
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO
Dottorato in Meccatronica – XXVI ciclo

Tesi di Dottorato

Localization and Mapping for
Service Robotics Applications

Stefano Rosa 178800

Tutore Coordinatore del corso di dottorato
prof. Basilio Bona prof. Giancarlo Genta

Aprile 2014

“I love deadlines. I like the
whooshing sound they make as they
fly by.”

Douglas Adams

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis outline . 5

2 Localization 6
2.1 Introduction . 6

2.1.1 Relative measurements . 7
2.1.2 Navigational information . 7
2.1.3 Landmark Based Methods . 8
2.1.4 Map Based Methods . 9

2.2 Monte Carlo Localization . 10
2.3 Multi-robot Localization in Highly Symmetrical Environments 12

2.3.1 Related Work . 13
2.3.2 The Three-State Multirobot Collaborative Localization (3SMCL) 15
2.3.3 Simulation tests . 21

2.4 Localization with sensor fusion and markers detection 34
2.4.1 IMU-corrected odometry . 34
2.4.2 Planar markers detection . 35
2.4.3 ROS implementation . 37
2.4.4 Results . 39

2.5 Map Updating in Dynamic Environments 41
2.5.1 Introduction . 42
2.5.2 Problem Formulation . 43
2.5.3 The Approach . 44
2.5.4 Simulation Tests . 53

2.6 Extension to the multi-robot case . 55
2.6.1 The Approach . 57
2.6.2 ∆-awareness, local ∆-mapping and map merging 59
2.6.3 Exploration strategy . 60
2.6.4 Distributed auction-based task allocation 62

2.7 Simulation Tests . 63

iii

2.7.1 Simulation test 1 . 64
2.7.2 Simulation test 2 . 65
2.7.3 Simulation test 3 . 65
2.7.4 Computational load . 66

2.8 Experimental Tests . 67

3 Simultaneous Localization and Mapping 69
3.1 Introduction . 69

3.1.1 Online SLAM . 70
3.1.2 Full SLAM . 71

3.2 Graph-based SLAM . 71
3.2.1 Problem Formulation . 73
3.2.2 A Linear Approximation . 75
3.2.3 Experimental results . 78

3.3 Robust front-end . 81
3.3.1 Main algorithm . 81
3.3.2 Loop closing constraints . 82

3.4 Graph optimization . 84
3.5 Map creation . 86
3.6 ROS Implementation . 86
3.7 Experimental Analysis . 87

3.7.1 Simulated environment . 88
3.7.2 Office-like environment . 88
3.7.3 Data-center . 88
3.7.4 Benchmarking datasets . 90

4 Human-robot interaction 91
4.1 Vision-based people tracking from a moving camera 91

4.1.1 Motivation . 91
4.1.2 Related work . 92
4.1.3 Monocular people detection and tracking 93
4.1.4 Stereo-based people detection and tracking 95

4.2 Adaptive people and object tracking 95
4.2.1 Histograms of oriented gradients 95
4.2.2 The proposed approach . 96
4.2.3 Detector . 96
4.2.4 Online training . 98
4.2.5 Tracking . 98
4.2.6 Experimental Tests . 100

iv

5 Conclusions 104
5.1 Publications . 105

5.1.1 Journal papers . 105
5.1.2 Conference and workshop papers 105
5.1.3 Preprints . 106

Bibliography 107

v

List of Tables

2.1 Correct Localization Percentage . 25
2.2 Parameters used for our implementation of the AMCL ROS node. . . 39
2.3 Average localization errors. 41
2.4 Results of the four methods. 53
2.5 Acceptance values and number of variations of the nr runs. 55
3.1 Number of nodes and edges for each dataset. 78
3.2 Cost function value attained by the compared approaches 80
3.3 Average computation time (in seconds) for the compared approaches. 81
3.4 Parameters used in our experiments 87
3.5 Benchmark metrics: translation error (ηc) and angular error (ηa). . . 90
4.1 Comparison of six methods . 101

vi

List of Figures

1.1 Examples of professional service robots. 1
1.2 Examples of personal service robots. 2
2.1 Example of feature-based map. 10
2.2 Example of grid-based map. 11
2.3 The map of the environment. 14
2.4 The states and the thresholds. 21
2.5 The hallway. 23
2.6 Simulation test 1: average localization errors. 24
2.7 Simulation test 1: switching times to different states (see text for

explanations) . 24
2.8 Simulation test 2: average localization errors. 26
2.9 Simulation test 2: switching times for 3, 6 and 9 rovers 27
2.10 Simulation test 3: case study with variations in the map. 28
2.11 Simulation test 4: average localization errors. 29
2.12 Simulation test 4: switching times. 30
2.13 Comparison among the number of particles employed to approximate

the position hypotheses . 30
2.14 The team of Pioneer P3DX rovers. 31
2.15 The map of the site where the localization experiments have been

carried out. 31
2.16 Experimental test A: localization errors 32
2.17 Experimental test B: localization errors 32
2.18 Experimentak test C: average localization errors 33
2.19 Example of binary ArTags. 37
2.20 Example of binary ArTags. 40
2.21 Localization and path planning performances. (a) Trajectory followed

by the robot, as estimated by localization, is shown in blue. Way-
points are shown as points. 42

2.22 The architecture of the approach. 45

vii

2.23 Comparison between the trend of the wavg(t) over time when no mod-
ifications in the map occur (a), and when (b) the robot passes near a
variation. 46

2.24 Trend of wavg(t), wfast(t), wslow(t), rd(t) in absence of modifications
in the environment. 47

2.25 Trend of wavg(t), wfast(t), wslow(t), rd(t) in presence of modifications
in the environment. 47

2.26 Path followed by the simulated robot to evaluate Neff in the third
case. On the left there is the simulated robot and environment, on
the right our graphical user interface. 49

2.27 Comparison of the Neff trend. 49
2.28 The map used to validate the Map Merge block, used also in the

simulation tests. 52
2.29 The two parts of map in Figure 2.28 used to validate the Map Merge

block. 52
2.30 Localization error of a robot in nr runs. 54
2.31 The initial map (a), the map after few variations (b), and the map

at the endo of the ∆-mapping process. 56
2.32 The localization error in the long operativity test. 56
2.33 The trend of the quality of the map over time. 57
2.34 Figures show the map merging in a typical case: 2.34(a) shows the

pose of the robots, Robot 1 receives a map from Robot 2 and it uses
it to update its map; 2.34(b) is the current map, 2.34(e) is the current
time-map, 2.34(c) is the received map, 2.34(f) is the received time-
map, 2.34(d) and 2.34(g) are the resulting map and time-map after
the merging process. 61

2.35 Time-map and skeleton of areas to explore (a) and final goal points
for three robots (b) . 62

2.36 The simulation environment. 63
2.37 Localization error and acceptance index for test 1. 65
2.38 Localization error and acceptance index for test 2. 66
2.39 Localization error for test 3. 66
2.40 CPU usage (upper plot) and memory usage (lower plot) in a simulated

experiment. 67
2.41 Results for the experimental test. 68
3.1 The pose graph. 74
3.2 Estimated trajectory for each of the considered datasets: fr079 (a),

csail (b), intel (c), M3500 (d), M10000 (e) 79
3.3 Architecture of the system . 87
3.4 Resulting map for simulated environment. 88
3.5 Resulting map for office-like environment. 89

viii

3.6 Mapping results for the data-center room. (a) Resulting map using
our approach; (b) Robot trajectory and loop closings. Red and blue
arrows represent the trajectory; yellow lines represent orientation-
only constraints; green lines represent full-pose constraints. 89

3.7 Mapping results for the data-center corridors. 90
4.1 An overview of the feature extraction and object detection chain.

The detector window is tiled with a grid of overlapping blocks in
which Histogram of Oriented Gradient feature vectors are extracted.
The combined vectors are fed to a linear SVM for object/non-object
classification. The detection window is scanned across the image at
all positions and scales, and conventional non-maximum suppression
is run on the output pyramid to detect object instances. 96

4.2 . 97
4.3 Optional caption for list of figures . 101
4.4 . 102
4.5 . 103
4.6 Example of robot following a user. (a) The algorithm in action. (b)

Estimated trajectory of the user (blue dots) and trajectory followed
by the robot (red line). 103

ix

Chapter 1

Introduction

1.1 Motivation

Service robotics include all the robotic systems that are built to perform tasks in
place of human users or in collaboration with them. Service robotics is defined as
those robotics systems that assist people in their daily lives at work, in their houses,
for leisure, and as part of assistance to the handicapped and elderly. In industrial
robotics, the task is typically to automate tasks to achieve a homogenous quality
of production or a high speed of execution. In contrast, service robotics’ tasks are
performed in spaces occupied by humans and typically in direct collaboration with
people. Service robotics is normally divided into professional and personal services.

Professional service robotics includes agriculture, emergency response, pipelines,
and the national infrastructure, forestry, transportation, professional cleaning, and
various other disciplines. These systems typically augment people for execution of
tasks in the workplace. According to the IFR/VDMA World Robotics, more than
110,000 professional robots are in use today and the market is growing rapidly every
year [9].

(a) Kiva Systems (b) Expliner (c) Wall-Ye

Figure 1.1. Examples of professional service robots.

1

1 – Introduction

Personal service robots, on the other hand, are deployed for assistance to people
in their daily lives in their homes, or as assistants to them for compensation for
mental and physical limitations. By far, the largest group of personal service robots
consists of domestic vacuum cleaners; over 6 million iRobot Roombas alone have
been sold worldwide, and the market is growing 60% each year. In addition, a large
number of robots have been deployed for leisure applications such as artificial pets
(AIBO), dolls, etc. With more than 4 million units sold over the last 5 years, the
market for such leisure robots is experiencing exponential growth and is expected
to remain one of the most promising in robotics [9]. Some examples of popular
commercial service robots are shown in Figure 1.2.

(a) Roomba™ (b) LEGO Mindstorms™ (c) Verro™

Figure 1.2. Examples of personal service robots.

Today, autonomous service robots are still far from being part of our everyday
life. This is hard to understand if one considers the remarkable success of robots in
automation industries. In controlled environments the robots’ speed, accuracy and
reliability by far exceed human capabilities.

There has been progress on challenging problems in highly unstructured envi-
ronments, and several successful applications in more structured environment and
tasks. These applications demonstrate that service robotics has value in solving
real-world problems. Nonetheless, a number of important problems remain open.
Finding solutions to these problems in the area of mobility will be necessary to
achieve the level of autonomy and versatility required for the identified application
areas.

Enabling safe autonomous navigation in unstructured environments with static
obstacles, human-driven vehicles, pedestrians, and animals will require significant
investments in component technologies.

2

1 – Introduction

Under the definition “autonomous navigation” we group all the techniques and
algorithms which are necessary for a mobile robotic platform in order to accomplish
these fundamental tasks:

• localization inside a known environment

• map building and simultaneous localization inside an unknown environment
(SLAM)

• obstacle avoidance and path planning
Robot localization denotes the problem of estimating the position of a robot inside
a known map of the environment. Map building is the process of estimating a
map of an unknown environment given the positions of the robot and a set of
measurements. Initially these two problems were studied independently; later they
have been studied as two related issues. The resulting problem has been called
simultaneous localization and mapping (SLAM). The third task is related to the
ability of a robot to autonomously move from one position to another, while avoiding
static and moving obstacles.

One of the key fields of development that has been indicated for Robotics in [9]
is Logistics. In this case Logistics is mainly intended as the autonomous transport
of goods and people. However there are other possible of developments of Robotics
in Logistics and one of them can be found in the three-years (2008-2011) project
MACP4Log - Mobile, autonomous and cooperating robotic platforms for supervision
and monitoring of large logistic surfaces (co-funded by Regione Piemonte), which
provided the foundation for the first part of this Phd work. MACP4Log is aimed
at the study and development of a prototype of a mobile robotic platform, with
on-board vision systems and sensors, integrating a flexible wireless communication
solution, able to move autonomously in large logistic spaces, and to communicate
with a supervisor and other similar platforms to achieve a coordinated action to
carry out specific tasks. Logistic spaces are large areas where logistic societies or
other transport enterprises receive, store and distribute large quantities of goods,
mainly bulky ones, as containers, cars and other similar items. Other logistic spaces
may include car-rental parkings, intermodal rail nodes, etc.

The main tasks to be performed by the robot team address the principal issues of
potential logistic users and are given by: building and updating maps of both indoor
and outdoor logistic spaces, performing programmed and pro-active surveillance,
locating on the map specific items, as container, cars, etc., that can be marked by
proper tags (e.g. license plates, container numbers, RFID) or unmarked, and should
be distinguished by color, shape and/or other physical characteristics, achieving a
full coordination of the team, always securing the wireless connectivity.

The mobile platform must be able to: autonomously move within substantially
flat and uniform indoor and outdoor spaces, partially structured, with or without

3

1 – Introduction

a given initial approximated map describing the environment; self-locate within
the given/constructed map, by means of on-board sensors and cameras (passive
or active markers may be present in the logistic surface) connect to the supervisor
and upload heterogeneous data (video stream from cameras, data about positioning,
logs, alarms, etc.); connect to other similar mobile platforms operating in the logistic
scenario to build a cooperative approach to the supervision goal; autonomously
contribute to a cooperative task in a supervised team management.

The second part of the work presented in this thesis was motivated and driven
by a joint collaboration between Politecnico di Torino and Telecom Italia on the
topic of service cloud robotic applications for industrial applications, in particular
for data center monitoring and surveillance. This work follows the main guidelines of
the previous one, but puts the focus on single-robot algorithms and low-cost robotic
platforms.

Cloud robotics is an emerging field of robotics rooted in cloud computing, cloud
storage, and other Internet technologies centered around the benefits of converged
infrastructure and shared services. It allows robots to benefit from the powerful
computational, storage, and communications resources of modern data centers. In
addition, it removes overheads for maintenance and updates, and reduces depen-
dence on custom middleware.

Cloud robotics allows robots to take advantage of the rapid increase in data
transfer rates to offload tasks without hard real time requirements. This is of par-
ticular interest for mobile robots, where on-board computation entails additional
power requirements which may reduce operating duration and constrain robot mo-
bility as well as increase costs.

Broader definitions of Cloud Robotics may also include other Internet-related as-
pects of robotics, such as trends towards the online sharing of open source hardware
and software, crowd-sourcing of robotics funding, telepresence, and human-based
computation. Other definitions stress the links between robotics and related emerg-
ing fields such as the Internet of Things, Web of Things, robot app stores, sensor
networks, Big data, and others.

In this context, the work presented in this part of the thesis is devoted to two
different problems: first, we work on the enhanchement of robustness for single
robot localization in indoor environments. This need stems from two facts: first,
it is important for a real application to be reliable and be able to work in different
scenarios; second, since one of the objectives of cloud robotics is to help the diffusion
of affordable domestic robots, we have to expect that these robots will contain low-
cost and low-accuracy sensors, compared to usual research or industrial platforms.

The third part of this thesis was motivated by the work done with Istituto
Italiano di Tecnologia on the topic of space robotics applications. The aim was the
development of the basic components for human robotics and related technologies
for space applications and to foster all related spin-offs for terrestrial applications. In

4

1 – Introduction

particular the Phd work reported in this thesis was done in collaboration with Thales
Alenia Space on astronaut detection and tracking for extravehicular activities where
semi-autonomous robots need to follow and assist the astronauts. The work was
partially done under the STEPS (Systems and Technologies for Space Exploration)
Space Project. This Space project, which lasted for three years and was co-financed
by Regione Piemonte, aimed to study new technologies that may be used in the
robotic or human space exploration, with particular attention to Moon and Mars
exploration.

1.2 Thesis outline
The first problem that we address in Chapter 2 is the problem of robot localization.
We first show how a multi-robot localization approach can speed up the process as
well as introducing robustness to failures. At the same time we show the possibility
to introduce some sort of insight into the algorithm.

We then focus on increasing the robustness of single robot localization, by taking
advantage of sensor fusion and by exploiting visual markers embedded in the envi-
ronment. We then show how the approach can be extended from ad-hoc markers to
an arbitrary set of pre-existing objects already present in the environment.

In Chapter 3 we study the more complicated problem of Simultaneous Localiza-
tion and Mapping. In particular we focus on a promising technique called Graph-
SLAM and we show the implementation of a front-end for this optimization tech-
nique in order to create a real online SLAM approach.

The last part of this thesis is devoted to another part of service robotics which is
not directly related to navigation: Human Robot Interaction (HRI). While this field
of robotics is not strictly related to autonomous navigation, some part of it can be,
such as the case of user following and object tracking. In Chapter 4 we discuss the
implementation of an adaptive people tracking algorithm taylored for user tracking
and following. We also show how this algorithm can easily be extended to the case
of generic object tracking for human-robot cooperation.

5

Chapter 2

Localization

2.1 Introduction

The problem of robot localization consists of answering the question Where am I?
from a robot’s point of view. This means the robot has to estimate its location
relative to the environment. When we talk about location, pose, or position we
mean the x and y coordinates and heading direction of a robot in a global coordinate
system. The localization problem is an important problem. It is a key component
in many successful autonomous robot systems. If a robot does not know where it is
relative to the environment, it is difficult for it to decide what to do. The robot will
most likely need to have at least some idea of where it is to be able to operate and
act successfully [26].

The general localization problem is composed by two increasingly difficult sub-
problems. In the position tracking problem the robot knows its initial location in the
environment. The goal of the localization is to keep track of the position while the
robot is navigating through the environment. Methods that address this problem
are called local techniques [40].

In the global localization, instead, problem the robot does not know its initial
position and it has to localize itself from scratch. It hereby possibly needs to be
able to deal with multiple hypotheses about its location. Methods that solve this
problem are called global techniques [40]. An even harder problem is the kidnapped
robot problem. The robot is already correctly localized, but it is transferred (or
“kidnapped”), to another location without the robot being aware of this. This can
happen for example in the case of failures or if the robot is physically moved by an
operator. The problem for the robot is to detect that it has been kidnapped and
to find out what its new location is [40]. A factor that complicates each of these
problems is the dynamics of the environment in which the robot is moving. Most
research on localization has been focused on static environments. This means that

6

2 – Localization

the robot is the only moving object in the environment. Obviously this is not the
case in the real world. Dynamic environments contain other moving objects and
in these environments localization is significantly more difficult, since these other
objects might confuse the robot about its location by corrupting the information
used for localization.
In determining its location, a robot has access to two kinds of information. First, it
has a-priori information gathered by the robot itself or supplied by an external source
in an initialization phase. Second, the robot gets information about the environment
through every observation and action it makes during navigation. In general, the a-
priori information supplied to the robot describes the environment where the robot
is driving around. It specifies certain features that are time-invariant and thus can
be used to determine a location. The a-priori information can come in different
flavors.

In most localization approaches the robot has access to a map representation of
the environment. Such map can be geometric or topological [81]. Geometric maps
describe the environment in metric terms, much like normal road maps. Topological
maps describe the environment in terms of characteristic features at specific loca-
tions and ways to get from one location to another. A map can be given by an
external source in an initialization phase. Alternatively, the robot can learn a map
of the environment while it is navigating through it, which is known as Simultaneous
Localization and Mapping (Chapter 3).

The information which is usually available to the robot in order to perform
localization is divided into two categories.

2.1.1 Relative measurements
Acquiring relative measurements is also referred to as dead reckoning, which has
been used for a long time, ever since people started traveling around. Originally,
this is the process of estimating the position of an airplane or a ship, only based
on the speed and direction of travel and the time that passed since the last known
position. Since the position estimates are based on earlier positions, the error in
the estimates increases over time. In mobile robotic applications, relative position
measurements are either acquired by wheel odometry or by inertial measurement
units (IMU).

2.1.2 Navigational information
The second type of information to which a robot has access is navigational infor-
mation, i.e., information that the robot gathers from its sensors while navigating
through the environment. A robot typically performs two alternating types of ac-
tions when navigating: it drives around or acts in the environment on one hand,

7

2 – Localization

and it senses the environment on the other. These two types of actions give rise to
two different kinds of position information.
To be able to move around in an environment a robotic vehicle has a guidance or
driving system [27]. A guidance system can consist of wheels, tracks or legs, in prin-
ciple anything that makes the vehicle move around. These components are called
actuators. Obviously, the guidance system plays an important role in the physical
position of a robot. The guidance system directly changes the location of the vehicle.
Without a guidance system the robot is not driving around, which makes localizing
itself a lot easier.

Assuming that a robot does have a guidance system, the way the guidance sys-
tem changes the location contains valuable information in estimating the location.
Knowing the effects of actions executed by the driving system gives a direct indica-
tion of the location of the vehicle after execution of these actions. By monitoring
what the driving system actually does using sensors, the displacement of the robot
vehicle can be estimated. This results in relative position measurements, or also
sometimes referred to as proprioceptive measurements. Relative position measure-
ments are measurements that are made by looking at the robot itself only. No
external information is used and these measurements can therefore only supply in-
formation relative to the point where the measurements were started.
The robot senses the environment by means of its sensors. These sensors give mo-
mentary situation information, called observations or measurements. This infor-
mation describes things about the environment of the robot at a certain moment.
Observations made from the environment provide information about the location
of the robot that is independent of any previous location estimates. They provide
absolute position measurements, also sometimes called exteroceptive measurements
to emphasize that the information of these measurements comes from looking at the
environment instead of at the robot itself.

2.1.3 Landmark Based Methods
One group of localization methods relies on the detection of landmarks. Landmarks
are features in the environment that a robot can detect. Sensor readings from a robot
are analyzed for the existence of landmarks in it. Once landmarks are detected, they
are matched with a-priori known information of the environment to determine the
position of the robot. Landmarks can be divided into active and passive landmarks.

Active landmarks, also called beacons, are landmarks that actively send out loca-
tion information. Active landmarks can take on the form of satellites or other radio
transmitting objects. A robot senses the signals sent out by the landmark to de-
termine its position. Two closely related methods are commonly used to determine
the absolute position of the robot using active landmarks: triangulation and tri-
lateration [81]. Triangulation techniques use distances and angles to three or more

8

2 – Localization

active landmarks; trilateration techniques only use distances. The angles and/or
distances are then used to calculate the position and orientation of the robot. The
GPS, or Global Positioning System, uses trilateration techniques to determine lati-
tude, longitude and elevation. It uses time of flight information from uniquely coded
radio signals sent from satellites. Twenty-four satellites orbit the earth in 12 hours
in six different orbital planes. Ground stations track the satellites and send them
information about their position. On their turn, the satellites broadcast information
back to the earth. The result gives a position accuracy between 100 and 150 meters.
To be able to use the mentioned methods, the robot needs to know the location of
the landmarks in advance. Besides this, no a-priori information is required. There
are some problems with these techniques though. The transmitting of the active
signals can be disturbed by atmospheric and geographic influences while going from
sender to receiver [81]. These disturbances can be refractions and reflections, and
will result in incorrect measurements. Another problem is that active landmarks
in practice often cannot send out their signals in all directions, and thus cannot be
seen from all places. Furthermore, active landmarks may be expensive to construct
and maintain.

If the landmarks do not actively transmit signals, the landmarks are called pas-
sive landmarks. The robot has to actively look for these landmarks to acquire
position measurements. Techniques using passive landmarks in determining the po-
sition of the robot rely on detection of those landmarks from sensor readings. The
detection of landmarks depends on the type of sensor used. For example, in de-
tecting landmarks in images from a vision system, image processing techniques are
used. When three or more landmarks are detected by the robot, it can use the
triangulation or trilateration techniques to compute its location. Passive landmarks
can be either artificial or natural and the choice of which kind of landmarks to use
can play a significant role in the performance of the localization system.

Artificial landmarks are landmarks designed to be recognized by robots. They
are placed at locations in the environment that are known in advance and that are
well visible to the robot’s sensors.

Natural landmarks are landmarks that are not specifically engineered to be used
as localization means for robots. Natural landmarks are already part of the environ-
ment of the robot. In indoor environments, examples of passive natural landmarks
are doors, windows, and ceiling lights, whereas in outdoor environments roads, trees,
and traffic signs are candidates.

