
Part III

Applications of
Computational Search

134





10

Shell Structures

10.1 Concrete Parabola-based Bridge Bench-
mark

The first use of Genetic Search in this PhD thesis parametric a single-
objective GA used for a concrete shell bridge⇤. This first search process
parametric developed as a Benchmark for the Genetic Algorithm, to test
its ability to find optimal and sub-optimal individual solutions an a simple
structural problem. In order to track the evolution and results of the GA
a “fitness landscape” of the same structural problem is plotted and the GA
evolution mapped on top of it.

10.1.1 Parametric Model

The Parametric model for this example is the exact same model shown in
chapter 9 described by equation 9.3 and shown in figure 9.1.

As it was previously explained in chapter 9, this parametric definition
of the surface guarantees that, by varying the values of h1 and h2, di↵er-
ent configurations can be obtained: a completely flat surface 9.2a; positive
double curvature surfaces 9.2c; negative double curvature surfaces 9.2d; and
single curvature surfaces 9.2b.

⇤This example was developed by the Author and Mario Sassone and is published in a
Chapter of the Book “Shells for Architecture: Form finding and structural optimization”
edited by Sigrid Adriaenssens, Philippe Block, Diederik Veenendaal and Chris Williams
(Méndez Echenagucia et al. 2014- IN PRINT). The Chapter entitled Computational Mor-
phogenesis was written by the Author, Mario Sassone and Alberto Pugnale.
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Since these two parameters e↵ectively control the overall shape of the
bridge, h1 and h2 are chosen GA the parameters. For both we have estab-
lished a domain spanning from -40 m to +40 m. This means that the search
space of this problem is two-dimensional and can be represented as a grid of
values from 40 to 40 in its X and Y axis. We can thus assume that a vector
of genetic variables x is made up of two variables: x1 = h1 and x2 = h2.

The parametric definition proposed above is then implemented in the
geometry modeler. When the GA calls for a shape in terms of a set of x1 and
x2, the CAD modeler generates the corresponding surface following equation
9.3, providing the object to be evaluated. However, for the FEM analysis a
discrete model has to be generated. The geometry is discretized into a mesh,
composed of shell or beam elements, depending on the type of structure. For
this exercise, the shell is simplified as a grid-shell of comparable mechanical
properties.

10.1.2 Structural Fitness Function

The construction of an FEM model for structural optimization, presents
some di↵erences with the ones used in normal analysis. Complex models
require time consuming calculations, which represent bottlenecks in the flow
of operations. The first requirement of FEM models for optimization is to
be simple, with a number of elements strictly necessary and with a mesh
correctly defined to evaluate the pertinent aspect of structural behavior.
Even with powerful hardware setup, the repetition of hundreds, or even
thousands of analyses might transform the optimization process into an
extremely long task, if the model is not e�cient.

There are basically two possibilities: (i) the use of customized finite
elements solvers, developed in the same environment and (ii) the use of ex-
ternal applications, like commercial software. Both the alternatives have
advantages and disadvantages, for this benchmark we will employ the first
alternative. In shell analysis an important issue is the choice of the elements
to use: in fact, even for a simple non-layered elastic shell, di↵erent formula-
tions and approaches can be adopted. In the proposed application, the shell
is approximated by a mesh of one dimensional beam elements, which geo-
metric properties are defined in order to reproduce the characteristics of a
continuous shell. This allowed to use a custom Python FEM code developed
by Mario Sassone and capable of interacting seamlessly with the parametric
modeler.

Displacements, strains, stresses, and strain energy are basically the e↵ect
of a load condition on an elastic structure. A sti↵ structure will show small
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displacements and strains, while a strong structure will result in relatively
small stresses, and both will have small strain energy. Displacements are
a vector field, stresses are a tensor field, locally defined, and the strain
energy is a scalar value, computed as an integral over the whole structure.
Such quantities can be adopted as a measure of the structural performance.
However, their di↵erences will drive the optimization process to search for
di↵erent optimal solutions. For this exercise, the maximum displacement of
the whole structure is chosen as the fitness function to be minimized by the
GA. As opposed to the strain energy, nodal displacements can reveal local,
as well as global, weaknesses. Our fitness for this benchmark will be:

Fitstructure = max(�Zi) (10.1)

where �Zi is the deformation in the Z axis of the ith node.

10.1.3 Fitness Landscape

The structural problem proposed for this benchmark is defined by only two
parameters. This is purposely done in order to track and further explain the
work done by the GA using a graphical representation. We first map out
the solution domain of x1 and x1 by taking a two-dimensional parameter
grid with grid points P(x1, x2). By assigning a z value to each point of the
grid, we convert it into a three-dimensional surface in which the z value
represents the fitness calculated for the shape (individual) corresponding to
that grid point P. For example:

� P(0,0) represents the completely flat surface, it has a maximum dis-
placement in the z-axis (our fitness value) of 285 mm;

� P(26,1) has a maximum displacement in z of 21 mm;

� P(40,40) has a maximum displacement in z of 43 mm.

By repeating this operation for a series of individuals obtained by the
discretization of the search space, we end up with a complete surface. This
kind of three-dimensional representation of our problem and solutions is
called a fitness landscape. Figure 10.1 shows the fitness landscape obtained
in our Benchmark, which has many local minima, two global minima and
an area of global maxima. This means that the problem can be considered
a multimodal problem. Multimodal problems are notoriously di�cult for
gradient based or non-stochastic search methods, but they should be well
within the possibilities of GA.
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(e)
X1 =  16.78
X2 =   - 5.49

(d)
X1 =  15.00
X2 =     0.00

(b)
X1 =   0.00
X2 =   0.00

(c)
X1 = - 12.00
X2 =    32.00

gen 1 gen 5 gen 10 gen 15 gen 20

(a)
X1 = -16.78
X2 =     5.49

Figure 10.1: Fitness Lanscape for Parabola-based double curvature Bench-
mark, significant individuals and Genetic Algorithm evolution.



