
Part II

Search Algorithms for
Architectural design

69

5

Search problems and algorithms

Computer scientists over the years have developed an immense body of work
in the field of search, creating a large number of algorithms and studying
their e�ciency. Selecting the right algorithm is a task that is very much
related to the search problem it needs to solve. Computer scientists have
also developed a big number of search problems and studied their complexity
in terms of their how e�ciently algorithms can solve them. A good example
is the Traveling Salesman Problem (TSP). This problem involves a salesman
that needs to visit n number of cities in his sales itinerary, and this cities
are not all equidistant, travel between cities takes di↵erent amounts of time
and have di↵erent cost (see figure 5.1). The problem requires the algorithm
to search for sales routes that minimize the travel time and/or costs while
taking him to through all of the cities in his itinerary and bring him back
home.

This problem is not very related to the architectural search problems that
are described in this thesis. If we are to select an appropriate algorithm for
our problems, a good understanding of search problems in general and of
the search problems we face is required.

A good definition of a search problem from a computational point of view
is provided in(Schooler et al. 2012). Schooler et al. simply state that a search
problem is represented by three elements (S, f,W) where S represents the
search space of the problem, f : S ! R is a function that assigns objective
values to the solutions contained in S, andW is a set of constraints. This is a
very general definition of a search problem, that applies to many situations.
It certainly applies to the search problems discussed in this PhD thesis:

� Search spaces S are defined by the user by setting up a parametric

71

1.7 Examples of Search Problems 25

drivable connections. The graph is relatively sparse, since the degree of nodes is bounded (intersec-
tions with five or more participating roads are very rare). The task consists of finding a path between a
start location s and a target location t that minimizes distance, expected travel time, or a related mea-
sure. A common approach to estimate travel time is to classify roads into a number of road classes
(e.g., freeway, highway, arterial road, major road, local connecting road, residential street), and to
associate an average speed with each one. The problem can become challenging in practice due to
the large size of maps that have to be stored on external memory, and on tight time constraints (e.g.,
of navigation systems or online web search). In Route Planning, nodes have associated coordi-
nates in some coordinate space (e.g., the Euclidean). We assume a layout function L : V ! IR2. A
lower bound for the road distance between two nodes u and v with locations L(u) = (xu,yu) and
L(v) = (xv,yv) can be obtained as h(u) = ||L(v) � L(u)||2 =

p
(xu � xv)2 + (yu � yv)2, where || · ||2

denotes the Euclidean distance metric. It is admissible, since the shortest way to the goal is at least as
long as the beeline. The heuristic h(u) = ||L(t) � L(u)||2 is consistent, since h(u) = ||L(t) � L(u)||2
||L(t) � L(v)||2 + ||L(v) � L(u)||2 = ||L(t) � L(v)||2 + ||L(u) � L(v)||2 = h(v) + w(u,v) by the triangle
inequality of the Euclidean plane.

Due to its commercial relevance, we will cover Route Planning in Chapter 17.

1.7.5 TSP
One other representative for a state space problem is the TSP (traveling salesman problem). Given a
distance matrix between n cities, a tour with minimum length has to be found, such that each city is
visited exactly once, and the tour returns to the first city. We may choose cities to be enumerated with
{1,2, . . . ,n} and distances d(i, j) 2 IR+ and d(i, i) = 0 for 1 i, j n. Feasible solutions are permuta-
tions ⌧ of (1,2, . . . ,n) and the objective function is P(⌧) =

Pn
i=1 d(⌧ (i),⌧ ((i + 1) mod n + 1)) and an

optimal solution is a solution ⌧ with minimal P(⌧). The state space has (n � 1)!/2 solutions, which is
about 4.7 ⇥ 10157 for n = 101. This problem has been shown to be NP complete in the general case;
entire books have been dedicated to it. Figure 1.17 (left) shows an example of the TSP problem, and
Figure 1.17 (right) a corresponding solution.

Various algorithms have been devised that quickly yield good solutions with high probability. Mod-
ern methods can find solutions for extremely large problems (millions of cities) within a reasonable
time with a high probability just 2 to 3% away from the optimal solution.

FIGURE 1.17

METRIC TSP problem instance (left) and its solution (right); edge costs are straight-line distances.
Figure 5.1: Diagram of he traveling salesman problem and one solution -
Image from (Edelkamp & Schrödl 2012).

models. The number of parameters in the model define the dimension-
ality of S. The extension of S is defined by the parameter domains.

� Objective values are assigned by performance evaluation via compu-
tational simulation. Functions f are therefore defined by the perfor-
mances we chose to use during the search process.

� Constraints are rare in our search problems, most of the limits to
the search problem are set with parameter domains and invariants.
Including in infeasible solutions (or black areas in the search space) is
done by means of constrains W . This is not present in this thesis, but
it is not excluded as a possibility in search methods.

Clearly this definition applies to our problems, and it gives us a start-
ing point, but a more specific definition of search problems that we face is
required.

Search algorithms in this PhD research are used to explore parametric
models for high-performing solutions to multiple and contrasting perfor-
mance functions. Parametric models may contain a large number of solu-
tions, all identified by combinations of parameters.

72

A more detailed characterization of the problems in this thesis can be
done by studying the search spaces involved. The search space S in archi-
tectural search problems is defined in the creation of the parametric model,
it is confined by parameter domains. Perhaps the most important charac-
teristic of our search space is that it is continuous. The number of possible
values that a parameter can take is infinite, as is the number of subdivisions
inside a given domain. If for example we have one parameter that defines
sphere radii, and it has a domain between 1 and 10 meters, there are infinite
spheres in this model.

Continuous search spaces are problematic for search problems, the num-
ber of possible solutions to search is infinite, as opposed to other problems
like the traveling salesman. The number of possible routes in the TSP is
directly related to the number of cities in his itinerary. The more cities there
are, the more possible routes the salesman can take. But however high the
number of cities the number of routes is always finite. Only if infinite cities
are present does this problem have infinite possible solutions.

All search algorithms inevitably need to transform continuous search
spaces into discrete ones, in other words it is impossible for algorithms to
consider infinite solutions, only a finite number is studied. But some algo-
rithms are better equipped to select deal with continuous search spaces and
infinite possibilities. Even if we discretize the search space, thus dramati-
cally reducing the number of solutions, if a high number of parameters are
present, the number of possible solutions are can still be very high. This
makes exhaustive search processes only feasible in very simple problems with
a very coarse discretization of the search space.

Another important way of characterizing search problems is by means of
the so called objective space⇤. The objective space is the counterpart to the
search space, it represents not the solutions or their parameters, but instead
it shows their objective values, the result of the f function. If we take
for example a problem involving a single f function and a set of solutions
contained in S, we can represent the objective space for such a problem
with a curve. Figure 5.2 shows two objective spaces for single-objective
minimization problems. We can see that solutions in S contain varying
objective values for the same f function.

The problem presented on the left in figure 5.2 shows what is called
an unimodal problem, meaning that the problem has a single minimum
(optimal) value. The problem shown on the left is a multimodal problem, it
contains multiple minima, meaning that the curve has various valleys. Some

⇤A detailed definition of objective space with examples is given in section 7.4.

73

f
ob

jec
tiv

e v
alu

e

solutions in S

Unimodal Multimodal

local
minima

global
minimum

global
minimum

solutions in S
f

ob
jec

tiv
e v

alu
e

Figure 5.2: Objective Spaces showing Unimodal and Multimodal problems.

of the minima are only minimum when compared to the solutions adjacent
to them. these are called local minima. The minimum value for the entire
solution set is called global minimum. The distinction between unimodal
and multimodal problems also apply to problems with a larger number of
objective functions.

Multimodality represents a mayor challenge for search algorithms as they
tend to confuse local minima with global minima, meaning that they do not
converge into the solution the user has been looking for. Objective spaces
might also be discontinuous or highly irregular.

The characteristics of the objective space are determined by the objective
functions contained in the problem. In architectural search problems the
objective spaces are impossible to know beforehand, we are blind to their
shape and complexity when we perform a search process. More importantly,
they are very di↵erent depending on the fact that we are studying structural
shapes, acoustic quality in rooms or energy e�ciency. All of this issues point
to the fact that the search algorithms that we select for this PhD thesis needs
to be able to deal with complex and unknown objective spaces, most likely
multimodal. The algorithms need to be robust.

Another important characteristic of the search algorithms to be used in
this PhD research can be signaled out by establishing what we are searching
for, what distinguishes sought after solutions from the rest. As it has been

74

explained above, we are looking for high-performing solutions given our
objective functions, calculated via performance evaluation software.

The identification of what the algorithm is looking for allows us to ex-
clude a great number of search algorithms and focus on one category. The
category of search algorithms that is best suited to find high-performing
solutions out of an entire set is that of optimization algorithms.

In the previous chapters, a very important distinction was made be-
tween search and optimization. This distinction is not intrinsic to the inner
workings of the algorithms, it regards the purpose and the moment in the
design process it is carried out. This distinction does not refer to the math-
ematical definition of optimization, or di↵erent algorithm types. All search
algorithms tend to minimize some objective function, but there is a group
of algorithms that is more deliberate in this purpose, and that works in
continuous search spaces. They are most commonly known as optimization
algorithms. Optimization algorithms are search algorithms that minimize
objective functions.

5.1 Algorithm classification

As it was declared above, we will focus our attention on optimization al-
gorithms. As such, a classification of optimization algorithms is presented
bellow. The most important way of classifying optimization algorithms is
to divide them according to their optimization strategy. In this case we get
deterministic and stochastic algorithms.

Deterministic algorithms are also referred to as classical because they
represent the first e↵orts in optimization algorithms. Many deterministic
algorithms also called gradient-based, because they look for optimal solu-
tions by climbing or descending (for maximization or minimization problems
respectively) in the direction of the highest gradient, the steepest hill. This
means that they depend on a certain knowledge of the search problem.
Algorithms in this category include Newton’s method, pattern search and
gradient descent. They can be defined by the following characteristics:

� Deterministic algorithms follow a strict formulation and produce the
same result every time they are used on the same problem and from
the same starting point.

� Deterministic algorithms consider one solution at a time, and they
modify their position following the information obtained by studying
only this solution.

75

� Deterministic algorithms’ success is very much dependent on their
starting point. In multimodal problems, they will arrive at the global
minimum only if their starting point is in the basin of the global min-
imum and not of any local minima.

� Deterministic algorithms usually converge at a minimum (global or
otherwise) at a very fast pace, especially when compared to stochastic
algorithms.

� Exploration is not a big part of deterministic algorithms, they tend to
converge into a minimum rather quickly without exploring other pos-
sibilities. This is why they have problems with multimodal problems.

Stochastic algorithms are characterized by the use of random or casual
operations during their search process. This is done to improve exploration
and guarantee that as big a part of the search space as possible is considered.
An important part of their success and widespread use is the fact that they
require no information on the problem to be solved, they are blind to the
shape or complexity of the objective space. Algorithms in this category
include Simulated Annealing, Particle Swarm Optimization, Evolutionary
strategies and Genetic Algorithms. Most of these algorithms have their
inspiration in natural phenomena or animal behavior. They can be defined
by the following characteristics:

� Random events during the search process means that stochastic algo-
rithms follow produce di↵erent results when they are used in the same
problem.

