
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

Course of Information and System Engineering (ING–INF/05) – XXV cycle

Doctoral thesis

High Speed and Flexible Network
Processing

Marco Leogrande

Tutor Course Coordinator
Fulvio Risso prof. Pietro Laface

March 21st, 2014

Summary

In digital communications networks, packet processing refers to the wide variety of
algorithms that are applied to a packet of data or information as it moves through the
various network elements of a communications network. Within any network-enabled
device, it is the packet processing subsystem that manages the traversal of the multi-
layered network or protocol stack from the lower, physical and network layers all the
way through to the application layer.

There are a number of important requirements that a packet processing system must
observe to be able to meet real-world demand.

• The first and probably more obvious requirement is to achieve an high process-
ing speed. To be able to cope with the amount of information exchanged over a
present-day computer network, a packet processing system should be able to perform
its operations at line rate. In other words, its architecture and algorithms should
be designed with efficiency in mind, so that most of the traffic (if not all) flows
through the fast path of the system, whereas only special cases are handled by a
more thorough, albeit slower logic1.

• Network devices should also be flexible, to adapt to the user’s environment and
needs. Given the complexity and variety of contemporary computer networks, packet
processing systems should offer a high degree of configurability; no solution can
encompass all possible network sizes, topologies and implementations, but being
able to adapt to different layouts is a key aspect for any network device.

• Traditionally, network devices have been closed-source, black boxes with little or no
possibility of changing or replacing modules. Even if it has always been possible to
put together multiple devices to form a complex system, each device has always been
considered an inscrutable unit. However, especially after that the paradigm of Soft-
ware Defined Networks has proven that it is possible to efficiently insert third-party
modules inside a running network, the topic of modularity has risen in importance.
Having a packet processing system with a plug-in architecture, or whose external
dependencies are easy to replace, is a very strong selling point.

1For instance, network devices usually implement the data plane with fast and specifically-designed
hardware, while the control plane is run by software running on the control processor.

iii

• Given the quantity and unpredictability of the events that can occur on a computer
network, a packet processing system should also be dynamic enough to be able to
respond and adapt to real-time fluctuations in the network. Also, consider that the
network administrator might want to interact with the network in real-time, adding
further potential instability to the system: a packet processing system should be
able to cope with all those events happening at the same time.

Packet filters

Packet filters are a specific type of packet processing systems. Packet filtering is the
process of inspecting a network packet and matching it against a set of predefined rules.
Rules usually have associated actions, that are executed when a given rule matches, and
are usually dependent on the specific system in which a packet filter resides.

For instance, a network firewall uses a packet filter to match incoming and outgoing
packets against the firewall rules, with the goal of applying the policy that the matching
rule has defined (e.g., drop the packet, or send it out of a given interface, or apply address
translation, etc. . .).

Moreover, a packet filter is said to be dynamic when the decision to apply a rule is
not only based on the content of the packet under investigation (that would be a static
packet filter), but also on additional metadata or context information. For instance, a
device that performs Network Address Translation (NAT) has to keep the list of active
connections, to be able to successfully differentiate packets that are part of an open session
from those that are not, with the possible intent of opening a new session or rejecting it.

Packet filters are used in a variety of systems; a few of them have been listed below.

• A firewall is used to help keep a network secure. Its primary objective is to con-
trol the incoming and outgoing network traffic by analyzing the data packets with
a packet filter and determining whether it should be allowed through or not. A
network’s firewall builds a bridge between an internal network that is assumed to be
secure and trusted, and another network, usually an external network such as the
Internet, that is not assumed to be secure and trusted.

• An Intrusion Detection System (IDS) is used to monitor network packets or
systems for malicious activity and perform a specific action if such activity is de-
tected. Usually, if malicious activity is detected on the network, the source IP of the
malicious traffic is blocked for a certain period of time, and all of the packets from
that IP address will be rejected.

• An Intrusion Prevention System (IPS) is basically an upgrade of an intrusion
detection system. Where the IDS is used to detect, block and log the attack, the IPS
is used also to prevent the attack itself, either in advance or while it is happening.

• A system that performs Security Information and Event Management (SIEM)
can monitor security alerts generated by various software or hardware solutions that
are used for detecting malicious activity. SIEM itself is a combination of:

iv

– SIM (Security Information Management): provides the analysis and reporting
of the logged data.

– SEM (Security Event Management): provides monitoring and correlation of
events.

In this context, a packet filter can be used as one of the sources of events to be
aggregated and analyzed.

Present and future challenges for packet filters

Packet filter technologies are facing new issues every day, as we had to re-engineer our
computer networks in order to accommodate many new use cases. For instance, low-level
network protocols are growing in number: new solutions, arising in particular for the
purpose of network virtualization (e.g., 802QinQ, VXLAN), are rapidly transforming the
Ethernet frames. The middle layers of the protocol stack are facing a similar metamor-
phosis: examples include the widespread adoption of Virtual Private Networks, or the
necessity to transport IPv6 traffic over IPv4 networks.

Packet filters are dramatically affected by those changes, as they become more com-
plicated: it is important to be able to capture all the traffic we are interested in (e.g., web
traffic), independently from the actual encapsulation used at lower layers.

For this reason, the scientific research should embrace these new issues by proposing
improvements over the traditional technologies, with the goal of maintaining the standards
of efficiency of flexibility that we are used to.

This dissertation addresses two specific issues:

1. How to preserve packet filter flexibility when specifying packet matching rules.
We need a solution that allows a finer specification of matching rules, but that
is also independent (if desired) on the specific encapsulation used at lower levels;
moreover, the solution should support protocol definitions specified at run-time.
Part I addresses the problem and describes in detail the proposed solution: NetPFL,
a declarative language targeted to data-plane packet processing.

2. How to achieve efficiency when representing and combining multiple packet filters,
even in case of bizarre and unusual network encapsulations. Part II outlines the
issue and proposes two solutions: pFSA (described in Chapter 2) and its extension,
xpFSA (delineated in Chapter 3).

v

Contents

Summary iii

I Solving the expressivity problem for packet filter languages 1

1 NetPFL: a declarative language for data-plane packet processing 3

1.1 The issues with current packet filter languages 3

1.2 State of the art in packet filter languages 4

1.3 Introduction to NetPFL . 6

1.4 NetPFL general syntax . 6

1.5 Filtering Elements . 7

1.5.1 Protocol and Field Identifiers . 7

1.5.2 Byte Ranges . 9

1.5.3 Data References . 10

1.5.4 Constant Values . 11

1.6 Filtering Expressions . 12

1.6.1 Basic Syntax . 12

1.6.2 Conditional Predicates . 13

1.6.3 Predicate Composition . 16

1.6.4 Multiple instances of the same protocol/field 19

1.7 Actions . 20

1.7.1 Accepting Packets . 20

1.7.2 Extracting network data . 20

1.8 Streams . 22

1.9 Handling tunneling in the encapsulation graph 22

1.10 Identifying Protocol Header Instances . 23

1.10.1 Definition of header instances . 24

1.11 Header Sequences . 24

1.11.1 The any keyword and other protocol placeholders 25

1.11.2 Repeat operators . 25

1.11.3 Chaining headers through the “in” and “notin” operators 26

1.11.4 Contexts . 28

1.12 Conclusions . 29

vi

II About efficient packet filters 31

2 pFSA: a new model for packet filters 33

2.1 Introduction . 33

2.2 Related Work . 34

2.3 Finite State Automata with Predicates . 36

2.3.1 Definition of pFSA . 36

2.3.2 Running a pFSA . 38

2.3.3 Determinism . 38

2.3.4 Algorithms . 39

2.3.5 Predicates composition . 41

2.4 pFSA for packet filtering . 41

2.4.1 States . 43

2.4.2 Input symbols . 43

2.4.3 Predicates . 44

2.4.4 States and network protocols . 45

2.4.5 Building a pFSA for packet filtering 46

2.5 Predicates optimization . 47

2.5.1 Overview . 49

2.5.2 Going multilevel: the protoFSA . 50

2.5.3 Building a protoFSA . 51

2.5.4 About optimality . 52

2.5.5 Predicates and ranges . 53

2.6 Implementation . 53

2.6.1 Overview . 54

2.6.2 Protocol scanner . 54

2.6.3 Predicate evaluator . 55

2.6.4 Code generation . 55

2.6.5 Safety . 56

2.7 Validation . 56

2.7.1 Filter compilation time . 57

2.7.2 Filter runtime performance . 59

2.7.3 Filter scalability . 60

2.7.4 Ease of use . 62

2.8 Conclusions . 63

3 xpFSA: efficient support for tunneled protocols 65

3.1 Introduction . 65

3.2 Related Work . 66

3.3 Extended FSA with Predicates . 67

3.3.1 Definition of xpFSA . 68

3.3.2 Determinism . 70

3.3.3 Algorithms . 70

3.4 Building the xpFSA . 71

vii

3.4.1 NetPFL to regular expression . 73
3.4.2 The skeleton of the automaton . 74
3.4.3 Defining the counters . 74
3.4.4 Labeling the transitions . 75
3.4.5 The automaton representing the header chain 77
3.4.6 Managing states already representing a single protocol 78
3.4.7 Expanding states and transitions . 78
3.4.8 The xpFSA representing the header chain 79

3.5 Identifying tunneling . 80
3.5.1 Assigning layer numbers to protocols 81
3.5.2 Building the xpFSA . 83

3.6 Using the xpFSA model in field extraction 84
3.6.1 An optimization . 87

3.7 The preferred encapsulation rules . 88
3.8 Implementation . 90
3.9 Validation . 90

3.9.1 Compilation time . 91
3.9.2 Filtering time . 93
3.9.3 Impact of counters . 94

3.10 Conclusions . 96

Conclusions 97

Bibliography 100

viii

List of Tables

1.1 Comparison operators . 14
1.2 Content-search operators . 15
1.3 Arithmetic operators . 16
1.4 Precedence rules for arithmetic and logic operators 16
1.5 Examples of expressions . 17
1.6 Examples of composed boolean expressions 18
1.7 Repeat operators . 25
2.1 Sample filters . 57
2.2 Memory usage and number of states . 58
2.3 Number of tokens in the filtering string needed to filter a tunneled IPv4

instance with a given destination address 62
3.1 Translation rules . 73
3.2 Sample NetPFL filters. 91

ix

List of Figures

1.1 Packet containing an ip-gre-ip tunnel . 19

1.2 Encapsulation Graph . 23

1.3 Contexts example . 28

2.1 pFSA example. 37

2.2 pFSA predicates Cartesian product. 40

2.3 pFSA predicates anticipation. 40

2.4 Example of a pFSA with complex predicates: the union case. 42

2.5 Example of a pFSA with complex predicates: the intersection case. 42

2.6 Overview of the system in which pFSA are used for packet filtering. 43

2.7 Example of a pFSA for the filter ip. 44

2.8 Example of a pFSA for the filter ip.src == 1.1.1.1. 45

2.9 Building steps for a simple pFSA. 47

2.10 Example of a deterministic pFSA for the filter ip.src == 1.1.1.1 and

tcp.dport == 80. 48

2.11 Example of a deterministic pFSA for the filter ip.src == 1.1.1.1 or

ip.dst == 2.2.2.2. 48

2.12 The main idea behind the “multilevel” implementation feature. Predicates
are merged within the same predicate evaluation block, leading to a simpli-
fication of the base pFSA: multiple transitions are merged together, paving
the way for further optimizations at the predicate level. 49

2.13 Example of composition of the predicate ip.src == 1.1.1.1 and ip.dst

== 2.2.2.2, corresponding to predicate P4 in Figure 2.12. 52

2.14 Example of the protoFSA created in Figure 2.12, composing predicates P1,
P2, P3 and P4, and the resulting optimized protoFSA. 52

2.15 Overview of the building blocks in our prototype. 54

2.16 Example of a predicate that specifies multiple comparisons against the same
protocol field, generated with the filter: tcp.dport > 1024 or tcp.dport == 80

or tcp.dport == 22 or tcp.dport == 8080. Note the tree structure and
the removal of the redundant checks. 55

2.17 Comparison of the time needed by pFSA and SPAF to compile and optimize
a filter. 58

2.18 Maximum number of CPU cycles needed to evaluate a packet for each filter. 59

2.19 Compile and optimization times needed by pFSA to compile TCP session
filters. 60

x

2.20 Overall runtime performance w.r.t. TCP session filters. 61
3.1 Growing complexity in protocol encapsulations. 66
3.2 Example of a pFSA with duplicate states. 68
3.3 Example of xpFSA. 69
3.4 Example of determinization of an xpFSA. 71
3.5 Example of minimization of an xpFSA. 72
3.6 Example of union of two xpFSA. 72
3.7 Building blocks of the automaton. 74
3.8 Skeleton of an automaton representing a header chain. 75
3.9 Transitions labeling process. 76
3.10 Automaton with labeled transitions. 77
3.11 Deterministic automaton representing an header chain. 77
3.12 Automaton with some labeled states. 78
3.13 Expansion of a state and the related transitions. 79
3.14 Expansion of unlabeled states. 80
3.15 xpFSA representing a NetPFL header chain. 81
3.16 Layer assignment example. 83
3.17 Non-deterministic automaton representing the filter ip tunneled. 84
3.18 xpFSA matching the header chain ip. 85
3.19 Non-deterministic automaton representing the extraction of ip%2.src. . . . 86
3.20 xpFSA representing the extraction of ip%2.src. 86
3.21 xpFSA representing a NetPFL rule with field extraction. 87
3.22 Building the xpFSA to extract from the first TCP header of the packet. . . 88
3.23 Example of NetPDL encapsulation rules. 89
3.24 Two fragments of PEG. 90
3.25 Protocol Encapsulation Graph. 92
3.26 Performance of the code generator. 93
3.27 Performance of the generated filters. 94
3.28 Difference in the number of states. 95
3.29 From the pFSA representing proto%(n-1), to the pFSA modeling proto%n. 96

xi

Part I

Solving the expressivity problem
for packet filter languages

Chapter 1

NetPFL: a declarative language
for data-plane packet processing

1.1 The issues with current packet filter languages

Many networking tools based on protocol parsing (packet filters, firewalls, Intrusion De-
tection Systems, etc.) were developed in a time when the number of protocols was limited
and the encapsulation relationships among them were rather simple.

Currently this assumption has become no longer valid. The number of possible pro-
tocol encapsulations in network traffic is growing day after day due to several reasons:
the attempt to bypass application-layer constraints and, in general, to escape network
restrictions (e.g., different application protocols transported in HTTP in order to bypass
firewalls), or the necessity to establish Virtual Private Network sessions in many different
environments and to transport unsupported traffic. Many of these solutions require the
encapsulation of lower-layer protocols in other ones of the same level (as IPv6 in IPv4),
or even in higher-layer ones (e.g. IP in UDP).

Although current packet filtering tools are able to support common conditional predi-
cates (e.g, the presence of a protocol or a field with a given value), they fail when requested
to select only specific types of encapsulation (e.g. IPv6 traffic encapsulated in IPv4). This
is a problem for the aforementioned network-based tools, whose solution requires the
addition of a module that is able to selectively inspect the network traffic before the ac-
tual processing; this strategy is, however, error-prone and adds computational overhead.
Furthermore, the list of supported encapsulations is generally hardcoded in the packet
filtering tools (therefore not easily expandable) and it is often limited with respect to tun-
neled protocols. This represents an additional limitation because the packet filter needs
to be recompiled in order to extend its supported protocol set.

To overcome the previous limitations in filtering expressivity, a new packet filtering
language is needed. This Part introduces NetPFL (abbreviation for Network Packet Fil-
tering Language), a new declarative language for data-plane packet processing. Among its
main strengths, (i) it can handle complex situations of tunneled and stacked encapsula-
tions, giving the user a finer tuned control over the semantics of a filtering expression; (ii)

3

1 – NetPFL: a declarative language for data-plane packet processing

it supports several independent filters that can lead to multiple matches; (iii) it allows the
user to choose, in an implementation-agnostic way, the action that should be performed
upon receipt of each matching packet; (iv) associates each packet with a stream indica-
tor, to facilitate the merging of different logical filters within the same physical filtering
machine and the demultiplexing of the associated packets that belong to different logical
filters; (v) it is human-friendly, making it suitable for fast command-line processing.

Furthermore, no protocol knowledge is embedded in NetPFL, facilitating its integra-
tion with any other language that provides protocol specification, e.g. external proto-
col databases that can be defined (and updated) independently from the packet filtering
language. Particularly, our prototypical implementation associates NetPFL to the Net-
PDL [28] language, which provides the protocol definition, enabling support for run-time
updates of the protocol data set.

The state of the art for packet filter languages is presented in Section 1.2, while the
proposed language specification for NetPFL is discussed in Section 1.3. Section 1.12 draws
the conclusions about NetPFL.

1.2 State of the art in packet filter languages

Current packet filtering solutions are based on different filtering languages that look ex-
tremely similar, as they are engineered with similar purposes in mind, but are often differ-
ent with respect to the language details or the approach used to express Boolean conditions.
A non-exhaustive listing of the most common packet filtering languages is depicted here.

libpcap [8] is probably the most famous packet capture (and filtering) library; it runs
on top of many UNIX-based kernels (and Windows, in its WinPcap flavor [1]) and exposes
to the filtering applications a set of primitives [2] that can be combined to fully express
the desired capture syntax. Predicates operate on selected fields of some of the most
common protocols (i.e. Ethernet, IEEE 802.11, IP, TCP, UDP and others) or on the
length of the packet. Wireshark [3] is a popular packet sniffing and analysis application
that, while relying on libpcap as primary packet filtering engine, uses its own syntax in
post-processing mode. This language allows a broader set of filters to be expressed, both
in terms of allowed predicates and in terms of protocol and fields supported; the official
website states that, as of version 1.2.6, over 85000 protocol fields can be specified. Both
libpcap and Wireshark, as many others, allow to define a filter that matches a selected
number of protocols (e.g., l2tp), but fail when requested to express different conditions
for the encapsulating protocols (e.g., l2tp in ipv6) and do not support matching against
multiple filters. Furthermore, they do not have action capabilities and have static protocol
descriptions hardwired in their code, making extensibility cumbersome.

The last problem is solved by the NetPDL [28] language, which describes protocol
formats and encapsulation rules. However, this language is purely descriptive and it does
not specify any primitive to define the actual filter, requiring another language for defining
the filtering expression based on its extensible protocol description. Binpac [4] is similar
to NetPDL since it focuses on protocol description, although its many primitives also
enable the definition of generic actions. However, the language focuses on application-layer

4

1 – NetPFL: a declarative language for data-plane packet processing

protocols, and it requires full programming, making it not suitable for fast, command-line
interface commands.

While packet filtering is a fundamental part of most networking applications, often the
resulting packet stream has to be further processed in order to complete the application’s
job. These applications often define their own language, including both filtering primitives
and a specification of the actions to be applied to the resulting packet stream. Some well-
known examples can be found in some popular Intrusion Detection Systems (IDS) such as
Snort [5] or Bro [6], which allow only a handful of protocol fields to be inspected, focusing
instead on the action to be performed or on the payload of the transport protocol. Still,
primitives required to differentiate tunneling do not exist and the protocol set is hardcoded
in the application, but in this case they are able to define some complex actions, such as
inspect the payload, raise an alert, and more. In fact, their languages focus on the peculiar
set of actions required by the application, with limited possibility to reuse (or extend) that
language in case of a different application. Differently from the previous applications, IDSs
are able to define multiple rules (i.e. filters) that can be active at the same time and that
can lead to multiple matching; the receiving module is made aware of the filters that
matched against each packet.

Similarly, also Stream-SQL [7] focuses on high-level actions, enabling sophisticated
elaborations (e.g. grouping, counting, ordering, etc.) on a data live stream through a SQL-
like syntax. However, this language does not include the traditional filtering capabilities
operating on packets. Filtering primitives (i.e., the SELECT keyword) operate on a live
stream that looks like a structured table, as in a traditional database, making this approach
unfeasible for classical packet filtering. For the same reason, the number of protocols and
fields identified is limited to those known by the engine that pre-processes the network
traffic and creates the live stream in tabular format.

All the approaches presented above suffer of at least one of the following problems:

• no tunneling support: even if tunneling protocols are successfully recognized,
multiple instances of the same protocol in the same packet cannot be treated sep-
arately; furthermore, the user cannot select precisely which encapsulations have to
be considered when capturing packets;

• no multiple independent filters: most of the languages do support multiple
independent (and potentially overlapping) filters that can be satisfied at the same
time, and do not allow to return the list of the matching filters to the application;

• limited actions and no extensibility: each language aims at solving only the
problem of the particular application and there is no provision of a generic action-
based language that can support many applications;

• human-friendliness: we want the language to be used on a command line tool, in
order to be able to quickly react to changing network conditions without having to
rely on complex building toolchains;

• hardwired protocol description: the number of protocols recognized by each
implementation can be increased only by editing the source code of the application

5

1 – NetPFL: a declarative language for data-plane packet processing

and recompiling it.

NetPFL aims at solving the first four problems: appropriate (and human-friendly)
primitives enable the identification and selection of each protocol in a tunnel, while keeping
an high degree of flexibility. Furthermore some common actions have been defined, which
can be further extended at will, and multiple independent filters are supported. With
respect to the fifth problem, NetPFL is completely protocol-agnostic, as it has no a priori
knowledge about the structure of the packets to be processed. NetPFL relies on other
languages to describe protocol formats: in our implementation it has been associated with
NetPDL.

1.3 Introduction to NetPFL

The Network Packet Filtering Language (NetPFL) is a declarative language targeted to
data-plane packet processing. It implements a filter - action paradigm for processing
network packets, which consists in creating a filtering expression and to define a possible
set of actions to be executed in case the filtering condition is satisfied.

While the syntax of NetPFL allows defining a complex filtering rule based on protocols
and fields, it does not define the list of protocols/fields supported. For instance, the
names of protocols and fields are not defined as special keywords of the language, but are
dynamically bound to those defined in an external data set. The protocol independence of
NetPFL enables this language to be used for any present and future protocol.

NetPFL can be viewed as complementary to NetPDL [28], because it directly exploits
the capability of NetPDL to describe the binary format of network protocol headers and
encapsulation relationships between different protocols. In particular, while NetPDL de-
scribes the content of each packet in terms of headers and fields, NetPFL defines packet
filtering expressions, as well as associated actions that should be performed on a packet
when the above-mentioned filtering conditions are verified.

The basic syntax of the language is introduced first in Section 1.4, then each subsequent
section analyzes all language constructs in detail. Starting from Section 1.9 we describe
the advanced features of NetPFL for dealing with uncommon forms of encapsulation, such
as those involving tunneling.

1.4 NetPFL general syntax

NetPFL is a rule-based language following a filter-action model to express packet handling
statements, such as accepting a packet, or extracting the actual values of a set of fields.
The basic syntax for a NetPFL rule is the following:

[FilteringExpression] [Action] [as stream <StreamID>]

The rule is applied to every incoming packet with the following semantic:

when FilteringExpression is true, perform Action and associate the current packet and

6

1 – NetPFL: a declarative language for data-plane packet processing

the results of the action to the stream identified by StreamID

The filtering expression is a Boolean function that can be based on (i) protocols (i.e.
a filter is satisfied if the packet contains the specified protocol header), and (ii) checks on
field values (i.e. a filter can be specified as an expression involving the value of one or more
header fields). Basic predicates can be composed with the Boolean operators AND, OR,
and NOT in order to express complex filters. Since the filtering expression is an optional
part of a NetPFL statement, when a filter is not specified, the action is applied to all
incoming packets. The detailed syntax of filtering expressions is described in Section 1.6.

Currently NetPFL defines two actions: (i) returnpacket, for simply accepting packets
satisfying FilteringExpression, and (ii) extractfields for extracting the values of
a list of fields specified by the user. returnpacket is the default action. Actions are
described in Section 1.7.