10.1.4 Genetic algorithm inputs

The GA used in this benchmark employes a binary coding of design parame-
ters with mutation and elitism operators. It terminates after 20 generations
with a population size of 100 individuals. The two variables (x1 and x2)
are here coded into eight digit binary numbers or genes. Such genes are
combined into one chromosome with the x1 value positioned first and the
x2 second as explained in chapter 6. The single point crossover operator
is used. We can resume the GA inputs of this benchmark in the following
table:

Population Size (N) 100
Number of Variables 2
Number of binary digits 8 for x1 8 for x2

Variable Domains x1 2 [�40, 40] x2 2 [�40, 40]
Mutation Probability (pm) 0.1
End Condition Number of Generations 20

10.1.5 Results

In Figure 10.1, we see a three-dimensional representation of the fitness land-
scape for this benchmark. Such a graphical tool allows us to study the ex-
ploration performed by the GA within the solution domain and to evaluate
its e�ciency by mapping generation by generation the search progress

The plan views of the fitness landscape at the bottom of figure 10.1 show
the evolution of the GA at generations 1, 5, 10, 15 and 20. The individuals
being considered by the GA are represented by small white exes on top of
the plan views of the fitness landscape. We can see how the GA gradually
concentrates its individuals in areas of interests, most particularly global
and local minima seen in blue.

The figure also shows di↵erent configurations of the bridge structure in
relevant points of the fitness landscape. It is of particular interest to see how
the shapes of the local minima di↵er from one another, even if they possess
similar fitness values. The search process aims to find global minima, but we
have seen with this exercise that even other sub-optimal candidate solutions
might be worth considering:

� Individual (a) is the global minimum as found by the GA after 20
generations. It is a hypar with a maximum displacement of 169mm.
Because of the symmetrical nature of the problem, we can say that
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individual (e) is the symmetric opposite to individual (a) and becomes
a global minimum as well.

� Individual (b) represents the global maximum, a flat surface with a
maximum displacement of 285mm.

� Individual(c) is a local minimum with very tall parabolas forming an
highly irregular hypar.

� Individual (d) is a near optimal single curvature configuration.

This benchmark showed that the single objective GA is able to quickly
point out global and local minima in a simple structural problem. Already
in generation 5, the GA had found the global minima, and by generation 20
it had explored a much wider area, point out other areas of interest in the
fitness landscape, thus demonstrating that the GA is an appropriate tool
for multimodal problems.

The fitness landscape is proven to be an interesting and e↵ective tool
in the study of performance related problems. Its main drawback is the
fact that it is limited to a two-variable problem, otherwise there would not
be enough dimensions to properly represent the problem and its results.
Another important drawback of this method is the calculation times. Since,
in order to have a detailed landscape, a big number of simulations have to
be carried out, it can be considered a “Brute Force” or exhaustive search
method, and therefore its e�ciency is not very high. However, for simple
problems with small domains it proved to be an interesting tool for the study
of parametric models combined with performance simulations.

10.2 Case Study 1: Concrete free-form Roof

After testing the GAs ability to explore a wide search space, and a multi-
modal objective space to find local and global minima, it was time to take
one step further, and develop a multi-objective structural problem. A multi-
objective search problem with contrasting objectives for structural design is
developed and solved using NSGA-II†. The problem consists in the design
of a 24⇥ 24 meter roof supported at its corners with a fixed and continuous
thickness, with the objective of making it as rigid and as light as possible.

†This Case study was published as a part of an article on the International confer-
ence on Structures and Architecture 2013 in Guimarães, Portugal (Méndez Echenagucia,
Pugnale & Sassone 2013).
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So when compared to the previous benchmark, this case study has the im-
portant di↵erence of being a multi-objective problem, and additionally, this
case study does not employ the same parabola based parametric study. It
employs more complex geometric possibilities involving NURBS geometry.

10.2.1 Parametric Model

u

v

v = 0.4 isoCurve

v = 1

v = 0

u =
 0.

7 i
so

Cur
ve

u =
 0

u = 1

uv = (0.7,0.4)

Figure 10.2: Non-Uniform Rational B-Splines - U and V parametrized sur-
face.

In this case study the possibilities desired for the solution space went be-
yond what was possible with the previously studied parabola-based surfaces.
Apart from single and double curvature surfaces, this case study parametric
to include multiple curvature surfaces, often referred to as free-form geom-
etry.

Non Uniform Rational B-Splines (NURBS) were introduced in the late
1970’s mainly from the work of Pierre Bézier and Paul de Casteljau both
working in the french automotive industry. They are the current standard
for describing curves and surfaces in computer aided design (Rogers 2001).
The representation of NURBS surfaces requires the use of two parameters
commonly U and V , and so the X,Y, Z coordinates of any given point can
be thought of as functions of U and V , e.g. x = x(U,V ); y = y(U,V ); z =
z(U,V ). So we can say that any point in this surface can be described by
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Δz  = +/- 10m

Figure 10.3: Parametric Model for the 24⇥ 24 roof problem.

its bi-parametric coordinates U and V (figure 10.2). This is a very similar
approach when compared to the one described for the parabola-based surface
in equation 9.3. The most important di↵erence being that the NURBS
surfaces uses not simple parabolas, but B-splines, capable of describing just
about any curve we could think of, with just a few control points.

