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Abstract. Wakes past bluff bodies are modeled by means of point vortices standing

in equilibrium. The consistency of the adopted model is discussed with respect to

the asymptotic model proposed by Batchelor. It is shown that, in general, when

symmetry is broken, the wake configuration may be neither closed, as for the Batchelor

model, nor open, as for the Kirchhoff model. The proposed model has three degrees

of freedom, which reduce to one when the locations of separation are prescribed. A

further condition has been established for the closure of the wake which reduces the

degrees of freedom to zero as for the asymptotic Batchelor model. Existence of multiple

solutions, suggestive for real world phenomena, is discussed.
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1. Introduction

Wake models for inviscid steady two dimensional flows past bluff bodies are here studied.

Batchelor (1956) discussed the asymptotic steady configuration of these flows for the

Reynolds number Re → ∞. He concluded that the wake configuration should be closed

and he set his model against the Kirchhoff open-wake model. A schematic of this model,

relevant to a symmetric arc-shaped bluff body, is shown in figure 1. The flow is uniform

at infinity and is irrotational except inside the finite area wake, which is formed by two

vortex patches with opposite-sign vorticity and bounded by vortex sheets.

For uniform flow at infinity, Batchelor (1956) has stated the uniqueness of this

steady solution of the Navier-Stokes equations and Chernyshenko (1998) has shown that

the vorticity value of the vortex patches and the jump of the Bernoulli constant on the

vortex sheets are determined by the location of the separation and by the requirement

that the bounding mixing/boundary layers have to be cyclic.

These asymptotic solutions of the Navier-Stokes equations, generally designated as

“Prandtl-Batchelor flows”, are peculiar solutions among the infinity admitted by the

Euler equations. In fact, from the point of view of purely inviscid flows, an arbitrary

distribution of vorticity can be assumed inside a finite area wake for the same far field

boundary conditions. For instance, the vorticity can be concentrated on two singularities

and the wake can be represented as two bodies of irrotational flow with closed streamlines

entrained by two free point vortices. The Batchelor model can then be seen as the

extreme of the family of solutions obtained by desingularizing the point vortices into

growing vortex patches, as in Elcrat et al (2000). The advantage of this model is that the

solution can be obtained analytically by classical complex analysis methods. Moreover,

on the basis of continuation arguments, such as those used by Gallizio et al (2010),

relationships can be established between the existence of such point vortex solutions

and the existence of the Prandtl-Batchelor solutions.

In his paper, Batchelor (1956) has briefly discussed the case the wake is not

symmetric. He had taken for granted that the wake configuration shown in figure 1

is preserved, that is, that the streamlines separating at A and B join at a common

point C and enclose a finite area wake internally divided by the streamline DC into two

vortex patches. Only symmetry should be lost with the two patches differently shaped.

Below we show that, according to the point vortex model, the scenario for

asymmetric wakes is richer. Depending on the value of free parameters, the separating

streamlines may not rejoin at a common point C and the wake would then be considered

neither closed as for the Batchelor model nor open as for the Kirchhoff model.

Point vortices have been used in modeling incompressible flows for many years, but

we mention here some relatively recent works that have tangential relations with what

we have to say. For unsteady flows Tang and Aubry (1997) have used unstable modes

of Föppl vortices to study transient instabilities of laminar wakes, and de Laat (2007)

has used their stable modes to model frequency selection in the vortex shedding regime.

The stability of equilibrium positions of point vortices as solutions of a Hamiltonian
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Figure 1. Schematic of Batchelor wake.

system have been studied by Vasconcelos et al (2011) and by Shashikanth et al (2002).

Generally it may be expected that there may be an unstable manifold when there is more

than one vortex. In fact, for the Föppl pair it is known that symmetric perturbations

are stable and antisymmetric ones are unstable and this used in the work of Tang and

Aubry (1997).