In NetPFL, both the set of all the packets accepted by a filter and the set of all the
tuples of fields extracted from consecutive packets are called “streams”. The user can
specify an identifier for each NetPFL statement through the optional trailing construct
”as stream <StreamID>”, where <StreamID> is a numeric identifier. When multiple rules
are defined, this allows the user to recognize which rule(s) matched a packet. In particular,
when more than one rule has a match, the set of the stream IDs corresponding to such
rules is returned to the user. The actual format of this set is implementation-dependent.
Streams are discussed in Section 1.8.

1.5 Filtering Elements

1.5.1 Protocol and Field Identifiers

In NetPFL, protocol and field identifiers are not tokens specified in the language, but
are derived from the associated protocol database. In other words, the resolution of the
names of protocol and fields used in a NetPFL rule is transparent to the language, which
only requires that such identifiers correspond to valid protocol and field names within the
database in use.

Protocol Identifiers

A protocol identifier is simply a string literal corresponding to a protocol defined in the
NetPDL database. The resolution of the protocol name is case-insensitive. An example
of protocol identifier is given by the string “ip”.

Field Identifiers

A field identifier is represented as a protocol identifier followed by a “.” (dot), followed
by the name of a valid field for the specified protocol, e.g.

proto-name.field-name

7

1 – NetPFL: a declarative language for data-plane packet processing

The resolution of a field name is case-insensitive. An example of protocol identifier is
given by the string: “ip.src”.

Subfield Identifiers

A subfield identifier handles the case of nested fields, where different portions of the same
field can have their own name: such nesting can have arbitrary depth1. Subfields are
represented as a recursive sequence of field identifiers separated by a “.” (dot):

proto-name.field-name.sub-field-name.etc.

where sub-field-name is the name of a portion of the field identified by field-name.

It should be noted that even if a field is actually a portion of another field, in most
cases there is no need to specify the entire field hierarchy that leads to it. In other words,
sub-field-name in the previous example can also be referred with the more compact rep-
resentation:

proto-name.sub-field-name

The field hierarchy must be explicitly specified only in those cases where two or more
fields with different names share a nested field with the same name.

An example of protocol with subfield identifiers is TCP, which contains the flags field,
which in turn contains the subfields named syn, ack and so on. In that case the syn field
can be identified by the string “tcp.flags.syn”; or, alternatively, by “tcp.syn”, as in
TCP there is no other field that contains a subfield named “syn”.

Virtual Fields

A virtual field is an entity that does not refer to an actual field specified in a protocol
description, but to a given portion of the packet, and can be accessed in the same way as
normal protocol fields by using the notation:

proto-name.virtual-field

Currently, NetPFL defines three virtual fields:

1. header: the portion of the packet containing the header of the specified protocol.
For example: tcp.header.

2. payload: the set of data following the specified protocol header. This may include
also the header of subsequent protocols. For example, in the case of a TCP/IP

1However, having more than two levels of nested field names is not common in NetPDL

8

1 – NetPFL: a declarative language for data-plane packet processing

packet, ip.payload includes all the bytes that are present after the IP header until
the end of the packet buffer2.

3. data: all the bytes from the beginning of the given protocol to the end of the packet
buffer. In general, this is equivalent to have the protocol header plus the payload, but
it is implementation-dependent (see note above). For example, tcp.data includes
the layer-IV TCP header and its payload.

The frame placeholder

The frame keyword represents a reference to the whole packet buffer. It is a shortcut for

current link layer protocol.data

where current link layer protocol is the layer-II protocol used on the link on which
the filter is running, and data is the virtual field described above. This keyword enables
to refer to the packet as a whole, without referring to any specific link-layer header.

The packet placeholder

The packet keyword represents a reference to the layer-III header and payload possibly
present in a network frame. It is a shortcut for

current layer3 protocol.data

where current link layer3 protocol is the layer-III protocol found in the current frame,
and data is its virtual field. The protocols actually supported for the packet placeholder
are dependent on the specific implementation of NetPFL.

1.5.2 Byte Ranges

Byte ranges can be used to operate on a portion of the packet, identified by a sequence of
consecutive bytes, and are specified using the notation:

identifier[offset:length]

Where:

• identifier can be a protocol identifier, a field identifier, a virtual field, or either the
frame or packet placeholders;

2Please note that this definition is somewhat implementation-dependent. For instance, if the packet
buffer contains the Ethernet frame, the IP packet, and the Ethernet CRC trailer, ip.payload will contain
not only the bytes until the end of the IP packet, but also the Ethernet CRC bytes, i.e. all the bytes till
the end of the packet buffer.

9

1 – NetPFL: a declarative language for data-plane packet processing

• offset is the displacement of the first byte of the sequence from the entity we are
referring to (i.e., the one specified by identifier);

• length is the length in bytes of the sequence

If length is omitted, its default value is 1.

Examples:

• frame[12:2] identifies a sequence of two bytes starting at offset 12 of the packet
buffer

• ip[16:4] identifies a sequence of 4 bytes starting at offset 16 from the beginning of
the ip header (i.e., the ip destination address)

• ip.src[0:2] identifies a sequence of two bytes starting at offset 0 from the beginning
of the ip.src field

• tcp.header[2:2] identifies a sequence of two bytes starting at offset 2 from the
beginning of the tcp header, (i.e., the tcp destination port). Note: it is equivalent
to tcp[2:2]

• tcp.payload[0:3] identifies a sequence of three bytes starting at offset 0 after the
end of the tcp header

1.5.3 Data References

NetPFL provides several methods for identifying a portion of network data, such as using
field identifiers, virtual fields, byte-ranges, or the frame and packet placeholders. These
elements are called data references, as they allow to refer to a portion of the packet buffer.

Among data references, we distinguish between:

• simple data reference: a data reference created through a byte-aligned field identi-
fier3, virtual field, byte range or the frame and packet placeholders.

• bitfield data reference: a data reference created through a bitfield, i.e. a field whose
starting and/or ending offset are not aligned to an integer number of bytes.

Size of data references

Simple data references are treated by NetPFL as sequences of bytes. This requires any
rvalue present in an expression (Section 1.6.2) to be a byte sequence.

However, in some cases a simple data reference can be treated as an integer value, in
particular in the following cases:

3When the NetPDL language is used to define protocols and fields, a simple data reference is obtained
when referring to any type of field but the bit field.

10

1 – NetPFL: a declarative language for data-plane packet processing

1. Fields of fixed size (i.e., whose size is known at compile-time), whose length is less
or equal than 4

2. Byte-ranges whose length is less or equal than 4

In any other case, i.e. when the length of a reference is greater than 4 bytes, or its
length is known only at run-time, the packet reference is always evaluated as a byte array.
It should be noted that when treating a reference as a 32 bit number, an implicit byte
order conversion from network byte order (i.e. big-endian, the conventional byte order
used in network packets) to host byte order is applied.

1.5.4 Constant Values

Due to its network-oriented nature, NetPFL handles primarily two data types: unsigned
32-bits integers and byte sequences (or byte arrays). Additional types are regular expres-
sions and field-dependent values.

Unsigned 32-bits integers

The possible ways to express constant numeric values are the following:

1. Unsigned decimal values on 32 bits, e.g. 1258

2. Hexadecimal values on 32 bits, using case-insensitive C-like notation, e.g. 0x1096ccFF

3. IP addresses, using the dotted notation, e.g. 192.168.0.1

Byte sequences

The possible ways to express constant byte sequences are the following:

1. String literals enclosed in double quotation marks, e.g. “HTTP”

2. Sequences of hexadecimal bytes, in which consecutive bytes are separated by a “:”
(colon), e.g. AA:bb:CC:dd. Please note that Ethernet MAC addresses are a special
case of six bytes long hexadecimal byte sequences.

3. IPv6 addresses, e.g. 2001:0db8:0020:ABCD:efff:0000:1428:57ab

Regular expressions

A regular expression is a string enclosed between double quotation marks (e.g. “.*HTTP
GET.*”). From a syntactical point of view, a regular expression is a string that includes
one or more metacharacters, e.g. “.”, “*” etc. However, as will be detailed in Section 1.6.2,
strings and regular expression are used with different kinds of operators, thus avoiding any
ambiguity. Regular expressions allowed in NetPFL follow the PERL dialect.4

4The PERL syntax is the one implemented in the well-known libpcre library, and it is more powerful
albeit more complex.

11

1 – NetPFL: a declarative language for data-plane packet processing

Field-dependent values

A field-dependent value is a string, enclosed by single quotation marks, which is mapped
to an integer or a byte array. This data type is used as operand in comparison expressions.
The mapping between the string and the real value depends on the protocol field to which
the field-specific value is compared. For example, the predicate

ip.src == ‘www.polito.it’

compares the src field of an IP header with the field-specific value ‘www.polito.it’ (the
syntax of comparison expressions will be explained in details in Section 1.6.2). In this
case, field-specific constant is translated into an IPv4 address through a DNS lookup. In
this other example:

tcp.sport == ‘http’

the predicate compares the sport field in the TCP header with a field-specific value.
In this case, ‘http’ is translated into a TCP port value through a table that associates
well-known services with their default ports.

The methods used for mapping keywords to actual values are not specified and are left
to the specific implementation.

1.6 Filtering Expressions

A filtering expression is a Boolean function representing a (possibly complex) condition
on network data that must be met for the action of a NetPFL rule to be triggered. This
section introduces the basic syntax and semantic for filtering expressions, without taking
into account problems related to complex encapsulation cases which could be present
in packets (such as those involving tunneling). Section 1.9 describes a set of additional
primitives of the NetPFL language that will allow a correct handling of packets containing
tunneled encapsulations.

1.6.1 Basic Syntax

The elementary blocks of NetPFL filtering expressions are represented by predicates, which
are Boolean functions representing simple conditions on the content of a packet. Complex
filtering expressions can be expressed by joining together several basic predicates, as will
be outlined in Section 1.6.3.

Simple predicates are expressions that check the presence of a protocol or a field within
the packet.

Predicates on Protocols

The simplest kind of filtering expression is the one specifying only a protocol identifier,
with the following meaning:

12

1 – NetPFL: a declarative language for data-plane packet processing

if at least an instance of protocol is present in the packet, then the predicate is true

An example is “ip”. Please note that this predicate is satisfied when an ip header is
found in any position of the packet, e.g. also in case of an IPv6 packet transporting an
IPv4 packet inside. More details will be shown in Section 1.6.4.

Predicates on Header Fields

Predicates on Header Fields are similar to the previous case. For instance, a condition
consisting of a field identifier, such as ”ip.timestampoption” will define a filter that
selects all the packets in which this field is present.

This notation might appear useless when it refers to a mandatory field of a protocol:
for example, the predicate “ip.src” always matches all IP packets, since the src field
is always present in the IP header. However, this may be useful to select packets in
which a given field may appear (optionally) within a protocol header only under some
circumstances.

Section 1.6.4 will present the case in which a field is repeated multiple times within
the packet.

1.6.2 Conditional Predicates

As seen in Section 1.5.3, the content of a network frame is accessible through data refer-
ences, i.e. fields, virtual fields, byte-ranges and the frame and packet placeholders. We
can distinguish two types of conditions: simple conditions through standard comparison
operators and content search operators.

Standard comparison operators

A predicate can represent the evaluation of a condition on a data reference, through com-
parison operators, with the following syntax:

reference CompOperator constant

or

reference1 CompOperator reference2

CompOperator is an operator from Table 1.1.
In the case of a comparison with a constant, this can be specified using one of the

syntactical constructs defined in Section 1.5.4. In case a numeric constant is being used,
please refer to the rules listed in Section 1.5.3. Briefly:

1. The constant value can be of integer type only if the reference can be evaluated as
an integer (refer to 1.5.3 for more details)

13

1 – NetPFL: a declarative language for data-plane packet processing

Operator Meaning

== equal

!= not equal

> greater than

< less than

>= greater or equal

<= less or equal

Table 1.1. Comparison operators

2. The constant value must be of integer type if the reference is a bitfield

3. The constant value must be a byte-sequence if the reference cannot be evaluated
as an integer, i.e. its length is greater than 4 bytes or is unknown

4. The constant value can be a byte-sequence even if the reference can be evaluated
as an integer

When comparing against an integer constant, a comparison between unsigned inte-
gers is applied; on the other hand, when comparing against a byte-array constant, a
lexicographical comparison is applied. When comparing two packet references, an inte-
ger comparison is applied whenever possible (i.e. when both references are known to be
smaller or equal to a 32 bit integer), while a lexicographical comparison is used in any
other case.

Content search operators

Besides comparisons, predicates may involve content search operations (listed in Table
1.2). During a content search an operand is examined to determine if it contains a specific
sequence of bytes. The following syntax is used:

reference (matches | !matches) string-const
or
reference (contains | !contains) string-const
or
reference1 (contains | !contains) reference2

14

1 – NetPFL: a declarative language for data-plane packet processing

The following rules apply:

1. Only simple data references are supported (hence, bitfield data references cannot
appear in a content-search string)

2. When using contains and !contains operators the constant string (string-const)
is interpreted as a simple sequence of characters and exact pattern matching is used,
while when using matches and !matches operators the (string-const) is interpreted
as a PCRE-compatible regular expression.

Operator Meaning

matches The predicate is true if the lvalue matches the rvalue expression.

!matches The predicate is true if lvalue does not match the rvalue expression.

contains The predicate is true if lvalue contains the rvalue expression.

!contains The predicate is true if lvalue does not contain the rvalue expression.

Table 1.2. Content-search operators

Operations before comparison

When a packet reference can be treated as an integer, it can be the operand of an arith-
metic or bitwise logic expression. NetPFL allows a wide set of operations, involving both
references and integer constants. Available operations follow the syntax and the grammar
of the C-language, and are listed in Table 1.3.

All the operators but “∼” are binary operators. Vice versa, “∼” is a unary operator.
Examples of statements in which a predicate consists of a comparison between a header

field and a constant value can be found in table 1.5. In the last three examples, various
operations are performed on the first operand.

Arithmetic and logic operators listed in Table 1.3 have higher precedence over other
operators (e.g. Table 1.1 and Table 1.2).

The precedence rules for those operators are defined (in descending order of precedence)
in Table 1.4. In case several arithmetic and logic operators are present in the same
expression, precedence is given according to these rules: (i) operators higher in Table 1.4
have a higher precedence, while (ii) operators on the same line in the list have the same
precedence. In the latter case, if several operators are present in the same expression,
these are evaluated left-to-right. Parentheses can be used to change the precedence within
a single expression.

15

1 – NetPFL: a declarative language for data-plane packet processing

Operator Meaning Type

+ Add Arithmetic operator

- Sub Arithmetic operator

* Multiply Arithmetic operator

& Bitwise AND Bitwise operator

| Bitwise OR Bitwise operator

∼ Bitwise NOT Bitwise operator

<< Left shift Shift operator

>> Right shift Shift operator

Table 1.3. Arithmetic operators

∼
*

+ -

<< >>

&

|

Table 1.4. Precedence rules for arithmetic and logic operators

1.6.3 Predicate Composition

In order to express complex conditions, basic predicates can be joined together as follows:

predicate1 BoolOp predicate1
or
not predicate

BoolOp can be either and or or. As expected, the compound predicate resulting from
an and operation is true only if both predicates are true, and is false in any other case;
vice-versa, the result of an or operation between two predicates is false only when both
the sub-conditions are false, and true in any other case. A predicate can also be negated

16

1 – NetPFL: a declarative language for data-plane packet processing

Expression Meaning

ethernet.dst == aa:bb:cc:dd:ee:ff
true if ethernet is present and the destination
MAC address is equal to aa:bb:cc:dd:ee:ff

udp.dPort == 53
true if UDP is present and the value of the UDP
header field dPort is equal to 53

ip.dst != 10.0.0.1
true if IPv4 is present and the value of the IP
header field dst is not 10.0.0.1

ip.src & 255.255.255.0

== 10.0.0.0

true if the ip source address masked with
255.255.255.0 is equal to 10.0.0.0

ip.src & 0xFFFFFF00 ==

10.0.0.0

true if the ip source address masked with
0xFFFFFF00 is equal to 10.0.0.0.

tcp.payload matches

"GET.*HTTP/1.(0|1)"

true if the regular expression is found in the
specified virtual field.

ip.src & 255.255.255.0 ==

ip.dst & 255.255.255.0

true if the first 24 bits of the IP source address
are equal to the first 24 bits of the IP destination
address.

ip.hlen * 5 == 20 true if the IPv4 header length is 20 bytes.

Table 1.5. Examples of expressions

through the not operator.
NetPFL allows the use of C Language’s boolean operators in place of their literal

counterparts, i.e. && instead of and, || instead of or and ! instead of not.

Precedence and associativity

Operators used for predicate compositions have always a lower precedence than arithmetic
and logic operators (Section 1.6.2).

In case several conditions are present within the same predicate, precedence is given
as shown in the list below (operators higher in the list have a higher precedence):

not

and

or

When multiple boolean operators are used within the same filter, parentheses can be
used to make the precedence between operators explicit. Table 1.6 shows some examples
of expressions in which boolean operators are used.

17

1 – NetPFL: a declarative language for data-plane packet processing

Expression

(ip and tcp.dPort >= 1024) or (ip.src == 10.0.0.7 and udp)

(ip or ipv6) and tcp

not ip.src == 10.0.0.7

Table 1.6. Examples of composed boolean expressions

A note about the operators not and !=

It is worth noting that the operators not and != have a slightly different meaning, and, if
used interchangeably, lead to predicates with different meanings.

For instance, the filter not ip.src == 10.0.0.7 is not equivalent to ip.src !=

10.0.0.7. In particular,

not ip.src == 10.0.0.7

should be interpreted as:

not(the packet contains ip and the field ip.src is equal to 10.0.0.7)

Which means:

either the packet does not contain ip , or (the packet contains ip and the field ip.src is
not equal to 10.0.0.7)

On the other hand,

ip.src != 10.0.0.7

should be interpreted as:

the packet contains ip and the field ip.src is not equal to 10.0.0.7

In other words, the filter not ip.src == 10.0.0.7 accepts all the packets containing
ip with ip.src != 10.0.0.7, as well as all the packets not containing ip. On the other
hand, the filter ip.src != 10.0.0.7 accepts only the packets containing ip with src !=

10.0.0.7.

The same statement applies to operators !matches and !contains.

18

1 – NetPFL: a declarative language for data-plane packet processing

Ethernet IP (1) IP (2)GRE TCP

Figure 1.1. Packet containing an ip-gre-ip tunnel

1.6.4 Multiple instances of the same protocol/field

In case multiple instances of the same protocol/field are present within the packet, the
filtering process will check the filter against all instances until a match is found; this rep-
resents the default behavior of the language. If we want instead to specify more precisely
which instance we want to consider, new mechanisms have to be introduced. Particularly,
we can distinguish two cases: the one in which the filtering predicate is a protocol and the
one in which the filtering predicate involves protocol fields.

The filter predicate is a protocol

In this case, the filter returns true if the protocol is found anywhere within the packet.
In order to enable the selection of the instance of the protocol we are referring to, a new
mechanism has been introduced: header indexing allows to specify exactly which protocol
header instance we are interested in. The syntax is as follows:

proto id%n

where n is an integer number indicating the ordinal number of the occurrence of the
proto id protocol to be taken into account. Different instances of the same protocol
header are numbered with increasing values of n, where proto id%1 represents the first
occurrence of the proto id protocol header.

For example, considering the packet depicted in Figure 1.1, the expression

ip%1

refers to the first instance of the ip protocol (i.e. the one between ethernet and gre),
while the expression

ip%2

refers to the second instance of the ip protocol (i.e. the one between gre and tcp).

The parameter n can also be specified by using the inner keyword, which allows select-
ing the innermost (i.e. the last) instance of the proto id protocol. For example, always
taking into account the packet exemplified in Figure 1.1, the expression

ip%inner

selects the second instance of the ip protocol.

19

1 – NetPFL: a declarative language for data-plane packet processing

Header indexing can be used for specifying more selective filtering conditions involving
protocols and fields. In particular, since the filtering condition

ip%2

matches the second instance of the ip protocol, it can be used to match all packets
containing at least two instances of the ip protocol header. Furthermore, the filtering
condition

ip%1.src == 10.0.0.1

matches only the packets where the src field of the first instance of the ip protocol
equals the value 10.0.0.1.

1.7 Actions

The action defines what to do when a packet matches the filter.

NetPFL defines the following actions:

• returnpacket

• extractfields

The former can be used to accept a packet, while the latter allows to extract and
return to the user a list of fields (or, in the general case, a list of packet references, as well
as additional information about the content of a packet). The result of an action, i.e. the
data returned to the user, is action-dependent.

1.7.1 Accepting Packets

The returnpacket action is self-explicative, and does not need any additional consider-
ations. If the input packet satisfies the filter, the packet itself is returned to the user.
The return format of the packet is application-dependent and it is not specified by the
NetPFL.

If no other action is specified, returnpacket is the default one.

1.7.2 Extracting network data

The extractfields action allows the user to specify a list of data references (Section
1.5.3) and/or some additional information to be extracted and returned to the user, as
metadata associated to the packet, if the input packet satisfies the filter. The format of
the returned data is implementation-dependent.

The basic syntax for the extractfields action is the following:

extractfields(list-item-1 , list-item-2 , ... , list-item-n)

20

1 – NetPFL: a declarative language for data-plane packet processing

Where list-item-1 ... list-item-n can be one of the following:

1. a data reference: returns the content of a field, a virtual field, a byte-range. Please
refer to Section 1.5 for a definition of packet reference.

2. protolist: returns the protocol IDs of the protocols encountered during packet de-
multiplexing (i.e., a packet containing ethernet-IP-TCP-HTTP protocols will return
the list of protocol IDs ethernet, IP, TCP, HTTP).

3. innerproto: returns the protocol ID of the innermost protocol (i.e., a packet con-
taining ethernet-IP-TCP-HTTP will return HTTP).

4. proto.allfields: if proto is present, returns the content of each field contained in
the specified protocol header. Since the fields actually present in the header may be
known only at runtime, the field ID of each field must be returned as well.

Protocol IDs and Field IDs are application-dependent. The NetPFL implementation
must provide the appropriate methods to interpret the returned IDs.

The extractfields action leads to some corner-case behaviors that are listed below.

Multiple instances of the same field

Filtering and action are two consecutive phases in the processing path. The filtering phase
returns a set of packets, which are then further processed in order to extract the desired
data. Section 1.6.4 analyzes the case of multiple instances of protocols/fields within the
same packet with respect to packet filtering. Here we present the extraction rules when
multiple instances of the same protocol/field are present within a packet.

In case multiple instances of the same protocol/field are present within the same packet,
by default the first instance that is found is returned. However, in order to select more
precisely which instances have to be returned, the same indexing techniques that have
been introduced for the filtering process can be used in the extraction process. A more
complex list of examples can be found in Section 1.9.

Absence of a field within the current packet

If may happen that a field contained in the field list is not present in the packet. This may
be the case of an optional field, or the case of a filter that extracts fields that are not present
in all matching packets (e.g. all packets are matched, but only ip.src is extracted: not all
matching packets might include an instance of IP). In this case, NetPFL implementations
can either return a null reference, or a field with zero-length, or skip this field from the
returned metadata.

Format and order of the returned metadata

The format and the order of the returned metadata is implementation-dependent. There-
fore, the user should make no assumptions.

21

1 – NetPFL: a declarative language for data-plane packet processing

1.8 Streams

A stream can be viewed as a sequence of processed packets with the corresponding meta-
data. With the definition of the stream, the packet processing engine can handle several
processing programs at the same time, with possible optimizations between the different
streams (e.g., a test required by all active streams may be performed only once).

From the end-user point of view, a stream may be useful at least in these conditions:

1. multiple matching: in case of a packet matching multiple streams, we can imme-
diately know which ones returned true.

2. editing: we can easily add a new stream, delete an existing stream, or replace an
existing one without any modification to the rest of the active streams.

The NetPFL implementation has to provide the equivalent of the setstream() and
deletestream() functions. If a new stream is added through the setstream() function,
the NetPFL engine will check if the new stream has to replace an existing one or has to
be added to the existing stream set. This control is based on the stream ID : if this value
matches an existing stream, the old stream has to be replaced, otherwise the new stream
has to be added.

In case no streams are specified, the NetPFL engine will assume the stream 0 as
default.