The NURBS geometry used throughout this PhD thesis is generated with
the aid of the Rhinoceros, a commercial CAD software that contains a large
library of functions that generate, edit and analyze NURBS. Rhinoceros also
o↵ers its users the possibility to customize the use of its functions by writing
scripts that can access functionality in various ways and with multiple pro-
graming languages. One of these languages is Python, the same language
we have been employing to develop our search algorithms and FEM solvers.
This means that we can seamlessly call geometric functions as easily as we
can call search or FEM functions.

Figure 10.3 shows the parametric model for this case study. The surface
for this case study is generated by means of four NURBS curves (shown in
red). These curves in turn define the NURBS surface that is the subject of
study. The NURBS is built starting from a set of four spatial curves. The
two curves at the ends have its end points fixed (seen represented as white
filled dots in figure 10.3, while the other two are NURBS curves laying in
vertical planes. As it will be shown bellow, the fixed points correspond to
the structure supports. The four curves act as four vertical sections of the
surface to be generated. The surface is defined as a NURBS passing through
the section curves (this is called a lofted surface), with assigned polynomial

143



degree. Each curve is defined by four interpolating points, whose vertical
position, the Z coordinate, is variable. Each variable point can move within
the confines of a vertical line 20 meters long, they can move 10 meters above
or 10 meters bellow the starting point Z = 0. By modifying the coordinate of
the interpolating point, the section curves change and so does the surface.
In such a way, a set of 12 real numbers is used to completely define the
surface shape. The other NURBS parameters of the surface, as the degree
of interpolating functions or the number and position of control points, are
set constants in the problem.

We have established that there are a total of 16 control point in the
surface, but 4 of them are not variable. Also we established that only the
Z coordinate of these points is variable, so we can say that the number of
variables in this problems is equal to 12. This gives us a vector of variables
X where:

X = z1, z2, z3, z4, z5, z6, z7, z8, z9, x10, z11, z12 (10.2)

We can also se this vector in a more general way:

X = x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 (10.3)

where in this case xith = zith .

(a) (b) (c)

(d) (e) (f )

Figure 10.4: Possible individuals with the parametric model developed for
the roof Problem.
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The ranges of variability of each parameter define the set of potential
solutions. As it has been already said, the length of the variable domain
influences the search process and the possible outcomes. Figure 10.4 shows
six of the possible surfaces contained within the above defined parametric
model. Surface (a) is a flat surface, (b) is a single curvature surface, while
(c) and (d) are positive double curvature surfaces in di↵erent directions,
and (e) and(f) are surfaces with multiple curvatures, meaning they have
both positive and negative curvatures within the same surface. Surface (e)
has a complex curvature that is not very accentuated, while (f) has more
pronounced curves.

10.2.2 Fitness functions

One of the important premisses for this Case Study is the use of multiple
and contrasting objective functions. In particular for this case we want to
search for rigid but light concrete structures. For every generated solution,
two functions are used to calculate its fitness.

The first function is the same one used in the above benchmark, the
maximum displacement in the z-axis. The FEM solver used in this example
is also the same one used for the Benchmark, it is the FEM solver devel-
oped by Mario Sassone in the Python programing language. This enables
a smooth communication between the parametric model, the FEM solver
and the Search Algorithm. However, in this case, the geometry is not gen-
erated with the parabola function, but with the NURBS parametric model
mentioned above, which leaves us with the problem of discretization of the
otherwise continuous NURBS surface.

The FEM solvers used in this research are not capable of working with
NURBS geometry. Geometry must be represented in small and flat shell
elements. This means that we need to split up our continuous NURBS
surface into small flat elements. Depending on the type of geometry, the only
way to make sure that the resulting elements are flat is to generate triangular
elements, not all of the resulting rectangular elements might be flat. Since
we are working with free-form geometry, we discretized the NURBS surface
into triangular elements using a set of Rhinoceros functions that were written
for this exact purpose. The proper discretization of continuous surfaces can
be a relatively simple task using this set of Rhinoceros functions, but as we
will see later on this is not the case for surfaces containing windows or gaps.

The resulting discretized Mesh surface is loaded in its nodes with only
a vertical load as shown in figure 10.5. The surface is only supported at its
corners, that in this case are 24 meters apart in both directions. The support

145



Figure 10.5: Loading and Node Constraint conditions for the 24 ⇥ 24 roof
problem.

points are assumed to have pin joints, so they will not o↵er resistance to
rotation.

The second fitness function measures the surface’s weight. This function
could be calculated by taking the surface’s area and multiplying it by a fixed
thickness (thus obtaining volume) and consequently multiplying this volume
by the proper cubic weight of its material, concrete. However, since both
material weight and thickness is the same for all surfaces, this function is
simplified and the only value taken into consideration is the surface’s area,
the only variable in the calculation explained above.

We can sum up this multi-objective problem in the following way:

Case Study 1

8
<

:

Minimize f1(x) = max(�Zi),
Minimize f2(x) = S,
subject to �10  xi  10.

(10.4)

where x is the vector of variables, �Zi is the displacement in the Z-axis
of the ith node and S is the surface area.

10.2.3 Genetic algorithm inputs

This case study’s genetic inputs were the following:
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Case Study 1 Run# 1
Population Size (N) 10
Number of Variables 12
Number of binary digits 8
Variable Domains xi 2 [�10, 10]
Mutation Probability (pm) 0.1
End Condition End after 500 generations

10.2.4 Results

F1

Solution A

Solution B

Solution C

F2

pareto curve

initial population

A

C
B

known optimal for F1

known optimal for F2

Figure 10.6: Objective space and Pareto front - 3 individual solutions for
the roof structural multi-objective search problem.