2.1.4 Map Based Methods
Another group of localization techniques are map based positioning or model match-
ing techniques. These approaches use geometric features of the environment to com-
pute the location of the robot. Examples of geometric features are the lines that

9

2 – Localization

Figure 2.1. Example of feature-based map.

describe walls in hallways or offices. Sensor output, for example from sonars, is then
matched with these features. Model matching can be used to update a global map
in a dynamic environment, or to create a global map from different local maps [81].
The representation of maps can differ. It can either be geometric or topological.
Geometric maps contain the environment in a global coordinate system. Topologi-
cal maps contain the environment in the form of a network where nodes represent
places in the environment and arcs between the nodes represent actions relating one
location to another.

In this Phd thesis grid representations of the environment, called Occupancy
grid maps, are employed. Occupancy grid maps, which were introduced in the
1980s by Moravec and Elfes [65], are a popular probabilistic approach to represent
the environment. They are an approximative technique in which for each cell of a
discrete grid the posterior probability that the corresponding area in the environ-
ment is occupied by an obstacle is is calculated. The advantage of occupancy grid
maps lies in the fact that they do not rely on any predefined features. Additionally
they offer a constant-time access to grid cells and provide the ability to represent
unknown (unobserved) areas, which is important in many applications (e.g., explo-
ration tasks). Their disadvantages lie in potential discretization errors and the high
memory requirements.

2.2 Monte Carlo Localization
Monte Carlo Localization (MCL) is a well established localization algorithm which is
based on particle filters. It has already become one of the most popular localization
algorithms in robotics. It is easy to implement, and tends to work well across a

10

2 – Localization

Figure 2.2. Example of grid-based map.

broad range of localization problems.
We recall here briefly some basic aspects of particle filters while using laser

range finders. Particle filters are a sample-based implementation of a Bayes filters,
which recursively estimate the pose of the robot pt by representing the belief Bel(pt)
using a set χt of n samples (called particles) distributed according to Bel(pt). The
pose estimated by each particle of the set is indicated by p̂ti. Basically particle
filters realize the recursive Bayes filter using sampling procedures, usually referred
as sequential importance sampling with resampling (SISR).

A time iteration of the basic particle filter localization algorithm is outlined in
Algorithm 1. At each iteration, the algorithm receives a sample set χt−1 representing
the previous belief of the rover, a control input ut−1, and an observation zt, which
usually includes range measurements and camera images. The control information
usually consists of the rover’s odometry readings. The posterior belief consists of n
samples with weights normalized to one. The posterior belief generation process is
made of several steps. First decide which sample to draw from the previous set. In
this case, the sample is chosen with probability proportional to its weight. Then, the
next state pt is predicted using the generated sample and the control information
ut−1.
The update process is aimed at computing the posterior p(pt|zt) and this is performed
in steps 4-18. In particular step 10 computes p(zt|pt), the importance weight.
In this approach the measurements zt come only from the laser rangefinder, which
provides high precision distance estimates, with errors of approximately 0.001 m in
the range [0-32m]. Step 11 keeps track of the normalization factor, and Step 12
inserts the new sample into the sample set. After generating n samples, the weights
are normalized to one.

11

2 – Localization

This algorithm implements the Bayes filter, using an (approximate) sample-based
representation, and the sample-based posterior converges to the true posterior at a
rate of 1

n
as the number n of samples goes to infinity.

Finally, a technique that reduces the number of needed samples is employed. This
technique is called KLD sampling [38].

Require: χt−1 = {pt−1
i , wt−1

i | i = 1, ..., n}, representing belief Bel(xt−1), Nmin,
Nmax, control measurement ut−1 , observation zt

Ensure: χt
1: Initialization
2: χ(t) = 0
3: ηχ = 0
4: while ηχ ≤ i do
5: Resampling
6: Sample an index j from the discrete distribution given by the weights in

St−1

7: Next State Prediction
8: Sample pti from p(xt|xt−1, ut−1) conditioned on pt−1

j and ut−1

9: Update
10: wti = p(zt|pti); // Compute importance weight
11: α = α + wti ; // Update normalization factor
12: St = St

⋃ 〈pti, wti〉; // Insert sample into sample set
13: i = i+ 1;
14: KLD criterion
15: ηχ = KLD(χt, Nmin, Nmax);
16: if ηχ > i then
17: break
18: [p̂t] = DT_clustering(χt)

Algorithm 1: The particle filter algorithm in pseudocode

2.3 Multi-robot Localization in Highly Symmet-
rical Environments

In this Section the global localization problem in highly symmetrical environments
is considered. In these environments it is supposed that absolute sensor data (such
as GPS), is not available, since it could be unavailable in some indoor areas. It has
to be noticed that “symmetrical environment” is not a so precise expression; in fact
an environment can be completely symmetric, or can have some minor asymmetries.
If the environment is completely symmetric, it is not possible to solve the ambiguity

12

2 – Localization

without employing some sensor giving an absolute information. A possibility in this
case is to use absolute heading measurements coming from a compass sensor. In the
first part of this Section it is investigated multi-robot global localization in a com-
pletely symmetrical environment, where sometimes absolute heading measurements
are available to the rovers and an algorithm for multirobot localization called SMCL
is proposed and validated through simulations. In the second part of this Section, it
is considered an environment with little asymmetries, where heading measurements
are no more available. A new algorithm for multirobot localization called 3SMCL
is proposed, validated through simulations and real experiments. One of the points
of interest is to see how the propagation of the information of the asymmetry is
spread across the multirobot system, and how much this speeds up the localization
of the team of robots, with respect to the single robot case.

2.3.1 Related Work
Multirobot collaboration is becoming one of the most challenging and promising
research areas in mobile robotics. A team of rovers, suitably coordinated, can be
used to execute complex tasks, as in surveillance, monitoring, and mapping, to cite
only a few.

In these tasks the correct and reliable localization with respect to a known map
is of capital importance, and represents one of the most fundamental problems in
mobile robotics: a comprehensive study is reported in [86]. Potentially, the multi-
robot case gives some interesting advantages, since the accuracy of the rovers pose
estimates can be improved by a cooperative localization, even if wireless commu-
nication and data sharing problems must be considered. Extended Kalman Filters
(EKF) and Monte Carlo Localization (MCL) methods are the most common ap-
proaches to rover localization. The data association problem is generally solved in
the EKF approaches by multi modal distributions that approximate the position
probability distribution, sometimes including iterations that propagate also an es-
timate of the posterior marginal densities of the unknown variances (see e.g., [48],
[60], [66], [71], [74], [79]). The MCL methods approximate an arbitrary posterior
probability distribution by using particle filters (see e.g., [39], [43], [72], [77]). Co-
operative robust multirobot localization has also been proposed, in which unknown
but bounded error models are employed for the sensor measurements (see e.g., [62],
[85]).

Localization includes two distinct sub-problems: position tracking and global lo-
calization. In the first one, the rover pose is iteratively estimated while the robot
moves starting from an initial condition, known with a given uncertainty, while the
second one determines the absolute rover position with respect to a given environ-
ment map; this problem is the most challenging, since no information of initial pose
– or a completely wrong estimation of the actual pose, as in the so-called kidnapped

13

2 – Localization

robot – is usually available.
Many of the papers cited above use multirobot and/or mutual localization to

improve the quality of self-localization estimates that single rovers could achieve
on the basis of their own sensors only, implicitly assuming that the measurements
provided by such sensors would be sufficient to obtain a sufficiently correct, even
if not precise, global localization. Unfortunately, without some external absolute
information, a correct global self-localization cannot be performed by a single rover
when the environment is highly symmetrical.

Highly symmetrical environments are commonly encountered in large logistic
spaces, like the ones considered here, which present a team of rovers performing
surveillance and monitoring tasks. A logistic space is similar to an indoor or outdoor
warehouse, i.e., an area where logistic or transport companies receive, store and
distribute large quantities of goods, as containers, cars, crates and other similar
items. In order to achieve an efficient occupancy of the area and facilitate the
handling operations, free corridors among the stored goods form a regular grid, as
in Figure 2.3.

Figure 2.3. The map of the environment.

The symmetry of the environment map prevents a reliable global self-localization
of each rover when its initial position is unknown, no specific landmarks are intro-
duced to discriminate each corridor, and no absolute information (e.g., from GPS)
is available or exchanged with the other rovers. By using only its own sensors
(odometry, laser scanner, sonar, etc.) a rover could estimate its position within the
corridors, but it may not determine in which corridor is actually moving.

14

2 – Localization

2.3.2 The Three-State Multirobot Collaborative Localiza-
tion (3SMCL)

Preliminaries

The Three-State Multirobot Collaborative Localization algorithm (3SMCL) ([12],
[15]) allows each member of a group of rovers moving in a highly symmetrical area to
accurately localize itself and to correctly track its position over time. The 3SMCL
algorithm correctly operates for rovers endowed with a basic set of sensors, like laser
range sensors and a monocular camera. The camera is used to detect the positions
of other rovers when they are in the field of view; the measurement accuracy is
improved using the laser range finder. An occupancy grid map of the environment
is assumed to be available.

The algorithm first performs global localization over the map in a decentralized
way, exploiting the position estimates of the other rovers of the group, then realizes
when the localization error estimate is lower than a given threshold, causing to
switch to a pure position tracking algorithm. Finally, the algorithm allows rovers
to detect a sudden increase in the localization error, due for instance to kidnapping
or failures in proprioceptive sensors (e.g., wheel encoders rupture). In this case the
algorithm switches again to global localization.

Let R = {ri : i = 1, . . . , NR} be the set of rovers deployed in the area; with
t we indicate the time variable that clocks the whole localization algorithm. With
di(t) we indicate data coming form the i-th robot proprioceptive and exteroceptive
sensors at time t. In particular we have that

di(t) =
{
oi(t) if proprioceptive measurement
zi(t) if exteroceptive measurement

The proprioceptive measurement oi(t) is used to perform dead-reckoning, while the
exteroceptive measurement zi(t) contains the range measurements given by the range
sensors.

Each rover is able (a) to measure the positions of the other rovers in the field of
view of its vision sensor in its local reference frame, (b) to transform the measure-
ments in a global reference frame common to all rovers, and (c) to finally send these
values to the detected rovers via a wireless link.

Let k denote a time instant at which the position of the i-th rover is detected by
a set of rovers Ri(k) ⊆ R, (|Ri(k)| being its cardinality). The rovers belonging to
Ri(k) send their measurements to the i-th rover, which collects them in the following
vector:

hi(k) =


x̂i

1(k), ŷi1(k)
...

x̂
|Ri(k)|
i (k), ŷ|Ri(k)|

i (k)

 . (2.1)

15

2 – Localization

Each row of (2.1) contains an hypothesis on the position of the i-th rover expressed
in Cartesian global coordinates.

The set of all the measurements received by the i-th rover up to time k is then
defined as Hk

i = {hi(1), . . . , hi(k)}.
The algorithm has been conceived as a finite state machine, with three states:

1) GL = global localization, 2) UN = undecided, and 3) PT = position tracking. It
represents an upgraded version of the multi-robot localization algorithm originally
proposed in [11], called 3SMCL, which was based on two states only, but applied
to a completely symmetric environment, where absolute heading measurements are
only occasionally available.

At the beginning of the execution of the algorithm, each rover is in the first
state, as no information is available about its initial position, and hence it has to be
globally localized with respect to the map. When the number of feasible hypotheses
about its actual position becomes small (as detailed in the next Subsection), the
rover enters the UN state. Finally, it switches to the PT state, when it is supposed
to be correctly localized with a high degree of confidence. If a sudden increase
in the localization error is detected, due for instance to kidnapping or failures in
proprioceptive sensors (e.g., wheel encoders rupture) or changes in the map, the
algorithm may switch again to the UN state.

The algorithm

We now describe the core of the 3SMCL algorithm, which runs onboard each rover.
The algorithm outlined in Figure 2 is basically organized as a Finite State Ma-

chine (FMS) with three states. The first state is the default initial state and it is
active when the rover is in GL state (lines 17-60). Then, when the accordance func-
tion defined in 2.5 is under a certain threshold, the algorithm enters the UN state.
This state indicates that there are at most two relevant position hypotheses, but
the algorithm is still not able to definitely choose which hypothesis has the highest
likelihood.

When one hypothesis markedly prevails, i.e., when the localization performances
are sufficiently accurate, the algorithms changes its state to PT.

Ideally, once reached the PT state, the rovers should never switch back to the UN
state. However, the algorithm continues to monitor the localization performances.
In case of localization performance degradation, the algorithm switches again to the
UN state.
The algorithm is based on particle filters [86]; observing the pseudo-code in Algo-
rithm 2 relative to the GL and UN states,

16

2 – Localization

it can be noticed the typical prediction phase at line 19 and the update phase at
lines 21-22. The prediction phase computes the vector pi(t) containing the predicted
pose (in terms of global coordinates (x, y, θ)) for each particle, while the purpose
of the update phase is twofold. It gives the vector wi(t) containing the importance
factors for each particle, and it verifies whether matrix hi(k) contains position es-
timates outside the map. If this is the case, such estimates are weighted using a
Bivariate Normal Distribution. Then, at line 23, the algorithm verifies if it has re-
ceived a vector of measurements hi(k) from other rovers of the set Ri(k) at time k. If
Ri(k) is empty, a classic Kullaback-Leibler Divergence (KLD) resampling occurs (see
[86]); Nmin and Nmax are respectively the lower and upper bound of the number of
particles Nkld employed in the resampling algorithm. If instead Ri(k) is not empty,
a further improved version of the KLD resampling is implemented (line 29). The
idea is to exploit the relative Cartesian position measurements (contained in vector
hi(k)) that the i-th rover receives from the other rovers of Ri(k) to propagate the
information about the few asymmetries of the environment. Instead of employing all
the available particles (Nmax−Nkld) to approximate each belief contained in matrix
hi(k), in the solution here proposed we adopt the Kullback-Leibler Divergence to
compute the number of particles needed to approximate each position hypothesis
contained in matrix hi(k), and we propose an original resampling algorithm called
Mutual KLD outlined in Algorithm 3.

In line 1 the number nhyp of hypotheses received is calculated as the cardinality of
the elements contained in hi(k). Nkld is the number of particles used to approximate
the belief without taking into account the position hypotheses coming from the
other rovers. This number is computed in lines 2-3. If this number is greater than
Nmax −Nhyp, we reduce it to Nmax −Nhyp, where Nhyp is the maximum number of
particles that in this case can be used to approximate the probability distribution
of the nhyp position hypotheses.
Then, the number of particles N i

mkld is computed for the i-th hypothesis according
to

N i
mkld = 1

2εχ
2
k−1,1−δ

which is the equation (13) in [38], where χ2
k−1,1−δ is a chi-square distribution with

1− k degrees of freedom. This number is the required number of particles to guar-
antee that with probability 1 − δ the Kullback-Leibler distance between the MLE
of the position hypothesis and the true distribution is less than ε.
Our claim is that we do not need to know the exact probability distribution of the
incoming hypotheses, because they are only used to add inaccurate information on
the position of the i-th rover. Therefore we can accept an approximation of the prob-
abiliy distribution of these hypotheses. By increasing or decreasing the value of ε
and δ better or worse approximations of the distribution of each position hypothesis
are set. This has indeed an impact on the number of particles used to approximate

17

2 – Localization

Require: χt−1, di(t), Ri(k), Hk
i , Nmin, Nmax, Nhyp, m

Ensure: Φi(t), φbesti (t)
1: if flag = 1 then
2: state = ’PT’
3: [χt,µk,l] = position_tracking(di(t), χt−1, hi(k), l)
4: [Φi(t), φbesti (t)]= DT_clustering(χt)
5: if l > np2u then
6: [µk] = loc_perf(φbesti (t), hi(k))
7: if µk ≥ µp2u then
8: flag = 0; l = 0
9: else
10: if flag = 2 then
11: state = ’UN’
12: else if flag = 0 then
13: state = ’GL’
14: initialize χt
15: if di(t) = oi(t) then
16: pi(t) = sample_motion_model(di(t), pi(t− 1))
17: else if di(t) = zi(t) then
18: wi(t) = measurement_model(di(t), pi(t), m)
19: χ̄t = χ̄t + 〈pi(t), wi(t)〉
20: if Ri(k) = ∅ then
21: χt = KLD_1(χ̄t, Nmin, Nmax)
22: [Φi(t), φbesti (t)] = DT_clustering(χt)
23: else
24: l = l + 1
25: if state == ’GL’ then
26: χt = Mutual_KLD(χ̄t, Nmin, N ′max, Nhyp,hi(k))
27: [Φi(t), φbesti (t)] = DT_clustering(χt)
28: Φbest = best_hyp_extraction(Φ(t))
29: if state = ’UN’ then
30: if l > nu2p then
31: [µk] = loc_perf(φbesti (t),Hk

i)
32: if µk ≤ µu2p then
33: flag = 1; l = 0
34: if l > nu2g then
35: [µk] = loc_perf(φbesti (t), Hk

i)
36: if µk ≤ µu2g then
37: flag = 0; l = 0
38: if state = ’GL’ then
39: if p̄i(t) > µg2u then
40: flag = 2

Algorithm 2: The 3SMCL algorithm in pseudocode

18

2 – Localization

Require: S̄t, Nmin, Nmax, Nhyp,Nkld, Ri(k), ε
Ensure: χt

1: nhyp = |hi(k)|
2: if Nkld > Nmax −Nhyp then
3: Nkld = Nmax −Nhyp

4: if NlimitHyp = Nmax−Nkld

nhyp
then

5: for i = 1 : nhyp do
6: N i

mkld = 1
2εχ

2
k−1,1−δ

7: N i
curr = min{N i

mkld, NlimitHyp}
8: add N i

curr to Sti
9: Nkld = ∑

iN
i
curr, i = 1, . . . , nhyp

10: St = ∑
i S

t
i , i = 1, . . . , nhyp

Algorithm 3: The Mutual KLD resampling

19

2 – Localization

the final belief on the position of the rovers, as it will be discussed later in Remark
1, with reference to the results of the simulation test 4.
Higher values of ε allow to potentially use less than Nmax−Nkld particles to approx-
imate the belief of the rovers, hence the value of ε in the case of our Mutual KLD is
higher than the value adopted in the standard KLD resampling.
The value of ε can indeed be seen as a tunable parameter that changes the impor-
tance of the position hypotheses contained in hi(k) on the final belief of the i-th
rover. We do not focus here on how to find general methodologies to calculate ε, but
we simply set this value to five times the value of ε in the standard KLD sampling.
In line 8, for each hypothesis we constrain the number of particles N i

mkld to be at
most equal to NlimitHyp, which is the maximum number of particles that can be
reserved for each hypothesis. The new Nkld number of particles which approximates
the belief of the rover is computed in line 10 of the algorithm in Figure 3 as the sum
over i of all the N i

curr.
The Algorithm in Figure 3 can be seen as an extension of the adaptive resam-

pling proposed in [38], since it adapts the sample set to represent the belief of a
rover using also information coming from the other rovers of the multirobot team.

After this resampling phase, a classic Density-Tree clustering [39] (lines 4, 25, 30
of Figure 2) is always performed, providing a set of Nh hypotheses Φi(t) = {φji (t)},
j = 1, . . . , Nh, on the position of the i-th rover, among which the best hypothesis
φbest(t) is selected. Each hypothesis φji (t) consists of the predicted pose pji (t), its
covariance matrix Σj

i (t), and the associated weightW j
i (t), representing its confidence

level:
φji (t) = {pji (t),Σ

j
i (t),W

j
i (t)}. (2.2)

The best hypothesis at time t is defined as

φbesti (t) = arg max
W j

i

(Φi(t)) = {pbesti (t),Σbest
i (t),W best

i (t)}. (2.3)

The mean distance among the hypotheses is defined as

p̄i(t) =
Nh∑
j=1

pji (t)
Nh

. (2.4)

Switching rules among the three states are based on the following accordance func-
tion:

µk =
k∑

q=k−n

|Ri(q)|∑
j=1

√
(x̂ji (q)− x̂besti (t))2 + (ŷji (q)− ŷbesti (t))2

n|Ri(q)|
, (2.5)

where n is the length of the sliding window used to compute the average in (2.5).

20

2 – Localization

If the rover is in the UN state and it is verifying whether it can switch to PT, n
is set equal to nu2p. If the rover is in the UN state and it is verifying whether it has
to switch back to GL, n is set equal to nu2g. The inner summation in (2.5) averages
the distances among the elements of hi(k) and the best position hypotheses of the
i-th rover. The outer summation in (2.5) performs a moving average of length n on
the results of the inner summation. Therefore µk measures the accordance between
the actual belief on the position of the i-th rover and the average of the beliefs that
the other rovers have on its position at time k.

When µk is lower than a certain threshold µu2p (empirically determined) the
algorithm switches to PT. This phase is aimed at tracking the position of the rover
over time, and it is implemented in a classic way (see [86]). µk is computed also
during the position tracking phase: if µk becomes greater than a given threshold
µp2u, the algorithm switches again to UN.

When the rover is in GL, it switches to UN if and only if the distance among
the hypothesis defined in (2.4) is smaller than a certain threshold µg2u (see Figure
2, lines 50-52 and Figure 2.4).

Figure 2.4. The states and the thresholds.

2.3.3 Simulation tests
In this Section we demonstrate the effectiveness of the proposed 3SMCL algorithm,
carrying out a series of online localization tests in simulation.

The Mobilesim simulator [64] provided with the Aria library was used to perform
simulations of the rovers and their environment. It is based on the Stage library [42],
and it simulates MobileRobots platforms. We performed experiments with a team
of simulated Pioneer P3DX rovers, endowed with sonar sensors and laser range find-
ers. The simulator embeds a model of the behavior of sonar and laser range finders,
provides rover odometry pose estimation with cumulative error, and allows multiple

21

2 – Localization

rovers simulation.
The simulator has also been improved by adding a simple simulated vision sensor
and the support for communication among rovers.
Two environments were considered. The first environment simulates a large logistic
area (see Figure 2.3). The occupied black areas can be thought to represent con-
tainers or similar bulky items stored by transport societies before distribution. The
dimension of the whole environment is 80× 65 m, the black areas are 20× 10 m and
the corridors are 5 m wide. A small asymmetry is present in the upper left corner.

The second environment is the hallway considered in [39] and reported here in
Figure 2.5. We ran the 3SMCL algorithm in this environment in order to perform
some comparisons with the approach proposed in [39].

Simulation test 1

In this test we analyze the robustness of the 3SMCL algorithm with respect to
random variations in the initial position of the rovers. The localization error of the
i-th rover is defined as

eρi (t) =
√

(xi(t)− x̂besti (t))2 + (yi(t)− ŷbesti (t))2 (2.6)

eθi (t) = θi(t)− θ̂besti (t) (2.7)

22

2 – Localization

Figure 2.5. The hallway.

The pose informations of the best hypothesis are given by pbesti (t) and can be
extracted by φbesti (t), defined in (2.3).
We randomly initialize the pose of NR = 6 rovers in free areas of the map, let them
move according to a simple obstacle avoidance behavior, and monitor the localization
error eρi (t) for i = 1, . . . , NR up to t = 2500 s. We are interested in evaluating the
average localization error among repetitions of the experiments, hence we repeat
them several times, each time setting randomly the initial position of the rovers,
and we define ēri (t) as the average of eρi (t) for the i-th rover over ne realizations.
The results are shown in Figure 2.6 for ne = 100.

The localization error eρi (t), i = 1, . . . , NR decreases approximately linearly for
all the rovers, and the mean error among all the 6 rovers (dashed line in Figure 2.6)
reaches a final value below 0.4 m. The 3SMCL algorithm is thus not susceptible to
variations in the initial positions of the rovers. This fact has an important impact on
the application side, in particular when considering robotic applications in logistic
spaces, since the algorithm does not require any particular initial formation of the
rovers, avoiding any human intervention to initially place the rovers in a specific
area of interest.

We now give the definition of the first and the last switching time from one state
to another during the experiments. The first switching time is the moment when a
rover changes its state for the first time, while the last switching time is the moment
when a rover changes its state remaning in the final state. Figure 2.7 shows the

23

2 – Localization

Figure 2.6. Simulation test 1: average localization errors.