The set of functions required to handle streams (and to get results from multiple
streams at once) are implementation-dependent.

1.9 Handling tunneling in the encapsulation graph

Consider a set of protocols; the encapsulation relationships that exist between them can
be used to identify a directed graph G(V,A), where each node v represents a protocol in
the database, and an edge e(x, y) is directed from the node x to the node y if the protocol
y can be encapsulated into the protocol x. We call such a graph a Protocol Encapsulation
Graph, or Encapsulation Graph.

While most of the protocols are characterized by a small set of simple encapsulation
rules, the complete set of possible encapsulation rules is far larger. Figure 1.2 shows an
indicative example.

With the NetPFL syntax described so far, a filter involving a protocol will cause the
NetPFL engine to control all the possible encapsulation paths that lead to that proto-
col. For instance, in case the ip protocol is considered, NetPFL will evaluate ethernet-ip,
ethernet-vlan-ip, ethernet-ipv6-ip, and even ethernet-ipv6-ipv6-ip, and more, until (possi-
bly) an instance of ip is found.

This section will present a set of additional primitives for the NetPFL language that
allow selecting the encapsulation paths that have to be considered when checking for a
protocol. These new keywords operate by modifying the encapsulation graph, enabling
only a subset of the paths that terminate on the desired protocol. This leads to the
creation of simpler and more compact filtering programs.

22

1 – NetPFL: a declarative language for data-plane packet processing

startproto

ethernet

llc

vlan ismp

ipx

pppoed

pppoempls

ip

ipv6

arp

snap

stp

ripx

ipx_sap

ncp

netbiosssntcp udp

eigrp

ospf

pim

vrrp

greigmpipfrag

igrp

icmp

ospf6

pim6

esp icmp6

cdp

http

rtsp

sip

snmp

telnet

ftp

ftpdata dhcp

dns

rip

rip6

bootp

pppdvmrp

ccp

chap

ipcp

lcp

Figure 1.2. Encapsulation Graph

In addition, the new keyword tunnel is introduced, which enables to capture only the
traffic in which the selected protocol is tunneled. For instance, if we consider two packets,
respectively carrying ethernet-ipv4-ipv6-tcp and ethernet-ipv6-ipv4-tcp, we can
decide to capture either:

• the packet in which the IPv6 header is not tunneled (ipv6 notunnel), which would
select the second packet;

• the packet in which the IPv6 header is tunneled (ipv6 tunnel), which would select
the first packet;

• all the packets that have an IPv6 header (ipv6), which would select both packets.

Please consider that protocols ethernet and tcp in those packets are not tunneled.
This example emphasizes the fact that tunneling can be identified only if each protocol
is associated with the right layer of the network stack. Hence, we should envision an
algorithm that assigns the proper layer to all the protocols in the encapsulation graph.

1.10 Identifying Protocol Header Instances

In order to correctly handle packets containing tunneled encapsulations, the user must be
given the possibility to specify more selective filtering conditions, with respect to those
that can be defined with the primitives presented in previous sections. In particular, if
tunneling is used, a packet might contain multiple headers belonging to the same protocol.
For example, a MPLS label may encapsulate another MPLS label which in turn can
encapsulate another one and so on.

In this paragraph, we introduce the concept of header instances, which are the basic
building blocks over which we will build the more complex constructs described in the
following sections.

23

1 – NetPFL: a declarative language for data-plane packet processing

1.10.1 Definition of header instances

We give here a more formal definition of what header instances are.

• The term Header Instance is defined by either:

– a condition selecting Any Instance of a specific protocol

– a condition selecting an Indexed Instance of a specific protocol

• The term Any Instance is defined by either:

– a protocol identifier (i.e. any header of the specified protocol)

– a condition involving fields of a single protocol (i.e. any header of the specified
protocol, where the condition on its fields is verified)

• The term Indexed Instance is defined by either:

– an Indexed Protocol (i.e. the n-th header of the specified protocol)

– a condition involving fields of a single Indexed Protocol (i.e. the n-th header
of the specified protocol, if the condition on its fields is verified)

• The term Indexed Protocol is defined either by:

– a protocol identifier followed by the ’%’ sign, followed by an integer number:
proto id%n

– a protocol identifier followed by the ’%’ sign, followed by the inner keyword
proto id%inner

In order to avoid ambiguities and undefined behaviors, NetPFL does not allow basic
condition predicates to be based on fields of different protocols. This implies that, when
a condition involving protocol fields is specified through the relational operators listed in
Table 1.1, every referred field must belong to the same protocol.

For example, the condition:

ip.src & 255.255.255.0 == ip.dst & 255.255.255.0

is perfectly legal, while a condition like:

udp.dport == tcp.dport

is not allowed.

1.11 Header Sequences

In this section we introduce constructs and building blocks based on the presence of
particular sequences of protocol headers.

24

1 – NetPFL: a declarative language for data-plane packet processing

1.11.1 The any keyword and other protocol placeholders

any

The any keyword represents a wildcard matching any protocol defined in the database in
use. Its purpose will be clarified in the following, however it can be thought of as a ”don’t
care” placeholder.

1.11.2 Repeat operators

Repeat operators are used to describe situations in which a particular header may occur a
variable number of times in packets. The paradigm and the syntax are borrowed from the
quantifiers used in the regular expressions. In particular, repeat operators allow specifying
a header sequence as:

proto id<RepOp>

Where proto id is a protocol identifier, or the any keyword, and RepOp is one of the
symbols from Table 1.7.

Operator Meaning

?
The question mark indicates zero or one consecutive occur-
rences of a protocol header

*
The asterisk indicates zero or more consecutive occurrences
of a protocol header

+
The plus sign indicates one or more consecutive occurrences
of a protocol header

Table 1.7. Repeat operators

For Example:

ip+

allows matching all the packets that contain one or more consecutive instances of the
ip protocol, while:

mpls*

matches all the packets that contain zero or more consecutive instances of the mpls pro-
tocol.
A special case is represented by:

any?

25

1 – NetPFL: a declarative language for data-plane packet processing

any*

any+

that always match all packets (which are supposed to contain at least one header).
As we can see, the any keyword used with repeat operators is not meaningful if taken

alone, however it plays an important role for specifying header chains, which are described
in the following section.

1.11.3 Chaining headers through the “in” and “notin” operators

The in and notin keywords allow the user to specify an exact sequence of heterogeneous
headers that must be found in a packet in order to have a match. In the following we refer
to these two keywords as Chaining Operators (ChainOps).

We recursively define a Header Chain as:

• a single Chain Element (described later)

• a sequence Header Instance <ChainOp> Header Chain

• a sequence Header Chain <ChainOp> tunnel

• a sequence Header Chain <ChainOp> defaultencap

where a Chain Element can be either:

• a Header Instance as described in Section 1.10

• a Protocol Placeholder (i.e. the any or layer <n> keywords)

• a protocol identifier or the any keyword followed by a repeat operator (proto id<RepOp>,
or any<RepOp>)

• a Header Set (described in Section 1.11.3)

• a Header Set followed by a repeat operator

The in operator allows defining a chain where the left-hand element is directly en-
capsulated in the right-hand element. The notin operator is the dual of in and allows
specifying a chain where the left-hand element is directly encapsulated in any header
other than the one defined by the right-hand element. For instance, by specifying

ip in vlan

we want to match all the packets containing an ip header encapsulated in a vlan one,
while specifying

tcp notin ip

26

1 – NetPFL: a declarative language for data-plane packet processing

we want to match all the packets containing a tcp header encapsulated in any header
other than ip (e.g. ipv6).

In order to clarify the concept of header chains we present here some basic examples:

ipv6 in ip

matches all the packets with an ipv6 in ip tunnel

tcp in any in ip

matches all the packets where tcp is encapsulated in any protocol, again encapsulated in ip

udp in ip+

matches all udp packets encapsulated in a sequence of at least one ip header

ip.src == 10.0.0.1 in vlan+ in ethernet

matches all ip packets where src == 10.0.0.1, encapsulated in a sequence of at least
one vlan header, again encapsulated in ethernet

ip in vlan* in ethernet

matches all ip packets, encapsulated in a sequence of zero or more vlan headers, again
encapsulated in ethernet

Header Sets

A header set is represented by a group of one or more header instances and it enables ad-
ditional flexibility in the definition of header chains, by allowing to specify more precisely
the demultiplexing paths to be taken into account. In particular a header set is simply a
comma-separated list of header instance definitions, enclosed in curly braces:
{HeaderInst-1, HeaderInst-2, ..., HeaderInst-n}

Some examples of header sets are:

• {ip, ipv6, arp} i.e. select any ip header, or any ipv6 header, or any arp header
in the packet

• {tcp.dport == 80, tcp.sport == 80} i.e. select any tcp header where dport ==

80, or any tcp header where sport == 80

• {ip%1, ipv6%1} i.e. select the first instance of the ip and ipv6 protocols

As previously mentioned, header sets can be used as elements of a header chain, al-
lowing to specify very complex matching conditions, as the following one:

skype in {tcp, udp} in any+ notin vlan*

27

1 – NetPFL: a declarative language for data-plane packet processing

that matches all the packets belonging to a skype session, either using tcp or udp trans-
port, encapsulated in any sequence of headers (tunneled or not), except if encapsulated in
any sequence of vlan headers.

1.11.4 Contexts

The paradigm of tunneling contexts allows to deal with tunneling without explicitly spec-
ifying a protocol chain. Contexts are less flexible than protocol chains, but are more
powerful when writing some types of filters.

The concept of “context” is fairly simple:

• The sequence of headers in a packet is divided in one or more consecutive contexts.

• The first context starts at the beginning of the packet. A new context starts whenever
a tunnel is detected, i.e. each time the layer of a protocol is less or equal than the
layer of the protocol that encapsulates it.

Figure 1.3 depicts how a packet is subdivided in contexts. The Ethernet header and
the first IP header belong to context #1. The presence of a second IP header after the
first one causes another context to start.

The key concept behind contexts is that, in many cases, a set of conditions is “inter-
esting” only if they are all verified within the same context. For example, if a network
administrator wants to intercept all the http traffic coming from a given server, it is not
important if such traffic is tunneled or not. NetPFL allows to manage such situations
by specifying that all the conditions belonging to a set must be verified within the same
context.

eth IP
(src == 10.0.0.1)

IP
(src == 192.168.0.2) TCP HTTP

Context #1 Context #2

Figure 1.3. Contexts example

All conditions that must be verified within the same context must be enclosed between
“<” and “>”:

<set of conditions>

For example, the following filter matches all packets carrying http traffic coming from
192.168.1.3, either if it is encapsulated or not:

<ip.src == 192.168.1.3 and http>

28

1 – NetPFL: a declarative language for data-plane packet processing

Note that neither protocol chains nor protocol sets are allowed between the context oper-
ators.

1.12 Conclusions

We have presented NetPFL, a new packet filtering language, which can naturally support
complex situations of tunneled and stacked encapsulations. This feature is becoming more
and more important because the number of possible protocol encapsulations in network
traffic is growing day after day, so we need to inspect also tunneled traffic and/or to control
precisely which encapsulations we are referring to.

Additionally, the filter-action-stream model allows to configure thoroughly the behav-
ior of the filter, giving the user a more precise control over the dynamics of a filtering
expression and extending the operations done (efficiently) in the packet filter without the
necessity to deliver all the packets to the application. For example, this model supports
several independent filters to be deployed on the same datastream, thus allowing multiple
matching of different conditions; the user can also configure which action has to be taken
whenever a filtering condition is satisfied.

Furthermore, another structural choice that enhanced the flexibility of the architecture
is the separation between the filtering component and the protocol description one: in fact,
while in our implementation NetPFL has been used in conjunction with NetPDL, any kind
of protocol description language can be adapted to be deployed, since NetPFL does not
contain in itself any knowledge regarding protocols, headers and fields.

While NetPFL covers the issues w.r.t. filtering expressivity, there are still open ques-
tions about the efficient implementation of a packet filter. The answers to those questions
will be addressed in the next chapters.

29

Part II

About efficient packet filters

Chapter 2

pFSA: a new model for packet
filters

2.1 Introduction

In the recent years, we witnessed many changes in the computing world. The network
interaction among devices has evolved significantly, so we had to re-engineer our com-
puter networks in order to accommodate many new use cases. A large portion of these
requirements introduced new features in the network protocols stack, whose complexity
increased as a consequence. For instance, low-level network protocols are growing in num-
ber: new solutions, arising in particular for the purpose of network virtualization (e.g.,
802QinQ, VXLAN), are rapidly transforming our Ethernet frames [22]. The middle layers
of the protocol stack are facing a similar metamorphosis: examples include the widespread
adoption of Virtual Private Networks with their bizarre tunneling mechanisms, the neces-
sity to transport IPv6 traffic over IPv4 networks (with different encapsulation methods,
such as pure IPv6 encapsulation in IPv4, or through GRE or even UDP, and more) and
WAN traffic transports.

Packet filtering represents a niche that may be dramatically affected by those changes.
Packet filters are the basic building block of many applications, such as firewalls, network
monitors and more, and the capability to capture at high speed the traffic we want,
independently from the lower level encapsulations, is becoming more critical day after
day.

This chapter presents pFSA, a new model for packet filtering that ensures the optimal
number of checks on the packet in order to take the matching/not-matching decision. This
result is obtained by transforming packet filtering rules into Finite State Automata (FSA),
which guarantee optimal results even in case of multiple filters combined together. Vice
versa, the ad hoc optimization techniques used by most of the previous approaches are
based on heuristics that cannot provide such guarantees, which are needed to ensure the
best performance when operating in the conditions mentioned before (multiple filters or
unconventional encapsulations). Furthermore, our model is generic enough so that it does
not require a priori protocol definitions: in our prototype the protocol database is provided

33

2 – pFSA: a new model for packet filters

at run-time and it can be easily extended or modified in order to recognize any protocol
or encapsulation the user is interested in. This means that we can create the best filtering
automaton whatever encapsulation we may have, including unusual protocol patterns such
as tunneling (and self-tunneling) of any kind; the generated filter is able to locate the
desired pattern in the network traffic, independently from the actual protocol stack of
the given packet. Finally, we present also a prototype implementation that translates the
pFSA model into running code, although this step cannot formally maintain the optimality
properties guaranteed by the model.

Section 2.2 presents the state of the art; Section 2.3 introduces the proposed model;
Section 2.4 presents the application of that model to the packet filtering domain, while
Section 2.5 is dedicated to the problem of optimization on protocol fields. Finally, Sec-
tion 2.6 presents an overview of our implementation, leaving the experimental evaluation
to Section 2.7 and conclusions to Section 2.8.

2.2 Related Work

The CMU/Stanford Packet Filter [23] (CSPF) represents the ancestor of any modern
packet filter. It introduced the concept of a kernel-level virtual machine that executes an
application-provided program (i.e., the packet filter), which can be defined at run-time.
However, its optimizations capabilities were limited.

The Berkeley Packet Filter [8] (BPF) is also based on a virtual machine and brings
some notable improvements, such as the adoption of the Control Flow Graph model,
which enables the deployment of compiler techniques to remove redundant checks from
the generated code. The BPF model was later improved by BPF+ [11], which uses even
more aggressive optimizations derived from software compilation techniques and adds a
Just-In-Time (JIT) compiler.

PathFinder [9] adds the possibility to compact the Control Flow Graphs of different
filters. Each expression in a filter is exploded into a list of cells, each one describing a step
in the construction of the final check; equivalent cells coming from multiple filters may
be merged together. However, filters are optimized only if they share a common prefix;
for instance, tcp.sport is always checked twice in the expression (tcp.sport == X and

tcp.dport == W) or (ip.src == K and tcp.sport == Y).

The Dynamic Packet Filter [10] (DPF) extends the previous approach by intro-
ducing the capability to generate native code instead of running the filter into an inter-
preter. Furthermore, field coalescing is introduced, allowing fields at contiguous offsets to
be checked together; for example a single 32-bits check against the word 0x00800090 is
performed for the filter tcp.sport == 0x80 and tcp.dport == 0x90.

The recently proposed Stateless FSA-based Packet Filter (SPAF) [13] exploits
Finite State Automata for packet filter generation and guarantees, by construction, code
optimality and safety. Each protocol is modeled through a byte-consuming automaton,
which reads the bytes that are part of the protocol and follows the encapsulation rules
(e.g., the starting state of the IP protocol is linked to the exit state of the Ethernet

protocol when the bytes associated with the EtherType field have the proper value);

34

2 – pFSA: a new model for packet filters

different automata are then joined together using the algorithms known from the literature.
However, SPAF is extremely slow in the automata generation phase, because the protocol
field abstraction is lost very early in the computation, hence the amount of generated states
tends to be rather high. This has a huge impact on FSA construction, as determinization
(required in FSA composition) is exponential in the number of states. For this reason,
SPAF is appropriate only for applications that can tolerate rather long filter generation
times.

Swift [12] focuses on packet filtering updates in strict real-time. The ultimate goal is to
add a new filtering rule for a TCP session as soon as its three-way handshake is completed,
which is done through a tree-like structure similar to PathFinder. This enables also the
use of new x86 SIMD instructions to perform multiple checks in parallel.

Ruler [24] is a packet rewriter designed to anonymize traffic traces, which can also
be used for packet filtering. It introduces a flexible high-level language for deep packet
inspection and rewriting, which is mapped on an extension of the FSA model. Since it
is based on automata, Ruler shares a degree of similarity with pFSA and SPAF, but its
design goals are sufficiently different to produce noticeably distinct results; furthermore,
its source language is not general enough to specify complex filter statements or certain
commonly encountered protocol structures, such as IPv6 extension headers.

To the best of our knowledge, SPAF is the only packet filter model that uses a FSA-like
approach. If we broaden the area of research, we find that only a handful of publications
has proposed extensions to the base FSA formalism that might be similar to ours. pfsr [25]
is a predicate-augmented finite state recognizer, that aims at simplifying the Finite State
Automata used in natural language processing. Even if the authors describe in detail their
model extension, providing definitions and algorithms, the scope of the predicate that they
introduce is quite different from ours, as it is used only to define arbitrary sets of input
symbols. EFSA [26] models a fast intrusion detection and prevention system by making
use of augmented FSA transitions with arbitrary predicates. The EFSA paper, however,
does not describe predicates in detail: e.g, predicate optimization, that is a critical issue
in packet filtering, is not mentioned at all. XFA [27] is also based on an augmented FSA,
but states are associated with a generic executable code for efficient pattern matching,
which is not appropriate for optimizing predicates in packet filtering applications.

Other packet filtering technologies such as FFPF [14] are not described in detail here,
as they aim to solve orthogonal problems, such as how to multiplex incoming packets
between different packet filters, but do not offer any improvement to the filtering model
itself.

The most common filtering architectures (excluding SPAF) tend to rely on ad hoc op-
timizations, often inspired at compiler-oriented techniques, which are applied on the code
that has to be executed. Some of them exploit optimizations to coalesce packet accesses
or use hardware-efficient assembly instructions. However, no guarantees of optimality can
be given; furthermore, many of those optimization algorithms scale exponentially with the
number of instructions of the generated filter, which becomes a major problem when the
size of the filter grows because of more complex conditions or uncommon encapsulations,
including tunneling. Instead, pFSA defines a packet filtering model based on the FSA
formalism that guarantees optimal filtering construction (by minimizing the number of

35

2 – pFSA: a new model for packet filters

checks on the packet) and that overcomes the SPAF limitation in terms of compilation
time. This is due to the capability to derive the FSA from the protocol abstraction, while
SPAF adopts a byte-stream approach, that generates a much more verbose automaton
compared to our pFSA.

2.3 Finite State Automata with Predicates

This section presents the pFSA model, an FSA extension in which transitions are associ-
ated with Boolean predicates. The advantage is that a well-defined algebra already exists
for FSA, allowing their optimal composition (union, intersection, negation). In Section 2.4
we will present how the pFSA model can be used for packet filtering.

2.3.1 Definition of pFSA

A Finite State Automaton with Predicates (or, briefly, pFSA) is a “five-tuple”

Apfsa = (Q, Σ, δp, qo, F)

where:

Q is a finite set of states;

Σ is the set of input symbols;

δp is a transition function with predicates (described below);

q0 is the starting state, among those in Q;

F is a set of accepting states, among those in Q.

A transition function with predicates mimics the meaning of “classic” transitions,
but adds the possibility to tune the transition behavior according to a set of Boolean
predicates, whose semantic is orthogonal to the input symbols of the automaton. It is
defined as:

δp(q1, σ, p) = q2

where:

q1 is the state from which the transition takes place;

σ is the input symbol that triggers the transition, or the special value ε (epsilon) if no
input symbol should be consumed;

p is a Boolean predicate that “activates” the transition, that is allowed to fire only if the
predicate is true;

q2 is the state reached by the current transition.

36

2 – pFSA: a new model for packet filters

A transition with predicates is called a p-transition; if p is always true (a tautology),
the transition is in fact equivalent to a “classic” one.

Figure 2.1 depicts an example of a very simple pFSA, where p-transitions are labeled
with the input symbol1 and the predicate associated with it, in the form symbol/predicate.
In the example, a p-transition leaves from state Q1 and reaches state Q2 for input symbol
a and predicate p1.

Q0

(start)
Q1

Q3

Q2
a

b a/p2

{a,b}

a/p1

b

*

Figure 2.1. pFSA example.

Predicates are part of an arbitrary set of hypotheses and can assume either the true
or false Boolean value. From the pFSA model point of view, each predicate is a “black
box” outside the scope of the model, whose actual value cannot be determined a priori.
In fact, pFSA relies on an external “predicate evaluator” module that will be invoked at
run-time in order to determine the value of the predicate itself.

We do not pose any particular limitation to the predicates; however, the predicate
evaluator cannot change the internal state of the automaton, such as move the current state
from Qn to Qm, or change the input string, etc. In other words, the predicate evaluation step
must have no side effects other than returning the current Boolean value of the predicate:
it is duty of the automaton itself to interpret the returned value and act accordingly. Given
this limitation, a predicate could be as simple as “is the value of variable $x odd?”, but
even a question like “is IP multicast enabled on the eth0 network interface?” is valid, as
long as it is possible to give a true/false answer. Predicate values are allowed to change
only when a new input symbol is consumed; in other words, they are frozen when an
ε-transition is going to fire. This restriction is needed for the general algorithms to work,
but does not have any impact on our usage of the model. More details will be given in
Section 2.4.3, after we describe how we use the model to filter network packets, together
with some examples (Figures 2.7 and 2.8).

1Some transitions (e.g., the self-loop on Q2) may be associated with a star, which is a compact notation
used to include any input symbol that is not handled by other transitions exiting from the same state.

37

2 – pFSA: a new model for packet filters

2.3.2 Running a pFSA

The state machine defined by pFSA looks similar to the one of a “classic” FSA. Execution
starts with the automaton in the start state. As long as an input symbol is available,
the automaton reads it and follows any available transition exiting from the current state
and labeled with that symbol; the landing state becomes the next current state. Non-
determinism is allowed in pFSA, and ε-transitions (that do not consume any input symbol)
are permitted.

Whenever, according to the current state and the input symbol received, a p-transition
should be activated, its predicate is inspected and its current Boolean value is returned;
that transition fires if the predicate is found to be true, otherwise another transition
is taken. Note that if multiple p-transitions have the same start state and are labeled
with the same input symbol, a subset of them (from zero to all) might fire at the same
time, according to the values taken at run-time by their predicates: this is an important
issue to consider when stating whether a pFSA is deterministic or not (more details in
Section 2.3.3). Referring to Figure 2.1, if the symbol a is received when the control is in
state Q1, two p-transitions might fire: the one that leads to state Q2 can fire depending
on the value of predicate p1, while the one that leads to state Q3 can fire according to the
value of predicate p2. Only the run-time values of p1 and p2 can clarify which state(s)
will be reached: either Q2, or Q3, or both of them or none.