Figure 10.6 shows the results of the search process for case study 1. The
Pareto front, represented in the fitness space, contains the best solutions
found by the algorithm: the lower branch of the curve contains solution
that privilege lightness to sti↵ness, while in the left branch sti↵er but heavier
configurations can be found. In this benchmark, the best solution related
to each fitness is known: the lightest shape is the flat shape, while the
sti↵er shape is a dome with the four central point at the top of the domain
and the eight lateral points at the bottom. During the search process, the
crowding distance algorithm tries to keep a good spacing between solution in
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the front, but the two extremes (A and B) were not found. The knowledge
of such extremes allows us to evaluate the e�ciency of MOGA in terms of
ratio between the size of the found front and the size of the actual front,
including extremes.

The solutions spacing in the front is a good indicator of the variety of
geometrical shapes and of the way di↵erent shapes answer to multi-objective
requirements. A set of such shapes, related to the position on the Pareto
front, is also shown in figure 10.6, together with the extreme cases. A direct
representation of the position of shapes in the variable space is not suitable,
due to the number of dimensions, but they can be compared one to another
by the designer who is in charge to handle the produced material.

The fact that the extreme solutions (A and B) were not found could
be due to an insu�cient exploration during the search process (low number
of individuals in the population or due to a small number of generations
relative to the problem complexity) Since in this problem we do not know
the exact shape of the true Pareto front, we cannot be 100% sure about the
problem complexity, the true Pareto front could be almost discontinuous in
the segments between the Front found and the A and B solutions. Meaning
that there wold be no feasible solutions in those missing segments, and only
one single solution in the extreme. This would make finding the extremes
A and B highly di�cult. What we can say for sure, is that the exploration
in this case parametric insu�cient for the extremes to be found, we cannot
be sure about the problem complexity.

Solution (B) is an interesting compromise between rigidity and weight.
It is a complex surface with multiple curvatures that assure its rigidity,
but also it does not posses a high surface area, making it not very heavy,
especially when compared with other more rigid solutions.

In order to better understand the relationship between problem complex-
ity and number of calculations, the search algorithm is executed two more
times with di↵erent GA inputs. The GA inputs for the second calculations
were:

Case Study 1 Run# 2
Population Size (N) 30
Number of Variables 12
Number of binary digits 8
Variable Domains xi 2 [�10, 10]
Mutation Probability (pm) 0.1
End Condition End after 160 generations

Meaning that there were close to 5.000 calculations (the same number
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as the first run, but with a higher population size). And the third time the
algorithm ran, the inputs were:

Case Study 1 Run# 3
Population Size (N) 100
Number of Variables 12
Number of binary digits 8
Variable Domains xi 2 [�10, 10]
Mutation Probability (pm) 0.1
End Condition End after 100 generations

Meaning that there were 10.000 calculations, with a larger population
size than the two previous search runs. Figures 10.7 and 10.8 show the
Pareto Front and initial population for all three search runs. We can see
that when compared to the first run, the second and the third have a slightly
improved coverage of the Pareto front, since they are both closer to the
two extremes (A and B). The most significant improvement is made in the
direction of solution A, the improvement in the direction of A is not as
noticeable. The Pareto front also seem to be slightly better, having solutions
that are would dominate solutions in the first run. However, if we compare
run 2 with run 3, the di↵erence is hardly noticeable. We could even say that
the second run has a better coverage of the Pareto Front.

Since there is a lot of randomness in NSGA-II, we cannot say for sure
what the causes are for these di↵erences in the search runs, but we can
draw some observations. There is a small di↵erence between the second
and third runs in favor of the second, the third run having twice as many
calculations as the second. This suggests that increasing the number of
calculations is not a guarantee of improvement. Run 1 had higher number of
generations than run 2, but an apparently insu�cient number of individuals
in the population. Run 3 had a larger population size than run 2, but a
lower number of generations, and the data suggests that this run would
have benefited form a few more generations.

There seems to be a significant relationship between population size and
number of generations. Too many individuals in the populations seems to
increase calculation times needlessly, while a small number of generations
is also not appropriate. We can assume that these values are highly prob-
lem dependent, and that achieving an optimum number of generations and
population size is not easy. This might also allude to the balance between
exploration and exploitation described above. Higher individuals in popula-
tion denote higher exploration, while higher number of generations are sings
of higher exploitation.
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Figure 10.7: Objective spaces with Pareto fronts and initial population for
Case study runs 1,2 and 3.
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Figure 10.8: Objective spaces with Pareto fronts and initial population for
Case study runs 1,2 and 3.



10.3 Case Study 2: Concrete free-form Bridge

The second case study shares many characteristics with the first one. It is
also a multi-objective search problem with contrasting objectives for struc-
tural design and it is also studied using NSGA-II‡. The problem consists in
the design of a 24 ⇥ 4 meter bridge supported at its ends with a fixed and
continuous thickness, with the objective of making it as rigid and as light
as possible. It follows the exact same premise as the benchmark but it uses
free-form geometry.

10.3.1 Parametric Model

Δz  = +/- 10m

Figure 10.9: Case Study 2 Parametric Model - 24⇥ 4 Bridge.

Figure 10.9 shows the parametric model for Case Study 2. It is generated
in the same way as the model for Case Study 1, its based on four curves,
but in this case, the to curves at the end are fixed as flat lines. Therefore it
has only eight variables, they are the z-axis coordinates of the eight control
points that define the two middle curves. Also in this case the range of
motion for the control points is 10 meters upwards and 10 meters downwards,
making the total range of 20 meters. Also in this case, the possible outcomes
include the flat surface, single and double curvature surfaces either positive
or negative, and multiple curvature surfaces as well.