Figure 2.7. Simulation test 1: switching times to different states (see
text for explanations)

comparison between the first switching time and the last switching time between
the UN and the PT states and between the GL and UN states. The group of six
bars on the left (group “1” on the x-axis) refers to the first switching time, while the
group of six bars on the right (group “2” on the x-axis) refers to the last switching

24

2 – Localization

time. The first three bars of each group are relative to the switching from UN to PT,
while the second three bars are relative to the switching from GL to UN. The blue
bars indicate the minimum among the switching times, the red bars the maximum
and the green bars the average. Observing the second green bars of each group,
which represent the average of respectively the first and the last switching time be-
tween the GL and the UN states, we notice a big difference, since the first switching
time is around 70 s while the last switching time is around 500 s. This behavior
is particularly positive, since rovers may switch to the UN state many times and in
different moments during the localization process, thus avoiding false positive that
may compromise the correct localization of the whole team. Observing then the
first green bar of each group, it can be noticed that the last switching time occurs
only two minutes after the first switching time. This means that the algorithm does
not bounce for a long time between the UN and the PT states.

Simulation test 2

This test has been designed to understand how the localization performance of the
3SMCL algorithm is affected by the number of rovers in the team, in terms of
Cartesian position error.
We define the average position error among the NR rovers of the team over the ne
realizations of the experiments as:

Er
NR

(t) = 1
r

r∑
j=1

NR∑
i=1

eρi (t)
NR

(2.8)

where eρi (t) is the localization error defined in equation (2.6). The results of the
simulations for NR = 1,3,6,9 are reported in Figure 2.8 and in Table 2.1.

Table 2.1. Correct Localization Percentage

of rovers Correct Localization Percentage
1 78%
3 98%
6,9 100%

It can be clearly seen that one rover is not sufficient to resolve the ambiguity in
localization, and that also three rovers are not enough to assure reliable localization,
since rovers are able to localize themselves correctly only the 98% of the trials. As
soon as 6 rovers are employed, the localization error goes below 2.5 m after nearly

25

2 – Localization

Figure 2.8. Simulation test 2: average localization errors.

1000 s, and all the trials are successful; the results with nine rovers are comparable
with those obtained with six rovers.
Path planning algorithms become more effective for the rovers relying only on their
position estimations, thus allowing rovers to accomplish in a more reliable way
the assigned task (e.g., handling hazardous events collaboratively). Therefore the
obtained results are particularly relevant in practical applications. Of course, the
exact number of rovers that ensure correct localization of all the members of the
team depends on the size of the area where the rovers move. Future investigations
will be devoted to study the performance of the proposed algorithm with respect to
variations of the ratio between the number of rovers and the area to be covered by
the robot team.
Figure 2.9 finally shows the average first and last switching times from the UN to the
PT states considering 3, 6 and 9 rovers. The switching times dramatically decrease
passing from three rovers to six and remain nearly the same when passing from six
to nine rovers. The performance of the 3SMCL algorithm in terms of switching
time improves increasing the number of rovers of the team, since there is a clear
increase in the speed with which the rovers reach the PT state.

Simulation test 3

This test is aimed at demonstrating that, once the rovers are all in the PT state,
the algorithm is robust even with respect to partial variations of the map. To show
this robustness, we have set up a case study where NR = 6 rovers are deployed in

26

2 – Localization

Figure 2.9. Simulation test 2: switching times for 3, 6 and 9 rovers

the same logistic area of the tests 1 and 2. After all the rovers have reached the PT
state, a fork lift is supposed to enter the logistic area in order to remove and add
pallets. The fork lift moves ideally at a constant speed of 1 m/s, and removes or
adds randomly a pallet in the map, employing 3 seconds to perform these operations.
Tests have been performed with a decreasing occupancy percentage, starting from
90% of occupancy in steady state condition, up to 50% occupancy with step of
10%. It is important to say that the informations about the map variations are not
communicated to the rovers, therefore the challenge here for the 3SMCL algorithm
is to maintain the PT condition and to keep the localization error low for all the
rovers. Figure 2.10 shows the localization error eρi (t) for i = 1, . . . ,6, considering
only one realization of the experiment. The first plot shows the localization error
reduction when the rovers, in each test, reach the PT condition. On average after
approximately 700 s all the rovers in each test are in PT, and the algorithm that
simulates the intervention of a fork lift begins to modify the map.
Observing the second plot, which is simply a zoom of the first plot, we see that
the error increases, but only from 0.4 m to 0.6 m. Therefore the PT state of the
proposed algorithm can be considered stable with respect to random variations in
the map.

Simulation test 4

We have applied the 3SMCL algorithm in localization experiments with the map
shown in [39] and reported in Figure 2.5, in order to compare our results with those

27

2 – Localization

Figure 2.10. Simulation test 3: case study with variations in the map.

obtained in [39].
We performed three experiments: two of them with 3 and 6 rovers respectively,
allowing exchange of mutual information (so running the 3SMCL algorithm) and
the third one with 6 rovers, with no information exchange. In this test case the
algorithm reduces to a classical MCL algorithm with KLD resampling.

The number of repetitions is 50, as in Test 2. Figure 2.11 shows the average
position error Er

NR
(t) forNR = 3, with mutual information exchange allowed, and for

NR = 6, with and without mutual information allowed. The position error obtained
with three rovers is comparable with that with six rovers and local communication
allowed and it is significantly reduced with respect to the experiment with six rovers
and communication not allowed. These results are comparable with those obtained
in [39], where at 600 s, in absence of mutual exchange of information a final error
than 4 m was achieved, while in our case it is less than 3 m. Considering instead
the cases with mutual exchange of information, the final error is decreased to less
than 1.2 m (while in [39] it was almost 2 m). It must be noted that in both cases
ultrasound sensors were used, but the results reported in [39] are relative to eight
rovers and averaged over 8 experiments only.

The proposed algorithm shows only a slight improvement in the localization time
with respect to that in [39]. From our point of view the main improvement given
by our work is relative to the possibility of checking if rovers are well-localized, i.e.
they have all reached the PT state. In particular in all these experiments all rovers
reach the PT state; the switching times are reported in Figure 2.12. We notice again

28

2 – Localization

that the switching times on average decrease significantly passing from 3 rovers to
6 rovers. Considering in particular the experiment with 6 rovers, the last switching
time is approximately 500 s on average and at that time the average position error
is below 1.5 m. A remarkable result is that even if the number of rovers increases,
they do not become overconfident about their belief. PT state is always reached
when the rovers are correctly localized.

Figure 2.11. Simulation test 4: average localization errors.

Remark 1 In Section 2.3.2 we claimed that the number of particles employed to
approximate the probability distribution of the position hypotheses is generally less
than Nmax − Nkld. Figure 2.13 shows the results of a generic i-th rover in a single
experiment.
The blue plot is the number of particles resampled at time t, the red plot is the max-
imum number of particles that could be used to approximate each element of hi(k)
at each time k and the black plot is N i

mkld

nHyp
(see Algorithm 3), i.e., the actual num-

ber of particles that the Mutual KLD algorithm uses to approximate each position
hypothesis.

Experimental tests

We also tested the proposed algorithm in the real world using real robotic plat-
forms. The environment is 20 × 12 m and possesses only little asymmetries. We
use a team of three Pioneer P3DX endowed with ultrasound sensors, SICK LMS200
laser rangefinders and low cost monocular vision sensors. Each rover of the team

29

2 – Localization

Figure 2.12. Simulation test 4: switching times.

Figure 2.13. Comparison among the number of particles employed to ap-
proximate the position hypotheses

is able to identify the others when they are in a certain field of view, using bar-
codes as identificators and vision sensors to detect the barcodes. Figure 2.14 shows
the rovers team, while Figure 2.15 reports a grid representation of the site where
the experiments have been carried out, showing in particular the minor differences
(asymmetries) that distinguish the sides of the environment.

30

2 – Localization

The first test (A) has been performed using two rovers, to show that a well
localized rover can speed up the localization of the other that is still uncertain about
its position. A rover is positioned near the main asymmetry of the environment
(R1 in Figure 2.14), while the other is positioned in a place where there are no
discriminant features that can ensure fast localization (see the same Figure). The
initial robot heading the rovers are indicated by the arrows in Figure 2.14.
The result of the test is reported in Figure 2.16, where the red plot is relative to the
rover R1 and the blue plot to rover R2. The sudden decrease in the localization error

Figure 2.14. The team of Pioneer P3DX rovers.

Figure 2.15. The map of the site where the localization experiments
have been carried out.

for rover R2 at 116 s is due to the fact that at a certain point during the experiment
the rovers detect each other and the belief of the rovers are mutually influenced.
The overall result is that the well localized rover (R1) speeds up the localization of
the other rover (R2). This simple example demonstrates that the mutual exchange
of position information among rovers using the proposed algorithm can significantly
speed up the localization process in a real experiments.

31

2 – Localization

Figure 2.16. Experimental test A: localization errors

The second test (B) is a classical kidnapping test. The two rovers are randomly
placed in the environment and, as shown in Figure 2.17, one rover (blue plot) is

Figure 2.17. Experimental test B: localization errors

kidnapped approximately at 500 s, and after 150 s is localized again by the other.
Differently from test (A), which only demonstrates that localization can be speed up
using the 3SMCL algorithm, here we notice that the belief of a not well localized

32

2 – Localization

rover is influenced by the belief of a correctly localized one.
In the final test (C), we performed r = 5 mutual localization experiments using

NR = 3 rovers randomly placed in the environment. Figure 2.18 shows the behavior
of the average localization error, defined as:

Ej
NR

(t) =
NR∑
i=1

eρi (t)
NR

j = 1, . . . , r. (2.9)

In this experiment we observed that the first and last switching times are the same,

Figure 2.18. Experimentak test C: average localization errors

so the rovers do not switch back from the PT state to the UN state. On average
these switching times are around 450 s.

33

2 – Localization

2.4 Localization with sensor fusion and markers
detection

Robustness issues still exist for classical laser-based localization approaches, in par-
ticular when dealing with large, symmetric and dynamic environments such as corri-
dors and office-like environments. In these scenarios, localization algorithms can fail
over time. This is due to lack of significative features (in a corridor-like environment
the only recognizable obstacles are usually doors) combined with non-accurate wheel
odometry. For this reason we investigated ways of improving the robustness of these
approaches by adding two other sensors: an an inertial measurement unit (IMU)
and later an Asus Xtion RGB-D camera. While it is clear that the use of IMU-
corrected odometry rotation can improve localization performances, we found that
this is still not enough for robust robot localization. In particular, we found in our
experimental tests that the localization algorithm can still fail over long distances
along corridors. We decided to add a visual marker detector in order to provide a
recovery tool for the AMCL localization algorithm, in particular when the robots
travel inside long corridors or very symmetric areas.

2.4.1 IMU-corrected odometry
Relative displacement of robots is usually based on odometry. Odometry is simple,
inexpensive, and easy to accomplish in real-time. For wheeled nonholonomic robotic
platform odometry estimation is usually based on different kinds of proprioceptive
sensors, such as wheel encoders (wheel odometry), compass, gyroscope, accelerom-
eters, inertial measurement units (IMU) (IMU odometry). The disadvantage of
odometry is its unbounded accumulation of errors.

Wheel odometry is usually obtained by measuring the number of turns of the
wheels using optical shaft encoders and integrating those measures over time in
order to estimate the displacement of the robot. Magnetic compasses can be used
as a method for correcting heading estimation errors. The major drawback is that
the compass is subject to local magnetic anomalies, which can lead to large errors
in heading estimates. Also, because the Earth’s magnetic lines of flux "dip" in
declination, the compass must remain level for the readings to be accurate. An
alternate method for maintaining an accurate heading for odometry calculations is
the use of a gyroscope. With the introduction of optical fiber gyros the use of gyros
has become more attractive for mobile robot applications. However, gyros have
relatively large drift rates, which cause unbounded growth in orientation errors.

We developed a simple sensor fusion algorithm which is able to fuse wheel odom-
etry and gyroscopes measures to obtain a corrected odometry which is much more
accurate, and can be used for localization as well as a starting point for mapping.

34

2 – Localization

(citare graph-slam) We use displacement from wheel odometry, since it is usually ac-
curate enough, and correct heading using measure from the IMU’s gyroscope, since
heading estimation from wheel odometry is usually bad due to wheel slipping. The
IMU that was used is a medium-cost 3-axis commercial sensor (XSens MTI) which
is commonly used for mobile robotics applications. We first experimented with the
heading estimation given by the internal Extended Kalman filter running onboard
of the sensor, but we found that the heading estimation was very bad when used
onboard of the robot. This is due to the fact that the magnetometers are hugely
affected by magnetic disturbances in the environment. Being the IMU placed on
a metallic platform, the heading information is always biased. For this reason, we
chose to use gyroscopes only.

When the robot is not moving, angular velocity measurements are used for gy-
roscope bias error estimation with a moving average.

2.4.2 Planar markers detection
There are many practical vision systems that use two-dimensional patterns to carry
some kind of information [16]. The fields of application range from industrial sys-
tems, where markers are designed to label goods or areas or carry certain informa-
tion, e. g. shipping data, to systems where markers are used for pose localization,
e. g. augmented reality and robot navigation systems. Examples for the first case
are Maxicode, used by the US Postal Service, and DataMatrix and QR (Quick Re-
sponse), used in industrial settings for the purpose of part labeling. Examples for the
second case are ARToolKit, ARTag and ARSTudio, three systems for Augmented
Reality. In order to reduce sensitivity to lightning conditions and camera settings,
these planar marker systems typically use bitonal markers (black and white). Fur-
thermore many systems use some of the marker’s data bits to convey redundant
information, which allows for error detection and correction. The design of the
markers mainly depends on the application.

DataMatrix, Maxicode and QR are applicable for encoding information under
controlled environments, e. g. conveyor belts, but are not very suitable for systems
that use markers for localization. The markers of these three systems are not de-
signed for large fields of view and the perspective distortions involved. Furthermore
they require a large area in the image, so that the range at which these markers
can be used is very limited. And finally they do not provide enough points in the
image to enable three-dimensional pose calculation. For Augmented Reality appli-
cations on the other hand it is very important that markers can be found within a
large field of view. This means that they should also be detected in the present of
large distortions in the image. On the other hand, the information stored inside the
marker must not be too dense in order to increase the maximum distance at which
data can be recovered from the marker. The only data an augmented reality marker

35

2 – Localization

should carry is a way to identify itself (for example an ID number).
Our requirements for a marker detection system are:

• Single camera pose tracking

• The ability to use arbitrary markers

• Fast enough for real time applications

• Open source implementation

Based on these requirements, in our application we use the ARToolkit library [8].
ARToolKit is a popular open source planar marker system for augmented reality
applications. The bitonal markers consist of a square black border and a pattern
in the interior. The library is able to recognize arbitrary 2D visual markers (called
ARTags, see Figure 2.19). The first stage of the recognition process is finding the
markers’ black borders, that is finding connected groups of pixels below a certain
gray value threshold. Then the contour of each group is extracted, and finally those
groups surrounded by four straight lines are marked as potential markers. The four
corners of every potential marker are used to calculate a homography matrix in
order to correct perspective distortion. Once the internal pattern of a marker is
brought to a canonical front view one can sample a grid of NxN (usually 16x16 or
32x32) gray values inside. These gray values form a feature vector that is compared
to a library of feature vectors of known markers by correlation. The output of this
template matching is a confidence factor. If this confidence factor is greater than a
threshold, a marker has been found.

Although ARToolKit is useful for many applications, there are some draw-backs.
First of all the detection process is threshold based. A single threshold can easily
fail to detect markers under different illumination conditions, even within the same
image. Furthermore the marker verification and identification mechanism using cor-
relation causes high false positive and inter-marker confusion rates. With increasing
library size the marker uniqueness is reduced, which again increases the inter-marker
confusion rate. Moreover, pose tracking, in particular regarding 3D orientation es-
timation, is not stable enough for our application.

We decided to improve the robustness of pose estimation by using an RGB-D
camera instead of a monocular camera. This makes it possible to better estimate the
pose of markers in the environment, by fusing 2D and 3D data. We use ARToolKit
on the planar image for finding the corners of the marker, and then we identify a
plane which corresponds to the detected marker using the distance information from
the RGB-D sensor. We then compute a transformation to an ideal marker geometry
in order to retrieve the correct 3D pose of the marker.

We then implemented a modified version of the classical Adaptive Monte Carlo
Localization (AMCL) algorithm. We introduce a new sensor model in the update

36

2 – Localization

Figure 2.19. Example of binary ArTags.

phase of the algorithm, which integrates marker detection into the particle filter. We
proceeded to integrate the result of markers detection into our localization algorithm
considering two levels of integration, a loose integration and a tight intregration.

In the loose case detected markers provide directly a robot pose hypothesis,
with a fixed covariance error; in the second case the detected markers are used as
additional inputs for the particle filter-based localization.

In tight coupling the position estimates come both from the laser range finder
and from marker detection algorithm described before. At each time instant t for
each particle we have a measurement z(i)(t) defined as:

z(i)(t) =
{
rj(t), j = 1, . . . , Nr if laser measurement
x̂markert , ŷmarkert if maker-based estimate (2.10)

where Nr is the number of rays of the laser range finder. If a laser measurement
occurs, the update phase is the usual one. If an output from the algorithm described
before is provided, particles are weighted using the pose estimated from the marker
detection algorithm, using a fixed covariance.

2.4.3 ROS implementation
We implemented a ROS node for planar marker detection based on the ARToolkit
library [8] and the ar_kinect ROS node. The ROS node that we developed is

37

2 – Localization

based on the use of a Microsoft Kinect camera. In particular, markers are first
detected using the ARToolkit library, and their pose is then estimated by searching
for square plain areas in their correspondent positions in the 3D point cloud. The
node transforms the 3D pose of the recognized ArTags from the coordinate frame
of ArToolkit to the coordinate frame of the map used for localization. A number of
checks is done in order to discard false positives, which are very common in difficult
lightning conditions such as closed indoor environments. In particular all detection
over a range of 2.5 m are discarded, as well as spot detections and makers poses
which are not parallel to the walls and floor (presenting large roll and pitch angles).
In order for the node to work, two things are needed:

• A number of ARTags have to be put in the environment

• The appearance and the pose of the markers in the map have to be written
into a configuration file

The localization algorithm that we use is a modified version of the amcl ROS
package. In our version of the algorithm global localization is also possible, as in the
approach that we developed and described in Section 2.3.2. We use the likelihood
field laser sensor model for particle update, since it is faster and better represent
sensor readings compared to the classical beam model, it is smooth with respect to
small changes in robot position and is better suited for small obstacles.

When the robot detects a marker, the correct pose of the robot in the map is
estimated relative to the marker and AMCL is re-initialized around this pose (with
a suitable covariance, in order to deal with visual detection uncertainties) in the
case of loose integration. In the case of tight integration the particles are weighted
according a gaussian sensor model around the estimated pose with a fixed covariance.

Notes on parameters selection

It should be noted that the choice of the AMCL parameters is critical for achieving
low localization error, in particular with a challenging scenario. Good localization is
crucial for the subsequent path planning. The most important parameter values that
we use in our modified ROS implementation of the AMCL algorithm are reported in
Table 2.2. The error in laser readings caused by the metal grids has been modeled
in a trivial way by raising the laser_z_hit value of the likelihood field sensor model.
The higher laser_z_rand value accounts for the presence of glass-covered racks. We
experimentally found that a maximum particle size of 10000 is enough for reliable
global localization, and a minimum of 500 is enough for modeling the robot pose
during position tracking.

38

2 – Localization

Table 2.2. Parameters used for our implementation of the AMCL ROS node.
Parameter Value

max_particles 10000
min_particles 500
laser_z_hit 0.5
laser_z_rand 0.5
update_min_d 0.1
update_min_a 0.25

resample_interval 1

2.4.4 Results
The approach has been first tested in a corridor-like environment at Telecom Italia
Lab, using a Coroware Corobot Classic robotic platform with a Microsoft Kinect
sensor and a XSens MTI IMU. During preliminary experiments two issues have
shown up:

• false detections of markers, due to difficult lightning conditions

• markers not being detected, due to their bad placement in the environment

In a successive implementation of the algorithm false detections have been ruled out
by implementing a number of checks on the placement of the markers: for instance,
markers are only detected within a range of 2.5m, since the accuracy of the Kinect
sensor degrades at larger distances. Moreover, marker detections which are not
aligned with the walls are discarded. Marker placement is crucial, as markers need
to be placed only at the end of long symmetric corridors and should face the camera
mounted on the robot, in order to be correctly detected. From the results we saw
that the robot is able to recover its pose estimate at the end of the longer corridors
most of the times.

Figure 2.20 shows an example of an experiment in this environment. In 2.20(a)
the robot is travelling along a corridor with few asymmetries (open doors). Moreover
many of the doors in the corridor are in a different state (open, closed) than what
is present on the map. The real robot position in the environment is shown as a
blue square in the simulator (right), while the position estimated by the localization
algorithm is represented by the red particles on the left. It can be seen the estimated
position is incorrect, due to inaccurate odometry and lack of map features. An ArTag
is attached on the wall in the corridor in front of the robot, and its pose (position
and orientation) is known inside the map of the environment (it has been measured
by hand). In 2.20(b), as the robot moves forward, it is able to detect and recognize

39

2 – Localization

(a)

(b)

(c)

Figure 2.20. Example of binary ArTags.

40

2 – Localization

the marker using the onboard Kinect sensor. The pose of the marker is estimated
relative to the robot, and the pose of the robot relative to the map is retrieved.
In this example, we use the loose integration, and the particle filter is re-initialized
aroud the estimated robot pose with a suitable covariance, in order to take into
account detection errors. In 2.20(c) the robot continues to move along the corridor
and is able to recover a correct pose estimate.

Another test has been done inside the corridors of the data center. Although the
Corobot platform was able to correctly localize even without the need of markers, two
markers have been placed in key points of the environment for improving robustness
and implementing a fail-safe service.

In a third experiment, we tested localization and path planning performances in
another datacenter room, with a previously created map. This particular scenario
presents some challenges for localization, such as its symmetry and irregular surfaces.
Data-center areas are organized as regular grids, with rows of racks and corridors.
In particular, server racks are usually covered with metallic grids, which introduce
large errors in range measures, as laser rays are passing through the grids introducing
measurement errors. Moreover, the symmetry of the environment poses a challenge
for loop closings detection.

A path composed by a certain number of waypoints was created. The tasks asso-
ciated with each waypoint were thermal camera image acquisition and temperature
measurement. Figure 2.21 shows the results of a typical experiment. It can be noted
that the robot correctly localized itself and was able to follow the given path.

We measured the localization accuracy at different points inside the map. The
ground-truth for each reference point (position and orientation) has been measured
by hand. Table 2.3 show that the average position and rotation errors are higher
than ..., but are still adequate for the subsequent path planning, as shown in the
next experiment.

Table 2.3. Average localization errors.
Average Variance

Position [m] 0.158 0.0016
Rotation [deg] 1.47 0.0229

2.5 Map Updating in Dynamic Environments
In this chapter we present an approach called ∆-mapping [14] that allows a cor-
rectly localized robot (being in the position tracking state described in the previous

41

2 – Localization

Figure 2.21. Localization and path planning performances. (a) Trajec-
tory followed by the robot, as estimated by localization, is shown in blue.
Waypoints are shown as points.

Section) to perform map updating in dynamic environments, and we show some
preliminary results in simulated and real experiments.

2.5.1 Introduction
Localization and map building are closely linked problems, and are often referred to
as Simultaneous Localization and Mapping (SLAM) (see Chapter 3). While building
maps when robot poses are known is a tractable problem with limited computational
complexity, in the SLAM case the uncertainty in measures and in robot pose esti-
mates makes the problem much more complex in terms of data association and
computational requirements. Moreover, the vast majority of the effort has been
devoted to the case of mapping of static environments.

Many real applications require updated maps of the environment that vary over
time, starting from a given initial condition. This is for instance the case of robotic
applications in logistic spaces, where robots have to track the presence of goods in
a certain area. The goods are stored in appropriate places, but during the day they
can be removed and substituted by other items many times.
This work deals with the problem of keeping the map updated, in order to guarantee
the robots localization; specific goods tracking procedure are not investigated.

42

2 – Localization

The initial map can be a-priori known or built using a classical SLAM algorithm.
In the latter case, the environment is supposed to be static during the initial SLAM
process. Then the environment starts to change, and the map needs to be updated,
as modifications are sensed by the robot.
During the map update process, there are mainly two issues to be considered:

• long-term operativity is required;

• the algorithm performing the map update has to be computationally light and
to use limited memory.

The first item is mandatory since in real applications map variations may occur
continuously for a long period of time (even an entire day), and the map updating
process should be carried out as long as possible without diverging.
The second item is very important when the map updating process has to be carried
out in parallel with other tasks, (e.g., team coordination and planning, surveillance).