� Stochastic algorithms consider one many at a time, and they modify
their position following the information obtained by studying all of
these solutions. This group of solutions is often called a population,
and these algorithms are sometimes referred to as population based
algorithms.

� Stochastic algorithms’ have many starting points. For this reason, in
multimodal problems they will arrive have a greater chance of finding
the global optima when compared to deterministic algorithms.

� Stochastic algorithms usually converge at a minimum (global or other-
wise) at a much slower pace, especially when compared to deterministic
algorithms.

76

� Exploration is an important part of Stochastic algorithms, they have
not only one position but many in order to better consider the entire
search space.

5.2 Algorithm Selection

Search algorithms have been used by researchers and practitioners in the
architecture and engineering fields for some time. The problems addressed
by these architects and engineers are very varied in nature, disciplines and
complexity, but an important trend towards the use of stochastic algorithms
and genetic algorithms in particular is present in the literature. An investi-
gation into optimization methods used in Building Performance Simulation
(BPO) and Building Performance Optimization (BPO) was carried out by
Attia et al. and published in their 2013 article “Assessing gaps and needs
for integrating building performance optimization tools in net zero energy
buildings design”:

“Through the 2000s, the development of mathematical and
algorithmic techniques and the advancement of BPS tools gave
way to BPO tools that could solve multi-objective optimization
problems of a design. Mechanical and structural engineers work-
ing on complex buildings have been among the early adopters of
BPO techniques, but architects and other engineers now start
using these techniques as well. Today, there is a strong trend to-
wards population-based search algorithms such as evolutionary
algorithms† and particle swarms. These algorithms have been
proven to be very successful in optimizing one or many perfor-
mance criteria while handling search constraints for large design
problems.”

(Attia et al. 2013)

This trend is also visible in other architecture related disciplines such
as structure and acoustics. Some of this examples are to be considered as
search processes in the way they are presented in this PhD thesis, and others
are more in line with the traditional optimization process. But in all cases
the use of stochastic population based algorithms is significant.

†Evolutionary algorithms is a term that is used to group all stochastic algorithms that
are based on natural evolution. These are mainly Genetic algorithms and evolutionary
strategies.

77

This PhD thesis does not present a comprehensive study of many search
algorithms, nor a comparison of them as to which is best suited for some
problems, or which one is more e�cient. This PhD thesis focuses mainly
on the use of genetic algorithms. Exhaustive comparisons of di↵erent algo-
rithms would only serve the purposes of improving e�ciency of the search
process, and that is no small matter. Future e↵orts in comparing search
algorithms as to their adaptation to architectural search could prove to be
very useful in reducing calculation times or usability. But it is unlikely that
the use of other algorithms (Apart from genetic algorithms) would provide
additional architectural knowledge, or shed further light into the subjects
discussed in this research. This thesis focuses on the inclusion of search al-
gorithms and performance information in the early design phase, therefore
algorithm comparisons lie outside of it’s scope.

The selection of genetic algorithms for this thesis is not casual. They have
been employed by many researchers and practitioners in the architecture and
construction field.

GA’s have been around longer than some of the other algorithms de-
scribed above, and for this reason, they have been used and studied more
in depth that other. Their e�ciency has been discussed and testes in many
occasions, and their use has been suggested by researchers in related fields.
Furthermore, many implementations of multi-objective GA’s are in exis-
tence, and their performance has been evaluated and proven successful (Zit-
zler et al. 2000, Deb 2001).

78

6

Genetic Algorithms

6.1 Intruduction

Genetic Algorithms (GAs) were first proposed by John Holland in the mid
1970’s in the University of Michigan, hist most important publication being
“Adaptation in Natural and Artificial Systems” (Holland 1975). They have
been successfully employed in varied fields of study, more important for this
work, they have been widely employed in the architecture and construction
field, see for example (Bogar et al. 2013, Méndez Echenagucia, Pugnale &
Sassone 2013, Miles et al. 2001, Turrin et al. 2011).

“Genetic Algorithms are search algorithms based on the me-
chanics of natural selection and natural genetics. They combine
survival of the fittest among string structures with a structured
yet randomized information exchange to form a search algorithm
with some of the innovative flair of human search. In every gen-
eration, a new set of artificial creatures (strings) is created using
bits and pieces of the fittest of the old; an occasional new part is
tried for good measure. While randomized, genetic algorithms
are no simple random walk. They e�ciently exploit historical
information to speculate on new search points with expected
improved performance.”

(Goldberg 1989)

GAs follow a darwinian model of search in which the concept of fitness
is defined by the user and it can be any such function that can be expressed

79

numerically. In nature, survival of the fittest has, through the process of evo-
lution, generated animal species that are very well equipped to life in their
particular habitat. We can look at evolution as a search process intended to
find the attributes that can best guarantee an animal’s survival and repro-
duction under particular environmental conditions. In this analogy, survival
in a specific environment is the problem set, the animal population is the set
of proposed solutions, and natural selection and reproduction is the search
process that generates the best solutions. While in nature its the envi-
ronment to determine what problems the search process needs to solve, in
computational genetic search its the user who determines what the popula-
tion of solutions must achieve. This is one of the reasons why this technique
has been employed in such varied fields.

As Goldberg said in the definition above, new solutions are created in
GAs by the use of bits and pieces taken from the best of the previously
considered solutions. These bits and pieces are taken from the problem vari-
ables. Like in all search algorithms, in GAs solutions to the given problem
are characterized by a set of variables, and these variables are typically rep-
resented by numbers. These numbers are then coded, there are many ways
of coding the variables, including real numbers coding, but perhaps the most
common code used is binary code. Following the biological analogies used
to describe genetic algorithms, this code then becomes the chromosome or
genome of the individuals in the population. Like in nature, the o↵spring or
new generation of individuals are made up from the chromosomes of their
parents⇤. The success of the GA is related to the selection of the right
parents, and the correct combination of their chromosomes.

Genetic algorithms di↵er from more traditional search methods in a few
key points:

� GAs are population based, search is made in several points at each
iteration.

� GAs normally work from a coded version of the parameters or vari-
ables, not often from the parameters themselves.

� GAs use objective or fitness functions to drive the search process, they
do not use any other auxiliary or additional information.

� GAs use probabilistic transition or movement rules, they do not use
deterministic calculations to determine the next step, such as gradient
based search.

⇤A more detailed explanation of this operation is given in section 6.3 bellow.

80

(Goldberg 1989)

Genetic algorithms perform very well in multi modal problems. While
more traditional search algorithms are vulnerable to getting stuck in local
minima, GAs can surpass this issue by relying on the fact that they are
population based and that their transition rules are probabilistic and not
deterministic. Individuals often get stuck in local minima, but this does not
mean that the GA is stuck, because there are other individuals searching
the solution space. Also, the stochastic elements present in the GA can
steer the search process to new directions, often out from local minima and
towards global minima.

The population approach to search also facilitates the use of GAs in
multi dimensional problems (problems with multiple design variables). The
fact that GAs perform in Multi-dimensional and multimodal problems is
associated with what is called search robustness (Goldberg 1989).

6.2 Exploration vs. Exploitation

In any search method, either computational or human search, there are two
distinct processes at work: Exploration and Exploitation†. Exploration is
the process responsible for covering the entire search space, include the vast
majority of solutions in the search, and in the case of population based
search to guarantee the preservation of diversity in the solution population.
Exploitation is the process responsible for signaling out the best performing
solutions, to direct the search process towards promising areas and generally
reduce the search space by focusing on the best solutions.

These two processes can be considered opposite processes in that one
increases the search area while the other reduces it. One preserves diversity,
the other tries to focus on a small number of solutions that most often are
quite similar to each other. It is precisely the contrast between these two
processes that gives GAs their robustness. Most search algorithms with a
deterministic transition rule, especially gradient based search algorithms,
have very little exploratory power and concentrate on exploitation. This
is one of the reasons why they have do not perform well in multimodal
problems.

Exploratory and Exploitation power of GAs is significantly determined
by its operators, and the parameters needed to control these operators. This

†a cognitive approach to exploration and exploitation is discussed in section 1.2

81

is why it is very important to get to know the operators and select the right
ones.

6.3 A Genetic Algorithm Run

Genetic algorithms are made up of a series of operations performed to and
with the population of candidate solutions. Coding and Scaling for example
are necessary operations in a coded GA, but the most characteristic oper-
ations in GAs are the Selection or Reproduction operator, the Crossover
operator and the Mutation operator. Some authors single out the mutation
operator as being optional and not fundamental to the functioning of the
GA, but others contend that they significantly improve the GAs e�ciency.

Let’s briefly look at the pseudocode of a simple GA, we will be using a
binary coded GA:

1: Generate a random and coded population
2: for i 1, number of Generations do
3: Decode and Scale the population
4: Calculate fitness values for the population
5: Run Selection operation
6: Run Crossover operation
7: Run Mutation operation
8: Perform Exit condition test
9: if Exit condition test = True then

10: Exit GA
11: else if Exit condition test = False then
12: Continue to the next Generation
13: end if
14: end for

In this section we will go through the Genetic Algorithm operations listed
in the above code, and describe in detail its operators. For this purpose we
will use a simple problem we will call Test problem A:

Test Problem A :

8
<

:

Maximize f(x) = x2
x1+0.1 ,

subject to 0 x1 1,
3 x2 5.

(6.1)

where x1 and x2 are the two problem variables, we can think of them
for example as geometrical variables in a form search process, for now let’s
just think of them as variable numerical values. The object of this problem

82

is to find x1 and x2 values that maximize f(x). We can also see that x1 is
confined to values between 0 and 1 and x2 between 3 and 5, these are the
domains of our two variables.

We will also be using a few GA specific elements that we need to properly
run the GA, we can think of them as GA inputs. We will list them here and
they will be explained further down. Some of these we already mentioned
in the problem description:

Population Size (N) 6
Number of Variables 2

Number of binary digits 8 for x1 4 for x2

Variable Domains x1 2 [0, 1] x2 2 [3, 5]
Mutation Probability (pm) 0.2

6.3.1 Initial Population

In order for us create the initial population we need to use the number of
binary digits in each variable. Binary digits define how the variable domain
will be discretized. In this example we chose 8 binary digits for x1, this
means we will divide the x1 domain (0 to 1) into 256 equal parts. This
is because, a binary code 8 digits long contains 256 numbers. We chose 4
binary digits for x2, so we divide its domain into 16 equal parts. Using this
example we can compute how the discretization of the problem results.

We first calculate the domain length for each variable:

Dlen = |Dmax �Dmin| (6.2)

where Dmax is the highest member of the domain and Dmin is the lowest.
In our example Dlen is 1 for x1 and 2 for x2. We can now calculate the
length of the discretized element for each variable:

L =
Dlen

n
(6.3)

where L is the length of the discretized element and n is the number of
divisions or the amount of numbers in the binary digits we selected. In our
example we get L = 0.004 for x1 and L = 0.125 for x2. We discretized x1

in a much smaller element than we did x2, because the domain was smaller
for x1, and most importantly we chose a higher number of digits for its
discretization.