The Variable vector for Case Study 2 is as follows:

X = x1, x2, x3, x4, x5, x6, x7, x8 (10.5)

‡This Case study was published as a part of an article on the International confer-
ence on Structures and Architecture 2013 in Guimarães, Portugal (Méndez Echenagucia,
Pugnale & Sassone 2013).
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where xith = zith .

10.3.2 Fitness functions

The first fitness function in this problem is the maximum displacement in the
z-axis max(�z). Figure 10.10 shows the FEM model for Case Study 2. The
surface is discretized into flat shell elements, and it is loaded at every node.
It is modeled as a continuous thickness concrete shell, constrained with pin
joints at its ends. The python FEM software developed by Mario Sassone
is also employed in this case study for the calculation of the structure’s
displacement.

Figure 10.10: Loading and Node Constraint conditions for Case Study 2,
the 24⇥ 4 Bridge.

The second fitness function is the same weight function, simplified as the
surface area S. The problem can be expressed in the following way:

Case Study 2

8
<

:

Minimize f1(x) = max(�Zi),
Minimize f2(x) = S,
subject to �10  xi  10.

(10.6)

In this case there is only one known extreme, and that is the flat surface,
having the minimum surface area from all possible solutions S = 94m.

10.3.3 Genetic algorithm inputs

For Case Study 2 the GA inputs were slightly di↵erent that for case study
1:
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Case Study 2
Population Size (N) 50
Number of Variables 8
Number of binary digits 8
Variable Domains xi 2 [�10, 10]
Mutation Probability (pm) 0.1
End Condition End after 100 generations

The population size is fixed at 50 individuals and the number of genera-
tions set to 100. This means that we have 5.000 calculations. Eight binary
digits means that we are dividing our range of motion (20 meters) into 256
steps, leaving us with a domain discretization of 7.8 centimeters. Since we
have 8 variables and 256 possible values for each, that means that we have
a total of 2568 possible solutions, thats 1.84⇥ 1019, a very big number.

10.3.4 Resutls

In figures 10.11 and 10.12 we can see the Pareto front for Case Study 2
in di↵erent levels of detail and at di↵erent stages of the search process.
Even in this case the lightest shape is the flat shape (Individual A), but the
sti↵est does not have a theoretical significance. If the longitudinal section
of the bridge were an arch with a shape perfectly corresponding to the
pressure curve of the load, then the sti↵est solution would have this shape
and straight transverse section. It would be a barrel vault, or “flat arch”.
Since the parametric model we created does not allow such a perfect shape
(due to the fixed distance of the generating NURBS curves), the only way
to increase sti↵ness is to add some bending sti↵ness, through a transverse
waved section. The shell, in this case, becomes a kind of ribbed arch, in
which ribs increase the arch sti↵ness. Besides the extreme case of the sti↵est
shape, this considerations are important for other Pareto front shapes. Ribs,
in fact, increase the sti↵ness and the weight at the same time. Figure 10.12
also shows a few significant solutions generated during the Search process
for Case Study 2. The set of shapes depicted in figure 10.12 include some
solutions coming from previous search steps (generation 22), instead than
from the last only: those shapes do not necessarily represent local minima,
but simply steps of the search process. However, they can play a role in
interactive design, because they can be chosen as starting points of new
search processes, through a redefinition of constraints and of the domain,
suggested by the designer evaluations.

The 100th generation contains the set of solutions that lie in the Pareto
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Figure 10.11: Objective space with Pareto fronts for the 100th and 22nd
generations and the initial population for Case study 2.
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Solution A Solution B

Solution C Solution D

Solution E Solution F

Figure 10.12: Objective space with Pareto fronts for the 100th and 22nd
generations and the initial population for Case study 2 - Individual solutions
A,B,C,D,E and F.



front, no other generation contained individuals that dominated any of these.
If we take a look at the two Solutions presented in the 100th generation (B
and C), we see that they are not very dissimilar from each other. Solution
C contains no curvature in the transverse section, making it lighter that
solution B. The latter has a curved transverse section, giving it some bending
sti↵ness, in fact increasing its fitness, but making it heavier.

The 22nd generation is an interesting set of individuals to study. We
can see that already after 22 generations the improvement from the initial
population is significant. This set however, contains a much more diverse
group of individuals when compared to the 100th generation. Solution D
has a very pronounced cross-section, while E and F have less marked ribs,
solution F has a more continuous curvature, while E is wave-formed.

Solution E seems to be in an almost orthogonal position from solutions
D and F. In fact, if we look at the overall shape of the Objective space, and
we trace lines from solution A (not found by the search process) and the
individuals in the Pareto front (generation 100), we note a di↵erent pattern
that we had not seen before. In section 7.6 we saw that the shape of the
Pareto Front can be a clue as to the level of contrast of a given problem. But
in this case we see an almost orthogonal pattern, as if one function has very
little influence over the other. This denotes a low level of contrast between
the two fitness functions.

The di↵erence in fitness for f1 between solution A and B or C is gigantic,
while the di↵erence for f2 is negligible when compared to the other distances
we can see in the objective space. For example, the di↵erence in f1 between
D and C is more that 6 times larger that the di↵erence between A and C.
These numbers tell us that we are gaining little weight from A to C, but on
the other hand, we are reducing max(�Zi) by 96%.

This low contrast is true for this Case Study and in these sections of the
objective space, however as we can see in the 100th generation, there is still
contrast present in the problem. Other structural fitness functions could be
investigated in order to see if the level of contrast changes, or if di↵erent
measures give is the same patterns.