Stability of the vortex equilibria found here is an interesting question and we plan

to study this question in a subsequent work. However, it should be noted that the

stability of the inviscid steady solutions here found have little relevance with respect

to the stability of the relevant viscous, high Reynolds number steady solutions, which

most likely are unstable for turbulence and Kelvin-Helmholtz instability of separating

shear layers, here not taken in account. Nevertheless, regardless of stability, the

study of steady inviscid solutions has great importance for flow control purposes. For

instance, drag reduction of high Reynolds number flows past bluff bodies requires

wake stabilization by some feed-back or passive control mean, which is energetically

convenient if operated close to a steady solution, even if unstable.

2. Asymmetric wake past symmetric bodies

Existence of finite area wakes in the flow past arbitrary obstacles protruding from an

infinite flat wall has been discussed in Zannetti (2006). It has been shown that, for any

geometry, there exists a multi-branched 1D manifold which is the locus of point vortex

equilibria pertinent to possible finite area wakes. By assuming the flat wall as a mirror,

those solutions are also pertinent to unbounded domains, they result as symmetric

solutions past symmetric bodies. Below it is shown that asymmetric flow solutions

are also possible. For instance, the Föppl (1913) curve is a branch of the equilibrium

manifold pertinent to a semicircular obstacle, thus, it represents a one parameter family

of symmetric solutions past a circular cylinder in an unbounded domain. In general, for

the same far field boundary conditions, other asymmetric solutions with two standing

vortices can be found.

Let ζ = ρ exp(iϕ) be the complex coordinate of the flow field, the general complex

potential w for the flow past a unit radius circular cylinder due to a uniform flow at
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Figure 2. Symmetric Föppl solution, γ0 = 0; γ = γ1 = −γ2 = −4.2;.

infinity and two free point vortices is expressed by the equation

w = q∞

(
e−iαζ + eiα

1

ζ

)
+

γ0
2π i

log ζ +
2∑
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2π i

log
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ζ − 1/ζ?j

, (1)

where q∞ and α are the asymptotic velocity and angle of attack, γ0 is the total

circulation, γj, with j = 1, 2, are the free vortex circulations and (?) denotes complex

conjugation. The resulting complex velocity is
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and the advection velocities ζ̇?j of the two free vortices are

ζ̇?j = q∞

(
e−iα − eiα

1

ζ2j

)
+

γ0
2π i

1

ζj
− γj

2π i

1

ζj − 1/ζ?j

+
γk
2π i

(
1

ζj − ζk
− 1

ζj − 1/ζ?k

)
, (3)

with j = 1, 2 and k = 3− j.

Iosilevskii and Seginer (1994) have done a similar study to detect point vortex

equilibria past circular cylinders. They considered the global circulation γ0 as due to

a spinning of the cylinder. In general, different global circulations in the steady flow

can be seen as the result of vorticity shed to infinity during different starting transients.

Below we show that γ0 can be determined on a physical basis which leads to multiple

flow configurations.

Let the velocity at infinity q∞ and the cylinder radiusR be the reference velocity and

length. According to eq. (2), the flow depends on the four real parameters α, γ0, γ1, γ2
and on the two complex vortex locations ζ1, ζ2. The equilibrium condition of the free

vortices ζ̇?1 = ζ̇?2 = 0, yield four real equations, thus, for a given angle attack α the flow

with two standing vortices has three degrees of freedom which can be represented by

the values of the circulations γ0, γ1, γ2.

The Föppl solutions are pertinent to the choice γ0 = 0 and γ1 = −γ2 = γ, they

represent a family of symmetric solutions which depend on the single parameter γ. Non

symmetric solutions can be found for different choices of γ0 6= 0 and/or γ1 6= −γ2. For
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Figure 3. Non-symmetric solution and open wake (∆ψst 6= 0) for γ0 = 0; γ1 = −4.7;

γ2 = 3.7.