A combined algorithm for map update and robot localization is proposed in [90],
while a method for updating the map dynamically during the process of localization
is developed in [63]. This method seems very promising but its experimental valida-
tion is still only partial. The problem of grid mapping through belief propagation
is investigated in [76], assuming that good estimates of the robot position are avail-
able. A spatial Markov random field model is applied to a minefield mapping. Two
things are required: the list of the type of objects that populate the environment
and the a-priori knowledge about where the objects are positioned.
Finally [18] introduces a dynamic map representation for mobile robots that adapts
continuously over time. It solves the stability-plasticity dilemma (the trade-off be-
tween adaptation to new patterns and preservation of old patterns) by representing
the environment over multiple timescales simultaneously.

In this Section we propose a methodology that is able to:

• detect variations in the environment;

• generate a local map containing only the persistent variations;

• merge the local map with the global one used for localization.

The variations of the environment are detected using a technique called weighted
recency averaging, while the local maps are merged employing the Hough transform.

2.5.2 Problem Formulation
A mobile robot, endowed with a laser rangefinder, is supposed to be correctly local-
ized with respect to the available environment map. Let its estimated pose at time

43

2 – Localization

t be denoted by
p̂(t) = {x̂(t), ŷ(t), θ̂(t)}. (2.11)

By the expression correctly localized robot we indicate a robot that is in the position
tracking state, as defined in [11] and [12].
An occupancy grid map of the environment (used in the localization algorithm to
track the robot position over time) is available to the robot. Such a map could have
been manually created or previously built by a SLAM algorithm.
At discrete instants k the environment changes, and consequently the robot has to
modify its map, to take into account the variation. We call this phase a ∆-mapping
step.
We define the set of new maps collected up to time k as

M(K) = {Mk}, k = 0, . . . , K.

M0 is the initial map, obtained by the SLAM procedure. The goal of the algorithm
developed in the next section is to provide an estimate M̂k of the map at each time
step k.

2.5.3 The Approach
The architecture of the approach can be represented by separate functional blocks
(as shown in Figure 2.22).

The ∆-Awareness block implements the technique used to detect when a change
has occurred in the map, and consequently communicates to the robot that it is
time to enter the so called ∆-mapping phase.

The Store-scan block decides which scans acquired during the ∆-mapping phase
are suitable to create a local map containing the variations.

The Alignment block registers in a consistent way the set of measurements frames
(range scans) colleced by the Store-scan block. The approach maintains all the local
frames of data as well as the relative spatial relationships between local frames. The
adopted approach is described in [57].

The Map Merge block merges the output of the Alignment block at time k with
the map M̂k−1.
The most relevant blocks are detailed in the next subsections.

∆-Awareness

The ∆-Awareness block detects persistent variations in the environment, using a
technique called weighted recency averaging, which is normally applied in problems
of tracking non-stationary processes.

44

2 – Localization

Figure 2.22. The architecture of the approach.

An example of application of this technique can be found in recovering from localiza-
tion failures [89], where it is used to calculate the empirical measurement likelihood
and maintain short-term and long-term averages of this likelihood, deciding when
to randomly inject particles to the filter.
In our setting, the weighted recency averaging is employed to recognize changes in
the environment, under the hypothesis that the robot is correctly localized and never
kidnapped.

In particular, we call wavg(t) the weight of the position hypothesis with the
highest likelihood, and we calculate the short-term likelihood and the long-term
likelihood as

wslow(t+ 1) = wslow(t) + αslow(wavg(t)− wslow(t))
wfast(t+ 1) = wfast(t) + αfast(wavg(t)− wfast(t))

(2.12)

where the parameters αslow and αfast are decay rates for the filters that estimate the
long-term and short-term averages. As a rule of thumb, we should choose αslow �
αfast, noticing that these parameters influence directly how quickly the ∆-Awareness

45

2 – Localization

block perceives a variation occurred in the environment.
The wavg(t) is in general a non-stationary process, since at least one of its parameters
(e.g. the mean value) changes over time.
In Figure 2.23 it is shown a comparison between the trend of the wavg(t) over time
when no modifications in the map occur (a), and when the robot passes near an
area with a variation (b). The sudden changes of wavg(t) in the latter case allow to
use such process to detect variations.

The divergence between the short-term and the long-term average of the mea-
surement likelihood is considered in the computation of the following divergence
ratio rd(t)

rd(t) = 1− wfast(t)
wslow(t) (2.13)

which is one of the indexes considered by the Store Scan block to decide if a laser
scan should be discarded or not, as discussed in Subsection 2.5.3.

Figure 2.23. Comparison between the trend of the wavg(t) over time when no
modifications in the map occur (a), and when (b) the robot passes near a variation.

Store Scan

The purpose of the Store Scan block is to select the laser scans suitable for building
the local updated sub maps. These scans are stored in a set called S(k).
In order to maximize the probability of storing scans when modifications in the map
have occurred, if rd(t) > 0 a scan is selected with a probability given by v < rd(t),
where v is a uniformly distributed random variable U(0,1).

46

2 – Localization

Figures 2.24 and 2.25, respectively, clarify what happens when there are no modifi-
cations in the map and when a robot perceives a variation in the environment.
In Figure 2.24 the values taken by wfast(t) are higher than those taken by wslow(t);

Figure 2.24. Trend of wavg(t), wfast(t), wslow(t), rd(t) in absence of modi-
fications in the environment.

Figure 2.25. Trend of wavg(t), wfast(t), wslow(t), rd(t) in presence of mod-
ifications in the environment.

from (2.13) it follows that rd(t) is negative (in Figure 2.24 it has been set to zero)
and the ∆-mapping process does not begin. In Figure 2.25 the values assumed by
wfast(t) are lower than those assumed by wslow(t) and hence rd(t) is greater than

47

2 – Localization

zero.
The ∆-mapping process begins when rd(t) becomes positive for the first time, and
ends when rd(t) falls again below zero.
Unfortunately we experienced that this method suffers from a couple of problems.
It can be observed that even if the environment does not change, the divergence ratio
may increase in specific situations, such as when the rotational velocity of the robot
is greater than zero, causing the beginning of the ∆-mapping process also when the
environment has not changed.
The second problem is that even if the ∆-mapping process has correctly begun due
to a variation in the environment, the quality of the scans acquired by the laser
rangefinder could be insufficient.
The accuracy of the scans is related to the precision of the robot pose estimate, in
particular to its heading estimation. A significant source of inconsistency is to be
found in heading variance which, if large, can cause divergence in just a few updates.
In our case, scans acquired with a wrong heading may lead to bad-aligned sub-maps.
Moreover, the problem of a bad quality of the scans can be related to the first high-
lighted matter, i.e. when the robot is rotating.
In fact it frequently happens that the robot encounters map variations while turning,
hence when its rotational velocity is greater than zero. In this situation, even if the
map has changed, some acquired scans may have a wrong heading, and therefore
they should be discarded.
The proposed solution for a proper scan discarding is discussed in the next subsec-
tion.

The local degeneracy of the particle filter algorithm is measured by the effective
sample size Neff of the particle filter defined as

Neff = Ns

1 + Var(w∗t i)
(2.14)

where Ns is the number of particles and w∗t
i is the true weight. Neff cannot be

exactly calculated, but an estimate can be obtained by computing

N̂eff = 1∑Ns
i=1(wit)2 (2.15)

A relation has been empirically found between the local degeneracy of the particle
filter and the moments in which the robot is turning. Three cases have been con-
sidered to investigate such a relation. In the first one we compute the values of Neff
while the robot is going straight and some environment changes occur. In the second
one the robot turns with a constant rotational velocity (without any environmental
modification), while in the third one it follows the blue (not straight) path shown
in Figure 2.26. The results of computing Neff in the three examples are shown in

48

2 – Localization

Figure 2.26. Path followed by the simulated robot to evaluate Neff in the
third case. On the left there is the simulated robot and environment, on the
right our graphical user interface.

Figure 2.27, in blue, red and black, respectively.
The red and black plots show that the robot turning decreases the value of Neff ,
whereas the variation in the map while the robot is not turning does not influ-
ence its value. We can thus argue that the evaluation of Neff allows us to reject
those scans acquired while the robot is turning, which can be bad aligned with high
probability.

Figure 2.27. Comparison of the Neff trend.

49

2 – Localization

Scan Alignment

The Scan Alignment block produces a local map performing a consistent registration
of the collection of scans contained in S(k). The approach maintains all the local
frames of data as well as the relative spatial relationships between local frames,
modeled as random variables and derived from matching pairwise scans or from
odometry. Then all the spatial relations are combined using the Rmap algorithm
(see [5]).
The output of this block is a consistently aligned map Sk.

Map Merge

The Map Merge block receives the aligned map Sk provided by the Scan Alignment
block and merges this map with M̂k−1, which is the map the robot is currently
using for localization. The output of this merge process is M̂k. We adopted the
algorithm proposed in [22], whose theoretical foundations are briefly recalled in the
next subsection.

Theoretical background about Map Merging

We assume that a grid map M is a matrix with r rows and c columns. Each cell
M(i, j) may contain three different values, indicating whether the cell is free, occu-
pied, or if its status is unknown.
Given two maps M1 and M2 , the goal of map merging is to find a rigid trans-
formation T so that the two maps can be overlapped. The transformation T =
T (∆x,∆y, φ) is the combination of a rotation φ, followed by a translation along the
x and y axis of magnitude ∆x and ∆y, respectively.

The overall transformation T is computed in two separate steps. First the rota-
tion φ is determined, and then the translations ∆x and ∆y are deduced. In order
to do this, Hough transform is applied to detect lines expressed in polar coordinates
(i.e. ρ and θ). Line detection is performed using the Discretized Hough transform
(DHT), that discretizes the domain for ρ and θ, so that the DHT can therefore be
represented by a matrix with ρS rows and θS columns. In addition it is also neces-
sary to set a bound for ρ, while θ is naturally bounded to [0, 2π). The DHT can be
applied to detect lines in an occupancy grid map M , by converting it into a binary
image. The conversion can be performed setting all occupied cells to black, and all
other cells to white, for example. If M is a grid map, we indicate its DHT with
HTM . Given HTM we define its associated Hough Spectrum as the following signal:

HSM(l) =
ρS∑
i=1

HTM(i, l)2, 1 ≤ l ≤ θS

50

2 – Localization

Translations of the Hough spectra correspond to rotations of the associated map.
The computation of the circular cross correlation gives information about how the
maps have to be rotated in order to be overlapped. Formally, if HSM1 and HSM2 are
two Hough spectra with the same sampling period, their circular cross correlation
CCM1M2 is a signal with the same sampling period defined as follows:

CCM1M2 =
θS∑
i=1

HTM1(i)HTM2(i+ l), 1 ≤ l ≤ θS (2.16)

Local maxima in the spectra cross correlation reveal how M2 should be rotated in
order to align it withM1. The proposed algorithm therefore extracts a set of n local
maxima (n being a specified parameter), and returns n transformations.

Given a candidate rotation φi , the corresponding translations ∆xi , ∆yi can be
in principle easily determined. Let M3 be the map obtained rotating M2 of φi , i.e.

M3 = T (0, 0, φi)M2. (2.17)
Translations needed to overlap M3 to M1 can be obtained computing the bidimen-
sional correlation in the following way. First we compute the X-spectrum of a binary
image M , having r rows and c columns, as follows:

SXM(j) =
{ ∑r

i=1M(i, j) 1 ≤ j ≤ c
0 otherwise (2.18)

Similarly, the Y-spectrum of image M is defined as:

SYM(j) =
{ ∑c

i=1M(i, j) 1 ≤ j ≤ r
0 otherwise (2.19)

Given SXM1 and SXM3, ∆xi can be easily inferred by looking at the global maxi-
mum of the cross correlation between them, defined as

CCXM1M3(τ) =
+∞∑
l=−∞

SXM1(l + τ)SXM3(l) (2.20)

Similarly to the case of correlation between Hough spectra, multiple local maxima
may emerge when computing the cross correlation between X-spectra. Each of the
maxima is associated with a candidate translation to align the two maps and can
be individually tracked.

Map Merge Validation

We have performed an intensive test of the Map Merge block, in order to properly
set the parameters of the algorithm proposed in [22] and to verify the effectiveness

51

2 – Localization

and speed of the merging algorithm.
To perform the tests we have considered two different parts of the map of Figure
2.28 (used also in the simulation tests). These submaps are shown in Figure 2.29
(a) and (b).

Figure 2.28. The map used to validate the Map Merge block, used also in
the simulation tests.

(a) (b)

Figure 2.29. The two parts of map in Figure 2.28 used to validate the
Map Merge block.

For each submap we have generated every possible x translation in the range
[-10;10] pixel with resolution 1 pixel, for every x translation every possible y trans-
lation in the range [-10;10] pixel with resolution 1 pixel, and for every y translation
every possible rotation in the range [0;360] degrees with resolution 1 degree. To
evaluate the performances of the merging procedure, given two maps M1 and M2
we consider the following simple acceptance index:

w(M1,M2) =
{

0 if agr = 0
agr(M1,M2)

agr(M1,M2)+dis(M1,M2) if agr /= 0 (2.21)

where agr(M1,M2) is the agreement between M1 and M2, the number of cells
in M1 and M2 that are both free or both occupied and 0 ≤ w ≤ 1. The disagree-
ment between M1 and M2 (indicated by dis(M1,M2)) is the number of cells such

52

2 – Localization

thatM1 is free andM2 is occupied and vice-versa. Notice that only free or occupied
cells are considered, while unknown cells are ignored.
We have considered four possible merging algorithms. The first one (MA1) is the
one presented in Section 2.5.3, while the other two are the “robust” versions of the
first one.
The second one (MA2) evaluates other candidate solutions rotating the ones com-
puted by MA1 in the range [-0.5;0.5] degrees with a step of 0.25 degrees. The third
one (MA3) evaluates other candidate solutions rotating again the ones obtained by
MA1 in the range [-1;1] degrees with a step of 0.25 degrees. In the fourth one (MA4)
a further translation is added. The other candidates solutions are determined rotat-
ing the MA1 solution in the range [-0.25;0.25] degrees with a step of 0.25 degrees,
and adding to each rotation a translation of +1 and -1 pixel.
The results in terms of acceptance and computation time of the four merging algo-
rithms are indicated in Table 2.4.

Table 2.4. Results of the four methods.
Methods Acceptance Computation Time [s]
MA1 0.9977 0.67
MA2 0.998 1.38
MA3 0.998 1.99
MA4 0.998 2.01

For each method we averaged all the acceptance indexes obtained for each ro-
tation (and also translation for M4). The computation time for each method has
been computed as the average among all the single computation times for each ro-
tation/translation. The Map Merge validation has been performed on a 2.5 GHz
Intel© Core2 Duo platform with 2 GB of RAM memory.
After the evaluation of the accuracy of the four proposed methods and their compu-
tation time, we chose to use the MA1 method in the Map Merge block, because the
acceptance obtained is comparable with the other methods, and the computation
time is lower than the others.

2.5.4 Simulation Tests
We consider a simulated environment of a logistic area (see Figure 2.28). The
occupied black areas can be thought as containers or similar bulky items stored
before distribution. The dimension of the whole environment is 35×35 m, the black
areas are 10×10 m and the corridors are 5 m wide.
We assume that, when the rover is correctly localized, a virtual fork-lift removes or
adds one container every minute.
To demonstrate the effectiveness of the proposed approach we first provide results

53

2 – Localization

related to nr = 10 averaged runs, and the ∆-mapping updating process lasts for
approximately two hours each run.
We define the localization error of the robot as the distance between the ground-
truth Cartesian position (xgti (t), ygti (t)) and its Cartesian position estimation given
by (2.11) as

eρ(t) =
√

(xgt(t)− x̂(t))2 + (ygt(t)− ŷ(t))2. (2.22)

We then define the average localization error over nr runs as

ēρnr(t) =
nr∑
i=1

eρ(t)
nr

. (2.23)

The localization error is shown in Figure 2.30. The localization error remains lower
than 0.5 m, except for a period of time where the error increases. This is due to the
loss of the localization by the rover in one of the runs. However the robot quickly
recovers correct localization.

Figure 2.30. Localization error of a robot in nr runs.

Table 2.5 shows the acceptance index (2.21) mediate over the single run, along
with the number of variations occurred detected per run.
The number of detected variations in each run depends on the path followed by the
robot. In this work the robot wanders in the environment, and there is no active
mechanism to ensure the detection of all the variations occurred in the environment.
Future works will be devoted to enhance the motion strategy. The average quality
of the map is comparable with the quality of a map obtained by a Rao-Blackwellized

54

2 – Localization

Run Acceptance Number of variations
R1 0.979 23
R2 0.98 30
R3 0.9695 68
R4 0.9758 77
R5 0.9728 97
R6 0.9784 47
R7 0.9804 62
R8 0.9731 200
R9 0.9681 197
R10 0.97 100

Table 2.5. Acceptance values and number of variations of the nr runs.

SLAM process in static conditions, since in that case the value of the index obtained
is 0.98.

In another test, we have performed a ∆-mapping process lasting for approxi-
mately seven hours, for a total number of 420 variations, to check the long operativ-
ity performance. Figure 2.31 shows the status of the grid map respectively after few
variations and after many variations. The map shown in Figure 2.31 (c) contains
open squares because sometimes the robot may not be able to completely map a
variation. Moreover, the a-priori knowledge of the geometric aspect of the elements
inside the environment (e.g., the goods shape) is not used to complete the final map
obtained by the proposed procedure.
In Figure 2.32 the localization error of the simulated rover is shown. Figure 2.38(b)
shows the acceptance index (in the range 0-1 from worst to best) related to the
map quality over time. After seven hours of operation the rover localization error
remains acceptable (below 1 m) and the quality of the map is still comparable with
the quality of a map obtained by a Rao-Blackwellized SLAM process.

2.6 Extension to the multi-robot case
A team of mobile robots, each endowed with a laser rangefinder and wireless connec-
tivity, is supposed to be correctly localized with respect to the available environment
map. In particular, each robot is assumed to be in the position tracking state, as
defined in [11] and [12].
Each robot uses an occupancy grid map of the environment in the localization algo-
rithm to track its position over time. Such a map could have been manually created
or previously built by a SLAM algorithm.
At discrete time instants k the environment changes, and consequently the robots

55

2 – Localization

(a) (b) (c)

Figure 2.31. The initial map (a), the map after few variations (b), and the map
at the endo of the ∆-mapping process.

Figure 2.32. The localization error in the long operativity test.

have to modify their map to take into account the variation. This phase is called
∆-mapping step.
The set of new maps collected up to time k is defined as

M(k) = {Mk}, k = 0, . . . , K.

M0 is the initial map, obtained by the SLAM procedure. The goal of the devel-
oped algorithm is to provide for each robot an estimate M̂k of the map at each time
step k. In order to take advantage of the multi-robot scenario these updated maps
must be spread among the other robots, and this information has to be merged in
order to create a map that is a good estimate of the current state of the environment.

56

2 – Localization

Figure 2.33. The trend of the quality of the map over time.

Correct map merging is not sufficient; a coordination strategy of the team of
robots it also needed in order to maximize the number of detected variations, bal-
ancing at the same balancing the number of ∆-mapping processes among the robots.

2.6.1 The Approach

The guidelines of the proposed approach are described hereafter, whereas details
about the specific processes of variations awareness, local ∆-mapping and map merg-
ing are given in subsection 2.6.2.

In the proposed ∆-mapping approach the concept of time-map is introduced to
merge in an appropriate way the changes detected locally by a robot and the updated
maps received from the other team members. In a grid map each cell represents the
belief on the occupation value of the corresponding area. Since the environment
changes over time, the reliability of the stored value for the cells decreases over
time. Therefore to each cell in the map a value in the range [0 − 1] is assigned,
related to the time passed since the cell has been visited for the last time. The set
of these values at each time step is called time-map and defined as Tt.

The outline of the ∆-mapping algorithm, which runs on board of each rover, is
described in Algorithm 4.

The algorithm takes as inputs the previous map M̂k−1 and the time-map Tt−1.
p and l are the current robot pose and the current laser range reading respectively,

57

2 – Localization

Input: M̂k−1, Tt−1, p, l, P , L
Output: M̂k, Tt

1 Tt = updateTimeMap(Tt−1, p, l);
2 if received map M̂ ′ T ′ then
3 [M̂ ′

k−1, Tt] = mergeMap(M̂k−1, Tt, M̂ ′, T ′);
4 M̂k−1 = M̂ ′

k−1;
5 end
6 if ∆− awareness then
7 P = P + p ;
8 L = L+ l;
9 else

10 if P ! = ∅ then
11 [M̂k] = updateMap(M̂k−1, P , L);
12 P = ∅;
13 L = ∅;
14 dispatchUpdatedMap(M̂k, Tt);
15 end
16 end

Algorithm 4: the ∆-mapping algorithm

P and L are two matrices in which the values of p and l are collected as

P =


x̂1, ŷ1, θ̂1

...
x̂n, ŷn, θ̂n

 (2.24)

L =


l1

...
ln

 (2.25)

where the n-th entry is the last element stored. These matrices are used to create a
local ∆-map containing the changes in the environment detected by the robot.

The time-map Tt is updated every time a laser scan is available to the robot; a
ray tracing procedure is applied for each angle of the scan, assigning a maximum
value equal to 1 to every cell crossed by a ray. At each time step all the values in Tt
are updated according to (2.26), where ∆t is the time elapsed from the last update
of Tt, and Ct is a time constant which defines the forgetting speed.

Tt(i, j) = Tt−1(i, j) ·
(

1− ∆t
Ct

)
(2.26)

58

2 – Localization

The time-map update depends only on ∆t, therefore a common timebase among
the team members is not required, avoiding the need of synchronization techniques
over the net, such as Network Time Protocol (NTP).

The algorithm is then divided into two parts. The first part (lines 2-4) is per-
formed only when the robot receives a map from another robot member of the team,
while the second part (lines 6-15) is performed only if a variation in the environment
has been detected.

If the robot receives a new map M̂ ′ and the relative time-map T ′, it updates the
state of its map and its time-map by merging them with M̂k−1 and Tt respectively
(line 3). At this point the resulting map contains the modifications perceived by the
other robots (line 4).

If a modification is detected by the ∆-awareness block, recalled in Section 2.6.2,
the algorithm stores the current robot pose and the relative laser range reading (lines
7-8).

If the ∆-awareness block does not detect any modification and P and L are not
empty, a local ∆-mapping is performed, following the approach recalled in subsection
2.6.2 (line 10). The content of these vectors is used to create a local ∆-map ∆M̂ ,
then ∆M̂ is aligned and merged with the old map M̂k−1, in order to obtain an
updated map M̂k.

Finally the resulting map M̂k and the current time-map Tt are dispatched to the
other team members.

2.6.2 ∆-awareness, local ∆-mapping and map merging
In [13] the authors presented an approach to maintain an updated grid map of a
dynamic environment for a single robot, where an initial occupancy grid map is
supposed to be available. The algorithm is able to detect persistent variations in
the environment and merge this variations with the previous map by using limited
computational resources and is composed by four blocks as shown in Figure 2.22.

The ∆-awareness block detects persistent variations in the environment, using a
technique called weighted recency averaging, which is normally applied in problems
of tracking non-stationary processes.
In this setting, the weighted recency averaging is employed to recognize changes
in the environment, under the hypothesis that the robot is correctly localized and
never kidnapped.

The purpose of the Store Scan block is to select the laser scan readings suitable
for building the local updated sub maps. These readings are stored in L with the
corresponding robot poses stored in P .

The Scan Alignment block produces a ∆-map performing a consistent registra-
tion of the collection of scan readings contained in L. The approach maintains all
the local frames of data as well as the relative spatial relationships between local

59

2 – Localization

frames, modeled as random variables and derived from matching pairwise scans or
from rover poses stored in P .

The Map Merge block merges the output of the Scan Alignment block with
the map M̂k−1. The goal of this block is to find a rigid transformation in order
to overlap ∆-map and M̂k−1 to create the current environment occupancy map M̂k.
We adopted the algorithm proposed in [22], which uses Discretized Hough transform
and bidimensional correlation. The Discretized Hough transform allows to find the
rotation that aligns ∆-map with M̂k−1, then the bidimensional correlation is applied
to compute the translation to overlap the two maps.

Local ∆-mapping in this work consists in the application of the Scan Alignment
and Map Merge blocks.