These long orthogonal segments might also be a clue as to why NSGA-II
is having problems in finding solution A or solutions between A and the
Pareto Front in the 100th generation. If we a perfectly orthogonal pair of
fitness functions, the Pareto front would be made up of only 3 solutions.
This means that we would have empty segments between then, making it
impossible for the MOGA to place solutions other than these 3 in the front.
A pair of fitness functions that are almost orthogonal, but not exactly, should
be a similar case. We can hypothesize that this is the behavior we have seen
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in the last Case Study.

10.4 Masonry shells

Compression only structures, such as masonry and stone vaults, have a long
and rich tradition, they are a fundamental part of the history of architecture
and structural design. Since stone and masonry posses very little resistance
to tension, their structural capacity relies a great deal on their geometry.
They are designed to have compression only shapes, shapes that do not gen-
erate tensile stresses. The most iconic shape in this category is the arch, and
more specifically the catenary arch. Shells, being three-dimensional objects
can have more complex shapes than the arch. Traditional compression only
shells were made in a vast array of shapes such as barrel vaults or sail vaults
and they all have precise and well known geometry and proportions that
make them compression only shapes.

Free-form compression only forms have also been studied and built in
the past, perhaps more famously by Antony Gaud́ı. Recently the term
structural form-finding has been given to the process of generating free-form
compression only shapes by means of computation. As we saw in section 4,
there are many ways of computing these shapes, and many of them do not
involve digital computation. Several Digital form-finding processes exist, for
example dynamic relaxation (Day 1965), force density method (Schec 1974),
particle-spring systems (Kilian & Ochsendorf 2005) and Thrust Network
Analysis (Block 2009). All of these methods tend to be very interactive, in
that they need a user defined starting configuration, and many of them can
be modified in such a way as to generate di↵erent compression only shapes
almost in real time. They can be thought of as deterministic and gradient
based methods.

The above methods and their applications demonstrate that compres-
sion only shapes can be very di↵erent from each other and from traditional
masonry vaults. However, they are not completely free-form, they represent
a sub-group of shapes that satisfy the compression only requirement. The
above mentioned methods generate forms that reside within this sub-group,
and the designer can interactively generate di↵erent shapes, exploring ge-
ometry that lies within this sub-group. From this point of view we can think
of these form-finding processes as optimization methods rather than search
methods. Genetic algorithms, while not being as fast and as e�cient as the
above mentioned methods in finding compression only forms, they are more
powerful form a search point of view. They consider geometry groups or
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sub-groups depending on the parametrization given by the user and they
can consider these groups from other points of view, apart from the com-
pression only shape. The selection of a GA or a form-finding method should
be taken depending on the problem at hand and the user’s needs.

In this section we will employ MOGAs to study masonry shell structures.

10.4.1 Structural analysis of masonry vaults

This case study introduces the use of masonry, a material that di↵ers from
reinforced concrete in that it does not have a high resistance to tension
forces. Therefore, important changes needed to be made in the fitness func-
tion that studies its structural capacity and the FEM model that analyses
its behavior.

In finite element structural simulations, materials and their mechanical
properties are introduced by means of series of values, most important of
which is the Elastic or Young’s Modulus (E). The elastic modulus charac-
terizes the sti↵ness of the material as the ratio of stress � over deformation
✏:

E =
�

✏
=

F/A0

�L/L
(10.7)

where F is the force applied to the material, A0 is the cross section area
of the object to whom the force is applied, L is the length of the object
and �L is the variation in length of the object due to deformation. E is
expressed in units of force over units of area, this means it is a pressure unit,
it is usually expressed in Pa = N/m2, MPa = N/mm2 or GPa = kN/mm2

.
The elastic modulus for reinforced concrete and masonry depend on their

specific materials and configurations, but they can be around 30 GPa for
concrete and around 10 GPa for masonry. In this way FEM calculations
take into account the di↵erence in sti↵ness of the materials. But the fragility
of masonry under tension forces is not taken into consideration. Linear FEM
calculations assume the material given is a perfectly elastic and symmetrical
material, meaning that it has the same resistance under tension and com-
pression forces. This might be the case for concrete under normal loads, but
it is not the case for masonry, therefore we need to somehow take this into
account when we study masonry shells.

A brief parametric study of masonry shells is made with the purpose
if understanding how structural FEM simulations could describe masonry
vaults, and how to take into account the characteristic of masonry described
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∆z = +/- 10m
20m

40m

Figure 10.13: Parametric model for study of elastic potential energy and
maximum tension of masonry shells - The 20 generated shells.

above. Figure 10.13 shows the parametric model made for this analysis, it
contains 20 shells in total. The only variable in this analysis is the z-axis
coordinate of the central control point of the surface. We can see that the
generated surfaces are all positive double curvature surfaces, when z > 0
we get concave surfaces and when z < 0 we get convex surfaces. The only
exception is the flat surface that occurs when z = 0.

Figure 10.14 shows the FEM model characteristics for this analysis, the
shell is supported by pin joints along its edges, and each discrete shell el-
ement is loaded with its own weight. The surface is modeled with a fixed
and continuous thickness of 5 centimeters. These FEM analysis are made
by means of Oasys GSA, a commercial FEM software.

The purpose of studying concave and convex surfaces is to see the dif-
ference that the FEM analysis gives to the convex surfaces (that should be
mostly in tension and therefore not viable for masonry vaults) and the con-
cave surfaces that should be mostly in compression. The first analysis made
is to plot the elastic potential energy Ue and the maximum tension stress
max(⌧+) for all of the surfaces. We can call this a sensitivity analysis of the
surface shape for these structural values.

