges of File Systems
for Flash Memories. InTech, Croatia, Chapter 1, 3–30.

Evatronix. 2012. Evatronix NANDFLASH-CTRL NAND Flash Memory Controller. Web available resource.
(2012). http://www.evatronix.pl/products/docs.html?id=10\&product=TkFOREZMQVNILUNUUkw=

M. Fabiano, M. Indaco, S. Di Carlo, and P. Prinetto. 2013. Design and optimization of adaptable BCH codecs
for NAND flash memories. Microprocessors and Microsystems 37, 4–5 (2013), 407–419.

E. Grochowski and R. E. Fontana. 2012. Future technology challenges for NAND flash and HDD products.
Flash Memory Summit. (2012). http://www.flashmemorysummit.com/English/Collaterals/Proceedings/
2012/20120821 S102A Grochowski.pdf

J. Henkel, L. Bauer, M. Hübner, and A. Grudnitsky. 2011. i-Core: A run-time adaptive processor for em-
bedded multi-core systems. In Proceedings of the International Conference on Engineering of Recon-
figurable Systems and Algorithms (ERSA). ERSA-ADN Publishing, USA. http://citeseerx.ist.psu.edu/
viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.217.7593

iozone.org. 2012. IOzone file system benchmark. Web available resource. (2012). http://www.iozone.org
F. Irom and D.N. Nguyen. 2007. Single event effect characterization of high density commercial NAND and

NOR nonvolatile flash memories. IEEE Transactions on Nuclear Science 54, 6 (December 2007), 2547–
2553.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:25

JEDEC Solid State Technology Association. 2011. Failure mechanisms and models for semiconductor devices
(JEP122G). Web available resource. (2011). http://www.jedec.org/standards-documents/docs/jep-122e

Y.H. Kang, J.K. Kim, S.W. Hwang, J.Y. Kwak, J.Y. Park, D. Kim, C.H. Kim, J.Y. Park, Y.T. Jeong, J.N. Baek,
and others. 2008. High-voltage analog system for a mobile NAND flash. IEEE Journal of Solid-State
Circuits 43, 2 (February 2008), 507–517.

J. Katcher. 1997. PostMark: a new file system benchmark. Network Appliance Tech Report
TR3022. (Oct. 1997). https://communities.netapp.com/servlet/JiveServlet/download/2609-1551/
Katcher97-postmark-netapp-tr3022.pdf

J.D. Lee, J.H. Choi, D. Park, and K. Kim. 2003. Data retention characteristics of sub-100 nm NAND flash
memory cells. IEEE Electron Device Letters 24, 12 (December 2003), 748–750.

R.-S. Liu, C.-L. Yang, and W. Wu. 2012. Optimizing NAND flash-based SSDs via retention relaxation. In Pro-
ceedings of the 10th USENIX Conference on File and Storage Technologies (FAST). USENIX Association,
USA. http://static.usenix.org/event/fast12/tech/full papers/Liu.pdf

C. Miccoli, C. Monzio Compagnoni, A. S. Spinelli, and A. L. Lacaita. 2011. Investigation of the programming
accuracy of a double-verify ISPP algorithm for nanoscale NAND Flash memories. In Proceedings of the
IEEE International Reliability Physics Symposium (IRPS). IEEE, USA, MY.5.1–MY.5.6.

R. Micheloni, L. Crippa, and A. Marelli. 2010. Inside NAND flash memories. Springer Verlag, Germany.
R. Micheloni, A. Marelli, and K. Eshghi. 2013. Inside Solid State Drives (SSDs). Springer, Germany.
N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi, E. Goodness, and L. R. Nevill.

2008. Bit error rate in NAND Flash memories. In Proceedings of the IEEE International Reliability
Physics Symposium (IRPS). IEEE, USA, 9–19.

V. Mohan, S. Gurumurthi, and M. R. Stan. 2010. FlashPower: A detailed power model for NAND flash
memory. In Proceedings of Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
USA, 502–507.

ONFI Workgroup. 2012. Open NAND Flash Interface. Web available resource. (2012). http://onfi.org
J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang. 2014. SDF: Software-defined Flash for Web-scale

Internet Storage Systems. In Proceedings of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’14). ACM, New York, NY, USA, 471–
484. DOI:http://dx.doi.org/10.1145/2541940.2541959

Y. Pan, G. Dong, and T. Zhang. 2011. Exploiting memory device wear-out dynamics to improve NAND flash
memory system performance. In Proceedings of the 9th USENIX conference on File and storage tech-
nologies (FAST). USENIX Association, Berkeley, CA, USA. http://dl.acm.org/citation.cfm?id=1960475.
1960493

A. Sampson, J. Nelson, K. Strauss, and L. Ceze. 2013. Approximate storage in solid-state memories. In
Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-
46). ACM, New York, NY, USA, 25–36.

Samsung. 2012. Samsung KFG4GH6x4M 4Gb Flex-OneNAND M-die Datasheet. (2012).
A. Spessot, A. Calderoni, P. Fantini, A. S. Spinelli, C.M Compagnoni, F. Farina, A. L. Lacaita, and A.

Marmiroli. 2010. Variability effects on the VT distribution of nanoscale NAND Flash memories. In
IEEE International Reliability Physics Symposium (IRPS). IEEE, USA, 970–974.

Standard Performance Evaluation Corporation. 2013. SPEC Benchmarcls. Web available resource. (2013).
http://www.spec.org

H. Sun, B. Wood, and P. Grayson. 2011. Qualifying reliability of solid-state storage from multiple aspects.
In Proceedings 7th IEEE International Workshop on Storage Network Architecture and Parallel I/O
(SNAPI). IEEE, USA. http://storageconference.org/2011/Papers/SNAPI/1.Sun.pdf

A. Wilson. 2008. The New and Improved FileBench. In Proceedings of the 6th USENIX Conference on
File and Storage Technologies (FAST). USENIX, USA. https://www.usenix.org/legacy/events/fast08/
wips posters/wilson-wip.pdf

E. Yaakobi, J. Ma, A. Caulfield, L. Grupp, S. Swanson, P. H. Siegel, and J. K. Wolf. 2009. Error
correction coding for flash memories. Flash Memory Summit. (2009). http://www.bswd.com/FMS09/
FMS09-201-Yaakobi.pdf

E. Yaakobi, J. Ma, L. Grupp, P. H. Siegel, S. Swanson, and J. K. Wolf. 2010. Error characterization and
coding schemes for flash memories. In Proceedings of the IEEE GLOBECOM Workshops (GC Wkshps).
IEEE, USA, 1856–1860.

C. Zambelli, M. Indaco, M. Fabiano, S. Di Carlo, P. Prinetto, P. Olivo, and D. Bertozzi. 2012. A cross-layer
approach for new reliability-performance trade-offs in MLC NAND flash memories. In Proceedings of
Design, Automation Test in Europe Conference Exhibition (DATE). IEEE, USA, 881–886.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