2.3.3 Determinism

Determinism is important for multiple reasons. First, the FSA complementation algorithm
requires the input FSA to be deterministic. Second, complementation is needed also
for the intersection algorithm, if the latter is implemented using first De Morgan’s law

(A∩B = A ∪B). Third, deterministic automata are much easier to translate into machine
code: only one state is active at any instant, hence backtracking is not required. A non-
deterministic machine, instead, may have to “guess” which path to follow; that is, the
algorithm might have to try all the possible routes to the solution, therefore increasing
computation times on strictly sequential machines.

A pFSA is deterministic if it does not include any ε-transition and, for each state,
for each input symbol and for all possible values of the Boolean predicates, there is exactly
one enabled, outgoing transition.

While this definition looks simple, stating whether a pFSA is deterministic or not may
be complicated in practice, because the outcome depends on the values of the predicates,
that can be evaluated only at run-time. For instance, if two transitions labeled with p1

and p2 exit from the same state and are associated with the same input symbol (such as in
Figure 2.1), that pFSA is possibly non-deterministic, as both transitions might be enabled
at the same time. Conversely, if those transitions are labeled with p1 and p1 there is no
determinism issue, as the logic rules assert that exactly one between those predicates is
true at any instant. Consequently, if in a given pFSA no state has multiple transitions
with the same symbol (i.e., the base FSA is deterministic) and the predicates associated
with the transitions exiting from every state, labeled with the same input symbols, are

38

2 – pFSA: a new model for packet filters

only in the form p1 and p1, that pFSA is still deterministic.

2.3.4 Algorithms

One of the main advantages of reusing the FSA formalism is that many definitions, algo-
rithms and optimizations from the literature (e.g. [21]) can be reused with little effort.

For example, union and complementation algorithms require no changes. The first
algorithm merges two automata by adding a new starting state and connecting it to the
starting states of the two original automata with a couple of ε-transitions; hence, predicates
are not considered at all. The second algorithm requires only to flip the accepting status of
all states, provided that the input pFSA is deterministic; hence, again, predicates do not
make any difference. No extra effort is required for the intersection algorithm, as it can
be easily implemented on top of union and complementation by using first De Morgan’s
law.

These algorithms, however, may produce pFSA that are possibly not deterministic
and/or redundant, hence requiring additional procedures (such as determinization and
minimization2) in order to produce better automata. Unfortunately, these algorithms
cannot be plainly reused for pFSA.

Before presenting the determinization algorithm in detail, we will give a brief look at
the main ideas behind the procedure: (i) predicates Cartesian product and (ii) predicate
anticipation. Both of these procedures will be used later, in the determinization algorithm.

Predicates Cartesian product: It is used to determinize a pFSA in which a state
has multiple outgoing transitions, all triggered by the same input symbol but associated
with different predicates3, such as in the leftmost part of the fully specified pFSA in Fig-
ure 2.2. To guarantee the determinism property, the pFSA is determinized by introducing
a number of transitions that is equal to the Cartesian product of the existing predicates;
refer to the central part of Figure 2.2, where each transition is terminated on the state
that would be activated in the original pFSA, or on a new state (e.g. Q12) that captures
multiple states of the original automaton. This way we can guarantee that only one out
of the four transitions leaving from Q0 for input symbol a can be true, independently from
the actual values of predicates p1 and p2 at runtime. The resulting pFSA can be further
optimized by additional algorithms, such as compaction of indistinguishable states: e.g.,
in the automaton in the rightmost part of Figure 2.2, state Q12 has been merged with Q1.

Predicate anticipation: Sometimes, the pFSA determinization algorithm may move
a predicate bound to an ε-transition over another transition that precedes it, with some ad-
ditional adjustments; this is useful when the preceding transition is not already associated
with a predicate, and the anticipation allows a state simplification. This transformation
is possible because it is guaranteed that the predicate has the same Boolean value in

2Even if determinization and minimization are two distinct algorithms, the latter is usually executed
immediately after the former; therefore, they are often presented as being part of the same procedure.

3Starting from Figure 2.2, the notation !predicate (borrowed from popular programming languages)
is used to express a negated condition.

39

2 – pFSA: a new model for packet filters

Q0

Q1

Q2

b

a/(!p1 && !p2)

a/(!p1 && p2)

a/(p1 && p2)

Q0

Q1

Q2

b

a/p1

a/!p2

a/!p1

Q0

Q1

Q2

b

a/(!p1 && p2)

a/(p1 && p2)

Q12

*

*

*

*

*

*

*

Figure 2.2. pFSA predicates Cartesian product.

both cases: as already outlined in Section 2.3.1, predicate values are allowed to change
only when a new input symbol is consumed. A simple example is shown in Figure 2.3,
where predicate p1 on the ε-transition between states Q2 and Q3 is moved over the pre-
vious transition from Q1 to Q2. However, moving the predicate requires the creation of
two transitions (one labeled as a/p1, the other as a/p1) and the duplication of state Q2

(second step of Figure 2.3). The final pFSA, obtained by removing the ε-transition and
by compacting the states that are indistinguishable (i.e., Q2 and Q3, and Q2’ and Q4), is
depicted in the rightmost part of Figure 2.3.

Q2’
Q0

Q1

Q4

a

*

ε /p1
Q3

*

Q2

*

a

Q0

Q1

Q4

a

*

ε
Q3 Q2

*

a/p1

*

a/!p1

*

Q0

Q1

Q4

a

*
*

Q2 a/p1

Figure 2.3. pFSA predicates anticipation.

We will now discuss the determinization and minimization algorithm in more detail,
listing how predicates are considered: (i) when trying to determine the states reached
from the current state upon the receipt of a given input symbol, (ii) when calculating
an ε-closure and (iii) when determining if two states are indistinguishable by testing the
output of function δp (i.e., they have exactly the same output transitions that bring exactly
to the same output states).

When computing the reachable set, the transitions exiting from any given state
s are considered, for each input symbol σ. If multiple transitions exist with the same
symbol that potentially can fire because one or more predicates are present, their Cartesian
product is computed and all possible landing states are evaluated: Boolean rules ensure
that only one of the transitions out of the product can fire at any given instant in time.

The ε-closure of a set of states recursively adds to the set of states S all those that

40

2 – pFSA: a new model for packet filters

are reachable, through an ε-transition, from any state already in S. If some predicates are
found on those ε-transitions, their Cartesian product is computed, possibly also against
the predicates already discovered in the previous step.

Finally, the modified transition function δp is used in the state compaction step
to detect if two states are equivalent and can be merged together. To achieve this, the
transition function δp checks whether, upon the receipt of a given input symbol σ, two
transitions exist that lead from the couple of states under testing to any other couple of
states that were already found distinguishable. In a pFSA, if a predicate is present over a
transition, then, for the distinguishability test, all the other transitions that are associated
with the same input symbol and exiting from the same state must be considered as well.

2.3.5 Predicates composition

The algorithms presented in the previous section are used to combine together more pFSA,
leading to a new, equivalent pFSA that retains all the properties guaranteed by the pFSA
formalism. The example in Figure 2.4 shows the union of two simple pFSA through the
required processing steps: a new state is connected to the original pFSA through two
ε-transitions (in the middle), then the final pFSA that comes after determinization and
minimization is shown at the right. The example in Figure 2.5 looks more complicated as
it shows the intersection between two pFSA, which occurs by transforming that operation
into a set of union and negation steps4.

It is evident from the examples how the pFSA determinization algorithm analyzes all
possible combinations of the Boolean values of the predicates. This may become a problem
in case of complex pFSA, e.g. obtained by merging several simpler pFSA together, as the
number of possible combinations may grow exponentially. This represents a non negligible
challenge when the pFSA has to be actually translated into executable code, because of the
large number of expressions that have to be evaluated at runtime. We feel that different
use cases might benefit from different predicate optimizations; given that our application
domain focuses on packet filtering, we will present in Section 2.5 how we deal with the
predicate composition in that scenario, by means of a predicate optimization formalism
called protoFSA.

2.4 pFSA for packet filtering

Although the pFSA model is rather general and can be adapted to different contexts, this
chapter focuses on its application in packet filtering and shows how multiple filters can be
combined together with a solid guarantee of optimality in terms of number of checks on the
packet. This section focuses on this objective, presenting how the pFSA model can be used
to describe a generic filter, exploiting pFSA properties to reduce (and optimize) complex
filtering expressions. To do so, we should be able to translate a filtering expression into

4In Figures 2.4 and 2.5, transitions with dashed lines are redundant and may be deleted, as they are
included in the default ‘*’ arc.

41

2 – pFSA: a new model for packet filters

Q1

Q2

Q3

a/p1

*

*

*

Q4

Q5

Q6

a/p2

*

*

*

Q1

Q2

Q3

a/p1

*

*

*

Q4

Q5

Q6

a/p2

*

*

*

Q0

ε

ε

Q0,1,4

Q25,
26,
35

Q36

a/(p1 && !p2)

*

a/(!p1 && !p2)

a/(!p1 && p2)

a/(p1 && p2)

*

* U	

Figure 2.4. Example of a pFSA with complex predicates: the union case.

Q1

Q2

Q3
*

*

*

Q4

Q5

Q6
*

*

*

U	
Q1

Q2

Q3
*

*

*

Q4

Q5

Q6
*

*

*

U	 Q0

ε

ε

Q1

Q2

Q3
*

*

*

Q4

Q5

Q6
*

*

*

a/

p1 && !p2

Q0,
1,4

Q2,5

Q3,5

Q2,6

Q3,6

*

Q0,
1,4

Q25

Q35,
36,26

*

*

a/(p1 && !p2)

a/(!p1 && !p2)

*

*

*

*

*

[NOT]	 [NOT]	 [NOT]	

Figure 2.5. Example of a pFSA with complex predicates: the intersection case.

an equivalent pFSA, so that: (i) if a packet matching the provided filter is given to our
system, the pFSA should end in an accepting state; (ii) otherwise, if the packet does not
match, the pFSA should end in a non-accepting state.

We will describe how the packet filtering machinery is mapped in the pFSA model:
namely, how states, symbols and predicates are defined. An overview of the system is
given in Figure 2.6, while a detailed view of each block will be given in Section 2.4.5.

42

2 – pFSA: a new model for packet filters

packet buffer

protocol scanner

 Ethernet,

 then IP,

 then TCP

Packet filtering automaton (pFSA)

Q0 Q1

Q3

Q2
a

b
a/p2

{a,b}

b

*

Predicates evaluator

ip.src== 10.0.0.1

tcp.sport == 80

input symbols

predicates

Boolean values of predicates

packet bytes

a/p1

Figure 2.6. Overview of the system in which pFSA are used for packet filtering.

2.4.1 States

The initial construction of the pFSA associates each state with a network protocol, that
represents the protocol that has been reached while scanning the current packet5. For
instance, when the ip state becomes active, it means that the IP protocol has been found
in the current packet and that the protocol scanner is going to read the first byte associated
with it. As a consequence, for simple pFSA, the set of accepting states includes only those
states that match the protocol requested by the filter: for instance, in the pFSA modeling
the filter that selects only ip traffic (e.g., in Figure 2.7), the state labeled ip would be
the only accepting state. More details about the important bonding between states and
network protocols will be presented in Section 2.4.4.

2.4.2 Input symbols

In a pFSA for packet filtering, each input symbol represents a single encapsulation rule, i.e.,
a sort of “jump” from a protocol to the next. For instance, the symbol ethernet-to-ip is
associated with a transition that goes from a state that represents the Ethernet protocol
to another that represents IP, as shown in Figure 2.7. If the pFSA receives this symbol
at runtime, it means that the packet currently under examination contains an instance of

5This rule does not apply to the starting state, which represents the state of the automaton before the
packet scan has started.

43

2 – pFSA: a new model for packet filters

IP directly encapsulated inside an Ethernet header6.
In our system, input symbols are generated by a separate module (the protocol scan-

ner of Figure 2.6), which inspects the incoming packet, analyzes the protocols in it, gen-
erates the symbols and passes them to the pFSA engine; for each encapsulation found in
the current packet, a new input symbol is generated. For instance, if a packet contains,
in this order, the Ethernet, IP and TCP headers, then three input symbols are passed to
the pFSA: begin-to-ethernet, ethernet-to-ip and ip-to-tcp.

The input symbols that the pFSA expects to receive (the Σ alphabet) are derived
from a protocol database, that is provided to the engine that builds the pFSA at filter
compilation time. More details about the protocol database and the building process are
in Section 2.4.5.

begin

ethernet

FAIL

begin-to-ethernet

*

*

OK ethernet-to-ip

*

*

Figure 2.7. Example of a pFSA for the filter ip.

2.4.3 Predicates

While filtering packets, predicates are modeled as hypotheses on specific “properties” of the
protocols included in the packet itself, possibly combined together with Boolean operators.
In our work, predicates are expressed with a “basic block” in the form <protocol field>

<operator> <value> Currently, basic comparison operators are supported (≤, <, =,
/=, >, ≥) and value must be a constant. Obviously, filtering conditions can become
more complex when multiple predicates are combined together with the classical Boolean
operators (and , or , not).

Figure 2.8(a) shows a simple pFSA for the filter ip.src == 1.1.1.1. Note that,
differently from Figure 2.7, the ip state is no longer accepting: the ip state is connected to
the actual accepting state through an ε-transition with the ip.src == 1.1.1.1 predicate.
If this predicate is found to be false at run-time (because the IP source address does
not match the value 1.1.1.1), then the path towards the accepting state is effectively

6The only exception to this rule applies to the input symbols that represent the first protocol of each
packet: since there is no explicit “previous protocol”, the fictitious begin protocol associated with the
starting state is used, and the link-layer associated with the parsed packet determines the input symbol
for the first transition.

44

2 – pFSA: a new model for packet filters

barred, therefore rejecting the packet. Figure 2.8(b) shows the same pFSA after running
the predicate anticipation algorithm, which transforms the pFSA into a deterministic
automaton. It is worth noting that the two forms (a) and (b) of the given pFSA are
completely equivalent and it is possible to transform one into the other, if needed.

begin

ethernet

FAIL

begin-to
-ethernet

*

*

ip ethernet-to-ip

*

OK

* ε /
ip.src==1.1.1.1

*

begin

ethernet

FAIL

begin-to-
ethernet

*

*

OK
ethernet-to-ip/
ip.src==1.1.1.1

*

*

(a) Non deterministic pFSA (b) Deterministic pFSA
(with predicate anticipation)

Figure 2.8. Example of a pFSA for the filter ip.src == 1.1.1.1.

The actual Boolean value of the predicates is evaluated by a dedicated module (the
predicates evaluator of Figure 2.6), that is logically separated from the protocol scanner.
Whenever the pFSA encounters a predicate at runtime, the evaluator is invoked and the
current Boolean value of that predicate is returned.

It is worth remembering that predicates can be evaluated only when the corresponding
transition is about to fire and cannot be precomputed, because their value might change
every time a new input symbol is consumed. For instance, the Boolean evaluation of
ip.src == 1.1.1.1 may result in different values when filtering a packet that contains a
ip-in-ip tunnel, depending on whether we are operating on the inner or outer IP header.
This case is not handled in Figure 2.8 to keep the example simpler.

2.4.4 States and network protocols

Due to the properties of the pFSA model applied to packet filtering, each state can be
associated with a precise network protocol. This is needed at a later stage in order to
translate each state into filtering code (e.g., assembly instructions) and to be able to
perform predicate optimizations, as presented in Section 2.5.1. This relation is maintained
also after merging and optimizing multiple pFSA, when multiple states are joined together.

In fact, we can envision three cases in which multiple states are merged. The first
case occurs when computing the ε-closure, which happens only when a new state, not
associated with any protocol, is added in front of the two FSA. This requires to merge
together both (semantically identical) begin states of the original automata. The second
case occurs when two states are found to be equivalent, i.e., they have the same set of
outgoing transitions. As transitions are associated with a specific protocol encapsulation
rule, having the same set of transitions means that the states that are going to be merged

45

2 – pFSA: a new model for packet filters

refer to the same protocol. The third case refers to final states, which are merged inde-
pendently from the protocol they are associated with; however, the association with the
originating protocol is useless in this case, because the automaton is going to terminate
anyway.

This nice property of strong relation between states and protocols can be apparently
lost when some optimizations (particularly, predicate anticipation) come into play. For
instance, Figure 2.10 presents an example in which an intermediate state is associated with
the reachability of a given protocol field, i.e., the pFSA reaches field ip.src. However, this
does not represent a problem as input symbols (which represent protocol encapsulation
rules) guarantee that two states can be merged only if they are reached through the same
encapsulation rule.

Also note that multiple states, associated with the same protocol, can coexist. Partic-
ularly, this may happen in two cases: (i) when the same protocol is present on multiple
(disjoint) paths from the beginning state to any final state, as the pFSA can define differ-
ent independent paths that cross the same protocol, and (ii) when the same protocol is
present on the same path, but it refers to different instances, e.g., the inner and outer IP
headers of an ip-in-ip encapsulation.

2.4.5 Building a pFSA for packet filtering

The process that creates the pFSA that represents a given packet filter involves different
components, as presented in Figure 2.9. The packet filtering pFSA is the result of the
combination of the filtering string, which represents the actual filtering statement, and
a protocol database, which features a description of the protocols in terms of fields and
encapsulation rules (although in this step only the latter is considered). Encapsulation
rules specify how protocols are encapsulated one into the other, resulting into a directed,
potentially cyclic, graph. For instance, there will be an entry that states that the IP

protocol can be found inside Ethernet, but there will be no entry for TCP inside Ethernet.
The protocol database should also mark the protocols that can be found at the beginning of
a packet (i.e., link-layers such as Ethernet or WiFi), in order to highlight which protocols
represent some sort of “starting nodes” of the encapsulation graph; in our implementation
those link-layer protocols follow a fictitious “begin” protocol. The pFSA model is agnostic
with respect to the protocol database, as long as it includes the required information; in
fact, the choice of this external component is under the responsibility of the specific pFSA
implementation.

The first step towards the pFSA creation is parsing the filtering string itself, splitting
it in basic tokens, i.e., statements that express a condition operating on a single protocol
or a protocol field, chained together with Boolean operators. A distinct pFSA is generated
for each of these blocks, which are combined together using the algorithms presented in
Section 2.3.4, therefore obtaining the final pFSA. As each portion of the tokenized filtering
string refers to a single protocol, it is used to traverse the encapsulation graph and to select
all the paths that connect the starting protocol (that represents the starting state of the
automaton) to that protocol. For instance, all paths that result useless for the given
filter are discarded in this step. All nodes and edges selected are then used to build the

46

2 – pFSA: a new model for packet filters

begin

ethernet ip

wifi ipv6

tcp

udp

Protocol encapsulation rules, extracted
from a protocol database (e.g., NetPDL)

Filtering string
(e.g., NetPFL)

begin

ethernet

FAIL

begin-to
-ethernet

*

*

ip ethernet-to-ip

*

OK

* e /ip.src==

1.1.1.1

* ip.src ==
1.1.1.1

pFSA

Figure 2.9. Building steps for a simple pFSA.

pFSA, transforming each encapsulation into a possible input symbol for the automaton.
An additional state is created, representing the non-accepting condition (i.e., when the
packet does not match the filter); every other state is then connected to this failure state
using a star transition7.

In the end, an accepting state must be specified. If the filter statement does not include
conditions on protocol fields (e.g., ip), then the pFSA state associated with that protocol
is marked as accepting. Otherwise, the state representing the above protocol is connected
to a newly created accepting state by means of an ε-transition, labeled with the provided
predicate. Finally, a looping transition that fires for all symbols is added to each accepting
state, to ensure that the resulting pFSA is completely specified.

The examples shown in Figure 2.7 and 2.8 were created with this algorithm: in both
cases the begin state corresponds to the starting protocol in the above description. Those
examples show also that the FSA creation process can lead to non-deterministic pFSA,
such as in Figure 2.8.

Figure 2.10 represents a more complex example: a pFSA already determinized for filter
ip.src == 1.1.1.1 and tcp.dport == 80. The filter appears optimal in the number of
tests: only one path leads to state OK, which includes the verification of both conditions
present in the filter. If the first test fails, the failure state is reached immediately, ignoring
the run-time value of the second predicate.

2.5 Predicates optimization

The optimization of filtering predicates represents a critical issue in order to effectively
model packet filters; in particular, some applications may be extremely sensible to the
problem of predicate composition previously introduced in Section 2.3.5. In fact, a model
that guarantees optimality with respect to protocol encapsulations is still not enough for

7It is worth remembering that the “star” represents a compact notation that replaces all the input
symbols (and predicates) that are not used by the other transitions exiting from the current state.

47

2 – pFSA: a new model for packet filters

begin

ethernet

FAIL

begin-to-ethernet

*

*

ip.src
ethernet-to-ip/

ip.src==1.1.1.1

*

OK

*
ip-to-tcp/

tcp.dport==80

*

Figure 2.10. Example of a deterministic pFSA for the filter ip.src == 1.1.1.1
and tcp.dport == 80.

those applications that require complex filtering expressions operating on protocol fields:
these are somewhat “outside” the pFSA model and hence, so far, are not optimized at all.

begin ethernet

FAIL

begin-to-ethernet

*

*

ethernet-to-ip /
ip.src==1.1.1.1 && ip.dst==2.2.2.2

*

OK

*

Figure 2.11. Example of a deterministic pFSA for the filter ip.src == 1.1.1.1
or ip.dst == 2.2.2.2.

For instance, Figure 2.11 represents a deterministic pFSA modeling the filter ip.src

== 1.1.1.1 or ip.dst == 2.2.2.2, which is then translated into a pFSA that requires
the analysis of four predicates when the ethernet-to-ip input symbol is received. This
exponential explosion in the number of transitions might be troublesome in complex (but
very common) packet filters, e.g., those that account hundreds of tests over the same pro-
tocol fields, such as Access Control Lists operating on IP addresses. All those transitions
must be evaluated by the predicates evaluator in order to determine which one will fire
(if any), hence posing a substantial run-time overhead when trying to resolve the current
Boolean value of multiple, arbitrarily complex predicates.

However, note that, due to the potential Cartesian product on filtering predicates, the
predicate evaluator is called several times for similar expressions. For example, it is evident
that the Boolean values for predicates (p1 && p2) and (p1 && !p2) are correlated and

48

2 – pFSA: a new model for packet filters

some optimizations are possible.

begin ethernet

FAIL

begin-to-

ethernet

*

*

ethernet-to-ip /

ip.src==1.1.1.1 &&

ip.dst==2.2.2.2

*

OK

*

Predicate evaluator

Predicate1 Predicate2 Predicate3 Predicate4

begin ethernet

FAIL

begin-to-

ethernet

*

*

*

OK

*

Predicate evaluator

Predicate1, Predicate2, Predicate 3, Predicate4

(a) Distinct predicates (b) Optimized pFSA

Figure 2.12. The main idea behind the “multilevel” implementation feature. Predi-
cates are merged within the same predicate evaluation block, leading to a simplification
of the base pFSA: multiple transitions are merged together, paving the way for further
optimizations at the predicate level.

2.5.1 Overview

We optimize the behavior of the predicate evaluator by operating in three steps: (i) we
merge multiple predicates together, enabling the evaluation of multiple queries in a single
pass; (ii) we simplify the pFSA by compacting the transitions that result redundant when
looking at the base automaton (e.g., because multiple transitions land on the same state),
and (iii) we analyze the semantic of the predicates looking for possible optimizations at
compile time, enabling a faster predicate evaluation step at run-time (e.g., tcp.sport ==

80 && tcp.sport > 1024 is always false).

For the first step we created a block that can merge multiple queries coming from
different transitions, instead of having different predicate evaluators for each expression
such as in Figure 2.12(a), which is possible because the pFSA model does not mandate
the internal architecture of the predicate evaluator. If predicates operate on the same
protocol field (which is rather common), their evaluation is potentially faster.

The second step (shown in Figure 2.12(b)) simplifies the layout of the pFSA when
possible. For instance, the three transitions between states ethernet and OK can be

49

2 – pFSA: a new model for packet filters

compacted into one, associated with the logical or of the three predicates, thus enabling
further optimizations in the next step.

The third step minimizes the operations needed to evaluate the expressions by re-
structuring the internals of the predicate evaluator. For instance, given the predicates in
Figure 2.12, we can structure the predicate evaluator so that the condition ip.src ==

1.1.1.1 is checked once and then its result is reused for all expressions; or, the test on
ip.dst is not performed if its value does not change the final result.