83

Search Complexity It is important to notice from this example that the
number of possible solutions the GA will be considering is determined in
these two numbers, the number of variables and their discretization. The
higher number of variables or the more we discretize them, the higher num-
ber of possible solutions. We can relate the complexity of the search problem
we pose to the GA to the number of possible solutions. In our example we
have 16 ⇥ 256 possible solutions. This complexity can also serve us as a
way to judge how many iterations of the GA are necessary to obtain an
acceptable result.

Returning to the initial population, we can see that we need a binary
number of 8+4 digits for each individual (the chromosome of each solution).
We generate the population using 12 random values (either 0 or 1). This is
repeated this for the number of individuals in our population, in our example
6. The resulting population is the following:

Individual
1 0 0 1 1 0 0 0 1 1 0 1 1
2 1 1 1 0 1 1 0 0 0 0 0 0
3 1 1 1 1 0 0 1 1 0 1 1 0
4 1 1 1 1 1 1 1 1 1 1 1 1
5 0 0 0 0 1 1 1 1 1 1 1 1
6 0 0 0 0 0 0 0 0 0 0 0 0

With this initial population the main loop of the GA can start.

6.3.2 Decoding and Scaling

We now need to decode and scale the binary numbers into values that we
can use to calculate fitnesses. The decoding is done using the number of
binary digits for each variable. In our example, the first 8 digits belong to
the first variable and the other 4 belong to the second one. So let’s take the
chromosome of individual 1 and decode it. The chromosome is:

0 0 1 1 0 0 0 1 1 0 1 1

If we divide it according to our coding scheme we get:

00110001 1011

We now decode these values into integers:

84

00110001 = 140 1011 = 13

Next we need to scale these values into the variable domains. This is
done with the following equation:

S = Dmin + (Dmax �Dmin)⇥
1

Mbin
⇥ d (6.4)

where S is the scaled value, Mbin is the maximum value obtainable with
the number of binary digits of the value in study and d is the decoded value
for the variable (140 and 13 in our first individual). In our example Mbin is
255 for the first variable and 15 for the second. This results in scaled values
of 0.54 for x1 and 4.73 for x2. If we repeat this operation for the entire
population we get these results:

Individual x1 x2

1 0.54 4.73
2 0.21 3.00
3 0.81 3.80
4 1.00 5.00
5 0.94 5.00
6 0.00 3.00

This is the decoded and scaled population. We can now proceed to the
next step in the GA which is fitness calculation.

6.3.3 Fitness Calculation

This is probably the step that need less explanation in the whole GA process.
We simply follow the formula detailed in the problem definition (equation
6.1 in page 82). Of course in our example the fitness function is a very
simple mathematical formula but we can think of this also as a building
performance simulation or any other fitness function we can use to describe
our search process. Following our formula and using our decoded and scaled
values, we get a fitness for all of the individuals in our population:

Individual Fitness
1 7.30
2 9.60
3 4.17
4 5.54
5 4.80
6 30.00

85

If we study the fitness formula and the results, we can see that in order
to maximize the fitness we need a low x1 and a high x2 value. We can also
see that the fitness is mostly sensitive to x1, thus we made a good choice in
investing 8 binary digits (and the added search complexity) to this variable,
since we will be able to study it more in depth than x2. In short we can
already deduce that the best individual for this problem is:

x2 x2 code
0 5 000000001111

We will keep this code in mind when we study the rest of the GA oper-
ators and how they improve the fitness of the population.

6.3.4 Selection or Reproduction Operator

The Selection operator has three main functions:

� Identify good solutions from the population.

� Multiply those good solutions.

� Delete bad solutions from the population.

(Deb 2001)

The selection operator has the objective of choosing which of the indi-
viduals in the population will be used for reproduction. This group is called
the mating pool. It is a very simple operation but it has a significant impact
in the success of the GA.

From an exploration and exploitation point of view, the selection opera-
tor is most related to exploitation, but depending on the particular selection
operator, they can have an influence on both. A selection operator that em-
ploys some randomness on the selection scheme is related to exploration,
while selection operators that only focus on fitness to select individuals for
reproduction are more related to exploitation. Di↵erent authors have pro-
posed di↵erent selection operators that can accomplish these three tasks.
Blickle and Thiele report the following list of selection operators and com-
pare their functionality:

� Tournament Selection

� Truncation Selection

86

� Linear Ranking Selection

� Exponential Ranking Selection

� Proportionate Selection

(Blickle & Thiele 1995)

The Tournament selection operator uses randomly selected couples from
the population to compete for a place in the mating pool. All of the members
in the population are selected for two competitions with di↵erent members
of the population. The competition in the couple is settled by means of their
fitness values. This means that the best individual in the population will
win both of its contests, and thus he will be copied twice in the mating pool.
This process guarantees that there is a higher chance of good performing
individuals to be selected for reproduction, increasing the exploitative power
of the GA. However, since the couples are selected randomly, there is a
little exploratory aspect to this particular brand of selection operator. For
example, if all of the best performing individuals are coupled together, some
of them will eliminate each other, leaving places open in the mating pool for
not so well performing individuals. In a more exploitative selection operator,
these low performing individuals would be cut out, but leaving them insures
a certain level of diversity in the population, increasing exploration.

In the Proportionate selection operator the mating pool is filled in pro-
portion to the fitness values of the individuals. If the average fitness value of
the population is favg and the fitness value for the ith individual is fi, then
the ith individual would be expected to have a fi/favg number of copies in
the mating pool. This method is comparable to a tricked roulette wheel.

The Truncation Selection on the other hand employs no randomness
in its selection. It simply sorts the population according to fitness, and
selects the first individuals in the list using a user defined fraction of the
population, for example 1/2. In this case there is no exploration added to
the GA, exploration is left to the remaining operators.

Some selection operators require user defined parameters (for example
the fraction of the population used in the truncation selection). As with
other kinds of operators, the correct selection of this parameters is important
for a correct GA run.

Let’s use the tournament selection operator for our example GA and
compute the mating pool. First we need to randomly select couples to
compete with each other, twice. For example:

87

Tournament Individual A Individual B
1 3 vs. 4
2 1 vs. 6
3 2 vs. 5
4 4 vs. 5
5 1 vs. 2
6 3 vs. 6

If we run these tournaments, selecting as the winer the individual with
the highest fitness (highest for a maximization problem like our example,
lowest for a minimization problem), we get the following results:

Tournament Winner
1 4
2 6
3 2
4 4
5 2
6 6

As we expected, the best individual in the population (individual 6) won
both of its contests and has 2 copies in the mating pool. This was also the
case for individuals 4 and 2, so we can say that individuals 1, 3 and 5 were
eliminated from the GA. It’s interesting to note that even though individual
1 had a higher fitness value than individual 4, it was eliminated and 4 went
on. This is a product of the stochastic nature of the tournament selection
operator. The resulting mating pool is the following vector:

Mating Pool 4 6 2 4 2 6

6.3.5 Crossover Operator

The crossover operator is responsible for creating a new population from
the individuals present in the mating pool, it is the reproduction of the
individuals in the mating pool or parent individuals and the generation of
the o↵spring individuals or new generation. This operation is done by using
the problem variables, the characteristics of the individuals. As we have
seen, these variables are normally coded in some way, most commonly in
binary numbers.

As it was previously mentioned in the introduction of this chapter, solu-
tions are described in terms of their chromosomes. The crossover operator

88

simply copies part of the genes of one parent and the other part from the
second parent, thus generating the chromosome for the child. This opera-
tion can be summarized in this way. We assume two parents A and B with
the following chromosomes:

Parent A 444444444444
Parent B 222222222222

Now we need to specify a crossover point, the point in until which one
string of genes will be used, the rest of the string will be taken from the
second parent. This number is usually selected at random. Let’s say we
select the 8th gene to be the last one in parent A. This means that the
crossover operation will proceed as follows

1 2 3 4 5 6 7 8 9 10 11 12

Parent A 44444444 4444 �! 444444442222
Parent B 22222222 2222 222222224444

The crossover generated two completely new individuals that we could
call AB and BA:

O↵spring AB 444444442222
O↵spring BA 222222224444

The crossover operation supports any kind of coding, using binary code,
using a larger alphabet (or rather an alphabet with a higher cardinality) to
formulate the strings ‡ or even the use of real coded variables, meaning that
the variables are represented numerically as real numbers.

The above example employed the Simple Crossover operator. It is called
the simple crossover operator because it employes only one crossover point.
As we saw, this crossover point is normally selected at random, but the
possible crossover points to select from need not be all gene positions. Some
Crossover operators choose to only allow crossover points to be in between
variables. If we for example have a coding scheme that attributes 2 genes for
each variable, and there are 4 variables in the problem, then the chromosome
of any individual would look like this:

variable1z}|{ variable2z}|{ variable3z}|{ variable4z}|{
Individual 2 2 2 2 2 2 2 2

‡for a discussion on the e↵ects of the cardinality of coding alphabets see (Deb 2001)
pages 108-109.

89

In this example the only acceptable crossover point would be in between
the variables, where the | lines are shown. This is especially useful in the
case of real coded GAs. Otherwise there is the risk of allowing variables to
go outside of their respective domains.

The other important type of crossover is the Multiple point crossover.
As its name suggests it allows for the chromosome to be split at multiple
positions, requiring multiple crossover points. Using the same two parents
A and B we can show an example of this kind of crossover. In this case we
will use 3 crossover points after the 2nd, 5th and 10th genes:

1 2 3 4 5 6 7 8 9 10 11 12

Parent A 44 444 44444 44 �! 442224444422
Parent B 22 222 22222 22 224442222244

Multiple point operators include a higher randomness to the GAs pro-
cedure, however, Goldberg (Goldberg 1989) explains that in the case of the
Crossover, this increased randomness is not necessarily a good thing. He ar-
gues that increasing the braking points significantly improves the chances of
breaking significant pieces of the chromosome called “schema”. This makes
the crossover more like a random shu✏e of genes, and less like a planned
creation of schemata.

Let us return to our example GA (Test Problem A). We will be using
the simple crossover operator with variable crossing points. We will take
the first two individuals in the mating pool and combine them to create two
o↵spring individuals, then we will take the next two, and so on until we go
trough the entire mating pool and we create a complete o↵spring population.
We will begin with parents 1 and 2 from the mating pool (individuals 4 and
6):

Individual 4 11111111 1111 �! 111111110000
Individual 6 00000000 0000 000000001111

The results of this crossover operation are quite interesting for our ex-
ample. If we look at the second o↵spring in this operation, it is precisely the
best possible individual we signaled out above (see page 86). Although there
is some randomness involved in the operation, the fact that we ended up
with this optimal individual is not completely by chance. It is the product of
the genetic operator used until this point. The fact that the selection opera-
tor chose individuals that had 0s and 1s in the correct spaces to generate the
correct variable values is not by chance. The selection operator chose them

90

because they had good fitness values, and then their combination yielded
an even better result. On the other hand, if we look at the first result in
this crossover, we notice that is exactly the opposite, it has highest x1 value
in the domain and lowest x2 value in its domain. Hence we get the lowest
possible fitness value. This is also a possible outcome in the GA. However
this kind of bad result will get eliminated in the next generation and the
population fitness will grow.