Figure 10.15 shows the result of the analysis. We can see that the elastic
potential energy Ue curve is symmetrical, it has the sane values for concave
and convex surfaces, for example z = �4 and z = 4. This is to be expected
since the FEM analysis considers the material to be perfectly elastic and
symmetrical. The maximum tension max(⌧+) curve on the other hand is
not symmetrical. We can see that the convex surfaces have higher tensions
than their concave counterparts. Since the concave surfaces in this paramet-
ric model are not perfect compression only shapes, there are points in the
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Figure 10.14: Loading and node constraint conditions for the parametric
study, the 40⇥ 20 masonry shell.

surface which are in tension, but their values are lower that the ones found in
the convex surface. This gives us the opportunity to create a fitness function
that can identify surfaces that have low tension and low overall stresses.

The elastic potential energy describes the general condition of the struc-
ture. The higher the elastic potential energy, the higher the structure is
being deformed, indicating a lower sti↵ness in the structure. For this rea-
son, it is often used in GAs as a fitness function, it is a single number
indicator of the overall sti↵ness. But we can see in this case that Ue is
not a good indicator for masonry structures, because it does not distinguish
between structures under tension or compression. We need to somehow in-
clude the tension into a new fitness function in order to help the GA make
this distinction.

But maximum tension on its own is also insu�cient for a proper fit-
ness function. For example, if we try to compare perfect compression only
shapes by calculating their max(⌧+) values, we would see that they both
have max(⌧+) = 0. This means that using only max(⌧+) as a fitness func-
tion would not allow us to distinguish between compression only shapes.
Compression only shapes however, do have di↵erent compression stresses in
them, and we can explore between them to find surfaces that minimize also
compression stresses.

The following function parametric developed to incorporate both Ue and
max(⌧+):

161



162

Figure 10.15: Potential elastic energy Ue for 20 masonry vaults - Maximum
tension (max(⌧+) for the same vaults.



fit =
Ue

Ue,0
+

 
max(⌧+)2

max(⌧+0 )2
· w
!

(10.8)

where Ue,0 is the elastic potential energy for a reference shell, max(⌧+0 )
is the maximum tension for that same reference shell and w is weight a
coe�cient. The function normalizes both Ue and max(⌧+) with a reference
shell and then the tension is given a higher influence in the function by
multiplying it by w. The reference shell should be a low performing shell,
in this case the flat surface parametric selected.

Figure 10.16 shows the result of the parametric study for the fitness
function (fit) described above, for di↵erent values of w. We can see that
when w 6= 0 there is a good distinction between the convex and concave shell
structures, but also there is a less noticeable but existing distinction between
the di↵erent concave shells. This figure suggests that the developed fitness
function is capable of studying masonry shells with the linear FEM anal-
ysis and with an appropriate distinction between tension and compression
stresses.

10.5 Case Study 3: Free-form masonry roof

The first case study for masonry vaults is a shell roof for a rectangular
building of 40 ⇥ 20 meters. This Case study has several similarities with
the previous two case studies, it is also a multi-objective search problem
with contrasting objectives for structural design and it is also studied using
NSGA-II. The main di↵erence, apart from the shell dimensions, is the ma-
terial, and the fact that in this case the shell is supported along all of its
perimeter.

10.5.1 Parametric Model

Case study 3 also employs NURBS geometry for the generation of the sur-
faces. In this case only nine control points were used, and only five of these
are variable. Figure 10.17 shows the parametric model setup for case study
3. It shows the location of the five variable control points and their range of
movement, they are free to move -10 or +10 meters from the flat configura-
tion shown in figure 10.17. In this parametrization scheme the four corners
of the shell are kept fixed, but it allows the edges of the surface to move
freely. These edges are completely structurally supported, this means that
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Figure 10.16: Parametric Study of the proposed Fitness function for ma-
sonry vaults with variable weight values w.



∆z = +/- 10m

Figure 10.17: Case study 3 parametric model - 40⇥ 20 masonry shell.

they can move in space, but independently of the shape the edges take, they
will always be supported by pin joints.

Figure 10.18: Possible individuals with the parametric model developed for
case study 3.

In this parametric model all of the usual possible configurations are in-
cluded: flat, simple and double curvature surfaces, both convex or concave
as well as multiple curvature surfaces. Figure 10.18 shows a few possible con-
figurations in this parametric scheme. We can see concave double curvature
surfaces and complex multiple curvature surfaces, one with very noticeable
curves and another that only slightly diverges from the flat configuration.
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10.5.2 Fitness functions

This case study, as the two case studies before it, is intended to generate
shells that are both light and structurally e�cient. The first fitness function
describes the masonry shell’s structural capacity by means of the function
described above in equation 10.8. The reference surface surface used to
calculate Ue,0 and max(⌧+0 ) is the flat surface. The FEM model used for
this case study is the same one used for the above mentioned analysis, seen
in figure 10.14, where the shells are supported by pin joint in all of the edges,
and loaded with their own weight. The thickness of the shells parametric
fixed at 5 centimeters.

The shell’s weight parametric used as the second fitness function, and as
in previous case studies, it parametric simplified as the surface area since
thickness and material were fixed. The fitness functions for this case study
can be expressed as:

Case Study 3

8
>>><

>>>:

Minimize f1(x) =
Ue
Ue,0

+

 
max(⌧+)2

max(⌧+
0 )2

· w
!
,

Minimize f2(x) = S,
subject to �10  xi  10.