The effectiveness of the predicate optimization presented above is a direct consequence
of the property that associates pFSA states with a given instance of a network protocol,
presented in Section 2.4.4. By construction, all predicates operating on a given instance of
a protocol will be associated with transitions exiting from the same pFSA state, therefore
becoming part of the same Cartesian product and enabling the predicate evaluator to
optimize them all at once.

2.5.2 Going multilevel: the protoFSA

In order to effectively optimize predicates, we need to (i) define a model for filtering
predicates that is able to efficiently merge filtering predicates when combining different
pFSA, guaranteeing optimality with respect to the number of checks done on the protocol
fields, and (ii) efficiently map filtering predicates to the chosen model.

Our idea is to create another set of FSA that sits on top of the pFSA and is in charge
of the optimization of the predicates that result from the same Cartesian product, i.e.,
that are associated with a set of transitions exiting from the same pFSA state. Each of
those new FSA is called protoFSA, because it is associated with a given instance of a
network protocol. While the pFSA is the base model that handles the entire packet filter,
each protoFSA is in charge of the optimizations performed among all the predicates on
transitions exiting from a given pFSA state.

Formally, for each state qi in the pFSA that has a number of outgoing transitions
originated by the same Cartesian product Πi, we define (for each Πi) another Finite State
Automaton:

Aprotofsa = (S, Σ, δ, so, F)

dedicated to predicates optimization, where:

S is a finite set of states, associated with the protocol fields referenced by the predicates;

Σ is the set of input symbols, which consists in the union of the set of values syntactically
valid for each protocol field (e.g., a predicate operating on an IP address and on the
IP TOS byte originates 232 + 28 possible input symbols);

δ is the transition function, which takes into account whether a condition on a specific
field triggers the analysis of a subsequent condition on another field;

s0 is the starting state;

F is a set of final states, whose cardinality is equal to the number of outgoing transitions
involved in the Cartesian product Πi.

50

2 – pFSA: a new model for packet filters

A protoFSA is still a FSA and consequently inherits all the properties guaranteed by
that formalism (e.g., composition, optimality). Each protoFSA can be either deterministic
or non-deterministic; however, in our implementation, for simplicity and efficiency, we
transform those structures into a deterministic automaton before the final translation,
i.e., when the model is converted into running code.

2.5.3 Building a protoFSA

If we analyze all complex predicates originated by the same Cartesian product Πi, it can
be formally proven that the following two properties hold: (i) all predicates are in the form
of basic blocks (<protocol field> <operator> <value>), joined together in logical and;
(ii) the predicates include exactly the same number of basic blocks, operating exactly on
the same protocol fields, all referring to the same protocol. Because of property (i) and
since the commutative property holds for the Boolean and operator, we can rewrite the
entire predicate string so that basic blocks will be strictly ordered, based on the protocol
field they refer to8.

To build a better protoFSA out of each Cartesian product, it would be preferable if, at
creation time, we could identify explicitly (but not necessarily enumerate) the set of values
that satisfy the condition of each predicate. However, since each basic block compares the
protocol field against a constant value, this property automatically holds.

Each basic block is translated into a minimal FSA in which the protocol field is associ-
ated with a state, while the space of its possible values is used to define the transitions to
the OK and FAIL states9. If, based on the protocol fields ordering mentioned above, a basic
block refers to a field other than the first one, a set of states referring to its “preceding”
fields is pre-pended to the state associated with the state itself. In other words, state si,
associated with predicate Pi, is preceded by states s1 . . . si−1, associated with predicates
P1 . . . Pi−1. Preceding states selected this way are connected with a default transition,
such as in the second basic block (bottom left) in Figure 2.13. The OK and FAIL states are
then associated with the transitions (in the base pFSA) that originate the current query
to the predicate level.

The next step consists in building the whole protoFSA, by merging together all predi-
cates that result from the same Cartesian product. The final protoFSA has as many final
states as the number of predicates resulting from the Cartesian product, each own mapped
to a p-transition of the base pFSA. However, multiple p-transitions in the pFSA can be
merged together if their ending states are not distinguishable (in terms of the minimization
algorithm), so we have a chance to optimize again the protoFSA through the well-known
FSA composition and optimization algorithms. For instance, in Figure 2.12(a), predicates

8The chosen evaluation order does not matter (e.g., alphabetic comparison among protocol field names,
or the order in which those fields appear in the packet), as long as it is kept consistent.

9Although formally each state should include a distinct transition for all the possible input symbols, in
our protoFSA building process we take into account that some symbols cannot be received when in a given
state (e.g., the symbols related to the IP TOS byte cannot be received when examining an IP address),
hence simplifying the translation of the protoFSA structure in running code.

51

2 – pFSA: a new model for packet filters

src

OK

FAIL

src

*

*

*
dst

OK

FAIL

*

*

src dst

Pred.4
OK

FAIL

*

*
1.1.1.1

!(1.1.1.1)

U

ip.src == 1.1.1.1

ip.dst == 2.2.2.2

ip.src == 1.1.1.1 &&

 ip.dst == 2.2.2.2

Figure 2.13. Example of composition of the predicate ip.src == 1.1.1.1 and ip.dst
== 2.2.2.2, corresponding to predicate P4 in Figure 2.12.

begin ethernet

FAIL

begin-to-
ethernet

*

*

*

OK

*

Predicate evaluator

Optimized protoFSA for (Predicate1,
Predicate2, Predicate 3,

Predicate4)

Pred.
1

Pred.
2,3,4

dst

!(2.2.2.2)

src

Figure 2.14. Example of the protoFSA created in Figure 2.12, composing predicates P1,
P2, P3 and P4, and the resulting optimized protoFSA.

P2, P3 and P4 lead to the same state; consequently the protoFSA can be further optimized,
resulting in the final form shown in Figure 2.14.

2.5.4 About optimality

We can now explain why the claim of the optimal number of checks on the packet is
obtained by construction. When the final pFSA is built, the number of checks needed

52

2 – pFSA: a new model for packet filters

to recognize a matching packet is equal to: (i) the number of protocol encapsulations,
plus (ii) the number of checks on protocol fields. (i) is optimal because of the way the
individual pFSA are created and aggregated together, since the final automaton receives
as many input symbols as the number of protocol encapsulations present into the packet.
(ii) is optimal for a similar reason: by construction, the protoFSA consumes as input the
minimum number of symbols needed to resolve the Boolean value of a predicate, hence it
is possible to minimize the number of checks on protocol fields.

2.5.5 Predicates and ranges

The protoFSA creation mechanism presented in Section 2.5.3 may lead to an automaton
with a huge number of symbols, which may represent a problem when defining the transi-
tions exiting from each state, since their cardinality is equal to the number of symbols. In
fact, the explosion in the number of transitions affects both the memory occupancy and
the computational complexity of the FSA algorithms. In order to overcome this problem,
whenever possible we group symbols into ranges, using the full enumeration of the symbols
only when needed (e.g., when ranges become very complex). For instance, if a predicate
specifies a precise IP address such as in Figure 2.13, we define only two transitions, one
for the path that leads to success (associated with the proper IP address, e.g., {1.1.1.1})
and the other for all the remaining symbols (e.g., Σ - {1.1.1.1}).

2.6 Implementation

The proposed pFSA model has been implemented in the NetBee10 library, which features
an experimental compiler that creates run-time code for the NetVM [15] virtual machine.
The front-end compiler [16] takes the filtering expression expressed as a NetPFL [29] string
and a NetPDL [28] protocol database to generate an in-memory representation of the
pFSA filter. This code is then translated into NetIL code, a NetVM-specific assembly-like
language. The generated code can be executed in a NetVM interpreter, or compiled Just-
In-Time (JIT) if a backend compiler is available for the target architecture. The pFSA
abstraction has been implemented inside the front-end of the aforementioned high-level
compiler.

The NetPDL technology, which consists in user-editable XML files, allows us to decou-
ple the protocol database from the code that parses and handles network protocols. For
instance, our NetPDL-based implementation of the pFSA can operate on all the proto-
cols supported by the NetPDL language, and NetPDL files can be changed dynamically,
without having to recompile the code that generates the pFSA.

53

2 – pFSA: a new model for packet filters

protocol scanner
protoFSA builder

pFSA builder

protoFSA lowering

Filtering code

NetVM framework

packet buffer

Incoming packets

true

false

NetPDL
Protocol
database

NetPFL
filtering

expression

Figure 2.15. Overview of the building blocks in our prototype.

2.6.1 Overview

Figure 2.15 shows an overview of the code generation system implemented by our proto-
type, which mimics the general architecture presented in Figure 2.6. The pFSA builder
takes the protocol encapsulation graph (dynamically extracted by the NetPDL protocol
database) and the filtering expression and creates the actual pFSA that implements the
packet filter. The tokens that allow moving from one pFSA state to another are generated
by the protocol scanner, which (again) uses the NetPDL protocol database to translate
encapsulation rules into running code. Finally, the protoFSA builder creates a set of
protoFSA, each one dedicated to a single Cartesian product originated by the pFSA.
Each protoFSA is then handled by the protoFSA lowering module, which takes care of
some implementation-dependent optimizations, presented later in Section 2.6.3. All the
aforementioned blocks generate the proper data structures according to the primitives ex-
ported by the NetVM framework, which finally merges all the code in order to build the
actual filtering program.

2.6.2 Protocol scanner

Our FSA-based approach relies on the possibility to generate a sequence of input symbols
that correspond to the list of protocols contained at runtime in a given packet. Although
the protocol scanner is a logically separated module, in our implementation its opera-
tions are actually performed by the same assembly program that implements the pFSA
related to the given protocol filter. For instance, when generating the NetIL code for

10http://www.nbee.org

54

2 – pFSA: a new model for packet filters

a state, the encapsulation definitions for its protocol are read from a NetPDL database
and the corresponding NetIL code is generated and appended to the previously generated
code.

2.6.3 Predicate evaluator

The predicate evaluator operates in two steps. The first one (protoFSA builder) han-
dles each protoFSA generated during the pFSA construction and optimizes its behavior
using the well-known FSA algorithms, albeit slightly modified in order to handle transi-
tions based on ranges instead of single values. The second step (protoFSA lowering)
implements the lowering of the previous high level structure into running code, i.e., a set
of proper assembly instructions that implement the protoFSA.

In our implementation both steps are confined into a separate library that takes into
account range-based optimizations: all numeric comparisons on a protocol field (involving
both range and equality operators) are rearranged into a tree, organized to easily recognize
impossible outcomes (e.g., tcp.dport == 80 and tcp.dport > 1024). In addition, par-
ticular attention has been made in order to lower the code originated by each protoFSA
state in the most efficient way. When all transitions exiting from a state include only
precise values (such as in the filter tcp.sport == 80 or tcp.sport == 8080), the code
will be translated into a switch-case. When dealing with ranges, instead, the protocol
field is initially checked against the bounds of the wider range and, if necessary, against
the smaller ones; the comparison for equality against some constants is deferred at the
end, if the value is found to lie in the appropriate range. An example can be seen in
Figure 2.16.

80

*

TRUE

FALSE

22

> 1024

8080
dport

false

TRUE

FALSE

dport > 1024

==

true

22

80

default

Figure 2.16. Example of a predicate that specifies multiple comparisons against
the same protocol field, generated with the filter: tcp.dport > 1024 or
tcp.dport == 80 or tcp.dport == 22 or tcp.dport == 8080. Note the tree
structure and the removal of the redundant checks.

2.6.4 Code generation

Even if the pFSA formalism and the companion protoFSA components are able to create
FSA that guarantee the minimum number of checks on the packets for any given packet
filter, the code generation process is not guaranteed to maintain this property. In fact,
although the final filtering code is created at the best of our knowledge, we cannot formally

55

2 – pFSA: a new model for packet filters

prove that it enables each packet to be processed with the smallest number of checks on
protocols and fields. However, from the practical point of view, the characteristics of the
NetVM framework allow us to speculate that, if the generated code is not optimal, it is
very close to it. For instance, the NetVM framework implements many data-flow and
control-flow optimizations (more details in [15]) and our experimental evaluation proves
that our speculation is correct in case of the most common filtering expressions, while in
other more complex cases the code is rather close to optimality.

For example, a class of non-optimal filters originates from the fact that the proto-
col scanner and the protoFSA builder operate independently, hence a filter such as ip

and ethertype==0x86DD is considered valid. However, the optimization algorithms im-
plemented in the NetVM framework later detect that this is an always false filter, as the
ethernet-to-ip encapsulation requires the ethertype field to be equal to 0x0800. The
(missing) early detection of this problem is a limitation of our current approach, which
should be addressed in our future work.

2.6.5 Safety

Safety is one of the key problems to deal with when creating efficient packet filters, par-
ticularly when JIT techniques are used for code generation. Safety means guaranteeing
that the program always terminates (no infinite loops can occur), and that all memory
accesses refer to valid offsets.

The strong relationship between pFSA and Finite State Automata should, in principle,
help us in guaranteeing that some properties are satisfied ahead of time. For instance, the
termination property holds if the FSA keeps consuming input symbols, i.e., reading new
bytes from the input packet at always increasing offsets, which (sooner or later) exhausts
the input buffer, leading the filtering code to come to an end.

In fact, we can guarantee filter termination in pFSA by checking that each new protocol
has an header size greater than zero: each time a new protocol is encountered, the offset
inside the packet increases, hence reaching the end of the input buffer at some point.
Furthermore, we do not observe any termination problem within each protoFSA, as (by
construction) loops are not allowed in any protoFSA block.

With respect to bounds checking, we make use of traditional techniques based on offset
validation before loading/storing a value from/into memory. Although this technique can
be improved, we did not investigate this issue any further and we decided to make use
of the naive algorithm already implemented in the NetVM compiler. We expect that
a minor performance improvement could be achieved if a more aggressive algorithm is
implemented.

2.7 Validation

The pFSA model has been compared with other packet filters from the state of the art,
such as Ruler, BPF and SPAF. Some experiments have been carried out only against
SPAF, which represents the sole competitor that supports some of our features, such as
arbitrary protocol encapsulations; furthermore, it is also based on the FSA formalism.

56

2 – pFSA: a new model for packet filters

Three different test categories were set up to evaluate different aspects of our solution:
(i) compile-time performance, (ii) run-time performance and (iii) scalability. These tests
are largely inspired at those in [13] and were performed in a very similar environment.
All tests were performed on a workstation equipped with an Intel E8400 Core 2 Duo
dual-core processor with 4 GiB of RAM, running a 64-bit version of Ubuntu Linux 10.04.
Time measurements were performed either using the RDTSC assembly instruction or, for
reasonably longer periods of time, the gettimeofday() UNIX function. Memory footprint
measurements were performed by using the GNU time command or, where applicable,
using the Java VM memory management methods. All test processes were bound to
a single processor, with hot disk and processor caches, and the machine was otherwise
unloaded.

2.7.1 Filter compilation time

As a first step, we evaluated the compile-time performance of pFSA and SPAF. The set of
filters in Table 2.1 was taken as a reference. Two different protocol databases were chosen:
the first one is called core and includes only definitions for Ethernet, IPv4, TCP and UDP,
without any recursive encapsulation; the second one is called full, includes also defini-
tions for VLAN, ARP, PPPoE and IPv6 and some recursive encapsulations: IPv4-in-IPv4,
IPv4-in-IPv6 and IPv6-in-IPv4.

filter 1 ip

filter 2 ip.src == 10.1.1.1

filter 3 tcp

filter 4
ip.src == 10.1.1.1 and ip.dst == 10.2.2.2

and tcp.sport === 20 and tcp.dport == 30

filter 5
ip.src == 10.4.4.4 or ip.src == 10.3.3.3 or

ip.src == 10.2.2.2 or ip.src == 10.1.1.1

Table 2.1. Sample filters

Figure 2.17 portraits, in logarithmic scale, the time needed for pFSA and SPAF to
compile the filters above, either when run with the core database or with the full one.
pFSA running times are broken down in actual compilation time (the time needed to get
to the final automaton and generate the NetIL code from it) and optimization time (the
time needed for the data-flow and control-flow optimizations to run over the NetIL code).
JIT compilation time for pFSA is not displayed; neither the time required to compile the
C code generated by SPAF. SPAF computation times are missing for filters 3 to 5 when
executed with the full database, because we interrupted those tests when their processing
time exceeded 24 hours.

Figure 2.17 shows that the pFSA filter compilation process is several orders of mag-
nitude faster than SPAF, even if we include the optimization time (which is not formally
part of the model). The reason can be found in the greater efficiency of the building
process of the automaton, which is due to the choice to consider protocols and fields when
building the FSA instead of relying on unlabeled bytes in the packet, generating a far

57

2 – pFSA: a new model for packet filters

0.1 ms

1 ms

10 ms

100 ms

1 s

10 s

100 s

1000 s
1 h

1e4 s

1 d

Filter 1 Filter 2 Filter 3 Filter 4 Filter 5

C
o
m

p
u
ta

ti
o
n
 t

im
e

Filtering expression

pFSA compile (core DB)
pFSA optimize (core DB)

SPAF (core DB)
pFSA compile (full DB)

pFSA optimize (full DB)
SPAF (full DB)

Figure 2.17. Comparison of the time needed by pFSA and SPAF to compile
and optimize a filter.

smaller number of states. This has a huge impact on the overall building process, as the
complexity of FSA manipulation algorithms is usually exponential in the number of states,
while other sources of inefficiencies (e.g., SPAF is coded in Java) are less important.

pFSA SPAF

chosen memory states ratio memory states ratio
filter (MiB) (MiB/ (MiB) (MiB/

state) state)

filter 1 37.248 4 9.312 1092.608 16 68.288

filter 2 37.472 4 9.368 1537.984 32 48.062

filter 3 37.776 5 7.555 1563.216 26 60.124

filter 4 39.088 9 4.343 1605.696 40 40.142

filter 5 38.384 4 9.596 1591.888 32 49.746

Table 2.2. Memory usage and number of states

Table 2.2 displays, for each filter, the maximum amount of memory required for the
compilation process by pFSA and SPAF (which depends on the intermediate transforma-
tion of the automaton), and the number of states included in the final automaton. These
results apply to the core database and, in case of pFSA, they include also the count of in-
termediate protoFSA states. These numbers prove that there is a clear difference between

58

2 – pFSA: a new model for packet filters

the two implementations: even if the memory usage represents a peak measurement, while
the number of states is measured at the end of the filter compilation, those numbers give
a rough indication of the different efficiency of those algorithms.

2.7.2 Filter runtime performance

The next test aims at evaluating pFSA runtime performance. A single packet trace was
created by extracting HTTP sessions from multiple real-world traces, taken in our Univer-
sity campus, for a final size of about 1 GiB. All filters in Table 2.1 were reused, adapting
them to the syntax used by the specific packet filter, if necessary; filters 4 and 5 were
slightly edited in order to let them match the most active sessions in the trace. We mea-
sured the number of CPU cycles needed to execute each filter with different packet filters;
tests for pFSA and SPAF were run with the core and the full protocol database.

 0

 10

 20

 30

 40

 50

 60

 70

 80

Filter 1 Filter 2 Filter 3 Filter 4 Filter 5

C
P
U

 c
y
cl

e
s

Filtering expression

pFSA (core DB)
pFSA (full DB)
SPAF (core DB)
SPAF (full DB)
Ruler
BPF

Figure 2.18. Maximum number of CPU cycles needed to evaluate a packet for each filter.

Figure 2.18 shows the maximum number of CPU cycles needed to analyze a packet,
for each filter, implementation and (if applicable) protocol database. We have chosen to
record the maximum number of cycles (instead of the average) to reduce the impact of
non-matching and very short packets on the experiment. The best results are achieved by
pFSA and SPAF: their performance is roughly the same, especially when using the core
protocol database. SPAF leverages a more aggressive bounds checking algorithm that
represents an advantage when many packet accesses are needed, such as in case of the full

59

2 – pFSA: a new model for packet filters

database. In any case, pFSA results always faster than Ruler and BPF, even with the full
database.

2.7.3 Filter scalability

The last round of experiments checks how pFSA performs when increasing the number of
TCP sessions11 in a given filter. Compilation times for filters with increasing number of
sessions are tested first: results are shown in Figure 2.19.

1 ms

10 ms

100 ms

1 s

10 s

100 s

 0 10 20 30 40 50 60 70 80 90 100

C
o
m

p
u
ta

ti
o
n
 t

im
e

Number of TCP sessions

pFSA compile (core DB)
pFSA optimize (core DB)

pFSA compile (full DB)
pFSA optimize (full DB)

Figure 2.19. Compile and optimization times needed by pFSA to compile TCP session filters.

Our pFSA implementation was tested both with the core and the full protocol database.
In the former case, the graph shows a more than linear, but still less than exponential
increase in both compilation and optimization times. When the number of sessions is rela-
tively low, the time spent optimizing the generated code prevails over the FSA generation
time: but, since the generation time keeps growing faster than the optimization one, when
the number of sessions increases over 20 the former overcomes the latter.

When the full protocol database is used, both compilation and optimization times grow
exponentially in the number of sessions: for practical reasons, only the first data points are
drawn in Figure 2.19. While unfortunate, this behavior is fully expected: the explanation

11In our example, a TCP session is defined as a uni-directional tuple of IP addresses (source and desti-
nation) and TCP ports (source and destination): e.g., filter 4 of Table 2.1 describes a single session.

60

2 – pFSA: a new model for packet filters

lies in the filter statement and in the protocol database. When dealing with recursive
encapsulations (e.g., IPv4-in-IPv4), a session filter, by itself, does not state that the IP
source and destination addresses should both match inside the same IP protocol instance;
e.g., filter 4 in Table 2.1 matches also a tunneled IP packet in which the outer IP source
address is 10.1.1.1 and the inner IP destination address is 10.2.2.2. Since a FSA does
not have memory, the only way to handle this situation is by using different states for all
possible combinations. When the number of sessions increases, the number of combinations
(hence the number of states) grows exponentially, impacting computation times. However,
it is worth mentioning that, should this behavior be undesired, the language we use to
define the filter (NetPFL) includes additional primitives that, in presence of tunneling,
allow to filter traffic based on a specific header of the packet (e.g., ip%1.src == 1.1.1.1

to specify the source address of the first instance of IP only).

2200000

2300000

2400000

2500000

2600000

2700000

2800000

2900000

3000000

 1 10 100

Pa
ck

e
ts

 p
ro

ce
ss

e
d
 e

a
ch

 s
e
co

n
d

Number of TCP sessions

pFSA
SPAF
BPF
BPF+
Ruler

Figure 2.20. Overall runtime performance w.r.t. TCP session filters.

Our last test still focuses on TCP sessions scalability, but instead evaluates the runtime
performance of pFSA. We used the same packet trace of Section 2.7.2 and tested the raw
packet throughput: one-time computations (e.g., filter compilation) were not considered,
but run-time overheads (e.g., per-packet libpcap library calls) are included in the results.
Since some of the competing approaches cannot handle multiple levels of encapsulation,
in this test we configured pFSA and SPAF to use the core protocol database. Figure 2.20
shows that pFSA does not suffer any significant runtime performance degradation when the
number of filtered sessions increases. This is an expected scenario, because the generated

61

2 – pFSA: a new model for packet filters

FSA grows wider, but not deeper; as the number of sessions grows, more and more states
are added in parallel to the old ones, but the average distance from the starting state to
the accepting ones does not change.

It is interesting to note the slight increase in performance just after the 16 sessions
mark: the reason of this increase relies on the strategy that the NetVM JIT implementation
uses to generate code for switch statements, emitted by the pFSA code generator to check
for IP addressed and TCP ports. When the switch is sparsely populated and the number
of cases is low (below 15), a Minimum Rectilinear Steiner Tree (MRST) is used; when the
number of cases increases, a binary switch is used instead.

2.7.4 Ease of use

To conclude this section, we want to underline why pFSA is easier to use than many
previous approaches, like BPF, specifically in case of complex protocol encapsulations.