From an exploration vs. exploitation point of view, the crossover oper-
ator is involved in both processes. The recombination of genes from two
individuals into a third one implies big changes in focus of the GA in the
search space. The previous crossover example shows that the parents po-
sitions in the search space were replaced by completely new positions far
way. This suggests that the exploration is at work in this operation. But
as we just explained, this exploration is not entirely random, so we can see
exploitation taking part in this operation as well.

If we finish the crossover for the rest of the population we obtain the
following coded population:

o↵spring
1 1 1 1 1 1 1 1 1 0 0 0 0
2 0 0 0 0 0 0 0 0 1 1 1 1
3 1 1 1 0 1 1 0 0 0 0 0 0
4 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 0 1 1 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0

Keep in mind that the crossover point is random, so not all crossover op-
erations have the same result, even when the same individuals are involved.

6.3.6 Mutation Operator

The Mutation operator can be defined as a diversity preservation operator.
It’s role is mainly to increase the exploratory power of the GA by slightly
altering a few genes in the chromosomes of the population. The number
of genes that get altered is determined by the Mutation probability. This
parameter is selected by the user as another GA input, and has di↵erent
meanings in di↵erent mutation methods. the correct mutation operator for
a GA must be selected depending on the coding scheme, we will first ex-
amine the simple mutation operator for binary coded GAs using o↵spring
individual 3 from our example. For each gene in the individuals chromo-
some a random value r 2 [0, 1] is generated. The simple mutation operator

91

modifies a gene if this random value r is lower that the mutation probability
pm selected by the user. In our example the mutation probability pm was
set at 0.2. We will now run the simple mutation on the o↵spring individual
3:

Chromosome 1 1 1 0 1 1 0 0 0 0 0 0
Random Value r .43 .56 .11 .95 .62 .22 .33 .80 .73 .59 .25 .44
Mutate ⇥ ⇥

p
⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Result 1 1 0 0 1 1 0 0 0 0 0 0

We can see that of all of the genes in the chromosome, only one was
modified because only one of the random values generated was lower than
our selected mutation probability pm (0.2). In the case of binary code, the
modification of the gene is obvious, it its a 0 it gets turned into a 1 and vice
versa.

Goldberg (Goldberg 1989) introduced a particular mutation operator
that was computationally less expensive than the simple crossover, because
it does not require the generation of a random number for each gene in the
GA. This operator, called Mutation clock operator works by establishing
a counter that reduces in number by each gene processed, and the next
mutation occurs when the counter reaches 0. The length of the counter is
di↵erent each time, its determined by a random value r, and it is inversely
proportional to the mutation probability pm. The higher pm the shorter the
counters will be. In this case r is only generated every time a new counter
is needed, not at every gene.

When the coding scheme is not binary or even real coded, the modifica-
tion of a gene is di↵erent. There are many di↵erent mutation operators for
this coding schemes §. An example is the Non-Uniform Mutation in which
the mutated gene is switched to a new value, but the value is selected by
means of a probability curve. This curve is in the shape of a tent, and its
highest at the previous gene value (the parent gene). In this way, the gene
is likely to be modified by a value that is not that di↵erent from the parent
gene.

Global and Local exploration There is a di↵erence in exploration be-
tween the mutation and crossover operators. We saw earlier that the modi-
fications involved in the crossover operation entailed big movements in the
search space, we can call this global exploration. Mutation on the other hand
tends to modify the chromosomes in small ways. The impact the mutation of

§for a review of mutation operators for real coded GAs see (Deb 2001) pages 122-124.

92

a single gene has on the individual depends on the point in which the change
is made. For example, in binary coding, the first digits are reserved for high
values, so changes in these digits have a higher impact than changes in the
final digits. But even so, they would only make changes in one variable.
While crossover operations may change quite radically, sometimes changing
more than half of the genes. So we can say that the mutation operator is
responsible for small movements in the search space or local exploration.
The mixture of local and global exploration is also a reason for the GAs
strength and robustness.

Another important aspect of the mutation operator is avoiding homo-
geneous populations. If we let the GA gain too much exploitative power,
we run the risk of having a completely homogeneous population before the
GA converges into a global optimal solution. The extreme case of this be-
ing a population made up of individuals who are identical. In this case,
neither selection or crossover operators will help us regain diversity, and we
will not see an increase in fitness, the GA is in fact stuck. This does not
happen when we introduce mutation into the algorithm, and in particular,
when a good mutation probability pm value is selected. However, we must
also be carful not to select a pm value that is too high, because its might
significantly reduce exploitation power. With a low pm, schemata have very
little probability of being a↵ected by mutation (Goldberg 1989) so we can
say that the e↵ect of mutation is mostly beneficial if the correct pm value is
selected.

6.3.7 Elitism

Elitism can be though more as a concept than an actual operator, for it
can be introduced into the GA in di↵erent ways. The point of elitism is
to preserve a fraction of the best individuals in the population, in order to
not let the maximum fitness value in each generation decrease. While the
fitness tends to always increase generation by generation, in some kinds of
problems, some stagnation can be found, and in this cases, genetic operators
may even produce individuals with a lower fitness than their parents. Elitism
is the process of keeping the parents in case they have better fitness that
their children, thus keeping the fitness value constant in the next generation.
This is a guarantee that a good solution is never lost in the GA operations
unless a better solution is found. This is possible because GAs work with
populations, we can a↵ord to reserve a few “elite” spaces in the population
to make sure fitness values don’t decrease.

Elitism dramatically increases the e�ciency and convergence speed of

93

GAs, especially un multi-objective problems (Deb 2001). A common way
of introducing elitism into GAs is to directly copy the best ↵ individuals
directly into the next generations, while still having them participate into
the selection process. Like all other GA input parameters, a good balance
needs to be achieved in the selection of a ↵ value. If we select an ↵ value
that is too high, we run the risk of loosing diversity in the population very
quickly, and if we select a very low ↵ we do not take advantage of having an
elite population. Low ↵ means higher exploration and high ↵ means high
exploitation. Values of ↵ = 1 and ↵ = 0.1N (10% of the population) are
common (Deb 2001).

6.3.8 End Conditions for GAs

Depending on the problem, there is no way of knowing when a GA has
reached an optimal result, or if the GA can improve the fitness of the popu-
lation by continuing to calculate. There are also no concrete rules of thumb
for most of the GAs parameters such as population size or mutation prob-
ability. So deciding when to stop a GA is also a choice that is left to the
judgment of the user. Never the less, at least one ending condition must be
set, but multiple end conditions are also possible and in some cases desirable.
There are three basic types of end conditions for GAs:

� Fitness related end conditions

� Number of calculations end conditions

� Time limit end conditions

When the problem is formulated in such a way that allows us to know
a minimum acceptable fitness value, then it is very useful to have an end
condition relating to fitness. For example the GA can end when the fitness
value of the best individual in the population surpasses a user defined mini-
mum fitness value. This avoids unnecessary further calculations and makes
the GA more e�cient. If the object of the search is not a single solution,
the average of minimum fitness value in the entire population can be used in
the fitness related end condition. Since there is no way of knowing whether
the GA will ever reach the given minimum fitness, additional end conditions
are usually given to complement this one (this is true of all fitness related
end conditions). When there is no way of knowing a minimum acceptable
fitness value, or such a value is not desired, other end conditions must be
employed.

94

Another fitness related end condition is the maximum generations with-
out improvement or maximum stagnant generations. This is useful when
the user wants to achieve a certain result quickly and if the GA is not suc-
cessful in a user defined number of generations, the user will reformulate the
problem and restart the GA.

The maximum number of calculations can be estimated by setting a
maximum number of generations plus the number of individuals in the pop-
ulation. It is clear that the more calculations the GA performs, the better
its result will be (especially when there is an elitism component in the op-
erators). It is then obvious that setting a number of calculations to perform
is a valid end condition. This value can be set using the complexity of the
problem as a guide, the more variables there are in the problem the more
calculations we are going to need. But like it was said before, there is no
exact way of knowing a perfect number of calculations.

When the problem at hand needs to be solved within a certain time
window, then setting a maximum calculation time as an end condition is an
obvious solution.

In our GA example, if we would have set a fitness related end condition
the GA would have been over fairly quickly, but this is due to the simplicity
of the problem we chose. If we would have set a maximum number of
generations as an end condition, then the GA would not have been as quick.
As we saw in the pseudocode, if the end condition would not have been
met, then the loop would continue. In more complex problems than our
example, the GA would continue to search both locally and globally for
high performing solutions and storing valuable information in the process.
This information can be accessed later on by the user as a sort of data
mining of the GA progress, and in so doing, get a good understanding of
the problem that was formulated.

95

7

Multi-Objective Search

7.1 Introduction

Now that we have seen the mechanics of the genetic algorithm (a single
objective search method) we can look into the main issues of multi-objective
search. In this chapter we will look into the theoretical aspects of multi-
objective search. We will try to do so in a way that is independent from
any specific search algorithm, and try to look more into the issues, possible
outcomes and what to expect from a multi-objective search. The issues
relating to specific multi-objective search algorithms will be dealt with in
chapter 8.

7.2 Di↵erence between single and multiple ob-
jectives

The obvious and most important di↵erence between single objective, and
multiple objective search is of course the number of objectives. But the
implications of this di↵erence do require some attention, especially when
these multiple objectives are in contrast with one another. In order to
describe this di↵erence, let’s make an example of a multi-objective problem
with contrasting objectives. A typical case for is the contrast between the
cost and the quality of an object. We can associate quality with the materials
and manufacturing techniques of an object, but the better they are the more
they tend to cost. In this chapter we will be using another mathematical
test problem, in this case having two simple functions, described as follows:

96

Test Problem B :

8
>><

>>:

Minimize f1(x) = x1,
Minimize f2(x) =

1+x2
x1

,

subject to 0.1 x1 1,
0 x2 1.

(7.1)

Test problem B states that we should minimize f1 and f2 which are
both dependent of x1 and x2, and they both have a particular domain. A
quick study of f1 and f2 reveals that the more we increase x1 the higher the
value for f1 and the lower the value of f2. This two functions are clearly
contrasting each other. Moreover, we can say that the optimal value of f1 is
reached when x1 = 0.1 and the optimal for f2 is reached when x1 = 1 and
x2 = 1. So if we had to minimize either f1 or f1 we would know what to do,
but if we need to find minimal values for both f1 and f1, we do not know
which x1 and x2 values to take. We cannot say that x1 = 1 is optimal for
both functions.

One way of solving this problem that is very common is to use a weighted
sum of both functions. To a assign a weight factor for each function accord-
ing to their relative importance. This kind of solution would in fact translate
problem B into the following problem:

B (Weighted sum) :

8
<

:

Minimize fw(x) = x1 · w1 + (1+x2
x1

) · w2,

subject to 0.1 x1 1,
0 x2 1.