Figure 4. Non-symmetric solution and closed wake (∆ψst = 0) for γ0 = 4.9,

γ1 = −4.7, γ2 = 3.7.

instance, figure 2 shows the Föppl curves (dotted lines) and the solution for γ = −4.2

while figure 3 shows the non symmetric solution pertinent to the same γ0 = 0 and

to γ1 = −4.7, γ2 = 3.7. These asymmetric solutions and all the other solutions

presented throughout the paper have been numerically computed by the Newton method

as implemented by the Mathematica (2012) software.

Figure 2 and 3 differ in the value of ∆ψst as defined below. Let the wake be

defined as the region bounded by the separating streamlines. In the symmetric solution

of figure 1, the separating streamlines leave the body surface at points A and B and

rejoin at the stagnation point C. They enclose a wake formed by two counter-rotating

bodies of fluid entrained by the point vortices. In the non symmetric solution shown in

figure 3, the separating streamlines do not rejoin and, as a consequence, the wake is not

closed. In fact, while, as above, the streamline separating from point A bounds a region

with a clockwise recirculating flow driven by a point vortex, the streamline separating

from B extends to infinity and does not bound a flow with closed streamlines. A second

counterclockwise rotating flow is embedded in the rear flow, it is bounded by a streamline

which presents the stagnation point C and whose stream function value ψst differs from

the solid body value ψ0. The stream tube bounded by the streamlines ψst and ψ0 is

entangled into the wake, from the upper side of the cylinder it is driven to the lower

side and then to the downstream infinity. The value of ∆ψst = ψst−ψ0 can be assumed

as a measure of the lack of closure of the wake.

The above flows are solutions to the Euler equations. In general, they are not

asymptotic solutions of the Navier-Stokes equations for the Reynolds number Re→ ∞
in the form argued by Batchelor (1956). In this respect, the closed wake of figure 2
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has some merit, in fact it has the same topology of the Batchelor-flow wake. According

to the continuation arguments developed by Gallizio et al (2010), the Batchelor-flow

wake could be continued onto the above closed wake and vice versa. On the contrary,

according to the same reasoning, the open-wake solution of figure 3 holds a weaker

physical meaning for it lacks the Batchelor-wake topology and the continuation of the

embedded region with closed streamlines into a vortex patch could not be the asymptotic

limit for vanishing viscosity for it would violate the maximum principle for vorticity in

2D steady viscous flow as, for instance, discussed by Lugt (1985) and references therein.

By enforcing the closure condition ∆ψst = 0 the degrees of freedom of the solutions

reduces to two. For instance, we can let γ1 and γ2 to be free and look for the value of

γ0 which satisfies the closure condition. As an example, figure 4 shows a non symmetric

solution with the same values for (γ1, γ2) as in figure 3, but with γ0 = 4.9 adjusted to

obtain a closed wake.

3. Bodies with sharp edges

In the real world of viscous flow, separation is dictated by threshold values of adverse

pressure gradients. Moreover, Chernyshenko (1998) has shown that a further constraint

to the asymptotic inviscid limit of the separated flow is set by the cyclic nature of

the boundary-mixing layer around recirculation regions. It turns out that the inviscid

Batchelor model has no degrees of freedom. It should be mentioned here that there are

serious issues in carrying out asymptotic analysis for non symmetric problems analogous

to that done by Chernyshenko (1998) when there is a single recirculating region or the

flow is symmetric. The circulations of the two rotational regions will be different and

matching the parameters may be difficult Chernyshenko (2013).

When bodies with two sharp edges are considered, a more physical meaning can

thus be provided to the above Euler solutions by reducing the arbitrariness of the choice

of free parameters by imposing that separation has to occur at the edges. The above

analytical method can then be used by means of conformal mapping and enforcement

of two Kutta conditions. The degrees of freedom of the problem are reduced to a single

one on physical ground. As argued by Gallizio et al (2010), the Batchelor flow solutions

should belong to continuations of vortex patches growing from the desingularization of

point vortices which satisfy the Kutta conditions.

In figure 5, a circular arc is shown as an example of a body with two sharp edges.