Our pFSA-based implementation is able to generate filtering code that, according to
the protocol database given in input, can match a filter for all possible encapsulations
that can be recognized in the packet. If the protocol database contains the definition of
a tunneled protocol, the pFSA model transparently filters it, without further input from
the user.

As an example, let’s imagine a scenario in which a given protocol database supports
IPv4-in-IPv4 tunnels. With a filtering string composed by only three tokens (i.e., ip.src
== 1.1.1.1), pFSA and SPAF are able to match packets that contain at least one IPv4
instance whose source address is 1.1.1.1, even if that instance is deeply nested in other
protocols. A BPF filter like ip src 1.1.1.1, instead, is not tunnel-aware. To match
the first tunneled IPv4 instance, a BPF user should write a filter that manually inspects
the protocol field of the outer IP instance and then the IP address of the inner one, at
the right offset: ip[9:1] = 0x04 && ip[32:4] = 0x01010101. Furthermore, for BPF to
match both a “native” and the first tunneled IPv4 instance, both previous filters should
be put in OR together: the number of tokens in the filter grows then to 11.

Number of pFSA SPAF BPF BPF (when filtering
encapsulations at any level)

No levels 3 3 3 3

1 level 3 3 7 11

2 levels 3 3 11 23

3 levels 3 3 15 39

4 levels 3 3 19 59

5 levels 3 3 23 83

Table 2.3. Number of tokens in the filtering string needed to filter a tunneled IPv4 instance
with a given destination address

Table 2.3 has a rundown of the increasing complexity (in terms of number of tokens
in the filtering string) of a BPF filter, compared to the constant complexity required by
pFSA and SPAF.

62

2 – pFSA: a new model for packet filters

2.8 Conclusions

This chapter presented pFSA, a novel packet filtering model based on (multilevel) Finite
State Automata augmented with predicates, which guarantees optimality of packet fil-
tering composition with respect to the number of checks on the packet, even in case of
complex predicates or unconventional protocol encapsulations, and independently from
the complexity of the filtering string. Furthermore, being agnostic with respect to net-
work protocols, our implementation exploits a dynamic protocol database that allows to
change the protocols it operates upon by simply updating those files at run-time, without
having to modify the source code of the packet filter compiler itself. Our model proved to
be as fast as the best competitors for simple packet filters and to scale linearly with the
number of predicates on the same protocol, such as when filtering multiple TCP sessions.
At the same time it demands limited processing and memory requirements in the filtering
code generation phase, which represents a huge improvement when compared with other
approaches (e.g., SPAF).

Future work includes the capability to dynamically add and remove filtering expres-
sions to an existing pFSA, which would allow to transparently optimize filters originated
by independent applications without having to create multiple packet filters running in
parallel, and a better integration of the pFSA model with the other components of the
system (e.g., the protocol scanner). This will allow to keep the optimality property also
when the model is translated into running code, while currently this is lost in our imple-
mentation during the lowering phase. However, in our experience the number of packet
accesses is the minimum in most of the generated filters, although it cannot be guaranteed
formally.

63

Chapter 3

xpFSA: efficient support for
tunneled protocols

3.1 Introduction

In the recent years we have observed a reduction in the number of layer-7 protocols in
use. While in the past each application defined its own protocol, nowadays most of the
traffic is conveyed through the web, and HTTP has become the de-facto protocol for
many different applications. Surprisingly, the opposite phenomenon was observed at the
bottom of the protocol stack. While protocol encapsulations were definitely simple in
the past (IP in Ethernet was by far the most common encapsulation), new necessities,
arising in particular from network virtualization, are rapidly transforming the lower layers
of the protocol stack. Figure 3.1 presents one of the possible examples of the complexity
growing over the years, which, e.g., translates into frames that need several more fields to
transport a simple IP packet, compared to what it was defined in the original Ethernet
DIX specification in the early ’80s.

When using tunneling or network virtualization protocols, packet filtering becomes
more complicated: it is important to be able to capture all the traffic we are interested in
(e.g., web traffic), independently from the actual encapsulations used at lower layers. At
the best of our knowledge, no packet filter implementation available today offers a flexible
tunneling support: to support more complex protocol encapsulations, one has to modify
the source code of the filtering tool itself.

NetPFL, described in Section 1.3, aims at solving this problem, by providing an easy-
to-use filtering language that supports protocol tunneling with a flexible syntax. Most of its
features have already been implemented in nbeedump, a dynamic packet filter generator
part of the NetBee library [30]; NetPFL tunneling support, however, is missing from
nbeedump, because the pFSA model, described already in Section 2, is not generic enough
to model tunnels with good performance in all circumstances.

In this chapter we propose a model for packet filter called xpFSA (or Extended Finite
State Automaton with Predicates), that improves the previous model by extending its
support for tunneling features.

65

3 – xpFSA: efficient support for tunneled protocols

Dst address

Src address

Ethertype

Payload

Dst address

Src address

Ethertype

Payload

C-Tag
TPID=0x8100

Dst address

Src address

Ethertype

Payload

S-Tag
TPID=0x88a8

C-Tag
TPID=0x8100

B-Dst address

B-Src address

B-Tag
TPID=0x88a8

I-SID, Flags
TPID=0x88e7

C-Dst address

C-Src address

Ethertype

Payload

C-Tag
TPID=0x8100

802.3
Around 1980

802.1Q
1998

802.1ad
(QinQ)
2005

802.1ah
(MACinMAC)

2008

B-Dst address

B-Src address

B-Tag
TPID=0x8100

Flags, Ingress
/ Egress

Nicknames
TPID=TRILL

C-Dst address

C-Src address

Ethertype

Payload

C-Tag
TPID=0x8100

TRILL
2011

B-Dst address

B-Src address

B-Tag
TPID=0x8100

Ethertype
0x0800

C-Dst address

C-Src address

Ethertype

Payload

C-Tag
TPID=0x8100

VXLAN
2012

Outer IP Dst
Address

Outer IP Src
Address

UDP (VXLAN)

Flags, VNI

Slide adapted from Gary Berger, 2012

Figure 3.1. Growing complexity in protocol encapsulations.

Section 3.2 presents the state of the art; Section 3.3 presents the xpFSA model, along
with the algorithmic details; Section 3.4 shows how to transform a NetPFL statement into
an xpFSA automaton. Section 3.5 presents the algorithms required to support NetPFL’s
tunneled keyword, while Section 3.6 explains how xpFSA can also be used for packet
field extraction. Section 3.7 describes a minor extension to the NetPDL language to make
the default behavior more user-friendly. Finally, Section 3.8 presents an overview of our
implementation, leaving the experimental evaluation to Section 3.9 and conclusions to
Section 3.10.

3.2 Related Work

The work of this chapter extends the pFSA model in order to represent (complex) filtering
expressions based on protocol encapsulation rules. Despite the high number of publica-
tions on packet filters, at the best of our knowledge none of them proposes a solution
able to handle filtering conditions with encapsulation constraints. For example, neither
libpcap [8], representing the foundation of many packet filtering tools (e.g., tcpdump,

66

3 – xpFSA: efficient support for tunneled protocols

Wireshark), nor the display filters implemented in Wireshark [3] (which replace the basic
filtering capabilities of libpcap when packets have to be shown on screen) support filters
with tunneling features.

The idea of using code to reduce the number of states has been mainly influenced by
the Extended Finite Automata (XFA) [27] formalism, that augments traditional FSA
with finite scratch of memory and generic executable code to manipulate this memory.
XFA associates code with states and transitions, but, while, its primary goal is to improve
the time and space efficiency of signature matching in network intrusion detection systems,
our work aims at supporting tunneling features in packet filters applications.

Similarly, the Extended Finite State Automata (EFSA) [26] formalism extends
traditional FSA to assign and examine values of a finite set of variables, in order to model
fast intrusion detection and prevention systems. Even if EFSA has a different goal than
our model, both formalisms augment transitions through predicates that evaluate the
value stored in a variable. In spite of this, EFSA also associates with transitions the code
to store values into variables and supports actions associated with final accepting states.

Stateless FSA-based Packet Filter (SPAF) [13] is a packet filter generator based on
the creation of finite state automata from high level protocol database and filter predicates.
Similarly to our work, it enables full parsing of complex protocols and supports recursive
encapsulation relationships. However, each protocol is first modeled through a FSA that
consumes a byte at a time and then, by using classical rules from literature, the various
automata are combined together in order to represent the whole filter. Although SPAF
guarantees code optimality and safety, it is extremely slow in the packet generation phase,
because the number of generated states is very high, and consequently the determinization
phase takes a lot of time.

Except SPAF and pFSA, we are not aware of other packet filtering models based on a
FSA-like approach. Even if both of them support multiple instances of the same protocol,
and both take into account a Protocol Encapsulation Graph (PEG) in order to represent
a filter, we chose to extend the pFSA formalism because it generates much more compact
(and efficient) automata.

For some kinds of filters, however, the pFSA model could lead to automata with a very
high number of duplicate states. An example is shown in Figure 3.2, where we represent a
pFSA modeling a filter that requires the IP protocol to appear at least three times within
a packet (i.e., NetPFL filter ip%3). Our aim is to enhance the pFSA formalism, in order
to reduce the number of duplicate states, and consequently to have better compile-time
performance.

3.3 Extended FSA with Predicates

This section presents the xpFSA, an extension of the pFSA model that improves its
predecessor by extending its support for tunneling features.

Briefly speaking, the input symbols can be associated with operations on specific coun-
ters, and the transitions can have predicates expressed on the value of these counters. This
way, the number of duplicate states is reduced, and consequently the complexity of the

67

3 – xpFSA: efficient support for tunneled protocols

Start Eth
{start-eth}

*

IP
{eth-ip} {ip-ip}

IPv6

{ip-ipv6}

{ipv6-ip}

{eth-ipv6}

IP

IPv6

IP
{ip-ip}

{ipv6-ip} IPv6
{ipv6-ip}

{ip-ipv6}

Figure 3.2. Example of a pFSA with duplicate states.

generation and composition algorithms. In addition, in order to model filters requiring
generic actions, xpFSA supports action states. More details are given in the following
sections.

3.3.1 Definition of xpFSA

An Extended Finite State Automaton with Predicates (xpFSA) is defined with
the following “eight-tuple”:

Axpfsa = (Q, Γ, A, Σc, δp, q0, F, E)

where:

Q is a finite set of states, each of which is associated with a specific network protocol1;

Γ is a finite set of integer counters;

A is a finite set of generic actions;

Σc is the set of input symbols, each of which is associated with a (potentially empty)
list of counters. Each symbol represents a protocol encapsulation rule, while the list
contains information about the increase and/or decrease of one or more counters
among those in Γ. When the control of the automaton receives a symbol, before
triggering the proper transition(s), performs also the required operations(s). Ob-
viously, if the list associated with the received symbol is empty, the control of the
automaton behaves as in a pFSA;

δp is the transition function with predicates (p-transition). It is similar to the one
defined for pFSA, but predicates can also be expressed on the value of the counters

1There are two exceptions to this rule: (i) the starting state is associated with a “dummy” protocol in
the database, since it is used to represent the state of the automaton before the analysis has begun; (ii)
most pFSA have a state representing the non-accepting condition, reached if the processed packet does
not satisfy the filter: that state is not associated with any network protocol.

68

3 – xpFSA: efficient support for tunneled protocols

defined in Γ. Note that it is possible that the predicate is always true, and in this
case the p-transition is equivalent to a classical transition defined in the base FSA
model;

q0 is the starting state, among those in Q ;

F is a set of accepting states, among those in Q ;

E is a set of action states, among those in Q. When one of them is reached, specific
actions among those in A are executed.

Figure 3.3 shows the xpFSA representing the NetPFL filter ip%3, which requires that
a packet, in order to be valid, contains at least three instances of IP.

{eth-ip}/p

{eth-ip} {ip-ip}

{ip-ip}/!p

{ip-ipv6}/!p

Start Eth
{start-eth}

*

IP

IP

IPv6

{eth-ipv6}

{ip_ipv6}

p:= ip.cntr == 3 {ip-ipv6}/p

Symbol Operation(s)

eth-ip ip.cntr++

ip-ip ip.cntr++

ipv6-ip ip.cntr++

Figure 3.3. Example of xpFSA.

In the example, the operation ip.cntr++ is associated with all symbols having IP as
target protocol and then, each time that one of them is received by the control of the
automaton, the variable ip.cntr is incremented by one. Moreover, the example xpFSA
has some p-transitions which evaluate the value of this counter, in order to understand if
the final accepting state can be reached and consequently if the packet can be accepted.

An important consideration is that, even if both Figures 3.2 and 3.3 represent the
same filtering expression, the second one has a single state related to IPv6, instead of
two, and two states associated with IP, instead of three: xpFSA reduced the number of
duplicate states. Furthermore, by tweaking only the value against which the automaton
in Figure 3.3 evaluates the variable ip.cntr in predicate p, all filters in the form ip%n can
be represented.

It is worth pointing out that a counter associated with a symbol is incremented (or
decremented) as soon as the symbol is received, but before the predicates are evaluated. As
a consequence, if a transition with predicates evaluates the value of a counter incremented
by the symbol related to the transition itself, the evaluation is influenced by the operation
on the counter.

69

3 – xpFSA: efficient support for tunneled protocols

3.3.2 Determinism

The determinism of an automaton is important for different reasons. For example, it is
required for FSA complementation, which in turn is required by automata intersection,

if the latter is implemented using first De Morgan’s law (A ∩ B = A ∪B). Moreover, a
deterministic automaton can be translated into executable code more easily than a non-
deterministic one: the former in fact can have only an active state at a time, while in
the latter either the control could be in multiple states in the same instant, or runtime
backtracking must be implemented.

The definition of deterministic pFSA depicted in Section 2.3.3 is still valid in the new
model. In particular, an xpFSA is deterministic if it does not include any ε transition2

and, for each input symbol and for all possible values of the Boolean predicates, there is
exactly one enabled, outgoing transition.

3.3.3 Algorithms

The algorithms defined in the pFSA formalism (Section 2.3.4) require some changes in
order to be reused in our new model. This is due to both the operations associated with
the symbols, and the newly added feature of action states.

The union algorithm can be reused with little effort. In fact, since it merges two
automata by adding a new initial state, connected to the initial states of the original
automata using ε transitions, action states are not considered. On the other hand, the
counters and the related operations associated with the input symbols are involved. In
particular, the set of variables of the resulting automaton is the union of the sets associated
with the two joined automata. Each of the input symbols of the resulting automaton is
then associated with the union of the lists of operations assigned to the same input symbol
in both original automata, excluding duplicates. This means that, for example, if in both
automata to be joined a counter is incremented on the same symbol, that symbol will be
associated with a single operation in the resulting FSA; the same rule applies when the
counter is decremented. However, since increment and decrement operations can coexist,
they can effectively cancel each other out.

Counters are not considered in the complementation algorithm, since it requires only
to reverse the accepting status of all states of a deterministic automaton. Consequently,
an action state, regardless of whether it is accepting or not, is still an action state after
the complementation, while a non-action state continues to be a non-action state.

Thanks to first De Morgan’s law, the intersection algorithm does not require extra
effort, because it is based on the complementation and union algorithms.

It is worth noting that both the union and the intersection algorithms may produce
non-deterministic automata with redundant states. For this reason, further operations are
needed in order to create better automata: determinization and minimization.

The determinization algorithm is a little different with respect to the one depicted

2Please remember that an ε transition does not require any input symbol to fire.

70

3 – xpFSA: efficient support for tunneled protocols

in Section 2.3.4, because of the introduction of action states. In detail, if N is a non-
deterministic xpFSA, and D is its equivalent deterministic automaton, the set of action
states of D consists of all the states that, during the determinization algorithm, were
created out of at least one of the action states of N. Moreover, the set of actions to be
executed when an action state of D is reached is the union of all actions associated with
the states of N from which the resulting state comes from. An example, that for the
sake of simplicity does not have any reference to network protocols, is shown in Figure
3.4. In particular, the non-deterministic automaton is in the left of the figure, while the
deterministic one is depicted to the right. The state {q0,q1}, as highlighted with the
dashed circle, is an action state, because q1 was an action state in the non-deterministic
xpFSA.

q0 q2

a, b

a b
{q0} {q0,q1} Q0,q2

b

a b

a

a

b

q1

Figure 3.4. Example of determinization of an xpFSA.

Consider now the minimization algorithm. It requires to identify equivalent states
and compact them into a single state. From the automata theory [21], two states could
be equivalent if they have the same status, i.e. if they are both accepting or both non-
accepting. This is still true in an xpFSA, but now there are four possible statuses: (i)
accepting and action; (ii) accepting and non-action; (iii) non-accepting and action; (iv)
non-accepting and non-action. When the minimization algorithm merges two states, the
resulting one executes both actions associated with the original states. Moreover, as
defined in Section 2.3.4, two states are equivalent or not depending on their outgoing
transitions. An example of minimization of an xpFSA is shown in Figure 3.5. Note that
q4, represented with a dashed double circle, is an accepting and action state.

To conclude, it is worth noting that: (i) neither the determinization nor the minimiza-
tion consider the counters and the operation associated with the symbols; (ii) no algorithm
takes into account the state-protocol association, needed to translate the xpFSA into ex-
ecutable code to analyze network packets.

3.4 Building the xpFSA

This section presents the algorithm used to build the xpFSA representing NetPFL header
chains, starting from the protocol encapsulation rules represented in a PEG. This algo-
rithm extends the one defined in the original pFSA formalism (Section 2.4.5) because that
algorithm: (i) was not able to create an automaton representing an header chain, but

71

3 – xpFSA: efficient support for tunneled protocols

q3

a

b

a

a,b

b

q7 q2

q0 q1 q4

q5

q6

a
a

b

b

a,b

b

b

a

{q0,q1}

q7 {q2,q2}
a,b

q4

a
a

b

{q5,q6}
a,b

b

a,b

Figure 3.5. Example of minimization of an xpFSA.

q1

q2

b

a,b

a

q4

q5

q6

b

a

U

q0

b

q3

b

b

a,b

a

b

a

U

b

q2

q1

q3

q5

q4

q6

b

a,b

a

b

a

b

q2

q1

q3

q5

q4

q6

a

a a b

b b

b
b

A

B

C

E

D
A

B

C,E

D

After unionAfter complementation After determinization After minimization
and

complementation

•A:= {q0,q1,q4}
•B:={q2,q5}
•C:={q3,q6}
•D:={q2,q6}
•E:={q3,q5}

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b
b

b

b

b

b
b

b
b

Figure 3.6. Example of union of two xpFSA.

only pFSA related to simple filters like tcp.sport==80, possibly joined with Boolean op-
erators; (ii) did not support both operations associated with the symbols, and predicates
evaluating the value of counters, required to reduce the number of states of the automaton.

In practice, the concepts defined in the old algorithm to create a pFSA are still used:
(i) to join the automata representing different header chains, and (ii) to create the sub-
automata associated with the pairs of p-transitions.

72

3 – xpFSA: efficient support for tunneled protocols

3.4.1 NetPFL to regular expression

A preliminary step of the algorithm consists in the translation of the header chain into
a regular expression, whose alphabet is composed by the protocols associated with the
states of the referred PEG. It is worth noting that this regular expression encodes only
some aspects of the filter, because the predicates on fields, the header indexing and the
keyword tunneled do not have a representation in the regular expression formalism. These
aspects of the header chain are not considered in this preliminary stage of the algorithm,
but they will be taken into account in later steps.

In order to create the equivalent regular expression, each NetPFL token, starting from
the right-most one, is translated by applying the rules depicted in Table 3.1.

NetPFL RegExp

in {p1,p2} [p1 p2]

notin {p1,p2} [^p1 p2]

in any .

Table 3.1. Translation rules

An important consideration is that this table does not show how to convert the re-
peat operators (i.e. +, ∗ and ?), because they are represented in the same way in both
formalisms. After the translation of the tokens, the target element of the header chain
is placed in the rightmost position of the regular expression. The regular expression is
then extended at both ends with the element .∗, which matches any protocol repeated an
unbounded number of times. This way, that sequence of protocols can appear everywhere
within the packet3.

As an example, consider the NetPFL header chain:

tcp.sport==80 in ip%2 in {ip,ipv6}+

which becomes the regular expression:

.∗ [ip ipv6]+ ip tcp .∗

It is worth nothing that, in line with the rules introduced above, neither the predicate
on the destination port of TCP, nor the header indexing requirement for the IP header,
are represented into the regular expression.

This last remark highlights that there is not a one-to-one correspondence between the
header chain and regular expressions, since some NetPFL elements are not considered in
the transformation process: the transformation from a NetPFL filter to a regular expres-
sion is not a injective function, hence multiple filters can be represented with the same
regular expression. However, as it will become clearer in the following, this does not rep-
resent a problem, because the NetPFL elements not represented in the regular expression
will be later taken into account.

3We can optimize filters having startproto in the right-most position: since startproto is a dummy
protocol representing the beginning of the packet, in the equivalent regular expression the first .∗ is omitted.

73

3 – xpFSA: efficient support for tunneled protocols

3.4.2 The skeleton of the automaton

The goal of this stage of the algorithm is to create an automaton out of the regular
expression just built, and then associate each of its states with one or more protocols.

In particular one element of the regular expression is considered at a time, from left to
right, and, depending on its repeat operator, a different block of the automaton is created.
The translation rules are depicted in Figure 3.7, and they are derived from the standard
mapping rules defined from the automata theory [21]. We can optimize the last element
of the regular expression, i.e. ‘.∗’, for which a looping transition on the last state, firing
on any symbol, is enough.

ε
ε

*no repOp ?+

Figure 3.7. Building blocks of the automaton.

All automaton blocks are then connected in order, and the right-most state represents
the final accepting state of the automaton.

Each state, if it does not have any incoming ε transitions, is associated with the proto-
col(s) specified by the element of the regular expression from which it derives. Otherwise
it is also associated with the protocols related to the origin state of the ε transition. This
is because, whenever the automaton control is in the origin state of the ε transition, it
must be also in the target state of the transition itself; therefore its destination state is
reached also when a protocol leading to its source one is encountered within the packet.

For example, consider the regular expression .∗ ethernet .+ tcp .∗, coming from
the NetPFL header chain tcp.sport in any+ in ethernet, and translated into the au-
tomaton shown in Figure 3.8. That figure, in addition to the automaton, shows also the
element of the regular expression from which each building block derives (at the top), and
the protocols represented by each state (in the grey boxes at the bottom).

At this point the skeleton of the automaton has been completed, according with the
information represented in the regular expression. However, the automaton is still incom-
plete, because: (i) the transitions are not labeled with any input symbol yet; (ii) any
state could still be associated with multiple network protocols; (iii) the NetPFL elements
which have not been coded into the regular expression must still be considered.

3.4.3 Defining the counters

This step of the algorithm aims at defining the set of counters of the xpFSA, and at
associating operations on these variables with the input symbols. To reach this goal, the

74

3 – xpFSA: efficient support for tunneled protocols

Startproto
Ethernet
IP
IPv6
TCP
UDP
HTTP
DNS

Ethernet TCP

.* ethernet .+ tcp .*

Startproto
Ethernet
IP
IPv6
TCP
UDP
HTTP
DNS

Figure 3.8. Skeleton of an automaton representing a header chain.

optional header indexing features, defined within the header chain, are considered4.

In particular, for each header indexing related to a different protocol, a new variable
is created, with a name in the form protoID.cntr. Moreover, in order to associate the
operations related to these variables to the appropriate symbols, the following rule is
applied: an operation of increment of a counter related to a certain protocol is assigned to
all symbols having that protocol as target.

Considering for instance the filter ip%2, the variable ip.cntr is created, as it is needed
to count the number of IP headers encountered within the packet under analysis. Then,
the operation ip.cntr++, which increments ip.cntr by one, is associated with those input
symbols having IP as target, i.e. eth-ip, ip-ip and ipv6-ip.

3.4.4 Labeling the transitions

At this point, the algorithm associates each non-ε transition of the skeleton of the automa-
ton previously created with one or more input symbols, in order to transform the skeleton
itself into an actual FSA (but not yet into an xpFSA).