(7.2)

where w1 and w2 are the weight factors for each function. We could for
example decide that f1 and f2 are equally important to us and so we give a
value of 0.5 to both w1 and w2. In this way we are simply translating f1 and
f2 into a single function fw, translating the multiple objective problem into
a single objective problem. We would then proceed to use a single objective
search algorithm and find a single optimal solution to the problem. This
approach is perfectly valid when we have information that can give us the
correct weights for each function. However, in most real world problems this
is not the case.

Let’s discuss some of the real world objectives that are addressed in
this research, like the multi-disciplinary problems discussed in chapter 19.
Can we say that the structural e�ciency in a building envelope is more
important that its environmental quality and energy e�ciency? Can we say
this for all buildings? Can we say this for any building? And perhaps more
importantly, can we say in which measure one is more important that the

97

other? Is using a 50-50 value a valid approach? The acoustic performance
of a room compared to the structural capacity is also no easy matter to
solve. Keeping in mind that the weighted sum approach only works if we
assign correct and exact weights to all functions, in such problems using this
approach would lead to arbitrary results that are of little interest.

7.3 The concept of Dominance

Going back to test problem B, we previously stated that we could not say
which values of x1 and x2 are optimal for both f1 and f2. But there is
something we can say about some values of x1 and x2 with respect to others,
and it is the concept of domination. Let’s start by comparing a set of
solutions:

Solution x1 x2 f1(x) f2(x) color

1 0.1 0 0.1 10 •
2 1 0 1 1 •
3 1 1 1 2 •

Solution 1 is the minimal(best) solution for f1 and the maximum(worst)
for f2. Solution 2 is the exact opposite, the maximum for f1 and the minimal
for f2. If we compare this two functions we cannot say that one is better
that the other if we consider both functions, we can say that neither of these
solutions dominates the other.

If we compare solutions 2 and 3 however, we can see they have equal
results for f1, but solution 2 outperforms solution 3 in f2. In this case we
can say that solution 2 dominates solution 3.

If we generalize this concept, we can say:

� In order for solution A to dominate solution B, solution A has to
outperform, or equal B in all functions, as well as outperform B in at
least one function.

� If solution A outperforms or equals solution B in all objective functions
except in one in which solution B outperforms A, then A and B do
not dominate each other.

To continue studying these relationships, we will introduce the search
and objective spaces, as a way of visualizing these solutions in their variable
domains and their function results.

98

7.4 Search Space and Objective Space

Multi-objective search problems are often analyzed by looking into two sep-
arate domains, called the search or decision variable space and the objective
or function space.

The search space is a representation of the proposed solutions described
by their variable values. Their variable values are mapped in such a way as
to showcase their values and the relative distances and similarities between
them. The search space has as many dimensions as the problem has vari-
ables, and this dimensions are confined to their respective variable domains.

The objective space on the other hand, is a representation of the solutions
from the point of view of their objective function values. They are mapped
out according to the values obtained in each objective function present in
the multi-objective problem. Hence, the objective space has as many dimen-
sions as the problem has objective functions. The confines of the objective
space are determined by the objective functions, they depend on the values
obtained by them.

Figure 7.1a shows the search spaces for our test problem B and 7.1b
shows the objective space for the same problem. The search space shows x1

and x2 values selected in a grid, this is done so that we can get a good idea
of how the entire set of possible x1 and x2 values end up in the objective
space. In both spaces solution 1 is represented with a red dot, solution 2 is
in blue, and solution 3 in green. The rest of the values are represented with
small black dots.

This way of representing the problem shows very clearly the relationship
between the two functions. One very important feature to focus on is the
contrast between the two functions ⇤. This contrast can be seen in the
objective space (figure 7.1b) by the fact that when solutions approach a
minimal value for f1 they loose optimality for f2. Another important feature
that can be seen in the objective space is the Pareto Front.

7.5 The Pareto Front

In the previous section we explained the concept of domination, we will now
explain what is the Pareto Front, starting by the concept of a non-dominated
individual. A non-dominated individual is one that is not dominated by any
other individual in the population. A non-dominated individual typically

⇤A more detailed study of contrasting objectives is given in section 7.6.

99

100

(a) Search Space

(b) Objective Space

Figure 7.1: Search and Objective Space for Test problem B

dominates many of the other individuals in the population, and it is never
dominated by others. A non-dominated individual may have many individ-
uals which he does not dominate, but none that dominate him.

If we look back at individuals 1,2,3 in test problem B, we can see the
following relationships:

� Individuals 1 and 2 do not dominate each other

� Individual 2 dominates individual 3

� Individuals 1 and 3 do not dominate each other

Therefore we can say that only individuals 1 and 2 are non-dominated.
Although individual 1 does not dominate individual 3 (as does individual
2) individual 1 is never dominated by any other solution, therefore it is
non-dominated.

The Pareto Front, also called trade-o↵ set or non-dominated set, is the
set of all non-dominated solutions in a given group. They represent the set
of solutions that cannot be said to be better from each other if we consider
all objective functions in the problem. In our example, if we only considered
solutions 1,2,3, then solutions 1 and 2 would comprise the Pareto front. But
if the consider any other possible combination of x1 and x2 that we see in
figure 7.1a, then the Pareto set would be made up of a few more individuals.

Figure 7.2 shows the entire Pareto front for test problem B, in the search
and objective spaces. We can see that individuals 1 and 2 are still present
in the Pareto Front and that individual 3 is not. Moreover we see a series
of individuals in the objective space forming a curve that is convex towards
the ideal point (in the case of a problem with two minimization functions
this ideal point would have coordinates 0,0). We discretized the search space
into 10 equal segments in x1 (11 points) and 10 equal segments in x2 (also 11
points) for a total of 121 points analyzed. If we had used an infinite number
of points, the Pareto front would be a continuous curve representing all of
the solutions that are non-dominated. However, since we only studied 121
solutions, we only obtained a part of the entire Pareto front. We can say that
the individuals we found “lie” in the Pareto Front, and they are certainly
part of it, but we cannot say that they comprise the entire non-dominated
front.

The red dots in figure 7.2 represent the non-dominated set in the en-
tire population, so we can say that the population could be divided into
two groups, the non-dominated and the dominated. But if we wanted to
divide the population (from a Pareto dominance point of view) into more

101

102

(a) Search Space

(b) Objective Space

Figure 7.2: Search and Objective Space for Test problem B with Pareto
front in Red.

groups than just two groups, we can introduce more domination related
sets. The Red dots can be considered as the first in a series of Pareto fronts.
The second Pareto front would be made up of those individuals that are
only dominated by individuals in the first front. If we eliminated the indi-
viduals of the first Pareto front from the population and recalculated the
non-dominated set, we would in fact obtain the individuals of the second
front. We can continue this subdivision into sequential fronts until all of the
individuals of the population are part of one front, thus obtaining a series
of sets that are “non-dominated sorted”†.

Pareto fronts can have many di↵erent shapes, depending of course on
the objective functions analyzed. As was previously mentioned, the objec-
tive space has as many dimensions as the problem it studies has objective
functions, so this means we can only graphically represent objective spaces
of up to 3 objective functions. But this does not mean that we cannot
calculate of find Pareto fronts that have 4 dimensions or more, we simply
need to represent them in a di↵erent way, numerically or through 2D or
3D “sections” in a multi dimensional space. This representational di�culty
aside, the study of the shape of the Pareto front is an interesting way of
studying the problem. Among the interesting features of such analysis, we
can mention the discontinuity of a Pareto set, the degree of contrast (or lack
there of) between objective functions and the relative dimension of the front
with respect to the entire domain of feasible solutions.

Another important study is done in the position of the Pareto individ-
uals in the search space. Figure 7.2a shows that the Pareto set in our test
problem B lies entirely at the bottom of the search space and that it forms
a continuous area of the space. But this is not necessarily the case, as we
will see later on, the position of Pareto optimal individuals are often non
continuous. This means that finding the entire set would be a multi-modal
problem.

The extreme points in the Pareto set are interesting individuals, as they
represent the optimal solutions for one of the objective functions. In our
example, these extremes are individuals 1 and 2. We could expect the two
extremes of a Pareto front to be in quite di↵erent positions in the search
space, and this is commonly the case, but as we mentioned, there is not
always continuity between search space and objective space. We could find
individuals that are next to each other in the Pareto front, and that are very
far apart in the search space. For this reason, it is considered an important

†for a more in depth analysis of the non-dominated sorting procedure see section 8.3.1
bellow.

103

element of a Pareto analysis to find a uniform distribution of solutions in
the Pareto front, so that we can then get a good idea of where the entire
Pareto set is in the search space. To get a good idea of the diversity of the
solutions that cannot be said to dominate each other.

Pareto fronts can be studied independently of whether a problem has
minimization or maximization functions or even mixed functions. The only
di↵erence in this case is the position of the ideal or optimal point in the
objective space. As we saw above, if the problem is has both minimization
functions, the optimal corner is the lower-left corner, max-max problems
have it in the upper-right corner, and so on.

7.6 Contrasting Objectives

In this section we will study the contrast between objective functions from
a theoretical point of view. To help us understand these issues we will be
looking at the objective space of a series of problems, and most importantly
the shape of the Pareto fronts in these cases.

We should perhaps start by talking about non contrasting objectives.
Not all multi-objective problems have contrasting objectives, this of course
depends on the objective functions we study. Sometimes we do not know
exactly how these functions relate to one another before we analyze them. It
is for this reason that is quite useful to study Pareto front shapes. Let’s start
by seeing what the objective space of a couple of non contrasting functions
looks like. First we describe the problem, in this case we will call it Test
Problem C:

Test Problem C

8
>><

>>:

Maximize f1(x) = x1 + x2
2,

Maximize f2(x) = x1 · x2,
subject to 0 x1 5,

0 x2 1.

(7.3)

In this case we see a problem in which both functions need to be max-
imized. A quick view of the objective functions of problem C reveals that
the more we increase the values for x1 and x2 we optimize both functions.
So we have a set of non contrasting functions.

Figure 7.3 shows the objective space for problem C. We see that the
Pareto front is comprised of a single solution (represented by the red dot).
This is due to the fact that there is no contrast in the two functions. The
combination of x1 and x2 that maximizes f1 also maximizes x2. Hence, this
solution dominates all others in the population, and it is the only one in the

104

Figure 7.3: Objective Space for Test problem C.

front. The extreme case of a non contrasting problem would be one in which
all functions result in equal values. If we draw the objective space for a two
function problem in which f1 = f2 we would get individuals that all lie in a
45� line with a one solution Pareto front at the end of the line. In cases like
this there is no need for a multi-objective approach to the problem, because
we could just optimize one of the functions and find the same individual that
we would find if we optimized the other. In such cases the multi-objective
approach has no additional information to o↵er than the one provided by a
single-objective search process.

Let’s now move on to more contrasted problems. To do so we will study
two more test problems, D and E. Test problem D is defined as follows:

Test Problem D

8
>><

>>:

Maximize f1(x) = x1 � (x2)a,
Maximize f2(x) = x2 � (x1)a,
subject to 0 x1 1,

0 x2 1.