In the updateTimeMap function in line 3 of Algorithm 4 the current maps M̂k−1
and Tt are updated according to M ′ and T ′ received from the other robots. For all
couples i, j every cell M̂k−1(i, j) is updated if its value is older than the corresponding
cell M̂ ′(i, j), so that the most reliable value is used. The information about the
reliability is given by the time-maps Tt and T ′.

When a robot receives a new map M̂ ′ and a time-map T ′ from another teammate,
it merges it with the previous map M̂k−1 and the local time-map Tt in order to
produce M̂ ′

k−1. Tt is also updated. For all couples i, j the value of the cell M̂ ′
k−1(i, j)

is set equal to the cell M̂ ′(i, j) if T ′(i, j) > Tt(i, j), otherwise it is set equal to
M̂k−1(i, j). The value of the cell Tt(i, j) is set equal to T ′(i, j) if T ′(i, j) > Tt(i, j),
otherwise it is not modified. Figure 2.34 shows the map merging in a typical case. It
can be noticed how changes received from another robot and local changes detected
by the local ∆-mapping are both merged in a consistent way. This happens because
cells belonging to areas that have been recently mapped have high corresponding
time-map values (close to 1), so recent changes in the map resulting from a local
∆-mapping process are not discarded.

2.6.3 Exploration strategy
A team coordination strategy that actively searches modifications in the map has
been developed. Without any coordination strategy all the robots could follow the
same path or leave some areas unexplored for a long time. This problem can be
treated in partial similarity with the problem of multi-robot exploration. In the
exploration approaches the aim is to discover a map starting from a completely
unknown environment. In our case the initial map is known, as well as the robot
pose, but since the environment is persistently changing (pallets are added and
removed), the reliability of the initial map decreases over time on the basis of the
number of changes in the environment. For this reason, areas that have not been
recently visited may become completely unknown, as the reliability of the map in
those areas is very low.

60

2 – Localization

(a) Environment state and robots pose

(b) M̂k−1 (c) M ′ (d) M̂ ′k−1

(e) Tt (f) T ′ (g) Tt

Figure 2.34. Figures show the map merging in a typical case: 2.34(a) shows the
pose of the robots, Robot 1 receives a map from Robot 2 and it uses it to update
its map; 2.34(b) is the current map, 2.34(e) is the current time-map, 2.34(c) is the
received map, 2.34(f) is the received time-map, 2.34(d) and 2.34(g) are the resulting
map and time-map after the merging process.

61

2 – Localization

Areas that need to be explored are then the ones for which the corresponding
value of the time-map is below a given threshold. For each robot, a set of points
is extracted to feed the path planning algorithms from a topological map, which is
constructed from the grid-map representing the areas to be explored.

Many approaches exist to obtain a topological representation from a grid-map,
such as Voronoi diagrams or topological operations. A morphological skeleton repre-
sentation of the map is extracted. The skeleton of an image is a good representation
of the geometrical and topological properties of its shape.

Then a set of points belonging to the skeleton is identified, with the constraint
that each point has to be at a minimum distance from every other point.

Each point becomes one goal point for a suitable path planning algorithm: in this
case the wavefront algorithm [56] is used. These goal points are then allocated to the
team members by a distributed market-based task allocation algorithm described in
the following subsection.

Figure 2.35 shows how the goal points are obtained. The time-map has inverse
colors (black cells have the highest reliability and white ones have the lowest reliabil-
ity). In Figure 2.35(a) red points belong to the skeleton of the areas with reliability
below a given threshold. In this case the team is composed by three robots, so three
goal points are obtained as indicated in Figure 2.35(b).

(a) (b)

Figure 2.35. Time-map and skeleton of areas to explore (a) and final goal
points for three robots (b)

2.6.4 Distributed auction-based task allocation
Each goal point generated by the exploration strategy must be efficiently assigned
to one of the robots in order to minimize travel time.

62

2 – Localization

A feasible way is the so called Hungarian method that performs a combinatorial
optimization to solve the assignment problem in polynomial time. It guarantees the
optimal solution, but it is a centralized algorithm, that requires a supervisor node
and a matrix containing a row for each robot and a column for each task. Each cell
contains the cost for the relative task. Moreover this approach requires the ability
for all the robots to communicate, but this condition is not assured due to unreliable
WiFi communication.

The used approach is then based on auctions, and it has been developed starting
from the one proposed in [92]. Every goal point is assigned to an auction over a
multicast network channel; the robots that receive the auction compute and send
back a bid. The auctioneer assigns the task to the robot with the best bid. The
bid is computed according both to the robot’s current position and to its queue of
pending tasks. This approach does not guarantee the optimal solution, but it is
robust to communication failures. Moreover, the auctioneer is always a different
robot, thus avoiding the problem of single point of failure.

2.7 Simulation Tests
The simulated environment of a logistic area already used in [13] and shown in
Figure 2.36 is considered. The occupied green areas can be thought as containers
or similar items stored before distribution. The environment is 35×35 m, the green
areas in the center are 10×10 m and the corridors are 5 m wide.
n = 3 rovers are endowed with wheel encoders, a laser range finder and a WiFi

Figure 2.36. The simulation environment.

board, and are able to localize themselves in the given environment. It is assumed

63

2 – Localization

that, once the rovers are correctly localized, a virtual fork-lift adds or removes one
container every minute.
The rovers start moving with a simple obstacle avoidance policy. Then when the
∆-mapping process starts the rovers move according to the exploration strategy
described in Section 2.6.3. The quality of the map over time and the localization
error are measured. The error on the estimate of the robot pose is strictly related to
the quality of the map. Every ∆-mapping process induces some degradation of the
map, due to the localization error which cannot be fully compensated by the Map
Merge block.

Even after a consistent number of changes in the environment the rovers keep
a map that is consistent with the environment and therefore the localization error
remains low.

2.7.1 Simulation test 1

To demonstrate the effectiveness of the proposed approach first results related to
r = 10 averaged runs are provided, where the ∆-mapping updating process lasts for
approximately two hours each run.
The localization error of the i-th robot is defined as the distance between the ground-
truth Cartesian position (xgti (t), ygti (t)) and its Cartesian position estimation as

eρi (t) =
√

(xgti (t)− x̂i(t))2 + (ygti (t)− ŷi(t))2. (2.27)

We then define the average localization error for n robots over r runs as

eρn,r(t) = 1
r

r∑
j=1

n∑
i=1

eρi (t)
n

(2.28)

The localization error is reported in Figure 2.37(a). It can be noticed that the
mean localization error remains lower than 0.6 m after approximately 2.5 hours. The
quality of the map for the duration of the test is also inspected. Visual inspection
is often used, and numerical results by using the acceptance index described in [22]
are also provided. They can be used as a measure of similarity between the real
map and the estimated map.

Figure 2.37(b) shows the acceptance index mediate over the n = 3 robots and
over r = 10 runs. After 140 variations the value obtained is 0.97, which is comparable
with the one obtained with a typical grid-based SLAM algorithm (0.98).

64

2 – Localization

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [s]

e
ρ n
,r
(t

)
[m

]

(a)

0 20 40 60 80 100 120 140
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

number of map variations

a
c
c
e
p
ta

n
c
e
 i
n
d
e
x

(b)

Figure 2.37. Localization error and acceptance index for test 1.

2.7.2 Simulation test 2
Here the performances of the ∆-mapping process in long term operativity are tested.
The simulation scenario is the same as for the previous test, but the virtual fork-
lift adds and removes containers every two minutes. In this test the map updating
process lasts for approximately 9.5 hours, for a total number of 328 variations. Figure
2.38(a) shows the localization error for a single run, while Figure 2.38(b) shows the
acceptance index over 328 variations. The sudden increase of the localization error
at approximately 6 hours is due to one of the robots losing its localization for a short
period. However as the robot receives an updated map it is able to recover itself.
After 328 variations the acceptance index is still comparable with the one obtained
in the previous test (see figure 2.7.1). Moreover, this acceptance index decreases to
0.97 after 9.5 hours, while in [13] the same error occurs after only 6 hours.

2.7.3 Simulation test 3
In this test the n = 3 robots perform different actions. The first robot performs
∆-mapping and sends map variations to the others team members; the second one
only receives map variations but does not perform ∆-mapping; the last one neither
perform ∆-mapping nor receives changes from the other team members. This test is
aimed at demonstrating the advantage in receiving map updates from other robots.

Figure 2.39 shows the localization error eρ(t) for the three robots during a single
run. Robot 1 remains well localized, while for robot 3 the error increases after
approximately 3800 seconds; localization error for robot 2 starts to increase after
4720 seconds. This is due to the fact that robot 2 is able to merge the map updates

65

2 – Localization

1 2 3 4 5 6 7 8 9 10
0

5

10

15

t [h]

e
ρ n
,1

(t
)

 [
m

]

(a)

0 50 100 150 200 250 300 350
0.94

0.95

0.96

0.97

0.98

0.99

1

number of map variations

a
c
c
e
p
ta

n
c
e
 i
n

d
e
x

(b)

Figure 2.38. Localization error and acceptance index for test 2.

received from robot 1, but this is still not sufficient in order to maintain a consistent
map of the environment.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

t [s]

e
iρ
(t

)
[m

]

Robot 1

Robot 2

Robot 3

Figure 2.39. Localization error for test 3.

2.7.4 Computational load
In Figure 2.40 the CPU usage and memory occupation for each robot are reported.
The algorithm runs on an Intel Core 2 Duo 2.4 Ghz with 2 GB of RAM. After
approximately one minute the simulated fork lift starts to remove and add pallets,
and the ∆-mapping process starts. The peaks in CPU usage and memory occupation

66

2 – Localization

refer to the end of each local ∆-mapping, while the peaks in CPU usage only refer
to the computation and assignment of the exploration points. It can be noticed that
after the beginning of the ∆-mapping process the memory usage steadily increases
by only 12 MB, with peaks corresponding to the last phase of each local ∆-mapping
process.

0 2 4 6 8 10 12
0

10

20

30

40

c
p

u
 u

s
a

g
e

 [
p

e
rc

e
n

ta
g
e

]

0 2 4 6 8 10 12
130

140

150

160

170

180

t [min]

m
e
m

o
ry

 o
c
c
u
p
a

ti
o
n

 [
M

b
]

Figure 2.40. CPU usage (upper plot) and memory usage (lower plot) in
a simulated experiment.

2.8 Experimental Tests
An experiment in a real environment using two Pioneer P3DX robots has been
carried out. Each robot is endowed with a SICK LMS200 laser rangefinder and
a WiFi board. A 1 × 1 m box has been placed in a 30 × 3 m corridor, and a
classical Rao-Blackwellized SLAM process is first performed to obtain the map of
the environment, as shown in Figure 2.41 (a). Then, the box is removed, R1 detects
the absence of the box while travelling in the corridor, performs a ∆-mapping process
and dispatches the map to R2, which updates its map (see Figure 2.41 (b)). Finally,
the box is placed again in the previous place and R2 detects the presence of the box
while travelling in the corridor, performs a ∆-mapping process and dispatches the
map to R1, which updates its map (see Figure 2.41 (c)). It is worth noting that
maps in Figure 2.41 (a),(b),(c) are the same for R1 and R2, even if they have not
all perceived the same variations at the same time.
This preliminary test demonstrates the effectiveness of the proposed methodology
in a simple but real scenario, since robots are able to merge the received maps from

67

2 – Localization

team members in a consistent way.

(a) Initial map (b) Dispatched map after the
first change

(c) Dispatched map after the
second change

Figure 2.41. Results for the experimental test.

68

Chapter 3

Simultaneous Localization and
Mapping

3.1 Introduction

The problem of learning maps is one of the fundamental problems in mobile robotics.
Models of the environment are needed for a series of applications such as trans-
portation, cleaning, rescue, and various other service robotic tasks. Learning maps
passively, i.e. by perceiving sensor data only, requires the solution of two tasks,
which are mapping, and localization. Mapping is the problem of integrating the
information gathered with the robot’s sensors into a given representation. It can
intuitively be described by the question “What does the world look like?” Central
aspects in mapping are the representation of the environment and the interpretation
of sensor data. Localization and mapping cannot be solved independently of each
other. Whenever robots operate in the real world, their observations and motion are
affected by noise. Building accurate spatial models under those conditions is widely
known as the Simultaneous Localization And Mapping (SLAM) problem.

SLAM problems arise when the robot does not have access to a map of the envi-
ronment or its own poses. Instead, all it is given are measurements z1:t and controls
u1:t. The term "simultaneous localization and mapping" describes the resulting prob-
lem: In SLAM, the robot acquires a map of its environment while simultaneously
localizing itself relative to this map. SLAM is significantly more difficult than all
robotics problems discussed thus far: It is more difficult than localization in that
the map is unknown and has to be estimated along the way. It is more difficult than
mapping with known poses, since the poses are unknown and have to be estimated
along the way [86].

There are two main forms of the SLAM problem, which have both been thor-
oughly addressed by the scientific community. One is known as the online SLAM

69

3 – Simultaneous Localization and Mapping

problem: It involves incrementally estimating the posterior over the current pose
along with the map:

p(xt,m|z1:t, u1:t) (3.1)

where xt is the robot pose at time t, m is the map, z1:t, u1:t are the measurememts
and the controls. This is typically the case of a robot that acquires proprioceptive
and exteroceptive measurements from the environment and, at each time step, in-
crementally includes such information in the posterior describing the robot pose and
a representation of the environment.

The second SLAM problem is called the full SLAM problem. In full SLAM, the
objective is to calculate a posterior over the entire path x1:t along with the map,
instead of just the current pose:

p(x1:t,m|z1:t, u1:t) (3.2)

Full SLAM approaches tackle the problem of retrieving the whole trajectory poste-
rior, taking into account at the same time all the available measurements; this batch
solution may occur, for instance, when the data, acquired during robot operation,
have to be processed off-line to produce a meaningful representation of the scenario.

From the algorithmic point of view, literature on SLAM can be roughly divided
in three mainstream approaches: Gaussian filter-based, Particle filters-based and
graphical approaches. The first category includes Extended Kalman Filter SLAM
(EKF-SLAM) [82], Sparse Extended Information Filter [87], delayed-state EKF-
SLAM [35].

3.1.1 Online SLAM
EKF-like techniques require the linearization of both process and measurement mod-
els; the first-order approximation, however, often comes at a price of inconsistency
and divergence [47]. Moreover, the complexity of the filter is quadratic in the num-
ber of landmarks, hence a naive implementation prevents large scale mapping [86].
Finally, the effects of partial observability in standard EKF-SLAM implementation
are not fully understood, this being witnessed by recent results [46].

The second class of approaches, namely Rao-Blackwellized particle filters [68], is
based on a factorization of the posterior and was successfully employed for building
both landmark-based and occupancy grid map representations of the environment
[86]. Also in this case, fundamental limitations are well known to the robotic com-
munity [61]: a finite number of particles may not be able to correctly represent
the trajectory posterior, and this issue becomes critical when the uncertainty in the
posterior increases. Grisetti et al. [44], proposed a solution based on particle filters
called gmapping, which reduces the number of particles needed by computing an

70

3 – Simultaneous Localization and Mapping

accurate proposal distribution taking into account not only the movement of the
robot but also the most recent observations. It has since become one of the most
widely used approaches for robotic mapping.

While EKF-SLAM and FastSLAM are the two most important solution methods,
newer alternatives, which offer much potential, have been proposed including the
use of the information-state form [34].

3.1.2 Full SLAM
The third category encompasses the techniques in which measurements acquired
during robot motion are modeled as constraints in a graphical model. The poses
assumed by the robot during its motion correspond to vertices of a directed graph,
whereas the constraints are modeled as edges in such graph. Hence SLAM can be
stated in terms of maximum likelihood and solved through nonlinear optimization
techniques [58]. Although graph-based approaches are recognized to outperform
other SLAM techniques in terms of accuracy, they present the classical drawbacks
of nonlinear optimization techniques: convergence to a global minimum of the cost
function cannot be guaranteed in general and, if the initial guess for optimization is
outside the basin of attraction of the global optimum, the iterative process is likely
to be stuck in a local minimum.

3.2 Graph-based SLAM
Pose graph optimization has recently emerged as an effective solution for SLAM. In a
pose graph, each node represents a pose assumed by a mobile robot at a certain time,
whereas an edge exists between two nodes if a relative measurement (inter-nodal
constraint) is available between the corresponding poses. Inter-nodal constraints
are usually obtained by means of proprioceptive sensors (odometry) or exteroceptive
sensor-based techniques (scan matching, etc.). Given these contraints, the objective
of pose graph optimization is to estimate the configuration of the nodes’ poses (pose
graph configuration) that maximizes the likelihood of inter-nodal measurements. A
solution to the problem of retrieving the constraints based on sensor data acquired
by the robot is often referred to as the SLAM front-end. The module in charge of
correcting the trajectory of the robot by means of graph optimization techniques in
order to obtain a consistent trajectory is often referred to as the SLAM back-end.

The advantage of graph-based SLAM approaches stems from the fact that, once
the trajectory has been estimated, it is then easy to build a map of the environment
by simply attaching laser scans to the corresponding estimated poses. The approach
was first proposed in [58]. After that, several authors put their efforts in enhancing
computational time and accuracy of algorithms for pose graph optimization. Thrun

71

3 – Simultaneous Localization and Mapping

and Montemerlo [88] enabled the estimation of large maps by reducing the problem
and then using conjugate gradient optimization. Konolige [50] stressed the prob-
lem of large-scale mapping, by exploiting the structure of the graph. Frese et al.
proposed a multilevel relaxation approach for full SLAM [41].

Olson et al. [70] introduced an efficient method to pose graph optimization by
applying stochastic gradient descent. A tree-based implementation called TORO
was proposed by Grisetti et al. [45]. In [52] the authors introduced a flexible
framework for the optimization of graph-based nonlinear error functions. Some at-
tempts to exploit the mathematical structure of the optimization problem and the
properties of the underlying graph have been proposed in [33] and [32]. Recently,
Sünderhauf et al. [84] introduced the idea of switchable constraints for robust pose
graph optimization, and proposed a strategy for discarding outliers during the opti-
mization. All the aforementioned techniques are iterative, in the sense that, at each
iteration, they solve a local convex approximation of the original problem, and use
such local solution to update the configuration. This process is then repeated until
the optimization variable converges to a local minimum of the cost function. In
particular, when a linear approximation of the residual errors in the cost function is
considered, the problem becomes an unconstrained quadratic problem and the local
correction can be obtained as solution of a system of linear equations, known as
normal equation [32]. In such a case the source of complexity stems from the need
of repeatedly solving large scale linear systems. Moreover, all mentioned techniques
require the availability of an initial guess for nonlinear optimization, which needs be
sufficiently accurate for the technique to converge to a global solution of the prob-
lem. A partial answer to this two problems (computational complexity and need of
an accurate initial guess) came from the work [20]. In [20] the authors proposed a
linear approximation for the pose graph configuration, assuming that the measure-
ment covariance matrices have a block diagonal structure. Roughly speaking, each
inter-nodal measurement describes a relative pose between two nodes in the pose
graph, and the work [20] assumes that the relative position and relative orientation
measurements (that together give the relative pose measurement) are uncorrelated.
The approach requires no initial guess and is shown to be accurate in practice.

While a large amount of work has been done on graph optimization, less work
has been devoted to the implementation of robust front-ends for the creation of the
actual graphs for real-time applications involving mobile robots using traditional
distance sensors, such as laser range finders [51, 59]. In particular the graph opti-
mizer assumes that all constraints are correct. A number of consistency checks are
thus required to minimize the number of false detections. For example in an office-
like environment there can be lack of significant features along a corridor or there
can be ambiguity due to symmetries in the environment and repetitive structures.

In this thesis work we propose two contributions: (i) we propose a linear approxi-
mation to the problem of graph optimization in the 2D case, extending the approach

72

3 – Simultaneous Localization and Mapping

previously proposed in [20], which is shown to be faster than most state-of-the-art
iterative approaches, while being as accurate in practice, to the case of full covari-
ance matrices. (ii) we propose an implementation of a laser-based front-end for the
creation of the pose graph using the Robot Operationg System (ROS) framework.
Finally, the front-end and the back-end are integrated into a full graph-SLAM so-
lution, which is validated in simulation scenarios, real scenarios and on standard
benchmarking datasets.

3.2.1 Problem Formulation
The objective of pose graph optimization is to provide an estimate of the poses
assumed by the robot, namely X = {x0, . . . , xn}, that maximizes measurements
likelihood. X is called the configuration of poses; the n + 1 poses are in the form
xi = [p>i θi]> ∈ SE(2), where pi ∈ R2 is the Cartesian position of the i-th pose, and
θi is its orientation. The available measurements usually describe the relative pose
between pairs of nodes, for instance ξi,j = pj 	 pi.

For instance a measurement ξ̄i,j between node i and node j is in the form

ξ̄i,j = ξi,j + εi,j =
[
R>i (pj − pi)
θj − θi

]
+
[
ε∆i,j
εδi,j

]
, (3.3)

where ξi,j is the true (unknown) relative pose between node i and node j, εi,j ∈
R3 is the measurement noise, Ri ∈ R2×2 is a planar rotation matrix of an angle
θi and ε∆i,j and εδi,j are the (possibly correlated) Cartesian and orientation noise.
According to related literature, we assume εi,j to be zero mean Gaussian noise,
i.e., εji ∼ N (03, Pi,j), being Pi,j a 3 by 3 covariance matrix. ξi,j describes the
relative transformation that leads pose i to overlap with pose j. We can rewrite each
measurement as ξ̄ij = [(∆̄l

i,j)> δ̌i,j]>, where ∆̄l
i,j ∈ R2 denotes the relative position

measurement, and δ̌i,j ∈ SO(2) denotes the relative orientation measurement. The
superscript l in ∆̄l

i,j remarks that the relative position vector is expressed in a local
frame. By convention the pose of the first node is assumed to be the reference frame
in which we want to estimate all the other poses, i.e., x0 = [0 0 0]>. The idea behind
the pose graph formulation is shown in Figure 3.1.

In [20] the authors showed that the relative orientation measurements can be
made linear by adding a suitable multiple of 2π, i.e, 〈θj − θi〉2π = θj − θi + 2ki,jπ,
with θi, θj ∈ R, and ki,j ∈ Z (ki,j is called regularization term), thus rewriting 3.3
as

ξ̄i,j = ξi,j + εi,j =
[
R>i (pj − pi)
〈θj − θi〉2π

]
+
[
ε∆i,j
εδi,j

]
, (3.4)

where 〈·〉2π is a modulo-(2π) operator that forces angular measurements in the man-
ifold SO(2),

73

3 – Simultaneous Localization and Mapping

Figure 3.1. The pose graph.

Now we assume that the regularization terms have been correctly computed,
according to [20], and we call δ̄i,j the regularized measurements, i.e., we define
δ̄i,j = δ̌i,j − 2ki,jπ. Then the measurement model becomes:

[
∆̄l
i,j

δ̄i,j

]
=
[
R>i (pj − pi)
θj − θi

]
+
[
ε∆i,j
εδi,j

]
. (3.5)

It is convenient to adopt graph formalism to model the problem: each pose can be
associated to a node of a directed graph G(V , E) (often referred to as pose graph),
where V = {v0, . . . , vn} is the set of nodes and E (graph edges) is the set containing
the unordered node pairs (i, j) such that a relative pose measurement exists between
i and j. By convention, if an edge is directed from node i to node j, the corresponding
relative measurement is expressed in the reference frame of node i. We denote with
m the number of available measurements, i.e., |E| = m.

It is well known in literature that the maximum likelihood estimate of network
configuration X attains the minimum of the following cost function (see [20] and
the references therein):

f(X) =
∑

(i,j)∈E

[
R>i (pj−pi)−∆̄l

i,j

θj−θi−δ̄i,j

]>
Ωi,j

[
R>i (pj−pi)−∆̄l

i,j

θj−θi−δ̄i,j

]

where Ωi,j = P−1
i,j is the information matrix of measurement (i, j). Therefore, the

pose-based SLAM problem reduces to find a global minimum of the weighted sum
of the residual errors squared, i.e., X∗ = arg min f(X).