In particular, a transition is labeled with all the symbols having the name satisfying
the following constraints: (i) the first part, i.e. the origin protocol, is equal to one of
the protocols associated with the source state of the transition itself; (ii) the second part,
i.e. the target protocol, is equal to one of the protocols specified by the element of the
regular expression from which the destination state comes from. This means that protocols

4The NetPFL keyword tunneled needs specific considerations, so it will be discussed later, in Section 3.5.

75

3 – xpFSA: efficient support for tunneled protocols

associated with a state because of the ε transition cannot be target of the symbols leading
to the state itself, since this could cause the recognition of wrong packets.

To better understand this statement, consider the fragment of regular expression ipv6

ip∗, resulting in the piece of automaton shown in the left of Figure 3.9. The rightmost
state is associated with IP and IPv6 but, as emphasized with the square brackets, since
the IPv6 association is due to the ε transition, IPv6 cannot be the target protocol of the
symbols on the self loop. This way, this automaton excerpt recognizes only the sequences
of protocols like IPv6, IPv6 - IP, IPv6 - IP - IP and so on. Instead, if IPv6 was the target
of the symbols on the self loop, the automaton would also accept sequences such as IPv6
- IP - IPv6 - IP, that do not satisfy the fragment of regular expression ipv6 ip∗.

ε

{ip-ip,ipv6-ip}

IP
[IPv6]

IPv6

… in ip* in ipv6 …

… ipv6 ip* …

IPv6

{ipv6-ip}/p

IP
TCP

… in {ip%2.src==10.0.0.1,tcp} in ipv6 …

p:= ip.cntr==2 && ip.src==10.0.0.1

… ipv6 [ip tcp] …

{ipv6-tcp}

Symbol Operation(s)

ipv6-ip ip.cntr++

{…-ipv6} {ipv6-…,ip-…}

{…-ipv6} {ipv6-…,tcp-…}

ε

Figure 3.9. Transitions labeling process.

Obviously, since we are building an xpFSA representing a NetPFL header chain, it is
possible that some transitions evaluate some predicates. As an example, consider the right
part of Figure 3.9, representing the piece of header chain ‘in {ip%2.src==10.0.0.1,tcp}
in ipv6’. Because of the predicates on the source address and on the number of encoun-
tered IP headers, a p-transition toward the rightmost state is needed. It is important to
note that the transition fires if the condition ip.cntr==2 && ip.src==10.0.0.1 is veri-
fied, because this predicate comes from a NetPFL element involved in the in operation.
On the contrary, if this element had been used in a notin operation, the p-transition
would have fired if (ip.cntr==2 && ip.src==10.0.0.1) returned false.

After the labeling process just described, the transitions of the automaton of Figure
3.8 are labeled as shown in Figure 3.10. Note that a p-transition links the third state
with the final accepting state of the automaton, because of the predicate specified on the
source port of the TCP header.

76

3 – xpFSA: efficient support for tunneled protocols

Startproto
Ethernet

IP
IPv6
TCP
UDP
HTTP
DNS

Ethernet TCP

{start-eth}

Startproto
Ethernet

IP
IPv6
TCP
UDP
HTTP
DNS

{eth-ip,eth-ipv6} {ip-tcp, ipv6-tcp}/p

* * *

p:= tcp.sport==80

Figure 3.10. Automaton with labeled transitions.

3.4.5 The automaton representing the header chain

By observing Figure 3.10, it is evident that the automaton just built could be non-
deterministic. For this reason, it is now translated into a deterministic one using the
algorithm defined in the xpFSA model, becoming as shown in Figure 3.11.

{start_eth}
{eth-ip,eth-ipv6}

*-{start-eth} {start-eth}

*-{start-eth,eth-ip,eth-ipv6}

*-{ip-tcp,ipv6-tcp}

{ip-tcp,ipv6-tcp}/p

*

{ip-tcp,ipv6-tcp}/!p

p:=tcp.sport==80

Figure 3.11. Deterministic automaton representing an header chain.

It is worth noting that, even if the automata in Figure 3.10 and 3.11 are already
representing a NetPFL header chain, they cannot still be used for packet filtering, as this
requires that each state is related to a single protocol; but, in the previous algorithm steps,
each state may have been associated with multiple protocols. Moreover, the state-protocol
association might have been lost during the determinization process5. As a consequence,

5In fact Figure 3.11, unlike the previous ones, does not show any correspondence between protocols and

77

3 – xpFSA: efficient support for tunneled protocols

the next steps of the algorithm manipulate the automaton until each state is associated
with one and only one protocol, so that we can guarantee that reaching a certain state
of the automaton corresponds to reaching a specific protocol within the packet under
analysis. This is needed to later be able to translate the automaton into executable code
that can analyze network packets.

3.4.6 Managing states already representing a single protocol

This step of the algorithm aims to identify states already representing the reaching of a
single protocol, and to label each of them. In detail, a state corresponds to a specific
protocol if all the symbols associated with its incoming transitions share the second part
of their name, i.e. the target protocol of the encapsulation rules that they represent is
the same. Two exceptions are: (i) the initial state, which represents a single protocol (i.e.
Startproto) only if it does not have any incoming transitions, and (ii) the accepting state,
whose self loop is not considered.

After that a state has been labeled, the symbols on its outgoing transitions are removed
if their origin protocol differs from the one represented by the state itself6. Obviously,
when a transition remains without symbols, it is removed. Also, a state is removed if it is
disconnected from the other ones.

These operations are repeated until there are no more changes in the automaton. After
the execution of this step, the automaton of Figure 3.11 becomes as shown in Figure 3.12.

Eth

{start-eth} {eth-ip,eth-ipv6}
TCP

*-{start-eth} {start-eth} *-{ip-tcp,ipv6-tcp}

{ip-tcp,ipv6-tcp}/p

*

{ip-tcp,ipv6-tcp}/!p
p:= tcp.sport==80

Figure 3.12. Automaton with some labeled states.

3.4.7 Expanding states and transitions

At this point, the algorithm continues by splitting each unlabeled state in multiple states,
each one associated with a different protocol among those that are the target of the symbols
assigned to the transitions entering into the former state. It is worth noting that, in order

states.

6This is possible because the symbols represent protocol encapsulation rules. Hence, if the current state
is associated with IP, only the symbols representing a protocol encapsulated into IP can be received while
the xpFSA is in that state.

78

3 – xpFSA: efficient support for tunneled protocols

to represent the situation in which the analysis of the packet has not started yet, we need
to associate a state with Startproto. However, no input symbol exists with this protocol
as a target, then the initial state is also expanded in one associated with Startproto and
representing the new initial state of the automaton. As an example of expansion, consider
the dark state in the left of Figure 3.13, which originates two new states, respectively
representing the protocols IP and IPv6 (shown in the right of the figure).

{eth-ip,eth-ipv6} {ip-ipv6, ipv6-tcp}

{eth-ip}

{eth-ipv6}

IP

IPv6

{ip-ipv6}
{ipv6-ip,ip_ip}

{ipv6-ip}

{ip-ip}

{ipv6-tcp}

Figure 3.13. Expansion of a state and the related transitions.

Each transition exiting from an expanded state is replaced with a new transition for
each one of its symbols. In particular, each of these new transitions starts in the new
state representing the source protocol of its symbol, and terminates in the same state of
the original transition. For example, the transition exiting from the dark state in the left
of Figure 3.13 originates two new transitions: one labeled with ip-ipv6 and coming from
the new state associated with IP, the other firing with ipv6-tcp and originating in the
new state representing IPv6.

Similarly, the transitions entering into an expanded state are replaced based on the tar-
get protocols of their symbols. This way, the transition labeled with eth-ip and eth-ipv6

originates two transitions: one firing with eth-ip and leading to the new state represent-
ing IP; the other labeled with eth-ipv6 and entering into the new state associated with
IPv6.

Figure 3.13 shows also that the self loop on an expanded state originates a new tran-
sition for each one of its symbols. In particular, a new transition starts and ends on the
proper new states, according with the origin and target protocol of the symbol associated
with it.

Figure 3.14 shows how the automaton of Figure 3.12 becomes after this step of the
algorithm. Note that the symbols on the new transitions have not been specified for
reasons of brevity, because they can be easily derived from the protocols labeling the
states.

3.4.8 The xpFSA representing the header chain

Figure 3.14 shows an xpFSA in which each state corresponds to a single protocol: hence,
it can be translated into executable code to analyze network packets.

79

3 – xpFSA: efficient support for tunneled protocols

Eth
{start_eth} {eth-ip,eth-ipv6}

TCP

*-{start-eth} {start-eth} *-{ip-tcp,ipv6-tcp}

{ip-tcp,ipv6-tcp}/p

*

{ip-tcp,ipv6-tcp}/!p

p:=tcp.sport==80

HTTP

DNS

Start

UDPIP

IPv6
TCP

IP

IPv6

UDP

TCP

DNS

HTTP

p

p

!p

!p

Eth

Figure 3.14. Expansion of unlabeled states.

It is worth noting that the xpFSA could have more states than the minimum necessary
to represent an header chain. For instance, the dark states in Figure 3.14 are useless, either
because they are never reached, or because they do not allow the control to reach the final
accepting state: consequently, these states could be removed without any change in the
meaning of the automaton. In order to identify these states, a reverse post-order visit
of the xpFSA is performed, starting from the final accepting state; states that cannot be
visited are removed.

After pruning useless states and transitions, the xpFSA of Figure 3.14 becomes the
automaton shown in Figure 3.15, which is finally the minimized xpFSA.

To conclude, it is worth remembering that a NetPFL filter could be the composition,
through the Boolean operators and and or, of multiple header chains. In this case, our
algorithm is executed for each of them, and the resulting automata are joined using the
algorithms defined in the xpFSA model.

3.5 Identifying tunneling

This section describes the algorithm to create the xpFSA recognizing packets that satisfy
an header chain, if a tunneled protocol (or set of protocols) is required by the filter.

In this context, the following definition of “tunneling” is used: a protocol header is

80

3 – xpFSA: efficient support for tunneled protocols

{start-eth}

{eth-ipv6}

{ip-tcp}/p

Eth
TCP

Start

IPv6

IP
{eth-ip}

{ip-ipv6}

{ipv6-ip}

{ipv6-tcp}/pp:= tcp.sport==80

*

{ip-ip}

Figure 3.15. xpFSA representing a NetPFL header chain.

tunneled if the layer of at least one of the protocols headers preceding it in a packet is
greater than, or equal to, the layer of the protocol that is being considered.

The xpFSA recognizing packets with tunneled protocols, as it will be detailed later,
uses a variable that counts the number of protocols encountered within a packet and
belonging to certain network layers. Consequently, to understand when to increment this
counter, it needs to know the layer associated with each protocol defined in the PEG in
use. For this reason we define a procedure that, given a PEG, assigns a network layer to
each protocol.

3.5.1 Assigning layer numbers to protocols

For many protocols, their layer can be inferred from the traditional ISO/OSI protocol
stack. For example, Ethernet belongs to layer 2, IP and IPv6 to layer 3, while TCP and
UDP belong to layer 4. However, there are protocols that do not fit well in this model: for
those protocols, choosing the “right” layer is debatable. A good example is MPLS, which
may be present between Ethernet and IP. Therefore, it can be considered as belonging to
layer 2, to layer 3 or to an intermediate layer.

Therefore, labeling each protocol with a number indicating its “natural” layer can be a
complex operation. Furthermore, a previous labeling might not be valid anymore if a new
intermediate protocol is added to the database, as sometimes it may require an update of
the values assigned to protocols already in the database.

To simplify this task of assigning layer numbers to protocols, we propose an automated
method, based on the PEG. Before going into details, it is worth noting that this procedure
is just an heuristic and has no theoretical bases. Its only goal is to provide a strict ordering
based on network protocols, because, to recognize tunnels, the exact layer associated with
each protocol is not important per se, but only when it is compared with layers of other

81

3 – xpFSA: efficient support for tunneled protocols

protocols. For example, to identify a tunneled IP, it is necessary that both IP and IPv6
belong to the same layer, but it is not important what their actual layer value is: it could
be different from level 3, as long as it is the same for both protocols.

The heuristic acts as follows: (i) the layer values for all nodes in the graph are set
to INF (infinite), except for startproto, which gets the value 1; (ii) the recursive proce-
dure defined in Algorithm 1 is called on the graph, starting from the node representing
Startproto.

Algorithm 1 Assigning layer numbers to protocols

1: Procedure AssignProtoLevels (node n)
2:

3: if n.Visited then
4: return
5: end if
6:

7: node.Visited = true
8: minSuccessor = GetMinSuccessor(n);
9: nextLevel = (minSuccessor ? minSuccessor.Level : INF)

10:

11: if nextLevel ≤ n.Level then
12: maxPredecessor = GetMaxPredecessor(n)
13: prevLevel = maxPredecessor.Level
14: if prevLevel < nextLevel then
15: n.Level = prevLevel + ((nextLevel-prevLevel)/2)
16: end if
17: end if
18:

19: level = ceil(n.Level+1)
20: for all s ∈ n.successors do
21: if level < s.Level then
22: s.Level = level
23: end if
24: end for
25:

26: for all s ∈ node.successors do
27: AssignProtoLevels(n)
28: end for

Method GetMinSuccessor returns the smaller layer among those of a protocol’s suc-
cessors, while GetMaxPredecessor returns the greater layer among those of a protocol’s
predecessors. In both cases, self-loops are not considered.

The heuristic is best explained with an example. Figure 3.16 (a) depicts a simple
PEG in which protocols are not associated with any layer (except Startproto, which by
default gets the value 1). First, the procedure assigns to the successors of Startproto, in

82

3 – xpFSA: efficient support for tunneled protocols

Start

Eth

MPLS

IP IPv6

1

INF

INF INF

INF

(a)

Start

Eth

MPLS

IP IPv6

1

2

3 3

3

(b)

Start

Eth

MPLS

IP IPv6

1

2

3 3

2.5

(C)

Start

Eth

MPLS

IP IPv6

1

2

3 3

2.5

(d)

Figure 3.16. Layer assignment example.

this case Ethernet, the value ceil(layer(startproto)+1), i.e. 2. The procedure is then
repeated for Ethernet: all its successors (MPLS, IP, IPv6) get the value 3 (see Figure 3.16
(b)). When the procedure visits the node related to MPLS, it notices that the node’s
layer, which is 3, is equal to the lower layer among those of its successors. Therefore, the
layer value for MPLS is updated to prevlevel+((nextlevel-prevlevel)/2), i.e. 2.5
(see Figure 3.16 (c)). Because of the check in line 21 of Algorithm 1, the successors of
MPLS are not updated. Finally, IP (Figure 3.16 (d)) and IPv6 are considered. Both are
updated according with lines 14 and 15 of the pseudocode. However, since prevlevel =

nextlevel = 3 for both of them, their layers remain unchanged.

3.5.2 Building the xpFSA

In order to create an xpFSA identifying packets having some protocols encapsulated in a
tunnel, a method very similar to the one already defined for header indexing is used.

In fact, as a first step, the skeleton of the automaton referring to the regular expression
representing the header chain is built: the requirement that one or more protocols must
be tunneled is ignored, because this information is not coded into the regular expression
itself. As a consequence, no counters are defined yet.

At this point, for each tunneled keyword specified in the header chain and referring to
a protocol of a different layer, a new counter is created. Its name is in the form Ln.cntr,
where n is a number representing the network layer assigned to the protocol that must
be tunneled. Furthermore, an operation of increment of this variable, i.e. Ln.cntr++, is
associated with all symbols representing an encapsulation rule having as target a protocol
belonging to a layer greater or equal to n.

During the labeling of the transitions, the one leading to a state associated with an
element of the header chain on which the keyword tunneled has been specified, is asso-
ciated with the evaluation of a predicate. In particular, this p-transition must verify if
the proper counter has a value greater than one. For example, if a protocol that must be
tunneled belongs to the layer 3, the p-transition leading to its related state tests the value

83

3 – xpFSA: efficient support for tunneled protocols

of the variable L3.cntr.

As an example, consider the non-deterministic automaton representing the header
chain ip tunneled, shown in Figure 3.17 and built referring to the PEG of Figure 3.16.
Since IP has been classified as belonging to the layer 3, the variable L3.cntr has been
defined. This counter is incremented each time a symbol leading to IP or IPv6 is received,
since they are the protocols defined in the PEG that have been assigned a layer greater
than, or equal to 3. Moreover, the p-transition towards the right-most state, representing
the IP header involved in a tunnel, fires only if the counter is greater than one, i.e. if at
least another header belonging to a layer greater or equal to 3 has already been encountered
within the packet under analysis7.

{eth-ip,ipv6-ip,ip-ip,mpls-ip}/p

Startproto
Ethernet

MPLS
IP

IPv6

IP

p:= L3.cntr>1

**
Symbol Operation(s)

eth-ip L3.cntr++

eth-ipv6 L3.cntr++

mpls-ip L3.cntr++

mpls-ipv6 L3.cntr++

ip-ip L3.cntr++

ip-ipv6 L3.cntr++

ipv6-ip L3.cntr++

Figure 3.17. Non-deterministic automaton representing the filter ip tunneled.

Then, the automaton must be converted into a deterministic one, through the ap-
plication of the rules defined in the xpFSA model, and then translated into the xpFSA
recognizing packets matching the NetPFL header chain, with the application of the rules
explained in Section 3.4.6 and following.

To conclude, it is important to highlight that on the same element of the header
chain, all three constraints requiring p-transitions (i.e. the header indexing, predicates
on protocol fields and the keyword tunneled) could be specified. If this happens, the
p-transition leading to the state built from this element must evaluate all the conditions,
which are joined using the Boolean operator and.

3.6 Using the xpFSA model in field extraction

This section presents an algorithm to build the xpFSA representing a NetPFL rule, if a
field extraction was specified in the filter Action.

7It is worth remembering that the counter is increment as soon as the symbol is received, hence before
the predicate evaluates its value.

84

3 – xpFSA: efficient support for tunneled protocols

Take for example ip extractfields(ip%2.src): a packet, in order to match the
filter, should have at least one IP header. Moreover, if a further IP exists, the NetPFL
expression returns to the user application only the source address of this second instance
of the protocol, instead of the entire packet. As a consequence, it requires that the analysis
of the packet does not end when a first IP is reached, but continues until the eventual
second one, in order to extract the required address value. Unfortunately, as shown in
Figure 3.18, the xpFSA created using the algorithm of Section 3.4: (i) terminates the
analysis as soon as an IP is found; (ii) does not have an action state associated with a
second IP and extracting the value of its source address.

Start
{start-eth}

IP

*

{eth-ip}
Eth

IPv6
{eth-ipv6} {ipv6-ip}

Figure 3.18. xpFSA matching the header chain ip.

Then, after the construction of the xpFSA representing the filtering conditions, further
operations are required. In particular, each NetPFL element specified within the keyword
extractfields(...) is considered and translated into a different xpFSA. To do this, it is
used an algorithm very similar to the one already presented, and which is easily described
referring to an action such as extractfiedls(ip%2.src). First of all, ip is translated into
the regular expression .∗ ip .∗, as if it was a NetPFL header chain, and then converted
into the non-deterministic automaton depicted in Figure 3.19. As highlighted with the
dashed circle, the state coming from the element ip is an action state extracting the field
src, and not an accepting state, as it would happen in case of an automaton modeling a
filtering condition. Moreover, the last .∗ of the regular expression, instead of originating
a self loop on the rightmost state (firing on any received symbol), is modeled by creating a
new state and by adding two transitions. The first transition connects the action state to
this new state, and the other one is a self-loop on the state just created; both transitions
fire on all symbols defined in the PEG in use. This way, the extraction is limited only to
the protocol specified in the NetPFL expression.

Now, the non deterministic automaton just built is translated into a deterministic
one by using the rules defined in the xpFSA model, and then converted into the xpFSA
of Figure 3.20, through the labeling of the states representing the reaching of a single
protocol, and the expansion of those associated with multiple protocols.

After their creation, both xpFSA (i.e. the one representing the filtering conditions and

85

3 – xpFSA: efficient support for tunneled protocols

{eth-ip,ip-ip,ipv6-ip}/p

 *

p:= ip.cntr==2

Symbol Operation(s)

eth-ip ip.cntr++

ip-ip ip.cntr++

ipv6-ip ip.cntr++

 *

Startproto
Ethernet

IP
IPv6
TCP
UDP
HTTP
DNS

IP
extract field: src

 *

Figure 3.19. Non-deterministic automaton representing the extraction of ip%2.src.

Start
{start-eth} {eth-ip}/!p

Eth

IPv6

{eth-ipv6}

{ipv6-ip}/!p

IP IP
{ip-ip}/p

{ipv6-ip}/p

p:=ip.cntr==2

{ip-ip}/!p

{ip-ipv6}

extract field: src

Symbol Operation(s)

eth-ip ip.cntr++

ip-ip ip.cntr++

ipv6-ip ip.cntr++

{eth-ip}/p

Figure 3.20. xpFSA representing the extraction of ip%2.src.

the one modeling the extraction action) are joined together using the Boolean operator or,
in order to obtain a single automaton modeling the whole NetPFL rule. Figure 3.21, for in-
stance, shows the xpFSA created from the NetPFL statement ip extractfields(ip%2.src),

86

3 – xpFSA: efficient support for tunneled protocols

and obtained through the union of the automata of Figure 3.18 and 3.20, respectively rep-
resenting the header chain and the action. As highlighted by the different notation used
to represent it, the right-most state associated with IP in Figure 3.21, as well as being an
accepting state, is also an action state extracting the value of the source address. More-
over, it is worth noting that, after the reaching of the left-most state representing IP, the
packet is certainly accepted, since the filtering condition has already been verified.

Start
{start-eth} {eth-ip}/!p

Eth

IPv6

{eth-ipv6}

{ipv6-ip}/!p

{ip-ip}/p

p:=ip.cntr==2

{ip-ip}/!p

{ip-ipv6}

IP IP

IPv6

{ipv6-ip}/!p

{ipv6-ip}/p

extract field: src

Symbol Operation(s)

eth-ip ip.cntr++

ip-ip ip.cntr++

ipv6-ip ip.cntr++

{eth-ip}/!p

{ipv6-ip}/p

Figure 3.21. xpFSA representing a NetPFL rule with field extraction.

3.6.1 An optimization

The just depicted algorithm can be used to model the xpFSA representing either kinds
of extraction, i.e. proto%n.field and proto∗.field. However this algorithm, as it has
been defined, is not actually used if the NetPFL action requires to extract from the first
instance of a protocol within the packet. For this (probably more common) case, we in
fact implemented an optimization that avoids to check a counter to decide if the action
state must be reached.

To understand this improvement, which affects the construction of the first non deter-
ministic automaton representing the filter Action, consider the NetPFL rule ip

extractfields(tcp.sport)8. As it is evident from Figure 3.22 (a), the self loop on the
left-most state of this automaton does not fire with any symbol defined in the PEG, but
with any symbol except those leading to the action state. This way, this state is reached
only when the first TCP header is encountered within the packet, making useless the use
of a counter associated with TCP. In Figure 3.22 (b), the complete automaton modeling
the action is shown, while 3.22 (c) depicts the final xpFSA built from the NetPFL rule ip

8It is worth remembering that, in the extraction, tcp.sport has the same meaning of tcp%1.sport.

87

3 – xpFSA: efficient support for tunneled protocols

extractfields(tcp.sport). It is worth noting that this automaton has been obtained
joining the one of Figure 3.18 (representing the filtering condition ip) with the xpFSA of
Figure 3.22 (b), using the Boolean operator or.

{ip-tcp,ipv6-tcp} *

Startproto
Ethernet

IP
IPv6
TCP
UDP
HTTP
DNS

TCP

extract field: sport

 *
*-{ip-tcp,ipv6-tcp}

(a)

(b)

Start
{start-eth} {eth-ip}

Eth

IPv6

{eth-ipv6}

{ipv6-ip}

TCP IP
{ip-tcp}

{ipv6-tcp}

{ip-ip}

{ip-ipv6}

Start
{start-eth} {eth-ip}

Eth

IPv6

{eth-ipv6}

{ipv6-ip}

{ip-tcp}

{ip-ip}

{ip-ipv6}

IP TCP

IPv6

{ipv6-ip}

{ipv6-tcp}

(c)

Figure 3.22. Building the xpFSA to extract from the first TCP header of the packet.