(7.4)

where a is a constant that we will use to transform the level of contrast

105

of the problem. Looking at f1 and f2 for problem D we can already say that
they are contrasting equations. Furthermore we can say that the end result
of the search process in problem D depends greatly on the value given to a.

Figure 7.4: Objective Spaces for Test problem D with varying values for a.

Figure 7.4 shows the objective space for four versions of problem D, where
a = 4, a = 3, a = 2 and a = 1. When a = 1 the Pareto front forms a 45� line
that is perpendicular to the ideal point (in this case upper right corner). We
can also see that as the value of a increases, the Pareto front becomes an

106

increasingly convex curve (convex towards the ideal point). A convex curved
Pareto front denotes contrast in the objective functions, because increasing
the value of f1 necessarily means decreasing f2. But we can study the rate
in which f2 decreases as we increase f1, and use this rate to compare the
contrast between these four Pareto fronts. In this sense we can say that the
higher the rate of decrease, the higher the contrast. Of course the rate of
decrease in these curves is variable, but we will look at the rate of decrease
at the midpoint.

Looking at figure 7.4 we can see that in all cases the Pareto Front goes
from a f1 value of -1 (the worst value) to an optimal value of +1. The same
is true for f2. Let’s start by looking at the rate in which f2 decreases as we
increase f1 in the case of a = 4. When f1 is at -1 we get f2 = 1, but when
we increase f1 to 0, f2 = 0.75. So from -1 to 0, we only lost 0.25, we have a
rate of descent of 25%.

Now, let’s make the same observation for a = 2. We can see that the
point where f1 = 0 corresponds to an f2 = 0.50, A rate of descent of 50%.
So we can clearly see that the rate in descent is higher in a = 2. Following
the same logic, we can say that among these four curves, the highest rate is
that of a = 1, in which, the rate of descent is 100%. We can conclude that
convex Pareto fronts are a sign of contrasted problems, but also that they
are more and more contrasted as they become less convex, and more linear.

But what happens when the Pareto front becomes concave? To study
concave Pareto fronts we will use test problem E described as follows:

Test Problem E

8
>><

>>:

Maximize f1(x) =
x1
x2
,

Maximize f2(x) =
x2
x1
,

subject to 0.1 x1 1,
0.1 x2 1.

(7.5)

The resulting Pareto front is shown in figure 7.5. The rate of descent at
the midpoint in this case is close to 198%, which is higher than the one we
found in the linear Pareto front (100%). In the case of concave fronts, the
more concave they are, the higher the rate and the higher the contrast.

To summarize this section, non contrasted objectives are identifiable by
a Pareto front made up of a single solution. Contrasting objectives are
shown by fronts with more than one solution. The degree of contrast of
the functions can be determined by the shape of the front, convex is a low
contrast, linear is a constant contrast, concave is a high contrast. Pareto
fronts may be a combination of shapes, they may contain linear, convex
and concave parts. They might also be discontinuous. But we can say that

107

Figure 7.5: Objective Space for Test problem E.

the behavior that we have studied will be true for the parts of the front
corresponding to the shapes we have just mentioned.

7.7 Final Selection Criteria

So far we have learned that in a multi-objective problem, there is no way of
determining which is the single individual that can best satisfy all objective
functions. But in real world multi-objective problems, we will have to select
a single solution for the problem. If for example, the problem we face regards
the structural vs. acoustical properties of a building, we cannot build all of
the solutions in the Pareto front. The Pareto front represents a very useful
tool in reducing the number of alternatives in the search space, to a limited
number, but we still need to choose a single solution out of the front. This
section tries to address this issue and talk about criteria for making a final
selection.

Pareto fronts describe only the functions we introduce into the problem,
so the first alternative to select a solution from the Pareto front is to use
information that was not introduced in the problem. This is what we have
described in the first part of this thesis as implicit search goals and what
Deb calls higher-level information (Deb 2001). We can use functions that
were not present in the original problem, or we can use information that is

108

possible to introduce in the problem.
Not all functions are introduced in multi-objective problems for a series

of reasons. Sometimes the phenomenon these functions describe are not as
relevant as the other functions, or sometimes the functions are computation-
ally too expensive to be used in a search process. The convective thermal
exchange in complex geometry for example is computationally very expen-
sive to calculate, sometimes requiring more than a day. Ideally we would
not need to run this calculation more that a few times.

There are other factors about the building that we usually do not in-
troduce into search processes that can help us select from the Pareto front.
The one that comes first in mind is an aesthetic judgement of the solu-
tions. Search processes are quite useful in gathering information about the
design object that can be measured, calculated or simulated. Typically, we
use it to inform us on physical phenomena occurring in the building, its
structural capabilities, acoustical or lighting quality of the spaces or ther-
mal exchanges. Also economical and construction issues can be measured or
simulated, but aesthetic issues are not. Search algorithms can mostly help
us with the “tame” parts of the design process, and provide us information
that can help us deal with the “wicked” parts‡. The importance of designer
interaction in search processes was discussed in section 1.7, and the selection
of a final solution is an important moment of interaction.

There is also the alternative of further refining the Pareto individuals
with the use of Data Mining techniques. If we have Pareto sets made up of
too many alternatives for a designer to consider, we can also use clustering
and classification algorithms that can further reduce the number of options.
We can look at the distance in the Search space (the variable di↵erences) as
a way of di↵erencing individuals in the front. We know that a good multi-
objective search process will produce a set of well distributed individuals in
the Pareto front, so there is already a bit of data mining involved. But the
solutions in the set may come from any part of the search space, and this
information is not present in the Pareto front. A useful refinement of the
Pareto set would be the separation of solutions by search space distance, to
signal out solutions that are most di↵erent form a variable point of view.
As is the case in the studies shown in this research, this variables represent
geometrical features of the solutions. So we would be sorting solutions that
have the shapes that di↵er the most.

In this frame of mind, diversity is an important issue. We want to keep
diverse population from a variable (search space) point of view. Following

‡For an explanation of “tame” and “wicked” problems see section 1.3.

109

this logic it makes good sense to keep a record of all of the Pareto fronts
found during the process. A search history that can help the designer inter-
act and consider near-optimal solutions, that are perhaps very meaningful
from a geometry point of view. We can think of this as a di↵erent kind
of exploitation, a designer involved directly in the exploitation process can
yield important results.

110

8

NSGA-II

8.1 Introduction

NSGA stands for Non-dominated Sorting Genetic Algorithm. After a first
non elitist Multi-Objective GA, NSGA-II was developed by Kalyanmoy Deb
and his students in 2000 as an elitist version of NSGA (Deb 2001). NSGA-
II has been employed successfully in many architecture and construction
related problems.⇤

Being a genetic algorithm, NSGA-II shares the same overall GA dynamic
that was explained above. There is a main loop that iterates generation by
generation, there is fitness evaluation (in this case we have multiple fitnesses)
and there are selection, crossover and mutation operators. These operators
however are specially designed to work in multi-objective problems. In ad-
dition to these modifications, NSGA-II has two special operators that will
be described bellow.

As it was outlined in chapter 7, the final output of the multi-objective
search process is not a single solution. NSGA-II was designed to obtain a
set of solutions evenly distributed in the Pareto front, taking full advantage
of the fact that GAs work with populations of solutions. This solutions will
be evaluated for their dominance within the population, and they will also
be evaluated for their distribution along the Pareto front.

An important characteristic of NSGA-II is that it works with a popu-
lation that will change in size during the procedure. If we select an initial

⇤see for example (Attia et al. 2013), in this article there is a complete review of
optimization tools used for building performance optimization. A part of the article is
devoted to the use of NSGA-II in this field.

111

population of size N , during the course of the main loop, this population
will be doubled to 2N and then taken back to N . In this way NSGA-II
considers a parent population and a current population in the same loop,
thus providing the possibility of elitism.

8.2 The NSGA-II procedure

Figure 8.1 is the flow chart for NSGA- II. We can see the general procedure
is not very di↵erent ftom that of the simple GA. The main loop is enclosed in
the segmented rectangle, the population size at changing points is signaled
in red, and the operations that most di↵er from the GA are signaled in
yellow.

While in the single-objective GA the fitness values were one for each
individual in the population, in NSGA-II we have a matrix of fitness values.
The matrix has a dimension that is equal to the number of individuals in
the population times the number of fitness functions in the problem. The
fitness calculation is basically done in a double loop, as follows:

1: for i 1, numPopulation do
2: for j 1, numFitnessFunctions do
3: FitnessV alues [i, j] = fj(x)
4: end for
5: end for

In this way the entire population is calculated for f1, f2, f3, ..., fn, and
the fitness values are stored in the matrix FitnessV alues.

We can also describe the NSGA-II algorithm with the following Pseu-
docode:

1: Generate a random and coded Initial population with n number of in-
dividuals

2: Decode and Scale Initial population
3: Calculate fitness values for Initial population
4: Copy resulting fitness values to Parent population vector
5: Generate a random and coded Current population with n number of

individuals
6: for i 1, number of Generations do
7: Decode and Scale Current population
8: Calculate fitness values for Current population
9: Combine Parent and Current creating a vector of size 2n

112

113

Create
Random Initial

Parent Population

Calculate

Multiple Fitness

Values

Create

Random Initial

 Population

Calculate

Multiple Fitness

Values

Combine

Parent + Current

population

Non Dominated Sorting

Crowding Distance Selection

Crossover

Mutation

Parent Population Current Population

New Population

Elite Population

Pop size = n

Pop size = 2n

Pop size = 2n -> n

Final Population

Pareto Front

no

yes

Exit Condition

Figure 8.1: NSGA-II Flow chart

10: Run Non Dominated Sorting Algorithm for the combined population
11: Run Crowding distance Algorithm for the combined population
12: Replace Parent population with first n individuals from the com-

bined population according to the NDS and CD results
13: Run Tournament Selection operation
14: Run Crossover operation
15: Run Mutation operation
16: Use the resulting population to replace Current population
17: Perform Exit condition test
18: if Exit condition test = True then
19: Exit NSGA-II
20: else if Exit condition test = False then
21: Continue to the next Generation
22: end if
23: end for

In steps 1 trough 4 of the above pseudocode we generate, decode, scale
and calculate fitnesses for the initial population that will serve as the first
parent population. Since we are only at the beginning of the Multi-Objective
Genetic Algorithm (MOGA) we do not yet have a parent population so we
need to create one randomly and have ready its fitness values before entering
the main loop. Also necessary before entering the main loop is the generation
of the random current population, seen in step 4.

Step 6 marks the beginning of the main loop, and the first thing we do
in it is to decode and scale the randomly generated current population (step
7). We calculate fitness values for the current population, and we combine
it with the parent population, thus forming the combined and changing the
number of individuals in the population to 2N . The combined population is
further studied by the non-Dominated sorting and crowding distance oper-
ators. These special operators will be described in section 8.3. Their main
function is to provide information necessary to use the selection operator.
Since we have many fitness functions, selection cannot be done by simply se-
lecting the individuals with the highest fitness (as was explained in chapter
7). Selection in NSGA-II is done by using the sequential Pareto fronts, the
non-dominated individuals are preferred to the dominated ones. Further re-
finement is done in the crowding distance to signal out the best distributed
individuals on these fronts.