74

3 – Simultaneous Localization and Mapping

3.2.2 A Linear Approximation
In this section we present the first contribution to the problem of graph-based SLAM,
which has been proposed in [21]: a linear approximation for problem (3.6) that
relaxes the assumption of previous work [20]. In [20] it was assumed that Pi,j (and
then Ωi,j) has the following structure:

Pi,j =
[
P∆
i,j 02×1

0>2×1 P δ
i,j

]
. (3.6)

Roughly speaking, this essentially requires that the relative position and relative
orientation measurements (that together give the relative pose measurement) are
uncorrelated. In order to present the subsequent derivation we need to rewrite
the cost function (3.6) in a more compact form. For this purpose we define the
unknown nodes’ position p = [p>1 . . . p>n]> and the unknown nodes’ orientation θ =
[θ1 . . . θn]>; therefore the to-be-computed network configuration may be written
as x = [p> θ>]> (note that we have excluded from x the pose of the first node
that was assumed to be known). Then, we number the available measurements
from 1 to m and we stack the relative position measurements in the vector ∆̄l =
[(∆̄l

1)> (∆̄l
2)> . . . (∆̄l

m)>]>, and the relative orientation measurements in the vector
δ̄ = [δ̄1 δ̄2 . . . δ̄m]>. Accordingly, we reorganize the measurement information
matrices Ωi,j, (i, j) ∈ E , into a large matrix

Ω .=
[

Ω∆ Ω∆δ
Ωδ∆ Ωδ

]
, (3.7)

such that Ω is the information matrix of the vector of measurements [(∆̄l)> δ̄>]>.
Then, according to [20], the cost (3.6) can be written as:

f(x)=
[
A>2 p−R∆̄l

A>θ−δ̄

]>[
RΩ∆R

> RΩ∆δ
Ωδ∆R

> Ωδ

][
A>2 p−R∆̄l

A>θ−δ̄

]
(3.8)

where:

• A is the reduced incidence matrix, obtained from the incidence matrix A (see
“Preliminary and Notation” Section), by deleting the row corresponding to
node v0;

• A2 = A⊗ I2 is an expanded version of A, see [17, 20];

• R = R(θ) ∈ R2m,2m is a block diagonal matrix, whose nonzero entries are in
positions (2k − 1,2k − 1), (2k − 1,2k), (2k,2k − 1), (2k,2k), k = 1, . . . ,m, such
that, if the k-th measurement correspond to the relative pose between i and
j, then the k-th diagonal block of R is a planar rotation matrix of an angle θi.

75

3 – Simultaneous Localization and Mapping

The residual errors in the cost function (3.8) are described by the following
vector, whose entries represent the mismatch between the relative poses of a given
configuration x and the actual relative measurements.

r(x) .=
[
A>2 p−R∆̄l

A>θ−δ̄

]
(3.9)

Before presenting the proposed approach we anticipate the main intuition behind
the algorithm. The cost function is quite close to a quadratic cost function, since the
last part of the residual errors in (3.9) is linear, and the overall cost function (3.8)
becomes quadratic as soon as the rotation matrix R is known. Therefore, the basic
idea is (i) to obtain an estimate of nodes orientations exploiting the linear part of the
residual errors in (3.9), (ii) to use the estimated orientation to compute an estimate
of R, and (iii) to solve the overall problem in the optimization variable x. This basic
intuition is the same motivating [20], although here the derivation is made more
complex by the presence of the correlation between position measurements ∆̄l and
orientation measurements δ̄.

We are now ready to present the proposed linear approximation for pose graph
optimization, whose properties will be analyzed in Theorem 1.

The effectiveness of the linear approximation computed using Algorithm (5) is
assessed by the following result.

Theorem 1 Given the inputs {∆̄l, δ̄,Ω, A,A2}, and assuming the the information
matrix Ω to be positive-definite, the following statements hold for the quantities
computed in Algorithm 5:

1. Ωz,Ωy,Ωx are full rank;

2. The vector θ̂ in ẑ .= [(∆̂l)> θ̂]>, with desired probability α, is contained within
an ellipsoid centered on the true nodes orientation θ and having shape matrix
Pα = χ2

n,α

(
A
[
Ωδ + Ωδ∆Ω−1

∆ Ω∆δ
]−1

A>
)−1

, where χ2
n,α is the quantile of the

χ2 distribution with n degrees of freedom and upper tail probability equal to α;

3. The combination of the three phases is equivalent to applying a Gauss-Newton
step to the cost function (3.6), starting from the initial guess θ̂.

The first claim assures the uniqueness of the outcome of the proposed algorithm
(no indetermination in the solution of the linear systems). The second claim states
that, with arbitrary high probability α, we can bound the Mahalanobis distance
between the estimate θ̂ and the true (unknown) nodes’ orientation. Finally, the last
claim assures that the proposed approximation improves over the initial guess x̂,
applying a Gauss-Newton step.

76

3 – Simultaneous Localization and Mapping

1 A linear approximation for the maximum likelihood pose-graph configuration
can be computed in three phases, given the relative measurements ∆̄l and δ̄,
the corresponding information matrix Ω, and the graph incidence matrices A
and A2:

1. Solve the following linear system in the unknown z .= [(∆l)> θ]>:

Ωz z = bz (3.10)

with:

Z =
[

I2m 02m,n
0m,2m A>

]
, and, bz = Z>Ω

[
(∆̄l)> δ̄>

]>
Ωz = Z>ΩZ

(3.11)

Call the solution of the linear system ẑ
.= [(∆̂l)> θ̂]>.

2. Transform in the global frame the relative position measurements in ẑ,
obtaining:

ŷ = T (ẑ) .=
[
R̂ 02m×n
0>2m×n In

] [
∆̂l

θ̂

]
=
[
τ1(z)
τ2(z)

]
z=ẑ

(3.12)

with R̂ = R(θ̂); compute the corresponding information matrix (preserving
correlation):

Ωy = (T̂Ω−1
z T̂>)−1 = (T̂−1)>Ωz(T̂−1), (3.13)

where T̂ is the Jacobian of the transformation T (·):

T̂
.=
[

∂τ1
∂∆l

∂τ1
∂θ

∂τ2
∂∆l

∂τ2
∂θ

]
=
[

R̂ J
0n×2m In

]
. (3.14)

3. Solve the following linear system in the unknown x = [p> θ>]>, given ŷ, see
(3.12), and Ωy, see (3.13):

Ωx x = bx (3.15)

with:

B =
[

A>2 02m×n
0n×2n In

]
, and, bx = B>Ωyŷ

Ωx = B>ΩyB
(3.16)

The solution of the linear system (3.15) is the proposed linear approximation
of the pose graph configuration: x∗ = [(p∗)> (θ∗)>]>. �

77

3 – Simultaneous Localization and Mapping

3.2.3 Experimental results
In this section we compare our methodology with several state-of-the-art optimiza-
tion approaches, namely Gauss-Newton [58], TORO [45], g2o [52], and the the linear
approximation in [20]. The experimental tests are conducted on publicly available
datasets: Freiburg Indoor Building 079 (FR079), MIT CSAIL Building (CSAIL),
Intel Research Lab (INTEL), Manhattan World M3500 (M3500), Manhattan World
M10000 (M10000). The number of nodes and loop closing constraints for each
dataset is shown in Table 3.1.

Table 3.1. Number of nodes and edges for each dataset.
Number of nodes (n+ 1) Number of edges (m)

FR079 989 1217
CSAIL 1045 1172
INTEL 1228 1505
M3500 3500 5453
M10000 10000 64311

The relative pose measurements of the datasets {FR079, CSAIL, M3500, M10000}
are available online [55], while the measurements of the dataset INTEL were obtained
through a scan matching procedure, from the raw sensor data, available at [55]. The
INTEL dataset is the same studied in the work [20]. The relations available at [55]
only describe the relative pose measurements, while we are interested to test the
behavior of the approaches for different measurement covariance matrices. In par-
ticular, for each dataset we consider three variants, each one corresponding to a
different choice of the covariance matrix. The first variant (e.g., FR079, I) uses
identity matrices as measurement covariances, i.e., the noise of the relative pose
measurement between node i and node j is εji ∼ N (03, I3). The second variant (e.g.,
FR079, Ps) uses a structured covariance matrix, as in eq. (3.6). The third variant
(e.g., FR079, Pf) uses full covariance matrices obtained as follows.

Accuracy. We first show qualitative results for the proposed approach on each
dataset. The estimated trajectory for each dataset is reported in Figure 3.2. For
a quantitative evaluation of the accuracy of the approaches we report the optimal
value of the cost function (3.6) attained by each of the compared techniques.

we use the SLAM benchmark metrics proposed in [53]. Such metrics provide
a tool for comparing SLAM approaches that use different estimation techniques or
different sensor modalities in terms of accuracy. For each dataset we consider three
scenarios, in which different measurements covariance matrices are considered: in
the first case the covariance matrix is chosen to be the identity matrix (Pij = I3); in

78

3 – Simultaneous Localization and Mapping

the second scenario we use a structured covariance matrix; in the third scenario the
covariance matrix is full. Our implementation of the algorithm is written in C/C++
and uses the CSparse library [31]; the tests are conducted on a PC equipped with
an Intel Core i7 3.4 GHZ and 8 GB of RAM.

Figure 3.2. Estimated trajectory for each of the considered datasets: fr079 (a),
csail (b), intel (c), M3500 (d), M10000 (e)

We now compare our approach, both in the case of structured covariance matrix
and full covariance matrix, with the other optimization techniques. Table 3.2 shows
the results in terms of the of the constraint satisfaction metrics while Table 3.3
reports the results in terms of computational time.

From the results, we can see that the Gauss-Newton approach is accurate enough
to be used as a reference value but slow. g2o is as accurate as Gauss-Newton on

79

3 – Simultaneous Localization and Mapping

Table 3.2. Cost function value attained by the compared approaches
Linear Approximation Linear Approximation GAUSS

TORO g2o
(structured covariance) (unstructured covariance) NEWTON

I 7.20E-02 7.20E-02 7.20E-02 8.60E-02 7.19E-02

FR079 Ps 3.94E+01 3.94E+01 3.88E+01 4.74E+02 3.89E+01

Pf 2.76E+02 2.90E+02 1.47E+02 8.99E+03 1.47E+02

I 1.07E-01 1.07E-01 1.07E-01 1.18E-01 1.07E-01

CSAIL Ps 4.06E+01 4.06E+01 4.06E+01 2.41E+03 4.06E+01

Pf 2.45E+02 2.33E+02 1.57E+02 4.57E+04 1.57E+02

I 8.07E-01 8.07E-01 7.89E-01 1.17 7.89E-01

INTEL Ps 1.45E+04 1.45E+04 2.15E+02 1.03E+05 2.15E+02

Pf 1.51E+06 1.07E+05 3.95E+02 2.53E+07 1.08E+03

I 3.03 3.03 3.02 5.42 3.02

M3500 Ps 3.73E+03 3.73E+03 3.55E+03 2.18E+06 3.55E+03

Pf 1.15E+04 6.81E+03 2.09E+03 5.78E+08 2.09E+03

I 3.03E+02 3.03E+02 3.03E+02 3.29E+02 3.03E+02

M10000 Ps 1.99E+05 1.99E+05 1.98E+05 7.65E+06 2.28E+05

Pf 9.00E+05 9.61E+05 6.79E+05 2.07E+08 1.90E+07

most scenarios, with only slight differences, while being much faster. TORO is
both less accurate and slower compared to the other approaches. Our three-phase
approaches are shown to be faster than all the other optimization techniques, while
approaching the reference value provided by Gauss-Newton. Only in one scenario
(M3500Pf) the accuracy is lower than Gauss-Newton and g2o. While the technique
proposed in this work is relatively more accurate than the approach with structured
covariance matrices, this comes at the cost of a slightly higher computation time. As
only in the third scenario for each dataset we are using full covariance measurement
matrices, we do not see any difference between our old approach and the new one on
the first two scenarios in terms of accuracy. We should also remark that while our
approach is based on a linear approximation, as opposed to the other approaches,
the approximation is always more accurate than TORO in terms of the constraint
satisfaction metric, and in one case more accurate than g2o, which is the state of
the art. g2o is more accurate then our approach in term of cost-function evaluation
in the other cases, but slower than linear optimization approaches.

80

3 – Simultaneous Localization and Mapping

Table 3.3. Average computation time (in seconds) for the compared approaches.
Linear Approximation Linear Approximation GAUSS

TORO g2o
(structured covariance) (unstructured covariance) NEWTON

I 5.80E-03 8.15E-03 1.99E-01 3.19E-01 1.05E-02

FR079 Ps 5.76E-03 7.87E-03 2.00E-01 3.39E-01 1.07E-02

Pf 5.81E-03 8.16E-03 2.00E-01 3.04E-01 1.06E-02

I 5.72E-03 7.55E-03 2.65E-01 2.89E-01 1.01E-02

CSAIL Ps 5.53E-03 7.46E-03 2.01E-01 2.90E-01 1.01E-02

Pf 5.59E-03 7.50E-03 2.66E-01 2.88E-01 1.03E-02

I 7.10E-03 9.49E-03 5.87E-01 4.15E-01 1.32E-02

INTEL Ps 7.01E-03 9.49E-03 4.90E-01 3.89E-01 1.31E-02

Pf 6.98E-03 9.47E-03 5.91E-01 4.01E-01 1.31E-02

I 3.26E-02 4.04E-02 5.81 1.57 7.07E-02

M3500 Ps 3.25E-02 4.03E-02 4.84 1.61 7.06E-02

Pf 3.26E-02 4.05E-02 5.82 1.61 7.14E-02

I 3.55E-01 4.86E-01 2.21E+02 1.73E+01 6.93E-01

M10000 Ps 3.57E-01 4.89E-01 2.21E+02 1.83E+01 6.96E-01

Pf 3.55E-01 4.86E-01 4.11E+02 1.77E+01 6.91E-01

3.3 Robust front-end
Once we have a defined the problem of by means of graph optimization, we need a
way to construct the graph itself, by estimating the nodes which represent the robot
trajectory and the constraints relative to the edges. A solution to the problem of
retrieving the constraints based on sensor data acquired by the robot is often referred
to as the SLAM front-end.

The front-end computes the measurements in 3.5, providing an initial estimate
of successive robot poses and constraints between them. The front-end is also re-
sponsible for recognizing previously observed places (loop closings) and generating
constraints. The graph is then sent to the back-end for optimization. In Section 3.3.1
we describe the main algorithm, while in 3.3.2 we illustrate loop closing constraints
creation.

3.3.1 Main algorithm
Each node of the graph represents a pose assumed by the robot at a certain time
instant. To each node a corresponding laser scan is associated. A list containing the
nodes is created, representing the robot trajectory.

81

3 – Simultaneous Localization and Mapping

Odometric edges can be built starting from the results of scan matching, from
wheel odometry only, from a combination of wheel odometry and scan matching (in
this case the translation estimation is given by wheel odometry, while the angular
rotation estimation is given by scan matching), or a combination of scan matching
and IMU (used for rotation estimation only as well) (Algorithm 5 lines 1-2). The
best way to retieve odometric edges depends on the sensors and the nature of the
environment (i.e., in a corridor-like environment the translation estimated by wheel
odometry could be more accurate than the one estimated by scan matching).

For scan matching we use the Canonical Scan Matcher (CSM) algorithm de-
scribed in [23]. The algorithm implements iterative closest point (ICP) procedure
using a custom point-to-line distance metric, in order to find the relative roto-
translation between two laser scans. ICP can benefit from an initial guess, if present.

The pseudo-code describing this module is shown in Algorithm 5. In our imple-
mentation the initial guess for scan matching can be omitted, or given by odometric
information. Odometric information can be provided by wheel odometry, if present,
or by an inertial measurement unit (IMU) if present.

A new graph node is created and added to the list every nodeStep steps (line 4)
and only if the robot has moved a minimum linear or angular distance since the last
node was added (line 7).

For each odometric constraint the covariance matrix is taken from the one esti-
mated by CSM if scan matching is used, otherwise it is set to default values.

We then check for possible loop closings between the current node and all pre-
vious nodes (line 11). Loops detection is described in the next Section. If at least
one loop is found (line 12), we save the previous graph (nodes and constraints) (line
13) and add the new loop constraints to the graph (line 14). We then optimize the
graph using the optimizer described in Section 3.4 (line 15). Finally, we check the
consistency of the optimized graph (see Section 3.3.2) and, in case the consistency
is not validated by the checks, we remove the loops found from the graph and we
restore the previous graph (lines 16-17).

3.3.2 Loop closing constraints
At each step the algorithm also checks for possible loop closings using the same scan
matching algorithm between the current pose of the robot and all the candidates
taken from the past poses. The pseudo-code describing this module is shown in
Algorithm 6.

Two kinds of loop closing constraints are implemented. If the relative rotation
between the two candidate poses is larger that a certain threshold the constraint
is treated as orientation-only constraint (lines 11-12). This is due to the fact that,
since the laser scans do not have a large overlap, we cannot trust the translation
estimated from ICP. This is also clear from the estimated covariance matrix given

82

3 – Simultaneous Localization and Mapping

Data: zk, zk−1, ξ̃Odom, ξ̃IMU , pk−1, Graph
Result: pk, Graph

1 ξ̃scan ← performICP(zk−1, zk, ξ̃Odom);
2 ξ̃corr ← sensorFusion(ξ̃Odom, ξ̃IMU , ξ̃scan);
3 pk ← pk−1 ⊕ ξ̃corr;
4 if k mod nodeStep = 0 then
5 n∗ ← Graph.getLastNode();
6 ξ ← n∗.p	 pk;
7 if ‖ξ‖ > ξth then
8 n← initNewNode(pk, zk);
9 Graph.addNode(n);

10 Graph.addOdometricContraint(n∗, n, ξ);
11 loops_list ← Graph.searchLoops(n);
12 if loops_list.size() > 0 then
13 Graph_old ← Graph;
14 Graph.addLoops(loops_list);
15 Graph.optimize();
16 if not Graph.checkEdges() or not Graph.checkNodes() then
17 Graph ← Graph_old;
18 end
19 end
20 end
21 end

Algorithm 5: Graph creation.

by CSM. Another case is when the two poses have time-stamps which are very close
together (lines 11-12). For example, in the case of a robot travelling along a corridor,
the estimated translation may be unreliable. For orientation-only constraints we set
the rotation part of the information matrix to zero. In all other cases, the constraint
is treated as a full-pose constraint (i.e., the full covariance matrix is used).

Since using simple scan matching between two laser scans leads to several wrong
matches, some rejection procedures must be implemented in order to discard bad
matches.

Initial guess distance check

At first, a check is implemented before scan matching. If the euclidean distance
between the current pose and the candidate pose is larger than half the maximum
range of the laser scanner, the loop is discarded, since this means that the two poses

83

3 – Simultaneous Localization and Mapping

are probably far away from each other (line 3).

Visibility check

A visibility check ensures that no large obstacle is present between the current pose
and the candidate one using ray tracing. This check establishes if a large fraction
of the laser rays, which lie along the edge connecting the two poses, are crossed by
some obstacle. In this case the loop is discarded (line 6). Experimental tests showed
that the visibility check is useful only in some particular scenarios.

After this checks scan matching is performed and a set of candidate loop closings
is obtained. We then implement other checks in order to further discard possible
wrong matches.

ICP error check

Another check is done on the ICP error given by the scan matcher. If the ICP error
is too large or too small, the loop constraint is discarded, since it is not considered
reliable (line 14).

Cartesian and angular error check

If the difference between the predicted translation and the one returned by the scan
matcher is over a certain threshold, the candidate is discarded. The same check
is done between the predicted and the estimated rotation (line 17). The threshold
increases based on how far the robot has been travelling; in this way we account for
odometric drift.

3.4 Graph optimization
The pose graph, which is the output of the front-end, is then fed to a graph op-
timization algorithm to create a globally consistent trajectory. We optimize the
pose graph using the LAGO linear pose-graph optimizer presented in the previous
Section.

Anyway, any graph optimization algorithm can be used, as long as it can read
a pose-graph written in the same format of TORO [45] or g2o [52]. In case g2o is
used, the Vertigo library [83] for robust optimization using switchable constraints is
supported. In this case any of the loop closing constraint can be discarded.

Consistency checks are also performed after the optimization phase (see Algo-
rithm 5, line 16). If any of the tests fails, the loops added in the last step are
removed and the previous trajectory is restored (Algorithm 5, line 17).

84

3 – Simultaneous Localization and Mapping

Data: n, Graph
Result: loop_list

1 foreach ni in Graph do
2 ξ̃i = ni.p	 n.p;
3 if ‖ξ̃i.ρ‖ > ∆L

2 then
4 continue;
5 end
6 if not visibilityCheck(n, ni) then
7 continue;
8 end
9 ξi ← performICP(ni.z, n.z, ξ̃i);

10 ξ.type← full_contraint;
11 if |ξi.θ| > θth or ξi.∆t < ∆tth then
12 ξ.type← orientation_only;
13 end
14 if ξi.ICP_err /∈ [εminICP ; εmaxICP] then
15 continue;
16 end
17 if ‖ξi.ρ− ξ̃i.ρ‖ > τρ or

∣∣∣ξi.θ − ξ̃i.θ∣∣∣ > τθ then
18 continue;
19 end
20 loop_list.addContraint(n, ni, ξi);
21 end

Algorithm 6: Loop closing constraints creation.

Trajectory consistency check

After optimization we check for anomalous displacements in the trajectory, which
can result from errors in the optimization process. For each two successive poses
we check for the presence of large displacements on the y axis (since we assume a
nonholonomic robot).

Residual errors check

We also check the fitting errors after the optimization, by comparing the distance of
the nodes before and after the optimization. If any error is above a certain threshold
the test is failed. In particular, the residues are too large if the relation

max
i
‖ξi 	 ξ∗i ‖ < ξres, (3.17)

does not hold true, where ξi and ξ∗i are the edges before and after the optimization.

85

3 – Simultaneous Localization and Mapping

3.5 Map creation

In our approach we keep the mapping process separated from the actual SLAM
process. Since graph creation and optimization phases are fast, due to the simple
scan-matching process and the fast backed, computation time can be considered
negligible even for medium and large-scale environments. The critical part thus
becomes the creation of the actual map. By keeping the mapping process separated
we ensure scalability.

Each time the poses from the trajectory are recalculated by the graph optimizer,
we feed the new poses, along with the corresponding laser scans attached to a second
process, which is in charge of reconstructing the actual grid-map by raytracing the
localized laser scans.

The trajectory sent to the mapping node can be sub-sampled in order to lower
data transfer between processes and computational time.

3.6 ROS Implementation

The software has been developed using the Robot Operating System (ROS) [6] in
C++ under Linux. The Eigen3 library [2] was used for matrix operations and the
CSM library was used for scan matching, as stated in Section 3.3.1.

The functional architecture of the approach is shown in Figure 3.3. The graph_slam
node subscribes to laser scan, odometry and IMU data and it is in charge of gener-
ating graph nodes and edges. To each pose the corresponding laser scan is attached.
The csm package is used for scan matching. We call the association of robot pose
and corresponding laser scan localized scan. The graph is then sent to an exter-
nal program (the optimizer), which returns the optimized poses to the graph_slam
node. These poses, along with the corresponding laser scans (localized scans), are
finally sent to the grid_mapper node, which is in charge of generating the map. The
occupancy_grid_utils stack is used for raytracing the grid-map starting from the list
of localized scans.

In our implementation the input graph containing the trajectory and the loop
closing constraints is written to a text file, than the optimization algorithm is run
externally as a program, giving the text file as input. Finally, the results of the
external algorithm is written to a new text file, which is read by our package and
used to update the previous robot trajectory with the optimized one. While seri-
alization of the graph data to a file and the execution of an external program for
optimization leads to a big drop in computational speed, this implementation makes
it straightforward to use any custom optimizer with no changes in the source code.

The full source code has been made available online.

86

3 – Simultaneous Localization and Mapping

Graph
Creator

graph_slam

Raw
data

Graph

Node posesLocalized
scans

LAGO
Optimizer

Map
Creator

grid_mapper

Figure 3.3. Architecture of the system

3.7 Experimental Analysis
In order to evaluate the proposed mapping algorithm, experimental tests have been
carried out in simulation scenarios as well as real tests in medium and large-scale
areas. Our system is composed by two robotic platforms: a Pioneer P3DX robot
equipped with a laser range finder (SICK LMS-200), and a Corobot 4WD robot
equipped with a Hokuyo URG-04LX-UG01 laser scanner and a XSens MTI IMU.
In our experiments we set the different parameters of the algorithm to the values
shown in Table 3.4, which have been found experimentally.