(10.9)

10.5.3 Genetic algorithm inputs

NSGA-II parametric used to search for solutions to this problem. It explores
100 generations with 50 individuals in the population. The GA inputs were
the following:

Case Study 3
Population Size (N) 50
Number of Variables 5
Number of binary digits 8
Variable Domains xi 2 [�10, 10]
Mutation Probability (pm) 0.2
End Condition End after 100 generations

10.5.4 Results

After 100 generations NSGA-II produced the results shown in figure 10.19.
The first objective space shows the complete figure with individuals from
the first generation up to the last. We can see that the Pareto front has
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a very orthogonal shape in this space, with solutions that are quite good
at one function and not good at the other, as well as some solutions that
are very good at both. This shows a low level of contrast between the two
functions at this scale. The second objective space shows a detailed view of
the solutions at the intersection of the orthogonal functions, solutions that
are good at both functions.

We can also see some of shapes of the solutions in the Pareto front. With
the exception of solution A, They are mostly concave and very symmetri-
cal surfaces with di↵erent levels of height. Interestingly they all have arched
edges. Solution C has a very low surface area while achieving a good amount
of sti↵ness with its shallow concave shape. Solution A is a member of the
Pareto front but mostly because of its very small area, its almost a flat sur-
face and does not have a sti↵ shape for masonry construction. The sti↵ness
di↵erence between solutions C and D is not very big, but their di↵erence in
weight is more noticeable.

The sti↵est solution in the entire set is solution B, it is the highest
surface in the front, but not the heaviest in the set. We can expect the
sti↵est solution is not going to be the lightest, but the opposite is not true.
Higher surface area does not mean a better shape is achieved, and also, since
the surfaces are loaded by their own weight, the higher the weight the more
load and perhaps a lower structural performance.

10.6 Case Study 4: Free-form masonry roof
with variable thickness

The previous case study found optimal shapes for both sti↵ness and weight
while having a fixed surface thickness. Case study 4 includes surface thick-
ness as a problem variable, meaning that the GA can now search for sti↵er
solutions using the thickness, while also evaluating shell weight. Apart from
this new variable, all of the other problem characteristics remain the same
as in case study 3.

10.6.1 Parametric Model

Figure 10.20 shows the parametric model for case study 4. The variable
control points make up the first five variables, and the shell’s thickness is the
sixth one. The shell’s thickness can vary from a minimum of 5 centimeters
to a maximum of 100 centimeters. The four corner control points of the
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Solution A Solution B Solution C Solution D

Figure 10.19: Objective space with Pareto fronts for all generations for case
study 3 at di↵erent levels of detail - Individual solutions A,B,C and D.

NURBS surface remain fixed as was the case in the previous study. We can
sum up the variables in this case study in the following variable vector X:

X = x1, x2, x3, x4, x5, x6 (10.10)

where x1�5 = z1�5 and x6 = thickness.

10.6.2 Fitness functions

The first fitness function in this case study is related to the shell’s structural
performance. The structural capacity of the shells are measured by the
function explained above in equation 10.8. The reference surface for the
calculation of Ue,0 and max(⌧+0 ) is the flat shell with the minimum thickness
value (thickness = 5cm).
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∆z = +/- 10m

∆thickness = +/- 0.5m

Figure 10.20: Case Study 4 parametric Model - 40⇥ 20 masonry shell with
variable thickness.

The second fitness function measures the weight of the surfaces, but since
in this case the thickness is variable, the usual simplification of surface is
not viable, in this case the shell’s volume is used. The fitness functions for
this case study can be expressed as:

Case Study 4

8
>>><

>>>:

Minimize f1(x) =
Ue
Ue,0

+

 
max(⌧+)2

max(⌧+
0 )2

· w
!
,

Minimize f2(x) = V,
subject to �10  xi  10.

(10.11)

where V is the shell volume.

10.6.3 Genetic algorithm inputs

NSGA-II is employed for this case study as well. It explores 180 generation
with a population size of 50 individuals. The GA inputs for this case study
are detailed bellow:
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Case Study 4
Population Size (N) 50
Number of Variables 5
Number of binary digits 8
Variable Domains x1�5 2 [�10, 10] x6 2 [0.05, 1.0]
Mutation Probability (pm) 0.2
End Condition End after 180 generations

10.6.4 Results

Solution A Solution B Solution C

Figure 10.21: Objective space with Pareto fronts for all generations for case
study 4 at di↵erent levels of detail - Individual solutions A,B and C.
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Figure 10.21 shows the objective space with two levels of detail for case
study 4. It shows an orthogonal configuration of this case study as well. The
vast majority of the individuals in the Pareto front are quite far from the
limits of the objective space, meaning that they are optimal when compared
to the limits. The detailed view of the Pareto front shows very little contrast
between the two functions. Be best performing solution from a structural
point of view (solution A) is only 15% heavier that the lightest one in the
front (solution C).

Solutions A and B are very similar double curvature concave shells with
di↵erent heights. Solution C is an almost flat surface, but it is a hypar
surface. It has concave cross-sections and convex longitudinal sections.

Since they share their fitness functions and materials, results for this
study can be compared to those in case study 3. We can see that the Pareto
individuals for the structural function reside in a much narrower range, they
have better fitness values. This can be explained by the fact that this case
study ran for 80 generation longer that the previous one. If we compare the
two cases from a structural point of view, we find that solution A from case
4 has a better performance than the best one from case 3 (solution 3-B). In
fact solution 4-A has a performance value that is twice as good as 3-B, and
it is also lighter.

An important result that we can point out is the fact that all shells in the
Pareto front are 5 centimeters thick. In fact, after just a few generations the
GA considered only solutions with very low thicknesses, excluding solutions
with high thicknesses. After generation 80, the entire population is made
up of solutions with 5 centimeters of thickness.
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