The circle arc has been taken on the complex z-plane (z = x + i y) with its zT edges

located at zT = ±i and its zV vertex at zV = b with Im(b) = 0. We assume the velocity

at infinity and the half arc chord as reference values for velocity and length, respectively.

The Joukowski transformation

z =
1

2

(
|i− b|ζ + b− 1

|i− b|ζ + b

)
maps the exterior of the unit circle of the ζ-plane onto the exterior of the z-plane arc. By

assuming the ζ-plane as the parameter plane, the complex potential w is still expressed
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Figure 5. Flows past a circular arc (α = 0, b = −0.5). A: γ0 = 0; γ1 = −7.01;

γ2 = 7.01. B: γ0 = 0; γ1 = −10.87; γ2 = 9.85. C: γ0 = 0.395; γ1 = −7.83 γ2 = 7.08.

Figure 6. ∆ψst versus γ0 for α = 0 and b = −0.5.

by the equation (1) where q∞ is adjusted such that the resulting far field velocity is

unit in the physical z-plane, that is, q∞ = |i − b|/2. The complex velocity on the

physical plane then is dw/dz = (dw/dζ)/(dz/dζ). The parameter b defines the radius

of curvature R of the arc (R = −(1 + b2)/2b). For b = 0 the arc reduces to a flat plate

for which, as shown by Smith & Clark (1975), there is not a symmetric solution with

two standing vortices which satisfy the Kutta condition. For b < 0 such solutions exist,

their behavior as b varies has been discussed by Iollo & Zannetti (2003).

According to the Routh rule Clements (1973), vortex equilibrium is expressed by

ζ̇?j −
γj
4πi

(
d

dζ
log

dz

dζ

)
ζj

= 0 , (4)

where ζ̇?j is expressed by equation (3), with j = 1, 2. The Kutta conditions yield the two

equations (dw/dζ)Tk
= 0, where ζTk

= (±i − b)/|i − b|, with k = 1, 2, are the locations

of the edges on the ζ-plane.

For a given incidence α, we assume the free choice of the global circulation γ0
as the single degree of freedom of the problem. Figure 5 shows a circular arc with

zV = b = −0.5. For α = 0, solutions exist in the interval −0.395 ≤ γ0 ≤ 0.395. The

solutions labeled A and B are both relevant to γ0 = 0, while the solution labeled C is

relevant the the choice γ0 = 0.395. The solution A is symmetric with γ1 = −γ2 = −7.01;

the solution B is asymmetric, with γ1 = −10.87 and γ2 = 9.85; the solution C has

γ1 = −7.83 and γ2 = 7.08. No solutions have been found for |γ0| > 0.395.

In figure 6, ∆ψst is plotted versus γ0. The plot terminates at ends beyond which

separation/reattachment moves from edge/back-of-the-arc to front-of-the-arc/edge and

the wake configuration cannot anymore be considered as physically meaningful. It shows
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Figure 7. Circular arc at incidence (α = 20o). Left: γ0 = 0, ∆ψst 6= 0; right:

γ0 = 0.18, ∆ψst = 0

that, for the given incidence α = 0 there is a unique value of the global circulation

(γ0 = 0, solution A) pertinent to ∆ψst = 0.

Figure 7 presents two solutions for α = 20o. On the left, the global circulation is

null (γ0 = 0) and the wake is open (∆ψst 6= 0), while on the right the global circulation

has been adjusted (γ0 = 0.18) to attain a closed wake (∆ψst = 0).

Let us suppose, as argued by Batchelor (1956), that asymptotic wake solutions,

symmetric or asymmetric, should be closed, formed by vortex patches with finite area

which extend to the solid body boundary. Such solutions “a la Batchelor” could

be continued onto closed point-vortex wakes by reducing the vortex patches sizes to

vanishing values. By reversing the process, the closed point-vortex solutions assume the

special physical meaning of seeds from which inviscid asymptotic solutions could grow.

Consequently, the closure condition ∆ψst = 0 would define a physically meaningful value

of the global circulation γ0, with a role similar to the Kutta condition in the theory of

airfoils.