During selection, we take the best half of these individuals, they will
replace the parent population such as they are, thus preventing the elite
individuals from being lost in further operations. We will use these same elite

114

individuals for crossover and mutation operators. During selection we return
to a population size of N . We perform crossover and mutation operations to
create the new population, the o↵spring population. We replace the current
population with this new population and we conclude the operations in the
loop.

8.3 Special Operators

All Multi-objective search algorithms (genetic or otherwise) need to incor-
porate special operators that allow them to work with multiple fitnesses. In
comparison with the normal GA, NSGA-II has a series of modifications to
its operators, most importantly its selection operator. In particular NSGA-
II does not use the fitness values directly to select the best individuals and
consequently the individuals who will be used for reproduction. As its name
suggests, NSGA-II uses a Non-dominated Sorting (NDS) algorithm to asses
the position of all solutions in the objective space, to sort them according
to Pareto fronts. Additionally, NSGA-II uses a special diversity preserva-
tion algorithm called Crowding Distance (CD). It is the combination of the
values obtained with the NDS and CD algorithms that NSGA-II selects its
best individuals.

In this section we will go trough these two algorithms in detail in order
to better understand the way NSGA-II works.

8.3.1 Non Dominated Sorting

The Non-dominated Sorting algorithm starts simply by comparing all of the
individuals in the population. The comparison is done in all of the di↵erent
fitness values present in the problem. Each fitness value can come from
di↵erent types of problems (maximization or minimization).

When comparing individuals in the population, the algorithm has to
produce two sets of information:

� The first one is a Domination Count. For each individual in the pop-
ulation, the algorithm has to count how many other individuals domi-
nate it. This information is stored in a single vector that is as long as
the population of individuals, called DominationCount.

� The second is a Dominated set of each individual in the population.
This means that for each individual in the population, the algorithm
must keep a list of all those other individuals which are dominated

115

by it. This information is kept in two vectors. The first vector called
DominatedSet contains all of the dominated individuals, the domi-
nating individuals that correspond to the dominated set are kept in
the second vector called DominatingIndividuals.

The following example can help to clarify the method. Figure 8.2 repre-
sents the objective space of a two objective problem f1 and f2. On the X
axis we see fitness values for f1 and on the Y axis the values for f2. Both
functions are minimization functions. The numbers in the figure (1 to 9)
represent individual solutions in our population, and we need to sort these
individuals into non-dominated sets (a sequence of Pareto Fronts).

0
0

1

2

1 2 3 4 5 6 7 8 9 10

1

5

43

2

6

9

F1

F2

8

7

Figure 8.2: Example Objective space for f1 and f2

In this case the DominationCount vector would be the following:

Individual 1 2 3 4 5 6 7 8 9
DominationCount 1 3 0 1 3 5 8 5 2

The DominatedSet and the DominatingIndividuals vectors would be
the following:

116

Dominated Set 111112223333333344444556899

Dominating Individuals 567286781245678926789677778

Once we have all of this information memorized, the NDS algorithm has
to use these three vectors to define and memorize the Pareto fronts. We
first define the way we will memorize the fronts. They will be copied in
two vectors, one of them called ParetoFrontIndividuals and it contains all
of the individuals of the populated, organized by Pareto fronts, the other
one is called ParetoFrontIndexes and it contains the indexes in which a
particular front ends. In this example:

ParetoFrontIndividuals 3 1 4 2 5 9
ParetoFrontIndexes 0 2 5

The first front is comprised solely by the individual 3, because the index
indicates that the first front ends at the 0 index, the second front goes from
the 1 to the 2 index, so it comprises the 1 and the 4 individuals, and the
third front goes from the 3 to the 5 index (the 2 the 5 and the 9 individuals).
This result is shown in figure 8.3.

To create the Pareto fronts, the algorithm has to perform the following
procedure explained in pseudocode:

1: ParetoFrontNumber = 0
2: while length(ParetoFrontIndividuals) < numPopulation do
3: for i 1, numPopulation do
4: if DominationCount = 0 then
5: ParetoFrontIndividuals.append(i)
6: end if
7: ParetoFrontIndexes.append(length(ParetoFrontIndividuals)�

1)
8: end for
9: ParetoFrontNumber = ParetoFrontNumber + 1

10: for all k 2 ParetoFrontNumber do
11: for h 1, length(DominatedSet do
12: if DominatingIndividuals[k] = ParetoFrontIndividual[h]

then
13: if DominationCount[ParetoFrontIndividuals[k]] => 0

then
14: DominationCount = DominationCount� 1

117

0
0

1

2

1 2 3 4 5 6 7 8 9 10

1

5

43

2

6

9

PF3PF2PF1

F1

F2

8

7

Figure 8.3: Example Objective space for f1 and f2 - Solved for the first 3
Pareto Fronts

15: end if
16: end if
17: end for
18: end for
19: end while

After this algorithm we have the whole population divided into sequen-
tial Pareto fronts. These fronts are then going to be used by the selection
operator, along with the results of the crowding distance algorithm.

8.3.2 Crowding Distance

The crowding distance algorithm has the responsibility of determining which
solutions are most dissimilar from each other from the point of view of all of
their fitness values. This guarantees that the end result of NSGA-II will be
a set of solutions well distributed along the entire Pareto front. In genetic
terms, this operation is often described as a niching operation. It bears
resemblance to the clustering operations common in data mining techniques,
in that the Euclidean distance between individuals is used to determine their

118

similarity.
For a given set of solutions F , and a given set of fitness values m the

crowding distance for all individuals fi,m in the set can be calculated by the
use of the following algorithm:

1: for m 1, number of Fitness Functions do
2: fmax

m = maxm(F) . we find the maximum fitness m in F
3: fmax

m = minm(F) . we find the minimum fitness m in F
4: create vector Im so that Im = sort(fm, >)
5: dIm

first
=1 . we assign an infinite CD for the first individual in Im

6: dIm
last

=1 . we assign an infinite CD for the last individual in Im
7: dIm

j
= 0 . we first assign a CD of 0 to all individuals

8: for j 1, number of individuals in Im do
9: calculate and assign dIm

j
using equation 8.1

10: end for
11: end for

dIm
j

= dIm
j
+

f
(Im

j+1)
m � f

(Im
j�1)

m

fmax
m � fmin

m

(8.1)

As we can see in steps 2 and 3 the maximum and minimum values in each
particular fitnesses are signaled out. They are very important in that they
represent the maximum distance between solutions in that fitness function
(in that dimension). This maximum distance serves for a sort of normaliza-
tion operation that is done in equation 8.1 as we can see by their presence in
the denominator. All other distances are compared after being normalized
with the maximum distance.

Extreme solutions in each function are protected. The extreme cases
serve to mark the end point of the Pareto front, hence they are given an
infinite distance to allow them to pass the subsequent genetic selection op-
erator. In that selection operator the individuals with the highest CD will
be considered superior to those with lower CD. The total crowding distance
of each individual is equal to the sum of all of its distances in all dimensions.

Once we have both the crowding distance and the Pareto fronts, we have
all we need to employ our NSGA-II selection operator.

8.3.3 NSGA-II End Conditions

The exit conditions for NSGA-II, as for the simple GA, can be many com-
bined and they can be varied in nature. End conditions relating to number

119

of calculations such as number of generations, and end conditions relating to
time are valid alternatives. Fitness related end conditions on the other hand
make much less sense when compared to the simple GA. In the simple GA
we can establish that the algorithm should stop when the fitness function
reaches a minimum acceptable value. This is not a good solution in the case
of multiple and contrasting objectives, because we might reach that value
without obtaining a complete and well populated Pareto front. A maximum
number of stagnant generations can be used to stop a MOGA that is not
evolving properly, however, stagnation is far less likely when we have many
di↵erent functions. Also in many cases the MOGA can remain stagnant but
still work to better populate the Pareto front.

After these considerations we can see that perhaps the most common and
sensible end condition for a MOGA is a maximum number of generations or
a maximum calculation time.

8.4 NSGA-II Python Implementation

NSGA-II was implemented into Python for this research. In this section we
briefly describe the programing details of the implementation.

Since the main objective of this research is to use MOGAs to search
for high-performing architectural shapes in many disciplines, the MOGA
had to remain completely independent of the fitness functions employed. A
function neutral NSGA-II implementation was thus created, following the
following structure:

The Main file contains all of the user related inputs, it is the only file that
needs editing to make di↵erent MOGA runs. Fitness functions are selected
in this main file, as well as all of the genetic variables such as population
size, binary string length and mutation probability. In this main file, an
instantiation of the NSGA-II class is created, and trough it we pass the all
of the above mentioned input data to the MOGA.

The NSGA-II class contains all of the necessary functions to run the
MOGA, all of the operators are separated into functions, thus allowing us
to replace a given operator with another almost e↵ortlessly. The main loop
of the MOGA is contained in the most important function in the class. This
function is called Multioptimize, and it follows the pseudocode described in
page 112. It is considered the most important function because it is the only
function that is called directly in the Main file, and because it is the one
calling all of the genetic operator functions.

The Multioptimize function shares information directly with the fitness

120

NSGA-II class

Main
function

Output
folder

Pareto
 !les

Population
!les

ith Fitness
function !le

Parametric
model

Fitness
calculation

Figure 8.4: Diagram of the Data structure for the NSGA-II implementation.

functions, they are called by it, and they receive the decoded and scaled
individuals to be studied. This fitness functions generally call many other
functions, to calculate structural, acoustical and/or energy phenomena and
attribute a fitness value accordingly. This functions will be studied in more
depth in the chapters dedicated to each discipline. But perhaps more im-
portantly, contained in the fitness function, is the parametric model. The
individual solution variables in this research almost always represent geo-
metric data to be fed to a parametric model. This model is often content
specific, meaning that the model generated for structural analysis is quite
di↵erent from the one used by energy simulations. They di↵er in their level
of detail, type of computational geometry, their representation and com-
monly their discretization.

Fitness values are returned to the Multioptimize function in oder for it
to pass it to the necessary genetic operator functions. At each generation of
the MOGA, two output files are written and saved in their respective folders
as shown in figure 8.4. One file contains all of the data necessary to describe
the individuals in the combined population from the search space point of
view. This is the population file. The other file expectedly contains the
information to describe the objective space at each particular generation. It
is called the Pareto file.

The particular implementation of NSGA-II used in this research uses
an end condition that considers only the number of generations. When the

121

MOGA has completed a user defined number of generations the algorithm
stops and generates another file containing the final results. This file is
stored in the output folder.

8.5 Mathematical Benchmarks for NSGA-II

A series of simple mathematical functions were used to test the capabilities
of the NSGA-II python implementation to find Pareto front individuals. By
observing the resulting Pareto fronts and comparing them to those found in
literature, we can asses the correctness of the implementation of NSGA-II.