Performances on standard datasets are also provided.

Table 3.4. Parameters used in our experiments
Parameter Value
nodeStep 10

ξth 0.01 m - 0.01 rad
∆L 10 m
θth 0.5 rad

∆tth 1 sec
εminICP 0.1
εmaxICP 0.3
τρ 2 m
τθ 0.05 rad
ξres 0.15 m - 0.03 rad

87

3 – Simultaneous Localization and Mapping

Figure 3.4. Resulting map for simulated environment.

3.7.1 Simulated environment
We first tested our algorithm in a large-scale simulated environment. We use the
Stage simulator available in ROS, and the scenario represents the Willow Garage
offices. Dimensions are 54x58.7m. The simulated robot was driven using manual
tele-operation. Only simulated wheel odometry and laser range finder were used.

In Figure 3.4 we show the resulting map using our algorithm. Some inconsisten-
cies (duplicate walls) can be seen in the resulting map. This is due to the fact that
the accumulated odometric error was too large at the end of the run (after about
20 minutes), and thus the last loop closings were discarded.

3.7.2 Office-like environment
We show in Figure 3.5 the results of our approach in a real office-like environment.
The map is of dimensions 37.5x17m and represents a corridor, a cluttered office and
a hall. A Pioneer P3DX robot with wheel odometry and a laser range finder were
used.

The resulting map has been succesfully used for localization and path-planning.

3.7.3 Data-center
We also show the results of our algorithm in two real large-scale indoor environments.
The first scenario is a data-center room of dimensions 25x40m, composed by free
corridors and rows of racks. In this experiment a Corobot rover was used. Wheel

88

3 – Simultaneous Localization and Mapping

Figure 3.5. Resulting map for office-like environment.

(a) (b)

Figure 3.6. Mapping results for the data-center room. (a) Resulting map using
our approach; (b) Robot trajectory and loop closings. Red and blue arrows repre-
sent the trajectory; yellow lines represent orientation-only constraints; green lines
represent full-pose constraints.

odometry was used for translation estimation, while an IMU was used for orientation
estimation. The environment for this particular experiment was challenging for
three reasons. Most of the server racks were covered by metal grills, thus making
the scan-matching part prone to errors, as the laser rays were sometimes passing
through the grills introducing big measurement errors. Moreover the symmetry of
the environment posed a challenge for loop closing detection. Finally, the presence
of slippery grills on the floor introduced large odometric errors. The result is shown
in Figure 3.6.

89

3 – Simultaneous Localization and Mapping

Figure 3.7. Mapping results for the data-center corridors.

The second scenario is composed by the corridors of the data-center leading to
the various rooms. In this case the challenges are given by the lack of reference
points along the corridors and by the lack of loops. The consistency of the map is
based mostly on the effect of orientation-only constraints. Results are reported in
Figure 3.7.

3.7.4 Benchmarking datasets
We finally report the values of the SLAM benchmark metrics proposed in [54]. Such
metrics provide a tool for comparing the SLAM approaches in terms of accuracy.
The metric uses only relative relations between poses and does not rely on a global
reference frame.

In Table 3.5 we show the average values of the constraint satisfaction metrics for
different standard datasets.

We also compared the performances in terms of memory footprint of our imple-
mentation with respect to the gmapping implementation available in ROS. Memory
usage for gmapping remains stationary in a certain range, depending on map dimen-
sions and number of particles. In our approach memory footprint of the grid_mapper
node remains low, while memory usage for the graph_slam node increases based on
the number of constraints, while never reaching the levels of gmapping.

Table 3.5. Benchmark metrics: translation error (ηc) and angular error (ηa).
Dataset ηc[m] ηa[rad]
INTEL 0.055 0.037
FR 79 0.065 0.032

MIT-CSAIL 0.070 0.053

90

Chapter 4

Human-robot interaction

4.1 Vision-based people tracking from a moving
camera

4.1.1 Motivation
In the context of our work in collaboration with Thales Alenia Space we were inter-
ested in a scenario where an astronaut extravehicular team has to be accompanied by
one or more semi-autonomous robots. In order to provide good awareness in human-
robot interaction robust computer vision methods will be required, as for example
people tracking and posture recognition. These methods should allow interaction in
a wider range of environments and applications.

The starting point for such interaction is the capability for the robot to detect
and track the position of the astronauts, in order to be able to follow them during
operation, as well as to monitor their condition (e.g., the robots could be able to
detect if an astronaut has fallen down). The following assumptions had to be taken
into account during the design of the tracking system:

• The appearance of the targets (astronauts) is known, but variable in pose,
dimensions, orientation, etc.

• The algorithm shall be able to correctly localize and follow an astronaut in a
range usually between 1 m and 10 m

• The astronaut may only move forward, pointing his face towards the direction
of motion

• The astronaut speed is supposed to be less than 1 m/s when the relative
distance between the astronauts crew and the robot is 1 m

91

4 – Human-robot interaction

• The astronaut is not supposed to wear any visual marker, although, if they
are already included in the mission equipment, they can support the tracking
service

• The astronaut can be standing or can lie on the floor, but a given percentage of
the astronaut body needs to be visible at any time (not occluded by obstacles)

4.1.2 Related work

The most recent years have shown a growing interest in human robot interaction
for space robotics applications ([24], [37]). While many of these approaches rely on
invasive techniques that require some modification of the environment (for example
the need for the astronaut to wear particular markers), we are more interested in
non-invasive approaches.

Vision-based people tracking approaches have several advantages as they are
non intrusive, more natural and offer higher level information as compared to other
sensors. However, there are some drawbacks that should be taken into account.
Vision sensors may not be under consistent lighting or environmental conditions
and items in the background or distinct features of the users may make recognition
more difficult.

Different vision sensors have been used and different approaches have been pro-
posed for each kind of sensor. Time-of-flight cameras can generate a depth map of
what is being seen through the camera at a short range, and use this data to approx-
imate a 3D representation of what is being seen; stereo camera systems can extract
a 3D representation of the environment by comparing the output of the cameras;
monocular cameras provide less information as opposed to the other sensors but
allow a greater possibility of accessibility to a wider audience.

In particular, astronaut detection and tracking requires a robust people detector.
Based on the kind of vision sensor that will be used different approaches have been
explored. Different algorithms for people detection using monocular cameras exist,
such as Histograms of Oriented Gradients [28], which is based on an analysis of
gradients in the image and classification using linear support vector machines, or
part detectors which try to detect different body parts of the person ([36], [25]).
While gradient based detectors are easier to manage and can be easily optimized,
multi-part detectors have the ability to detect objects even in presence of partial
occlusions; on the other hand they require an accurate construction of models for
the different body parts.

For stereo and time-of-flight cameras different approaches have been proposed
([67], [69], [10]). Sensor fusion has also been used to improve the robustness of
people detection algorithms [80].

92

4 – Human-robot interaction

4.1.3 Monocular people detection and tracking
There are in general two different approaches in people detection: probability based
detection and sliding window techniques. In the first, mostly part detectors are fused
together and a model of how these parts can be configured to one another leads to
a probability whether a human is present or not. This is especially useful for scenes
where pedestrians are highly occluded. For the latter, a fixed-size detection window
is moved over an image and at each position a classifier decides, whether an object
is present or not. To detect different sizes, the image is step by step resized and
the same detection method is used. In this work, the focus lies on sliding window
techniques. A very good overview of different methods and detection results can be
found in [91].

Pedestrian detection approaches can be decomposed into the generation of initial
object hypotheses (also called ROI selection), verification (classification), and tem-
poral integration (tracking). While the latter two require models of the pedestrian
class, e.g., in terms of geometry, appearance, or dynamics, the initial generation of
regions of interest is usually based on more general low-level features or prior scene
knowledge.

ROI selection

The simplest technique to obtain initial object location hypotheses is the sliding win-
dow technique, where detector windows at various scales and locations are shifted
over the image. The computational costs are often too high to allow for real-time
processing. Significant speedups can be obtained by either coupling the sliding win-
dow approach with a classifier cascade of increasing complexity (rejection cascade)
or by restricting the search space based on known camera geometry and prior infor-
mation about the target object class. These include application-specific constraints
such as the flat-world assumption, ground-plane-based objects and common geom-
etry of pedestrians, e.g., object height or aspect ratio. In case of a moving camera
in a real-world environment, varying pitch can be handled by relaxing the scene
constraints or by estimating the 3D camera geometry online.

Classification

After a set of initial object hypotheses has been acquired, further verification (classi-
fication) involves pedestrian appearance models, using various spatial and temporal
cues. These models can be divided into generative or discriminative. In both ap-
proaches a given image (or a subregion thereof) is to be assigned to either the
pedestrian or non-pedestrian class, depending on the corresponding class posterior
probabilities.

93

4 – Human-robot interaction

As for the classifier, two different approaches are common. Using Support Vec-
tor Machines (SVN), in the linear variant or with a kernel function, or AdaBoost.
The latter is especially used to form rejection cascades as mentioned before. The
advantage of support vector machines is, that the training is very easy and after
training a linear support vector machine is easy to compute and thus faster.

Generative models try to create a full probabilistic model of all the variables and
are usually divided into shape models and combined shape and texture models.

On the other hand, discriminative models approximate the Bayesian maximum-
a-posteriori decision by learning the parameters of a discriminant function (decision
boundary) between the pedestrian and non-pedestrian classes from training exam-
ples.

Another distinction is between single-part algorithms and part-based models.
Single-part algorithms commonly use a sliding window technique. Sliding window
techniques scan the image at all relevant positions and scales to detect a person.
Consequently there are two major components: the feature component encodes the
visual appearance of the person, whereas the classifier determines for each sliding
window independently whether it contains the person or not. As typically many
positions and scales are scanned these techniques are inherently computationally
expensive. Fortunately, due to recent advances in GPUs, real-time people detection
is possible (see [19],[75]).

Part-based models are composed by two major components. The first uses low-
level features or classifiers to model individual parts or limbs of a person. The
second component models the topology of the human body to enable the accumu-
lation of part evidence. Part-based people models can outperform sliding-window
based methods (such as HOG) in the presence of partial occlusion and significant
articulations [80]. It should be noted however, that part-based models tend to re-
quire a higher resolution of the person in the image than most sliding-window based
approaches.

Tracking

One line of research has formulated tracking as frame-by-frame association of de-
tections based on geometry and dynamics without particular pedestrian appearance
models. Other approaches utilize pedestrian appearance models coupled with ge-
ometry and dynamics.

Some approaches integrate detection and tracking in a Bayesian framework, com-
bining appearance models with an observation density, dynamics, and probabilistic
inference of the posterior state density. In the case of a single object, Bayesian filters
are commonly used, such as Kalman filter and particle filters.

94

4 – Human-robot interaction

4.1.4 Stereo-based people detection and tracking

Stereo-based approaches have several advantages over monocular ones. On one hand,
the information regarding disparities is more invariable to illumination changes than
that provided by a single camera. Moreover, the ability to measure distances from
the camera could be of great assistance for both detection and tracking ([30], [67],
[69]).

4.2 Adaptive people and object tracking
We present in this Section a system for visual object tracking in 2D images for
mobile robotic systems. The proposed algorithm is able to track people as well as
objects and to adapt to substantial changes in object appearence during tracking.
The approach has been presented in [78].

The algorithm is composed by two main parts: the detection part is based on
Histogram of Oriented Gradient (HOG) descriptors [29] and support vector machines
(SVM), while the tracking part is carried out by an adaptive particle filter. We now
describe the main idea behind HOG descriptors and the people detection approach
proposed in [29], which is at the basis of our approach.

4.2.1 Histograms of oriented gradients

The people detection approach proposed by Dalal and Triggs and based on Histogram
of oriented gradients (HOG) features is widespread in literature and the detector
shows good results at detecting pedestrians. According to a [91], no other approach
using just one kind of feature outperforms HOG in terms of detection performances,
and only approaches that use a mix of techniques show better performances, at the
cost of much higher computational costs.

The idea at the basis of historgrams of oriented gradients (HOG) is that local
object appearance within an image can be described by the distribution of intensity
gradients or edge directions.

The detection procedure can be described as follows: first, the gradient of an
image is calculated and then the image is divided into cells. For each cell, a discrete
histogram of the orientation of the gradient is calculated. Now a detection window
is moved over the image and at each location the histograms of each cell contained in
the search window is converted into a feature vector. This feature vector is then fed
into a support vector machine (which in the original work is trained on the INRIA
people dataset) for classification. This is repeated for different scales of the image.
The procedure is shown in Figure 4.1.

95

4 – Human-robot interaction

Figure 4.1. An overview of the feature extraction and object detection chain.
The detector window is tiled with a grid of overlapping blocks in which His-
togram of Oriented Gradient feature vectors are extracted. The combined vec-
tors are fed to a linear SVM for object/non-object classification. The detection
window is scanned across the image at all positions and scales, and conventional
non-maximum suppression is run on the output pyramid to detect object instances.

4.2.2 The proposed approach
In our approach we apply the HOG detector described in the previous Section to
a particle filter based tracking approach. The detector is coupled with the particle
filter: detections are used in the update phase of the filter, as in usual tracking
approaches, but in our method the tracked position predicted by the filter is used
in order to acquire new samples for training of the classifier. The training is done
online based on the acquired set of samples. Moreover the state of the particle filter
is used to decide when a new training of the classifier is needed.

At each time only a certain region of interest is scanned for detections. This
allows to considerably reduce detection time, which is the most expensive part in
terms of processing time. The region of interest is updated at every time step based
on previous detections.

Figure 4.2 illustrates the various parts of the algorithm in action on a single
frame taken form a video sequence. The red rectangle is the output of the adaptive
detector; the yellow rectangle represents the current region of interest; The blue dots
represent the particles; the brighter ones represent particles with an higher weight.
The yellow circle represents the position hypothesis with the highest weight, as
explained in Section 4.2.5.

The HOG descriptor has a few advantages over other descriptors. It has been
proved to be more invariant to changes in illumination and shadowing than other
features. Moreover it upholds invariance to geometric and photometric transfor-
mations, except for object orientation. Such changes would only appear in larger
spatial regions.

4.2.3 Detector
The detection part is based on HOG features and a linear-SVM classifier, which is
trained online over a sliding window of samples taken from previous images on the
basis of previous detections. In oder to reduce the probability of introducing a bias
in the classifier, a subset of older samples is always preserved and introduced in the

96

4 – Human-robot interaction

Figure 4.2. The algorithm in action.

training.

The classifier is re-trained only when the variance of the weights of the parti-
cles, given by the effective sample size Neff , increases over a given threshold. We
determined experimentally that we can take Neff as a coarse measure of how the
erformances of the detector are degrading. This is due to the fact that the appear-
ance of the tracked object has changed significantly, and the classifier needs to be
trained again on newer samples.

In order to improve the performances of the detector, at every time step only
a small area around the last detection, a region of interest is fed into the detector.
This can be done only under the assumption that the tracked object does not move
very fast, but we found that the assumption holds for most kind of objects to be
tracked. This simple expedient can provide frame rates up to 10-25 FPS depending
on the size of the tracked object in the image.

In order to improve the tracking of objects that are moving away from the camera
or the detection of objects in small resolution videos, we implemented a simple
rule: if the last detected window is close to the minimum detectable height of the
classifier, than the region of interest is magnified (digital zoom). There is one
threshold parameter (default is 0) in the OpenCV implementation of the HOG
algorithm that we are using, that allows to vary the accuracy of detection. For
higher positive values of the parameter, less false positives, but more false negatives
are produced. For negative values more false positives but also less false negatives
are produced. Therefore, if no prior detection has occurred the threshold is set to
an higher value(0.2 on our case) to avoid false detections and otherwise lower (-0.2
on our case) to avoid false negatives.

97

4 – Human-robot interaction

4.2.4 Online training
For the training of the SVM we use the approach described in [4]. The approach
is composed of several steps: first, a HOG feature vector is calculated for every
positive training image. At the same time 10 random windows for each negative
training image are selected and HOG features are also calculated. We use the SVM
training algorithm from the SVM-Light library [7] on this training set in order to
obtain a detector. Since SVM-Light only outputs the support vectors vi and their
corresponding αi, and the HOG algorithm from the OpenCV library needs a weight
vector w, we simply calculate it with

w =
∑

αivi

For bootstrapping our detector in the case of people detection we train our classifier
on the INRIA Person Dataset [3]; in the case of object detection we use a suitable
object class from the Pascal dataset [4].

The training is done over a sliding window of samples taken from previous
smaples on the basis of previous detections. Every k1 frames a rectangular area
is taken from the current frame and put into a subset S1 of samples. The position
of the area corresponds to the current object position hypothesis with the highest
weight from the particle filter (see Section 4.2.5 for details). The dimensions of the
area are the same as the latest detection window, as we can assume that the tracked
object will not have big changes is dimensions between subsequent frames. Every
k2 > k1 frames the rectangular area is put into another subset S2 of samples. This
subset is used in order to include also old samples in the training, thus preventing
the problem of overfitting in most cases.

When the dimensions of the subset S1 is above a given threshold the classifier
is re–trained on the current dataset, and the resulting weight vector w is fed to the
classifier.

The state of the particle filter is also used to decide when a new training of the
classifier is needed. When the effective sample size Neff falls below a given threshold
the classifier is re–trained on the current dataset, and the resulting weight vector is
used instead of the older one.

4.2.5 Tracking
For the tracking of the detected object we use a particle filter implementation. Par-
ticle filters are sequential Monte Carlo methods based on point mass representations
of probability densities. The first advantage of this method over classic Kalman fil-
ters is the ability to cope with non-linearity and non-gaussianity, which are critical
in the case of a moving object. Another important aspect is the possibility to model
multi-modal distributions.

98

4 – Human-robot interaction

In our approach the prediction phase is based on a simple linear motion motion
model. The estimate of the new state of each particle is a linear extrapolation of
the previous state plus Gaussian noise. We chose a simple motion model because
for people and object tracking the advantage of using a stochastic model is not
prominent compared to simpler motion models [73].

The update phase is based on object detections. Particles are weighted based on
the distance from detection hypotheses provided by the adaptive HOG detector.

The resampling phase is based on Kullback-Leibler divergence (KLD). The num-
ber of particles representing the belief on the object pose at each step is adaptive,
so that only the number of particles sufficient to represent the belief distribution is
used.

We implement the adaptive particle filter approach proposed in [38] for robot lo-
calization. Since the approach is generic it can also be adopted for the particular case
of object tracking. In this approach the key-point is to bound the error introduced
by the sample-based representation of the particle filter. The underlying assumption
is that the true posterior is given by a discrete, piecewise constant distribution such
as a discrete density tree or a multi-dimensional histogram. Under this assumption
we can determine the number of samples so that the distance between the Maximum
Likelihood Estimate based on the samples and the true posterior does not exceed a
pre-specified threshold ε. The distance between the Maximum Likelihood Estimate
and the true distribution is measured by the Kullback-Leibler distance. As we saw
in Section 2.3.2, the number of particles at each step i can be set to

ni = 1
2εχ

2
k−1,1−δ

where χ2
k−1,1−δ is a chi-square distribution with 1−k degrees of freedom. This value

is the required number of particles to guarantee that with probability 1 − δ the
Kullback-Leibler distance between the Maximum Likelihood Estimate of the posi-
tion hypothesis and the true distribution is less than ε.

This is an advantage in terms of both memory occupation and computational
resources. Moreover, we proposed to use the effective sample size Neff as a measure
of how well the current set of particles represents the true posterior of the object
pose, by measuring the variance on the particles weight. If Neff stays constant the
new information does not help to identify unlikely hypotheses represented by the
individual particles. In that case, the variance in the importance weights of the
particles does not change over time. If, in contrast, the value of Neff decreases over
time, the new information can be used to identify that some particles are less likely
than others.

The position hypotheses for the tracked object at each step are the result of a
Density-Tree clustering procedure applied on the set of particles.

99

4 – Human-robot interaction

4.2.6 Experimental Tests
In this Section we present an evaluation of our algorithm on several video sequences
and we compare the performances of our adaptive approach with other non-adaptive
approaches.

In our implementation we used OpenCV libraries for the implementation of the
detector. The algorithm was implemented in C++ and all the tests were conducted
on a standard PC equipped with a 2.4 Ghz CPU and 2 Gb of RAM.

The algorithm has been tested on several video sequences from the BoBoT
dataset (Bonn Benchmark on Tracking) [1], as well as on video sequences presenting
strong changes in object appearence, illumination and occlusion. We show that the
method is able to achieve a frame rate up to 20 fps on 320x240 video sequences on
a standard PC.

In Experiment 1 we show a comparison of two different algorithms on some
image sequences taken from the BoBoT dataset. This dataset contains both people
and objects, and each video presents some challenging condition for detection and
tracking. We also compare our algorithm with the results presented in [49] for three
different sequences.

In Experiment 2 we show how the detection time and the number of particles
changes over time.

Experiment 1

In Figure 4.2.6 we show a comparison of two different algorithms on some image
sequences taken from the BoBoT dataset (SeqA, SeqB, SeqI). The first algorithm
is a non-adaptive approach based on HOG features and particle filters. The sec-
ond approach is the proposed approach with adaptive HOG detector and adaptive
particle filters.

The ground-truth data which is available in this dataset is in the form of rect-
angular shapes surrounding the object to be tracked. Since in our approach the
detection window is of fixed size, we do not use this ground-truth directly. We cal-
culate instead for each frame the center of the detected object and we measure the
error between this center and the output of our particle filter St.

Sequence SeqA presents significative changes in appearence and fast movements
of the tracked object; sequence SeqB presents strong changes in background ap-
pearence; sequence SeqI is an example of people tracking with many occlusions
from crossing pedestrians.

We can see how the adaptive approach significantly outperforms the non-adaptive
approach in every image sequence. In particular the adaptive method is able to
recover more quickly from detection errors.

In Table 4.1 we present a comparison between 6 different algorithms. The first

100

4 – Human-robot interaction

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

frame number

T
ra

c
k
in

g
 e

rr
o
r

(p
ix

e
ls

)

non−adaptive

adaptive

(a) SeqA

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Frame number

T
ra

c
k
in

g
 e

rr
o

r
(p

ix
e

ls
)

non−adaptive

adaptive

(b) SeqB

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

Frame number

T
ra

c
k
in

g
 e

rr
o

r
(p

ix
e

ls
)

non−adaptive

adaptive

(c) SeqI

Figure 4.3. Tracking error for three different sequences.

Table 4.1. Comparison of six methods
Seq. HistogramMulti-

Comp.
non-
adaptive
H.-cs

adaptive
H.-cs

adapt.
p. part.
H.-cs

Adaptive
HOG

A 70.73 63.24 30.35 65.06 59.35 70.16
B 67.02 50.73 6.02 79.01 77.38 55.10
I 68.94 47.63 48.97 75.02 56.33 64.81

one is a simple tracking algorithm based on color histograms, the second one is
based on multi-component tracking, the next three are different versions of the
approach proposed in [49] and the last column contains the results form our adaptive
algorithm. For every approach and for every sequence the mean score over the
sequence is reported (calculated as suggested in [1]). Since our detection window
is of fixed size, the results of our algorithm are generally better than the reported

101

4 – Human-robot interaction

score. We show that the results are comparable with the results presented in [49].

Experiment 2

In Figure 4.4(a) we show the detection time for each frame of sequence SeqI from
the BoBoT dataset. The dimensions of the video sequence are 320 x 240 and the
HOG detection window is 64 x 128. In Figure 4.6(b) we show the detection times for
sequence SeqB. The dimensions of the video sequence are 320 x 240 and the HOG
detection window is 64 x 64.

We show that by using a variable region of interest around the tracked object
an high frame rate can be achieved. The peaks in detection time correspond to the
time instants when the region of interests grows bigger or the full image is scanned.

0 100 200 300 400 500 600 700 800 900
100

105

110

115

120

125

130

135

140

145

Frame number

D
e
te

c
ti
o
n
 t
im

e
 (

m
s
)

(a) SeqI

0 50 100 150 200 250 300
62

64

66

68

70

72

74

76

Frame number

D
e
te

c
ti
o
n
 t
im

e
 (

m
s
)

(b) SeqB

Figure 4.4. Detection time for two sequences.

Experiment 3

In figure 4.5 we show how the number of particles changes over time for a single
run. The test video sequence is SeqI and the maximum number of particles was
set to 5000. We also set a lower bound of 1000 to the number of particles, in order
to avoid the convergence of the particle filter to a wrong position hypothesis in the
case of bad detections. We can see how the number of particles drops and in some
cases could be lower than the lower bound, without any significant downgrade in
tracking performances.