4. Non circular arcs

Depending on incidence and body shape, there could be multiple solutions which satisfy

the ∆ψst = 0 condition.

Let us consider the asymmetric arc shown in figure 7. It belongs to a two-parameter

(c, d) family of arcs whose parametric representation is

x = c sinϑ+ d sin 2ϑ ,

y = cosϑ ,

with 0 ≤ ϑ ≤ π. It is mapped onto a quasi-circle of the λ-plane by

λ = z +
√
z2 + 1,

and onto the unit circle of the ζ-plane by the Theodorsen-Garrick mapping (see Ives

(1976))

λ = ζ exp

(
∞∑
j=0

ajζ
−j

)
.
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Figure 8. Distorted arc (c = 0.8 d = 0.067).

Figure 9. Left: flow field for α = −5o, γ0 = −1.54. Right: ∆ψst versus γ0.

Once the series has been truncated at a suitably large value j = N , the coefficients aj
are computed according to the method suggested by Ives (1976).

The flow field can be computed following the same procedure as above, with the

chain of mappings ζ → λ → z defining the transformation z = f(ζ) which maps the

exterior of the unit circle of the ζ-plane onto the exterior of the arc of the z-plane.

As examples of wake configurations, we studied the arc shown in figure 8 for two

values of incidence, namely, α = −5o and α = 5o.

Figure 9 refers to α = −5o. On the right-hand side, ∆ψst is plotted versus γ0.

Solutions with two standing point vortices which satisfy the Kutta condition exist in

the interval −1.67 < γ0 < 1.72. As for figure 6, the curve ends where the flow pattern

ceases to be physically consistent. For fixed γ0, there can be multiple solutions. The

solution with a closed wake (point A, ∆ψst = 0) is unique (γ0 = −1.54, γ1 = −5.74,

γ2 = 6.58), the corresponding flow pattern is shown on the left-hand side of the figure.

As shown in figure 10, when the incidence is varied to α = 5o, solutions exist in the

interval −2.11 < γ0 < 1.33 and the ∆ψst curve presents three zeros. In addition to the

solution labeled A (γ0 = −2.07, γ1 = −5.36, γ2 = 6.48), homologous to the solution A

of figure 9, two other closed wake solutions appear, labeled B (γ0 = 0.92, γ1 = −6.26,

γ2 = 5.98), and C (γ0 = 1.32, γ1 = −6.53, γ2 = 5.84). The flow pattern pertinent to the

solution B is shown on the left-hand side of the figure. Solution C is a variation close

to solution B, while solution A resembles the solution shown in figure 9.
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Figure 10. Left: flow field for α = 5o, γ0 = 0.92. Right: ∆ψst versus γ0.

5. Force acting on the body

Open or closed apart, the above wakes produce a null drag,D = 0, and a lift L = −γ0 q∞,

that is, let X and Y be the x and y components of the resultant force acting on the

body, then the Kutta-Joukowski theorem

X + iY = −i γ0 q∞ exp(iα)

holds.

6. Conclusions

The wake past bluff bodies has been modeled by two counter rotating point vortices.

When two Kutta conditions are enforced, the problem presents a single degree of

freedom, which has been represented by the free choice of the global circulation γ0.

In the presented examples, solutions exist for a finite interval of γ0.

When the flow is asymmetric, the wake in general is neither a-la-Batchelor closed,

nor a-la-Kirchhoff open. A closure condition (∆ψst = 0) has been established which

determines the value of γ0 consistent with the wake topology as argued by Batchelor

(1956). It reduces the degrees of freedom of the problem to zero.

Examples show that, depending on incidence and body shape, multiple solutions

can be found which satisfy the closure condition. This fact could be suggestive for

multiple, symmetric and asymmetric steady flow configurations observed in practice in

the separated cross flow past rocket bodies, delta wings and aircraft fuselages at high

angle of attack, as discussed by Bridges (2010) and references therein.
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