8.5.1 Benchmark A

The first benchmark problem we presented to NSGA-II is found in “Multi-
Objective Optimization using Evolutionary Algorithms”(Deb 2001) page
176. In this book the problem is called MinEx, it is used throughout the
book to compare the performance of many di↵erent algorithms. MinEx is
described in equation 8.2:

MinEx :

8
>><

>>:

Minimize f1(x) = x1,
Minimize f2(x) =

1+x2
x1

,

subject to 0.1 x1 1,
0 x2 5.

(8.2)

The implementation of NSGA-II was used to search for solutions for
MinEx. The following GA input was given to NSGA-II:

Population Size (N) 100
Number of Variables 2
Number of binary digits 8 for x1 8 for x2

Variable Domains x1 2 [0.1, 1] x2 2 [0, 5]
Mutation Probability (pm) 0.1
End Condition Number of Generations 50

Figure 8.5 shows the parameter and objective spaces for Benchmark A,
MinEx, at the end of its run (after 50 generations).

We can see that the algorithm found a very good distribution of solutions
along the Pareto front. The results compares fairly well with the results
found by Deb in his book. We can interpret this as a sign that the Python

122

Figure 8.5: Parameter and Objective Spaces for Benchmark A.

implementation of NSGA-II done for this research was successful. Figure 8.6
shows the search and objective spaces found at generation 1, 5 and 10. We
can see the di↵erent Pareto fronts found by NSGA-II in these generations
and note how the evolutionary process improves the result at each iteration.

Generation 1 has a non-dominated set that is not yet close to the real
Pareto front that we see in Generation 50. However, already at this early
stage, we can see that x2 values are all between 0 and 1, no solutions with x2

between 1 and 5 are being considered because they give sub-optimal values.
This is a very quick reduction of the search space. By generation 5 almost
all x2 = 0.1 (the correct value) but not perfectly. As a result, the Pareto
curve is not yet perfectly drawn. We can also see that at generation 5 the
distribution of individuals in the Pareto front is not very regular. When we
reach generation 10 all x2 = 0.1, and we have a fair distribution, but this
distribution is further improved generation by generation. By the time we
reach generation 50 the distribution has improved considerably.

8.5.2 Benchmark B

The second Benchmark we set for NSGA-II is described in (Zitzler et al.
2000). Zitzler et al. wrote a series of two function problems to test and
compare the e�ciency of multi-objective search algorithms. These problems

123

124

Figure 8.6: Search and Objective Spaces for Benchmark A at generation
1(top), generation 5 (middle) and generation 10 (bottom).

Figure 8.7: Objective Space for Benchmark B.

are called ZDT1 all the way to ZDT6. They all posses a high number of
variables n and they vary in complexity. In particular, for this research we
will be using ZDT3 as Benchmark B. The most important characteristic of
ZDT3 is that it results in a very discontinuous Pareto front, composed of 5
di↵erent curves. Discontinuous Pareto fronts are of particular di�culty for
search algorithms as they require global and local search methods to work
simultaneously. Also the high number of variables (in the case of ZDT3
n = 30) means that the problem complexity is high. ZDT3 is described in
the following equation:

125

ZDT3 :

8
>>>>>><

>>>>>>:

Minimize f1(x) = x1,
Minimize f2(x) = g(x) · h(f1(x), g(x)),
where g(x) = 1 + 9

n�1 ·
Pn

i=2 xi,

h(f1, g) = 1�
p
f1/g � (f1/g) · sin(10⇡f1),

subject to 0 xi 1
n = 30.

(8.3)
Genetic variables for Benhckmark B were as follows:

Population Size (N) 100
Number of Variables 30
Number of binary digits 8 for xi

Variable Domains xi 2 [0, 1]
Mutation Probability (pm) 0.1
End Condition Number of Generations 50

Figure 8.7 shows the Objective space for Benchmark B. In it we can
see that out implementation of NSGA-II was capable of finding an even
distribution of individuals in all 5 curves of the Pareto front. This result
also compares very well with the results found by Zitzler et al.

126

9

Parametric Models

In part I of this thesis we discussed parametric models from a architectural
point of view, in this chapter we will go trough them in a more mathematical
approach, starting from a mathematical definition. Daniel Davis provides
such a definition in his PhD dissertation:

“Returning to the Concise Encyclopedia of Mathematics, a
parametric equation is defined as a “set of equations that express
a set of quantities as explicit functions of a number of indepen-
dent variables known as parameters”. The mathematical defini-
tion can be refined by recognizing that the “set of quantities”
in the context of design representation is typically geometry (al-
though not always). Thus, a parametric model can be defined
as: a set of equations that express a geometric model as explicit
functions of a number of parameters.”

(Davis 2013)

In our previous example problems we have not dealt with geometry, we
have been using simple equations. The MinEx problem we saw on page 8.2
had two simple functions f1(x) = x1 and f2(x) =

1+x2
x1

, in which x1 and x2

are the parameters. This set of equations conforms well to the first part of
the definition we just saw, the definition for a parametric equation.

A parametric model would use its parameters to generate a geometrical
object. We can make an example of a parametric model of a surface with two
parameters. In this example the surface will be parametrized by means of
a couple of Parabolas. These Parabolas will be determined by their heights

127

h1 and h2, which will be our parameters. Using These two parameters we
will be able to generate the complete surface, calculate the position of any
point in the surface, for any combination of h1 and h2 values.

constrained
edge

constrained
edge

h1

h2

24m

4m

Figure 9.1: Example Parametric Model - Parametric Surface

Figure 9.1 shows a diagram of the parametric model, the two parabolas
and the use of h1 and h2. The surface has a fixed rectangular shape in
plan, the rectangle is 24 ⇥ 4 meters. The short borders of this rectangle are
constrained, they will not change position in the Z coordinate, no matter
which values h1 and h2 take. All of the other points in the surface are
subject to changes in their Z coordinate.

The first parabola is anchored at the short edges of the rectangle (hence
it is 24 meters long in plan), and it’s height is determined by h1. This
parabola is the longitudinal one shown in red. We can see that the surface
is symmetric, and that the first parabola is repeated at both ends of the
surface. The second parabola (the transversal one shown in blue) is anchored
at the midpoint of the first parabola and its height is determined by h2.

128

The parameters on their own will not generate the whole geometry, they
are merely the variables in the set of equations that will. In the parametric
modeling techniques employed in architectural research and practice, and
also the ones used in this thesis, these set of equations are computation-
ally solved with the help of powerful CAD software that can generate even
complex geometry with simple commands. Our current example is simple
enough for us to use the equations of the parabolas to determine the geome-
try, this will allow us to see how a simple parametric model is computed. The
parabola is usually expressed as a function of x and y cartesian coordinates:

y = f(x) = ax2 + bx+ c
or

x = f(y) = ay2 + by + c
(9.1)

where a, b and c are coe�cients that determine the shape and position
of the parabola. But a more parametric equation, and an equation that is
more directly related to our problem constraints is:

y = f(x) =
(bx� x2) · 4h

b2
(9.2)

where h is the height of the parabola and b is it’s base. In this case,
given h and b we can get y values for all points along the x axis. Since our
parametric surface is a tridimensional object, we will need to take this into
account in our set of equations. They will be set up in such a way as to obtain
the Z coordinate of a point determined by its X and Y coordinates, and
of course our parameters h1 and h2. Since in our example, the plan of the
surface is fixed to a rectangle measuring 24⇥ 4 meters, we can say that 0
X 24 and 0 Y 4. We can also say that b in the parametric parabola
equation (equation 9.2) will be b1 = 24 for the longitudinal parabola, and
b2 = 4 for the transversal one. The following set of equations defines our
parametric surface:

Z = (b1X�X2)·4·(h1+H)
b21

where H = (b2Y�Y 2)·4h2

b22

(9.3)

where H is the height of a longitudinal parabola that has its midpoint at
the transversal parabola at Y. In this sense we can see the set of equations
as giving us a series of parabolas at X that have a height determined by h1,
h2 and the transversal parabola.

So if for example we wanted to draw one surface using our parametric
model, we would have to select value for our parameters h1 and h2, and then

129

could compute all values of Z for a grid of X and Y points, thus creating
point cloud of our surface. If we then connect these points with lines we
would obtain a 3D mesh representation of our surface like the one shown in
figure 9.1.

9.1 Parametric models and Search Space

The most important thing to consider when creating a parametric model for
the purposes of computational search is the possible outcomes present in the
model, the kind of geometry that we will be including in the model (and thus
the search) and the kind of geometry that would not be included. When we
create the parametric model we are e↵ectively defining the search space of
our search problem, defining which set of geometry we will study. Designers
generate parametric models in many di↵erent ways, all having advantages
and disadvantages, but all parametric models have their limits, they can
generate a wide range of geometry, but not all geometry. The limits of the
model are defined by the parametric equations and the domains we give to
our parameters.

In order to better understand this we will use the parametric surface
example described above and see what kind of geometry we can get out of
it, and what kind we cannot.

Figure 9.2 shows a series of surfaces that were all generated with our
parametric model. 9.2(a) shows the resulting surface when both h1 and
h2 = 0, we get a flat surface. If we fix h2 = 0 but we assign a h1 6= 0
we obtain a single curvature surface as shown in 9.2(b). Double curvature
surfaces are also possible, if we set both h1 and h2 > 0 or both h1 and h2 < 0
we get sinclastic surfaces or positive double curvature surfaces as shown in
9.2(c). On the other hand if we set h1 > 0 and h2 < 0 or h1 < 0 and
h2 > 0 we obtain anticlastic surfaces or negative double curvature surfaces,
as shown in 9.2(d).

Limiting the geometric possibilities that a model has is a good choice
when using computational search methods. This allows the designer to only
consider a very defined set of geometric possibilities at a time, if he so wishes.
Not only is it possible to limit the geometry within dimensional values (for
example limiting the surface from reaching heights above 10 meters), but also
is possible to limit the geometry in a more qualitative way. Using boundary
domains in the models parameters we can easily limit the possibilities of the
model, we can prevent double curvatures, concave surfaces from the top,
convex surfaces, flat surfaces, etc. The following table shows a few possible

130

131

h1>0

h2>0

h1<0

h2<0

h1 = 0

h2 = 0

h1>0

h2<0

h1<0
h2>0

h1>0

h2 = 0

(a)

(c) (d)

(b)

Figure 9.2: Parametric Surface possible Outcomes

domain combinations of h1 and h2 and the included and excluded geometry:

h1 domain h2 domain Included Excluded

�1 < h1 < 1 h2 = 0 single curvature sinclastic
concave anticlastic
convex

h1 > 0 h2 > 0 sinclastic single curvature
convex anticlastic

concave
h1 < 0 h2 < 0 sinclastic single curvature

concave anticlastic
convex

h1 > 0 h2 < 0 anticlastic single curvature
convex sinclastic

concave

We can se that the parameter domains are a powerful way of controlling
the search space. But of course the vast majority of the geometrical options
are defined with the parametric equations themselves. No matter what limits
or values we give to the parameters, in our example we will not obtain folded
surfaces, multiple vertices or periodical surfaces. If we wanted to include one
or all of those possibilities in the search space we would need to define a new
model.

·

132