3.7 The preferred encapsulation rules

As explained above, the NetPFL statements are translated into xpFSA, by taking into
account the protocol encapsulation rules represented in a PEG. The time needed to create
the automaton increases with the size of the PEG, which influences both the number
of states, and the number of transitions exiting from each state. Furthermore, having

88

3 – xpFSA: efficient support for tunneled protocols

more states causes the generation of more executable code, while the number of outgoing
transitions influences the time needed for the code to determine which is the next protocol
within the packet. As a consequence, small PEGs produce reduced xpFSA and more
powerful filtering programs.

By default, the NetPFL language refers to the PEG built considering only the preferred
encapsulation rules defined in the given database. Instead, if the full database should be
considered, the filtering statement must include the fullencap keyword, so that the Full
PEG is used while building the xpFSA.

This section presents our improvement to the Network Packet Description Language [28]
(NetPDL), which enables the user to indicate which are his preferred encapsulation rules.

In detail, we defined a new Boolean attribute called, unsurprisingly, preferred, which
can be specified in both the <nextproto> and <nextproto-candidate> elements, i.e.
those elements used to define the protocol encapsulation rules. This way, when the
keyword fullencap is not provided in the NetPFL statement, only the rules having
preferred=‘‘true’’ are considered; otherwise, each rule in the database is taken into
account.

As an example, consider the NetPDL excerpt shown in Figure 3.23: if the keyword
fullencap has been specified, it results in the fragment of PEG in the left of Figure 3.24;
otherwise it is represented by the PEG shown in the right of the same picture.

<protocol name="ip">
<encapsulation>

<switch expr="buf2int(nextp)">
<case value="4"> <nextproto proto="#ip"/> </case>
<case value="6"> <nextproto proto="#tcp" preferred="true"/> </case>
<case value="17"> <nextproto proto="#udp" preferred="true"/> </case>
<case value="41"> <nextproto proto="#ipv6"/> </case>

</switch>
</encapsulation>

</protocol>

Figure 3.23. Example of NetPDL encapsulation rules.

89

3 – xpFSA: efficient support for tunneled protocols

IP

TCP UDP IPv6 TCP

IP

UDP

Full Encapsulation PEG Preferred PEG

Figure 3.24. Two fragments of PEG.

3.8 Implementation

The proposed model has been implemented in the NetBee9 library, which features an
experimental compiler that creates run-time code for the NetVM [15] virtual machine.
The front-end compiler [16] takes the filtering expression expressed as a NetPFL [29]
string and a NetPDL [28] protocol database to generate an in-memory representation of
the xpFSA filter. This code is then translated into NetIL code, a NetVM-specific assembly-
like language. The generated code can be executed in a NetVM interpreter, or compiled
Just-In-Time (JIT) if a backend compiler is available for the target architecture.

The implementation of the xpFSA model presented the same challenges of its pre-
decessor, pFSA. Please refer to the detailed description given in Section 2.6 for more
information.

Since the previous implementation was very modular already, adding the new model
features was not complicated: handling of counters and of actions states was not difficult.
Moreover, the implementation of the new algorithms was simple because of partial code
reuse from the pFSA model.

3.9 Validation

The xpFSA model was validated through three categories of tests, aimed at evaluating dif-
ferent aspects of the formalism: (i) compile-time performance, (ii) run-time performance
and (iii) impact of counters on the number of states. Tests were executed on a workstation
equipped with an Intel E8400 Core 2 Duo dual-core processor with 12GiB of RAM, run-
ning a 64-bit version of Ubuntu Linux 10.04 (kernel 2.6.32-45-generic). All test processes
were bound to a single processor, with hot disk and processor caches, and the machine

9http://www.nbee.org

90

3 – xpFSA: efficient support for tunneled protocols

was otherwise unloaded. Time measurements were performed using the gettimeofday()

UNIX function.

At the best of the authors’ knowledge, no other existing filtering language allows users
to specify filters with encapsulation constraints and actions to be executed when the
filter is satisfied. For example, neither libpcap [8], representing the foundation of many
packet filtering tools (e.g., tcpdump, Wireshark), nor the display filters implemented in
Wireshark [3] (which replace the basic filtering capabilities of libpcap when packets have
to be shown on screen) support filtering based on protocol encapsulation rules. As a
consequence, we could not compare the performance of our implementation with other
competitors. However, we took care of obtaining our results by using a framework that
has already been proven to be at least equivalent to the state of the art in this field [16].

3.9.1 Compilation time

This test evaluates the filter compilation time, i.e., the time required for generating the ac-
tual x64 assembly code implementing a specific NetPFL filtering expression. This process
includes an initial step represented by our algorithm followed by a very complex com-
pilation and optimization process (part of the NetVM framework) before the final code
emission. The sample NetPFL filters are shown in Table 3.2, while the PEG of reference
is depicted in Figure 3.25, as well as the network layer associated with each protocol10.

Filtering expression

1 tcp

2 tcp in ip

3 tcp in ip in ethernet

4 tcp in ip in ethernet in startproto

5 tcp in ip in ppp in gre in ip

6 tcp in ip in ppp in gre in ip in ethernet

7 tcp in ip in ppp in gre in ip in ethernet in startproto

8 tcp in ip notin ethernet

9 tcp in ip%2

10 tcp in ip tunneled

Table 3.2. Sample NetPFL filters.

In order to measure the time spent by our algorithm with respect to the total code
generation time, each filter was compiled thousand times and averaged. This way, we

10Note that, for the sake of clarity, this PEG is a reduced version of that available at the nbee.org
website, which accounts for more than 100 protocols.

91

3 – xpFSA: efficient support for tunneled protocols

Startproto

Ethernet

PPP

VLAN

PPPoE

LLC

MPLS

IP
ICMP

IPv6

ICMPv6
GRE

TCP

UDP

1

1.5

2
1.75 2.25

2.375

3
3

4 4

4

4

5

4

Figure 3.25. Protocol Encapsulation Graph.

obtained the numbers depicted in Figure 3.26, where the first two series represent the
computation time obtained when using the default returnpacket action (i.e., no field
extraction is performed) and the last two represent the computation time measured when
the extractfields(tcp.sport) action is also included in the filtering expression.

Results show that the time required for creating the xpFSA is one order of magnitude
less than the total generation time, for almost all the considered filters. In particular, as
is evident by comparing expressions from #1 to #4, the total time decreases by increasing
the precision of the filter. On the other hand, the generation of the xpFSA is faster if
there are less protocols that could match the first “.∗” element of the regular expression
associated with the filter. In fact, our algorithm first represents this element with a state
that will be expanded in most of the protocols defined in the PEG, and then it prunes the
unnecessary ones. As a consequence, NetPFL filters that explicitly mention startproto

(such as #4 and #7) generate very compact automata, and represent the fastest generation

92

3 – xpFSA: efficient support for tunneled protocols

case for our algorithm.

Figure 3.26 also shows how the field extraction introduces a negligible overhead in
almost all the sample filters, especially with regard to the total compilation time. It is
worth pointing out that this overhead is mainly caused by the generation of instructions
that actually perform the extraction, i.e., that store fields in a specific memory segment of
the NetVM process. Instead, the creation of the automaton representing the whole filtering
expression requires more time because two xpFSA are created (one representing the filter,
and one modeling the action) and combined together using the Boolean operation or; the
resulting xpFSA is then determinized and minimized.

As a final remark, it is worth highlighting that we are able to reduce the overall
filter compilation time, and then improve the compile-time performance of the system, by
increasing the time spent in the first compilation stage, i.e. when our algorithm creates
the xpFSA.

 0.1

 1

 10

 100

 1000

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

C
o
m

p
u
ta

ti
o
n
 t

im
e
 [

m
s]

Filtering expression

xpFSA
Total

xpFSA extr
Total extr

Figure 3.26. Performance of the code generator.

3.9.2 Filtering time

This test aims at evaluating the quality of the resulting filtering code, i.e., the x64 assembly
program that actually analyzes packets. We executed filters of Table 3.2 on a synthetic
trace composed of four packets repeated as many times as needed in order to obtain 1 GiB
of traffic. The packets we used aimed at reproducing the most common encapsulations on

93

3 – xpFSA: efficient support for tunneled protocols

the Internet, i.e., ethernet-ip-tcp, ethernet-ip-udp, ethernet-ip-gre-ppp-tcp and
ethernet-ip-gre-ppp-udp11. The results we obtained are depicted in Figure 3.27.

As it is evident, the number of packets analysed each second increases when the filter
is more specific, i.e. leaves less freedom to the protocols that may appear in a certain
position of the packet.

Moreover, the field extraction does not greatly reduce the performance of the filter.

 2.4e+06

 2.5e+06

 2.6e+06

 2.7e+06

 2.8e+06

 2.9e+06

 3e+06

 3.1e+06

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Pa
ck

e
ts

 p
ro

ce
ss

e
d
 e

a
ch

 s
e
co

n
d

Filtering expression

Packet filtering
Field extraction

Figure 3.27. Performance of the generated filters.

3.9.3 Impact of counters

The next test points out how an xpFSA could have a reduced number of states, if compared
with a pFSA representing the same filtering expression. In particular, this happens when
counters are used, i.e., in case of filters requiring at least n instances of a protocol (e.g.,
vlan%2), or requiring that a protocol is involved in a tunnel (e.g., ipv6 tunneled).

Figure 3.28 portraits this reduction by comparing the pFSA and the xpFSA associated
with filters that require an increasing number of IP headers within valid packets. The
trend of the number of states is shown both using the PEG depicted in Figure 3.25, called
full, and a core PEG, which includes only the encapsulations: Startproto → Ethernet,
Ethernet → IP, Ethernet → IPv6, IPv6 → IP, IP → IP and IP → IPv6.

11It is worth noting that the last two packets are commonly encountered when using a VPN tunnel.

94

3 – xpFSA: efficient support for tunneled protocols

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

ip ip%2 ip%3 ip%4 ip%5 ip%6

N
u
m

b
e
r

o
f

st
a
te

s

Filtering expression

(4) (5) (5) (5) (5) (5)

(6)
(8) (10)

(12)

(14)
(13) (13) (13) (13)

(13)

(16)

(22)

(28)

(34)

(40)xpFSA core
pFSA core
xpFSA full
pFSA full

Figure 3.28. Difference in the number of states.

From the figure, it is immediately evident that, regardless of the PEG of reference, the
number of states of the pFSA grows steadily with the number of required IP headers. As
illustrated in Figure 3.29, this happens because the automaton representing ip%n consists
in the pFSA associated with ip%(n-1), enriched with all paths leading from IP to IP. The
size of the step12 depends then on the number of protocols that the PEG allows between
IP and IP, as is evident by comparing the trends labeled with pFSA core and pFSA full
in Figure 3.28.

With regard to the xpFSA, we can observe an increase in the number of states only
between filters ip and ip%2, while, from ip%2 onwards, the state count remains constant.
Moreover, it is interesting to note how this step is reduced compared to that related to
the pFSA representing the same expressions. This is because, if we consider for instance
the full PEG, in our formalism filter ip%2 only requires a new state associated with IP,
and two states that represent respectively protocols GRE and PPP. Instead, the pFSA
requires also to duplicate the states associated with IPv6, ICMPv6, and ICMP.

12With the word step, we mean the difference in the number of states of the automaton modeling the
filter proto%(n-1), and the one modeling the filter proto%n.

95

3 – xpFSA: efficient support for tunneled protocols

proto%(n-1) proto

*

proto%(n-1)
proto

*

proto

(a) (b)

proto%n

Figure 3.29. From the pFSA representing proto%(n-1), to the pFSA modeling proto%n.

3.10 Conclusions

This chapter presented xpFSA, a model for packet filter that aims at improving perfor-
mances in case of tunneled encapsulations. This feature is of critical importance, because
we can observe an increasing complexity in the lowest layers of the protocol stack, arising
in particular from network virtualization. It is important to be able to capture all the
traffic we are interested in (e.g., web traffic), independently from the actual encapsulations
used at lower layers. Furthermore, being agnostic with respect to network protocols, our
implementation exploits a dynamic protocol database that allows to change the protocols
it operates upon by simply updating those files at run-time, without having to modify the
source code of the packet filter compiler itself.

The performance of our model could not be compared against the one of our competi-
tors, because none supports filtering based on protocol encapsulation rules. However, we
took care of obtaining our results by using a framework that has already been proven to
be at least equivalent to the state of the art in this field. On the other hand, it was proven
that the action of field extraction does not reduce the performance of the filter. In the
end, the improvements w.r.t. the previous pFSA model, measured in the number of states
in the generated automaton, have been demonstrated.

96

Conclusions

This dissertation introduced a number of changes in the domain of packet filters. The
present and future challenges related to packet filters were discussed, and multiple solutions
were presented.

First, the flexibility problem was addressed. No packet filtering language currently
supports natively the specification of rules based on a specific protocol encapsulation.
Furthermore, it is often very difficult to support tunneled protocols. This dissertation
introduced NetPFL, a new declarative language for data-plane packet processing, whose
main strengths are:

• it can handle complex situations of tunneled and stacked encapsulations, giving the
user a finer tuned control over the semantics of a filtering expression;

• it supports several independent filters that can lead to multiple matches;

• it allows the user to choose, in an implementation-agnostic way, the action that
should be performed upon receipt of each matching packet;

• it associates each packet with a stream indicator, to facilitate the merging of different
logical filters within the same physical filtering machine and the demultiplexing of
the associated packets that belong to different logical filters;

• it is human-friendly, making it suitable for fast command-line processing.

Consequently, the efficiency of the current state of the art of packet filters was analyzed,
and the most common flaws were exposed, while filtering packets with bizarre or unusual
network encapsulations. A new model of packet filters, called pFSA, was outlined, that
ensures the optimal number of checks on the packet in order to take the matching/not-
matching decision. This result is obtained by transforming packet filtering rules into
Finite State Automata (FSA), which guarantee optimal results even in case of multiple
filters combined together. This was achieved by augmenting the transitions inside the
automaton with Boolean predicates, that are modeled as hypotheses on specific properties
of the protocols included in the packet itself. The model was proven to be as fast as the best
competitors for simple packet filters and to scale linearly with the number of predicates
on the same protocol, such as when filtering multiple TCP sessions. At the same time
it demands limited processing and memory requirements in the filtering code generation
phase, which represents a huge improvement when compared with other approaches.

97

Conclusions

In the end, the model was further expanded in xpFSA, in order to improve the previous
model by extending its support for tunneling features. This was achieved by associating
the input symbols with operations on specific counters, and by allowing the transitions to
be labeled with predicates expressed on the value of these counters. It was also proven
that the extended formalism does add noticeable overhead to the system.

98

Bibliography

[1] F. Risso, L. Degioanni, An Architecture for High Performance Network Analysis. In
Proceedings of the 6th IEEE Symposium on Computers and Communications (ISCC
2001), Hammamet (Tunisia), pp. 686-693, July 2001.

[2] The PCAP Library Man Page. Available at http://www.tcpdump.org/pcap3_man.

html

[3] G. Combos, The Wireshark Network Protocol Analyzer. Available at http://www.

wireshark.org/

[4] R. Pang, V. Paxson, R. Sommer, L. Peterson, Binpac: a yacc for writing application
protocol parsers. In Proceedings of the 6th ACM Internet Measurement Conference,
pp. 289-300, Rio de Janeiro, Brazil, October 2006.

[5] M Roesch, Snort - Lightweight Intrusion Detection for Networks. In Proceedings of
the 13th Systems Administration Conference (LISA ’99), pp. 229-238, Seattle, WA,
November 1999.

[6] V. Paxson, Bro: A System for Detecting Network Intruders in Real-Time, Computer
Networks, Vol. 31, No. 23-24, pp. 2435-2463, Elsevier, December 1999.

[7] StreamBase Systems, StreamSQL online documentation. Available at http://

streambase.com/developers/docs/latest/streamsql/index.html, 2007.

[8] S. McCanne, V. Jacobson, The BSD Packet Filter: A new architecture for user-level
packet capture. In Proceedings of the 1993 Winter USENIX Technical Conference,
San Diego, CA, pp. 259-269, Jan. 1993.

[9] M.L. Bayley, B. Gopal, M.A. Pagels, L.L. Peterson, PATHFINDER: A pattern-based
packet classifier. In Proceedings of the First USENIX Symposium in Operating System
Design and Implementation, Monterey, CA, pp. 115-123, Nov. 1994.

[10] D.R. Engler, M.F. Kaashoek, DPF: Fast, flexible message demultiplexing using dy-
namic code generation. In Proceedings of ACM SIGCOMM ’96, Stanford, CA, pp.
53-59, Aug. 1996.

[11] A. Begel, S. McCanne, S.L. Graham, BPF+: exploiting global data-flow optimization
in a generalized packet filter architecture. In SIGCOMM Computer Communication
Review, Vol. 29(4), pp. 123-134, Oct. 1999.

[12] Z. Wu, M. Xie, H. Wang, Swift: a fast dynamic packet filter. In Proceedings of the
5th USENIX Symposium on Networked Systems Design and Implementation, San
Francisco, CA, pp. 279-292, Apr. 2008.

[13] P. Rolando, R. Sisto, F. Risso, SPAF: stateless FSA-based packet filters. In
IEEE/ACM Transactions on Networking (TON), Volume 19 Issue 1, Feb. 2011.

100

http://www.tcpdump.org/pcap3_man.html
http://www.tcpdump.org/pcap3_man.html
http://www.wireshark.org/
http://www.wireshark.org/
http://streambase.com/developers/docs/latest/streamsql/index.html
http://streambase.com/developers/docs/latest/streamsql/index.html

Bibliography

[14] H. Bos, M. Cristea, T. Nguyen, G. Portokalidis, FFPF: Fairly Fast Packet Filters.
In Proceedings of the 6th conference on Symposium on Operating Systems Design &
Implementation (OSDI04), San Francisco, CA, pp. 347–363, Dec. 2004.

[15] O. Morandi, F. Risso, P. Rolando, S. Valenti, P. Veglia, Creating Portable and Effi-
cient Packet Processing Applications. In Springer Design Automation for Embedded
Systems, Vol. 15, No. 1, pp. 51-85, March 2011.

[16] O. Morandi, F. Risso, M. Baldi, A. Baldini, Enabling Flexible Packet Filtering
Through Dynamic Code Generation. In Proceedings of IEEE International Confer-
ence on Communications (ICC 2008), Beijing, China, pp. 5849-5856, May 2008.

[17] O. Morandi, F. Risso, S. Valenti, P. Veglia, Design and Implementation of a Frame-
work for Creating Portable and Efficient Packet Processing Applications. In Pro-
ceedings of the 7th ACM International Conference on Embedded Software (EMSOFT
2008), Atlanta, GA, pp. 237-244, Oct. 2008.

[18] O. Morandi, F. Risso, P. Rolando, O. Hagsand, P. Ekdahl, Mapping Packet Processing
Applications on a Systolic Array Network Processor. In IEEE International Workshop
on High Performance Switching and Routing (HPSR 2008), Shanghai, China, pp.
213-220, May 2008.

[19] L. Degioanni, M. Baldi, F. Risso, G. Varenni, Profiling and optimization of software-
based network-analysis applications. In Proceedings of the 15th Symposium on Com-
puter Architecture and High Performance Computing, Washington, DC, USA, p. 226,
2003.

[20] George Varghese. Network algorithmics: an interdisciplinary approach to designing
fast networked devices. Morgan Kaufmann, 2005.

[21] J.E. Hopcroft, R. Motwani, J.D. Ullman. Automata Theory, Languages, and Compu-
tation. Addison-Wesley, 3rd Edition, 2006.

[22] I. Cerrato, M. Leogrande, F. Risso, Filtering Network Traffic Based on Protocol
Encapsulation Rules. In Proceedings of the International Conference on Computing,
Networking and Communications (ICNC 2013), San Diego, CA, Jan. 2013.

[23] J.C. Mogul, R.F. Rashid, M.J. Accetta, The packet filter: An efficient mechanism
for user-level network code. In Proceedings of 11th ACM Symposium on Operating
Systems Principles, Austin, TX, pp. 39-51, Nov. 1987.

[24] T. Hruby, K. van Reeuwijk, H. Bos, Ruler: High-Speed Packet Matching and Rewrit-
ing on NPUs. In Proceedings of the 3rd ACM/IEEE Symposium on Architecture for
networking and communications systems (ANCS ’07), Orlando, FL, pp. 1–10, Dec.
2007.

[25] G. Van Noord, D. Gerdemann, Finite state transducers with predicates and identities.
In Grammars, Vol. 4, No. 3, pp. 263-286, 2001.

[26] R. Sekar, P. Uppuluri, Synthesizing fast intrusion prevention/detection systems from
high-level specifications. In Proceedings of the 8th conference on USENIX Security
Symposium, Vol. 8, pp. 6, 1999.

[27] R. Smith, C. Estan, S. Jha, I. Siahaan, Fast Signature Matching Using Extended
Finite Automaton (XFA). In Proceedings of the 4th International Conference on In-
formation Systems Security (ICISS 2008), Hyderabad, India, pp. 158-172, December
2008.

101

Bibliography

[28] F. Risso, M. Baldi, NetPDL: an extensible XML-based language for packet header
description. In Comput. Netw., Vol. 50, No. 5, pp. 688–706, 2006.

[29] L. Ciminiera, M. Leogrande, J. Liu, O. Morandi, F. Risso, A Tunnel-aware Language
for Network Packet Filtering. In Proceedings of the 2010 IEEE Global Telecommuni-
cations Conference (GLOBECOM 2010), Miami, FL, pp. 1–6, Dec. 2010.

[30] NetBee, a powerful library for generic packet processing. Available at http://nbee.
org/.

102

http://nbee.org/
http://nbee.org/

	Summary
	I Solving the expressivity problem for packet filter languages
	NetPFL: a declarative language for data-plane packet processing
	The issues with current packet filter languages
	State of the art in packet filter languages
	Introduction to NetPFL
	NetPFL general syntax
	Filtering Elements
	Protocol and Field Identifiers
	Byte Ranges
	Data References
	Constant Values

	Filtering Expressions
	Basic Syntax
	Conditional Predicates
	Predicate Composition
	Multiple instances of the same protocol/field

	Actions
	Accepting Packets
	Extracting network data

	Streams
	Handling tunneling in the encapsulation graph
	Identifying Protocol Header Instances
	Definition of header instances

	Header Sequences
	The any keyword and other protocol placeholders
	Repeat operators
	Chaining headers through the ``in'' and ``notin'' operators
	Contexts

	Conclusions

	II About efficient packet filters
	pFSA: a new model for packet filters
	Introduction
	Related Work
	Finite State Automata with Predicates
	Definition of pFSA
	Running a pFSA
	Determinism
	Algorithms
	Predicates composition

	pFSA for packet filtering
	States
	Input symbols
	Predicates
	States and network protocols
	Building a pFSA for packet filtering

	Predicates optimization
	Overview
	Going multilevel: the protoFSA
	Building a protoFSA
	About optimality
	Predicates and ranges

	Implementation
	Overview
	Protocol scanner
	Predicate evaluator
	Code generation
	Safety

	Validation
	Filter compilation time
	Filter runtime performance
	Filter scalability
	Ease of use

	Conclusions

	xpFSA: efficient support for tunneled protocols
	Introduction
	Related Work
	Extended FSA with Predicates
	Definition of xpFSA
	Determinism
	Algorithms

	Building the xpFSA
	NetPFL to regular expression
	The skeleton of the automaton
	Defining the counters
	Labeling the transitions
	The automaton representing the header chain
	Managing states already representing a single protocol
	Expanding states and transitions
	The xpFSA representing the header chain

	Identifying tunneling
	Assigning layer numbers to protocols
	Building the xpFSA

	Using the xpFSA model in field extraction
	An optimization

	The preferred encapsulation rules
	Implementation
	Validation
	Compilation time
	Filtering time
	Impact of counters

	Conclusions

	Conclusions
	Bibliography