Experiment 4

Successful tests of people tracking and following have been carried out by using a
Microsoft Kinect camera mounted on a mobile robotic platform. The user is detected
using the adaptive technique shown before. We also detect the distance of the user

102

4 – Human-robot interaction

0 50 100 150 200 250 300 350 400 450 500
1000

1500

2000

2500

3000

3500

4000

4500

5000

Frame number
P

a
rt

ic
le

s

Figure 4.5. Number of particles over time.

(a) (b)

Figure 4.6. Example of robot following a user. (a) The algorithm in action.
(b) Estimated trajectory of the user (blue dots) and trajectory followed by
the robot (red line).

relative to the robot directly from the Kinect camera. An Extended Kalman Filter is
implemented for smoothing the estimated position of the user on the ground plane.
The state is composed by position and velocity on the (x, y) axes.

In this way, the robot is able to track the position of the user and follow it.
Figure 4.6 reports the results of an experiment in which the robot is able to track
and follow a user in real-time along a series of corridors.

103

Chapter 5

Conclusions

In this thesis we first presented solutions to different aspects of mobile robot naviga-
tion, in particular related to localization and Simultaneous Localization and Map-
ping, with a focus on real-world applications in industrial environments. Then we
presented some methods related to Human-Machine Interaction; in particular we
present an adaptive approach to people and object tracking for interaction between
an autonomous robot and human operators, and finally we presented a novel method
for human weight estimation based solely on vision sensors.

In the field of robot localization we proposed a multi-robot localization approach
which is particularly suitable for large logistic environments, which present problems
due to their large scale and in particular high symmetry. We showed how it is
possible to exploit communication between the members of a team of robots in
order to spread the knowledge about small asymmetries in the environment, as well
as to provide some sort of recovery in the case of localization failures. Moreover, we
introduce a novel way for the localization algorithm to aacquire insight about the
localization state of each team member. Using our approach, the team is able to
know with a certain confidence when all team members are correctly localized, so
that they can start to execute high-level tasks.
We then introduced a series of practical improvements to the localization algorithm
in the case of a single robot in the presence of high symmetry and noisy sensors.
We combined a simple sensor fusion approach which is able to exploit gyroscopes
to correct wheel odmetry and a marker detection algorithm which is able to correct
the pose estimate of the robot using planar markers embedded in the environment.
It should be noted that the planar markers can be in principle replaced by arbitrary
planar objects already present in the environment.

In the field of Simultaneous Localization and Mapping we proposed a full SLAM
approach based on pose graph optimization. We developed a graph optimization
algorithm which is demonstrated to be faster than most state-of-the-art approaches,
by exploiting a linear approximation of the problem that holds in the case of planar

104

5 – Conclusions

environments. We then proposed a front-end for our approach which is based on laser
scan matching only. We showed how the full approach is able to create consistent
maps while running in real-time.

In the second part of the thesis we presented our contribution to the problem
of people detection and tracking from a mobile camera. We presented an adaptive
approach which is able to learn appearence changes over time and uses adaptive
particle filters for tracking. We also showed how this approach can be used for
tracking generic objects as well.

Finally, we presented some preliminary results on 3D body reconstruction for
weight estimation using RGB-D cameras only. We presented some results of body
reconstruction using two cameras and using a single camera, with the user moving
in front of it.

5.1 Publications

5.1.1 Journal papers
• Bona B., Carlone L., Indri M., Rosa S., Supervision and monitoring of logistic

spaces by a cooperative robotic team: methodologies, problems, and solutions,
Intelligent Service Robotics, 2014, DOI: 10.1007/s11370-014-0151-0

• Abrate F., Bona B., Indri M., Rosa S., Tibaldi F., Multirobot Localization in
Highly Symmetric Environments, Journal of Intelligent and Robotic Systems,
2013, DOI: 10.1007/s10846-012-9790-6

• Abrate F., Bona B., Indri M., Rosa S., Tibaldi F., Multi-robot map updating
in dynamic environments, in Springer Tracts in Advanced Robotics, Volume
83, 2013, DOI: 10.1007/978-3-642-32723-0

5.1.2 Conference and workshop papers
• Russo L.O., Rosa S., Matteucci M., Bona B., A ROS Implementation of the

Mono-SLAM Algorithm, International Conference on Artificial Intelligence &
Applications (ARIA-2014), 2014

• Russo L.O., Airo Farulla G., Indaco M., Rosa S., Rolfo D., Bona B., Blur-
ring prediction in Monocular SLAM, 8th IEEE International Design & Test
Symposium 2013 (IDT), 2013

• Carlone L., Yin J., Rosa S., Yuan Z., Graph optimization with unstructured
covariance: fast, accurate, linear approximation. In: Simulation, Modeling,
and Programming for Autonomous Robots (SIMPAR 2012), 2012.

105

5 – Conclusions

• Rosa S., Paleari M., Ariano P., Bona B., Object Tracking with Adaptive HOG
Detector and Adaptive Rao-Blackwellised Particle Filter. In: SPIE 8301, Intel-
ligent Robots and Computer Vision XXIX: Algorithms and Techniques, 2012.

• Margaria V., Rosa S., Ariano P., HExEC: hand exoskeleton electromyographic
control, Workshop on Human-Friendly Robotics, 2011

5.1.3 Preprints
• Rosa S., Paleari M., Velardo C. , Dugelay J.L., Bona B., and Ariano P., To-

wards Mass Estimation Using 3D Vision Sensors in Microgravity Environments

106

Bibliography

[1] Bobot bonn benchmark on tracking. Website. http://www.iai.uni-bonn.
de/~kleind/tracking/.

[2] Eigen library. Website. http://eigen.tuxfamily.org/.
[3] Inria person dataset. Website. http://pascal.inrialpes.fr/data/human/.
[4] The pascal object recognition database collection. Website. http://

pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html.
[5] Rmap. Website. http://www-robotics.usc.edu/~ahoward/pmap/rmap_8h.

html.
[6] Ros (robot operating system). Website. http://www.ros.org.
[7] Svm-light support vector machine. Website. http://svmlight.joachims.

org/.
[8] Artoolkit website, 2013. http://www.hitl.washington.edu/artoolkit.
[9] A roadmap for us robotics, from internet to robotics. Technical report, 2013.
[10] W. Abd-Almageed, M. Hussein, and M. Abdelkader. Real-time human detec-

tion and tracking from mobile vehicles. In Intelligent Transportation Systems
Conference, 2007. ITSC 2007. IEEE, pages 149 –154, 2007.

[11] F. Abrate, B. Bona, M. Indri, S. Rosa, and F. Tibaldi. Switching multirobot
collaborative localization in symmetrical environments. In IEEE International
Conference on Intelligent RObots Systems (IROS 2008), 2nd Workshop on
Planning, Perception and Navigation for Intelligent Vehicles (PPNIV), 2008.

[12] F. Abrate, B. Bona, M. Indri, S. Rosa, and F. Tibaldi. Three state multirobot
collaborative localization in symmetrical environments. In Proceedings of the
9th Conference on Autonomous Robot Systems and Competitions, pages 1–6,
7th May, 2009.

[13] F. Abrate, B. Bona, M. Indri, S. Rosa, and F. Tibaldi. Map updating in
dynamic environments. In International Symposium on Robotics (ISR), 2010.
Accepted for publication.

[14] Fabrizio Abrate, Basilio Bona, Marina Indri, Stefano Rosa, and Federico
Tibaldi. Multi-robot map updating in dynamic environments. In Alcherio
Martinoli, Francesco Mondada, Nikolaus Correll, GrÃ©gory Mermoud, Mag-
nus Egerstedt, M. Ani Hsieh, Lynne E. Parker, and Kasper StÃ¸y, editors,

107

http://www.iai.uni-bonn.de/~kleind/tracking/
http://www.iai.uni-bonn.de/~kleind/tracking/
http://eigen.tuxfamily.org/
http://pascal.inrialpes.fr/data/human/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html
http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html
http://www-robotics.usc.edu/~ahoward/pmap/rmap_8h.html
http://www-robotics.usc.edu/~ahoward/pmap/rmap_8h.html
http://www.ros.org
http://svmlight.joachims.org/
http://svmlight.joachims.org/

Bibliography

Distributed Autonomous Robotic Systems, volume 83 of Springer Tracts in Ad-
vanced Robotics, pages 147–160. Springer Berlin Heidelberg, 2013.

[15] Indri M. Rosa S. Tibaldi S. Abrate F., Bona B. Multirobot localization in
highly symmetrical environments. Journal of Intelligent & Robotic Systems,
71:403–421, 2013.

[16] M. Atiquzzaman and M.W. Akhtar. Complete line segment description using
the hough transform. Image and Vision Computing, 12:267–273, 1994.

[17] P. Barooah and J.P. Hespanha. Estimation on graphs from relative measure-
ments. IEEE Control Systems Magazine, 27(4):57–74, 2007.

[18] Peter Biber and Tom Duckett. Dynamic maps for long-term operation of mobile
service robots. In In Proc. of Robotics: Science and Systems (RSS, 2005.

[19] B. Bilgic, B.K.P. Horn, and I. Masaki. Fast human detection with cascaded
ensembles on the gpu. In Intelligent Vehicles Symposium (IV), 2010 IEEE,
2010.

[20] L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona. A linear approximation
for graph-based simultaneous localization and mapping. In Proc. of Robotics:
Science and Systems, 2011.

[21] Luca Carlone, Jingchun Yin, Stefano Rosa, and Zehui Yuan. Graph optimiza-
tion with unstructured covariance: Fast, accurate, linear approximation. In
Itsuki Noda, Noriaki Ando, Davide Brugali, and JamesJ. Kuffner, editors, Sim-
ulation, Modeling, and Programming for Autonomous Robots, volume 7628 of
Lecture Notes in Computer Science, pages 261–274. Springer Berlin Heidelberg,
2012.

[22] Stefano Carpin. Fast and accurate map merging for multi-robot systems. Au-
ton. Robots, 25(3):305–316, 2008.

[23] Andrea Censi. An ICP variant using a point-to-line metric. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA),
Pasadena, CA, May 2008.

[24] S. Chien, R. Doyle, A.G. Davies, A. Jonsson, and R. Lorenz. The future of ai
in space. Intelligent Systems, IEEE, 21(4):64 –69, 2006.

[25] E. Corvee and F. Bremond. Body parts detection for people tracking using trees
of histogram of oriented gradient descriptors. In Advanced Video and Signal
Based Surveillance (AVSS), 2010 Seventh IEEE International Conference on,
pages 469 –475, 2010.

[26] I. J. Cox. Blanche: Position estimation for an autonomous robot vehicle. Au-
tonomous Mobile Robots: Control, Planning, and Architecture, 2:285–292, 1991.

[27] Ingemar J. Cox and Gordon T. Wilfong, editors. Autonomous robot vehicles.
Springer-Verlag New York, Inc., New York, NY, USA, 1990.

[28] N. Dalal and B. Triggs. Histograms of oriented gradients for human detec-
tion. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, 2005.

108

Bibliography

[29] N. Dalal and B. Triggs. Histograms of oriented gradients for human detec-
tion. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, 2005.

[30] T. Darrell, G. Gordon, M. Harville, and J. Woodfill. Integrated person tracking
using stereo, color, and pattern detection. In Computer Vision and Pattern
Recognition, 1998. Proceedings. 1998 IEEE Computer Society Conference on,
pages 601 –608, 1998.

[31] Timothy A. Davis. Direct Methods for Sparse Linear Systems (Fundamentals of
Algorithms 2). Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2006.

[32] F. Dellaert, J. Carlson, V. Ila, K. Ni, and C. Thorpe. Subgraph-preconditioned
conjugate gradients for large scale SLAM. In Proc. of the IEEE-RSJ Int. Conf.
on Intelligent Robots and Systems, 2010.

[33] F. Dellaert and M. Kaess. Square root SAM: Simultaneous localization
and mapping via square root information smoothing. Int. J. Robot. Res.,
25(12):1181–1203, 2006.

[34] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localisation and mapping
(slam): Part i the essential algorithms. IEEE ROBOTICS AND AUTOMA-
TION MAGAZINE, 2:2006, 2006.

[35] R.M. Eustice, H. Singh, and J.J. Leonard. Exactly sparse delayed-state filters
for view-based SLAM. Int. J. Robot. Res., 22(6):1100–1114, 2006.

[36] P.F. Felzenszwalb, R.B. Girshick, and D. McAllester. Cascade object detection
with deformable part models. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 2241 –2248, 2010.

[37] Terrence W. Fong and Illah Nourbakhsh. Interaction challenges in human-robot
space exploration. Interactions, 12(1):42–45, March 2005.

[38] D. Fox. Kld-sampling: Adaptive particle filters. In In Advances in Neural
Information Processing Systems 14, pages 713–720. MIT Press, 2001.

[39] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic approach to
collaborative multi-robot localization. Autonomous Robots, 8(3):325–344, 2000.

[40] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in
dynamic environments. Journal of Artificial Intelligence Research, 11:391–427,
1999.

[41] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm for
simultaneous localization and mapping. IEEE Trans. on Robotics, 21(2):196–
207, 2005.

[42] B. Gerkey, R.T. Vaughan, and A. Howard. The player/stage project: Tools for
multi-robot and distributed sensor systems. In 11th Int. Conf. on Advanced
Robotics (ICAR 2003), pages 317–323, 2003.

[43] D. Göring and H.-D. Burkhard. Multi robot object tracking and self localization
using visual percept relations. In IEEE/RSJ Int. Conf. on Intelligent Robots

109

Bibliography

and Systems, pages 31–36, 2006.
[44] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid map-

ping with rao-blackwellized particle filters. Robotics, IEEE Transactions on,
23(1):34–46, Feb. 2007.

[45] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint network opti-
mization for efficient map learning. IEEE Trans. on Intelligent Transportation
Systems, 10(3):428–439, 2009.

[46] G. Huang, A.I. Mourikis, and S.I. Roumeliotis. Observability-based rules for
designing consistent EKF-SLAM estimators. Int. J. Robot. Res., 29(5):502–528,
2010.

[47] Shoudong Huang and G. Dissanayake. Convergence and consistency analy-
sis for extended kalman filter based slam. Robotics, IEEE Transactions on,
23(5):1036–1049, Oct 2007.

[48] N. Karam, F. Chausse, R. Aufrere, and R. Chapuis. Localization of a group of
communicating vehicles by state exchange. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 519–524, 2006.

[49] D.A. Klein, D. Schulz, S. Frintrop, and A.B. Cremers. Adaptive real-time
video-tracking for arbitrary objects. In Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pages 772 –777, oct. 2010.

[50] K. Konolige. Large-scale map-making. In Proc. of the AAAI National Conf.
on Artificial Intelligence, 2004.

[51] K. Konolige, G. Grisetti, R. Kummerle, W. Burgard, B. Limketkai, and R. Vin-
cent. Efficient sparse pose adjustment for 2d mapping. In Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 22–29,
Oct 2010.

[52] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. G2o:
A general framework for graph optimization. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 3607 –3613, may 2011.

[53] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stachniss,
and A. Kleiner. On measuring the accuracy of SLAM algorithms. Autonomous
Robots, 27(4):387–407, 2009.

[54] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stachniss,
and A. Kleiner. On measuring the accuracy of SLAM algorithms. Journal of
Autonomous Robots, 27(4):387–407, 2009.

[55] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stach-
niss, and A. Kleiner. Slam benchmarking webpage. http://ais.informatik.uni-
freiburg.de/slamevaluation, 2009.

[56] S.M. LaValle. Planning algorithms. Cambridge University Press, 2006.
[57] F. Lu and E. Milios. Globally consistent range scan alignment for environment

mapping. Autonomous Robots, 4:333–349, 1997.

110

Bibliography

[58] F. Lu and E. Milios. Globally consistent range scan alignment for environment
mapping. Autonomous Robots, 4:333–349, 1997.

[59] S. Hellbach H.-J. BÃ¶hme M. Himstedt, S. Keil. A robust graph-based frame-
work for building precise maps from laser range scans. In Proc. of the Work-
shop on Robust and Multimodal Inference in Factor Graphs. IEEE International
Conference on Robotics and Automation (ICRA), 2013.

[60] A. Martinelli. Improving the precision on multi robot localization by using a
series of filters hierarchically distributed. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pages 1053–1058, 2007.

[61] R. Martinez-Cantin, N. de Freitas, and J. Castellanos. Analysis of particle
methods for simultaneous robot localization and mapping and a new algorithm:
Marginal-SLAM. In Proc. of the IEEE lnternational Conf. on Robotics and
Automation, 2007.

[62] M. Di Marco, A. Garulli, A. Giannitrapani, and A. Vicino. Simultaneous local-
ization and map building for a team of cooperating robots: A set membership
approach. IEEE Trans. on Robotics and Automation, 19(2):238–249, 2003.

[63] Adam Milstein. Dynamic maps in monte carlo localization. In Canadian Con-
ference on AI, pages 1–12, 2005.

[64] MobileRobots Inc. Mobilesim-the mobile robots simulator, 2011.
[65] Hans Moravec and A. E. Elfes. High resolution maps from wide angle sonar.

In Proceedings of the 1985 IEEE International Conference on Robotics and
Automation, pages 116 – 121, March 1985.

[66] A.I. Mourikis and S.I. Roumeliotis. Performance analysis of multirobot coop-
erative localization. IEEE Trans. on Robotics, 22(4):666–681, 2006.

[67] Rafael Muñoz-Salinas, Eugenio Aguirre, Miguel GarcÃa-Silvente, and Antonio
Gonzalez. People detection and tracking through stereo vision for human-robot
interaction. In MICAI 2005: Advances in Artificial Intelligence, volume 3789
of Lecture Notes in Computer Science, pages 337–346. Springer Berlin / Hei-
delberg, 2005.

[68] K. Murphy and S. Russell. Rao-blackwellized particle filtering for dynamic
bayesian networks. Sequential Monte Carlo Methods in Practice, Springer,
2001.

[69] JosÃ© MÃ©ndez-Polanco, AngÃ©lica Muñoz-MelÃ©ndez, and Eduardo
Morales. People detection by a mobile robot using stereo vision in dynamic
indoor environments. In Arturo Aguirre, RaÃºl Borja, and Carlos GarciÃ¡, ed-
itors, MICAI 2009: Advances in Artificial Intelligence, volume 5845 of Lecture
Notes in Computer Science, pages 349–359. Springer Berlin / Heidelberg, 2009.

[70] E. Olson, J.J. Leonard, and S. Teller. Fast iterative optimization of pose graphs
with poor initial estimates. In Proc. of the IEEE Int. Conf. on Robotics and
Automation, pages 2262–2269, 2006.

111

Bibliography

[71] S. Panzieri, F. Pascucci, and R. Setola. Multirobot localization using interlaced
extended kalman filter. In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pages 2816–2821, 2006.

[72] M. Peasgood, C. Clark, and J. McPhee. Localization of multiple robots with
simple sensors. In IEEE Int. Conf. on Mechatronics and Automation, pages
671–676, 2005.

[73] Stefano Pellegrini, Andreas Ess, and Luc Gool. Predicting pedestrian trajec-
tories. In Thomas B. Moeslund, Adrian Hilton, Volker KrÃ¼ger, and Leonid
Sigal, editors, Visual Analysis of Humans, pages 473–491. Springer London,
2011.

[74] G. Pillonetto and S. Carpin. Multirobot localization with unknown variance
parameters. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages
1709–1714, 2007.

[75] Victor Adrian Prisacariu and Ian Reid. fasthog- a real-time gpu implementation
of hog technical report no. 2310/09, 2009.

[76] Y. Rachlin, J.M. Dolan, and P. Khosla. Efficient mapping through exploitation
of spatial dependencies. In Intelligent Robots and Systems, 2005. (IROS 2005).
2005 IEEE/RSJ International Conference on, pages 3117–3122, Aug. 2005.

[77] I. Rekleitis, G. Dudek, and E. Milios. Probabilistic cooperative localization and
mapping in practice. In IEEE Int. Conf. on Robotics and Automation, pages
1907–1912, 2003.

[78] Stefano Rosa, Marco Paleari, Paolo Ariano, and Basilio Bona. Object tracking
with adaptive hog detector and adaptive rao-blackwellised particle filter, 2012.

[79] S.I. Roumeliotis and G.A. Bekey. Distributed multirobot localization. IEEE
Trans. on Robotics and Automation, 18(5):781–795, 2002.

[80] Bernt Schiele, Mykhaylo Andriluka, Nikodem Majer, Stefan Roth, and Chris-
tian Wojek. Visual people detection: Different models, comparison and discus-
sion. In Proceedings of the IEEE ICRA 2009 Workshop on People Detection
and Tracking, pages 1–8, 2009.

[81] Amit Singhal. Issues in autonomous mobile robot navigation. Technical report,
1997.

[82] R. Smith and P. Cheesman. On the representation of spatial uncertainty. Int.
J. Robot. Res., 5(4):56–68, 1987.

[83] N. Sunderhauf and P. Protzel. Switchable constraints for robust pose graph
slam. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, pages 1879–1884, Oct 2012.

[84] N. SÃ¼nderhauf and N. Protzel. Towards a robust back-end for pose graph
slam. In Proc. of IEEE International Conference on Robotics and Automation
(ICRA), 2012.

[85] C.J. Taylor and J. Spletzer. A bounded uncertainty approach to cooperative
localization using relative bearing constraints. In IEEE/RSJ Int. Conf. on

112

Bibliography

Intelligent Robots and Systems, pages 2500–2506, 2007.
[86] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.
[87] S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte, and A.Y. Ng. Simul-

taneous mapping and localization with sparse extended information filters. In
Proc. of the 5th Int. Workshop on Algorithmic Foundations of Robotics, 2002.

[88] S. Thrun and M. Montemerlo. The GraphSLAM algorithm with applications
to large-scale mapping of urban structures. Int. J. Robot. Res., 25:403–429,
2006.

[89] S. Thrun, W.Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.
[90] N. A. Vlassis, G. Papakonstantinou, and P. Tsanakas. Dynamic sensory prob-

abilistic maps for mobile robot localization. In In Proc. IROS’98, IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pages 718–723, 1998.

[91] Christian Wojek and Bernt Schiele. A performance evaluation of single and
multi-feature people detection. In Gerhard Rigoll, editor, Pattern Recognition,
volume 5096 of Lecture Notes in Computer Science, pages 82–91. Springer Berlin
- Heidelberg, 2008.

[92] R. Zlot, A. Stentz, M. Bernardine Dias, and S. Thayer. Multi-robot exploration
controlled by a market economy. pages 3016–3023, 2002.

113

	Introduction
	Motivation
	Thesis outline

	Localization
	Introduction
	Relative measurements
	Navigational information
	Landmark Based Methods
	Map Based Methods

	Monte Carlo Localization
	Multi-robot Localization in Highly Symmetrical Environments
	Related Work
	The Three-State Multirobot Collaborative Localization (3SMCL)
	Simulation tests

	Localization with sensor fusion and markers detection
	IMU-corrected odometry
	Planar markers detection
	ROS implementation
	Results

	Map Updating in Dynamic Environments
	Introduction
	Problem Formulation
	The Approach
	Simulation Tests

	Extension to the multi-robot case
	The Approach
	-awareness, local -mapping and map merging
	Exploration strategy
	Distributed auction-based task allocation

	Simulation Tests
	Simulation test 1
	Simulation test 2
	Simulation test 3
	Computational load

	Experimental Tests

	Simultaneous Localization and Mapping
	Introduction
	Online SLAM
	Full SLAM

	Graph-based SLAM
	Problem Formulation
	A Linear Approximation
	Experimental results

	Robust front-end
	Main algorithm
	Loop closing constraints

	Graph optimization
	Map creation
	ROS Implementation
	Experimental Analysis
	Simulated environment
	Office-like environment
	Data-center
	Benchmarking datasets

	Human-robot interaction
	Vision-based people tracking from a moving camera
	Motivation
	Related work
	Monocular people detection and tracking
	Stereo-based people detection and tracking

	Adaptive people and object tracking
	Histograms of oriented gradients
	The proposed approach
	Detector
	Online training
	Tracking
	Experimental Tests

	Conclusions
	Publications
	Journal papers
	Conference and workshop papers
	Preprints

	Bibliography

