
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Green Architectural Tactics for the Cloud / Procaccianti, Giuseppe; Lago, P.; Lewis, G. A.. - ELETTRONICO. - (2014),
pp. 41-44. (Intervento presentato al convegno WICSA 2014 tenutosi a Sydney, Australia nel April 7-11)
[10.1109/WICSA.2014.30].

Original

Green Architectural Tactics for the Cloud

Publisher:

Published
DOI:10.1109/WICSA.2014.30

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2540487 since:

IEEE

Green Architectural Tactics for the Cloud

Giuseppe Procaccianti∗†
∗VU University Amsterdam, the Netherlands

†Politecnico di Torino, Italy

g.procaccianti@vu.nl

Patricia Lago
VU University Amsterdam, the Netherlands

p.lago@vu.nl

Grace A. Lewis∗‡
∗VU University Amsterdam, the Netherlands
‡CMU Software Engineering Institute, USA

glewis@sei.cmu.edu

Abstract—Energy efficiency is a primary concern for the ICT
sector. In particular, the widespread adoption of cloud computing
technologies has drawn attention to the massive energy consump-
tion of data centers. Although hardware constantly improves with
respect to energy efficiency, this should also be a main concern for
software. In previous work we analyzed the literature and elicited
a set of techniques for addressing energy efficiency in cloud-based
software architectures. In this work we codified these techniques
in the form of Green Architectural Tactics. These tactics will help
architects extend their design reasoning towards energy efficiency
and to apply reusable solutions for greener software.

I. INTRODUCTION

The global energy consumption of data centers and Internet
infrastructure is predicted to consume approximately 18% of
expected world power capacity by 2030 [1]. As the adoption
of cloud computing technologies continues to grow, the need
for energy-efficient solutions becomes evident. Nonetheless,
cloud-based software holds great potential for energy effi-
ciency (EE). A recent study [2] showed that migrating all
business applications in the U.S. to the cloud could reduce
their energy footprint by 87%. A previous work [3] started
to analyze the cost and energy benefits of data migration to
the cloud. However, this transition to the cloud is not an easy
task. Cloud-based software must be appropriately designed to
address EE, which is typically not the case for traditional
business applications. If these applications are abruptly mi-
grated, it is highly likely that the resulting energy waste would
significantly outweigh the expected benefits. For this reason,
it is time for software engineers to take into account the
energy implications of their design decisions. Recent efforts
of the software engineering community [4] have stressed the
responsibility of software in the search for sustainability. One
of the challenges that emerged for Green Software Engineering
is finding generally reusable solutions for energy-efficient
software design. In previous work we performed a Systematic
Literature Review (SLR) [5] to discover software architectural
solutions for cloud-based software that addressed EE-related
issues. The SLR identified a number of recurring techniques
that were potentially reusable in other solutions. In this work
we codified these techniques in the from of Green Architectural
Tactics. These tactics can be adopted by software architects
and developers during the design and development of cloud-
based software systems or the refactoring of existing business
applications for cloud migration. This contribution will support

decision-making when dealing with EE aspects of cloud-based
software architectures.

The remainder of the paper is structured as follows. Section
II introduces EE as a quality attribute. In Section III the
Green Architectural Tactics are presented and described with
application examples extracted from the literature. Finally,
Section IV discusses the architectural implications of EE and
Section V presents some conclusions and anticipates our future
research.

II. ENERGY EFFICIENCY AS A QUALITY ATTRIBUTE

According to Bass et al. [6], EE is to be regarded as a
“system” quality attribute because it is the result of an indirect
action of software. However, Bass et al. also argue that the
line between “software” and “system” quality attributes is very
thin. In the end, even if energy is ultimately consumed by
hardware, it is software that determines hardware behavior.
In order to provide a clear representation of EE as a quality
attribute, we follow the approach adopted by Bass et al. [6]
and characterize EE through quality attribute scenarios. Each
scenario is described in terms of six characteristics:

• Stimulus. An event that motivates an EE action.

• Source of Stimulus. The entity that triggered the event.

• Environment. The set of circumstances under which
the scenario takes place.

• Artifact. The element of the system that is stimulated
by the event.

• Response. The action that the system should perform
in response to the event.

• Response Measure. The metric that determines if the
response is satisfactory.

We grouped our Green Architectural Tactics in three cat-
egories and formulated a scenario for each category (see
Table I). In all the scenarios, the response measure is energy
consumption values.

III. GREEN ARCHITECTURAL TACTICS

In previous work [5] we identified a set of recurring design
solutions, described in the literature, to achieve EE in cloud-
based software architectures. In this work, we codified these
solutions as tactics – that is, “design decisions that influence

978-1-4799-3412-6/14 $31.00 © 2014 IEEE

DOI 10.1109/WICSA.2014.30

41

TABLE I. QUALITY ATTRIBUTE SCENARIOS FOR ENERGY EFFICIENCY

Energy Efficiency Scenarios
Category Energy Monitoring Self-Adaptation Cloud Federation

Stimulus Request for energy consumption infor-
mation

Energy consumption alert Energy consumption alert

Source of Stimulus Administrator Energy Monitor Energy Monitor

Environment Normal operation Runtime Multi-cloud

Artifact Energy Monitor Hypervisor Orchestrator

Response The Energy Monitor presents the de-
tailed energy consumption information
for the data center.

The Hypervisor consolidates the VMs
on the less-active servers and then shuts
down the idle servers.

The Orchestrator swaps the most
energy-consuming services for less
energy-consuming services.

Response Measure Energy consumption values Energy consumption values Energy consumption values

the achievement of a quality attribute response” [6]. Each tactic
is described in terms of:

• Motivation: rationale behind the tactic.

• Description: components introduced by the tactic and
explanation of their roles.

• Constraints: necessary conditions for applying the
tactic in an existing software architecture.

• Example: previous application of the tactic.

• Dependencies: whether the tactic requires other tactics
to be applied.

In the following, we describe the identified scenarios for
each category, as well as an example of a Green Architectural
Tactic.

A. Energy Monitoring

A typical scenario for EE that involves Energy Monitoring
is the following: the system administrator of a cloud-based
system wants to know the energy consumption of its infrastruc-
ture during operations. The Energy Monitor gathers the energy
consumption information and presents it to the administrator.
The tactics in this category are targeted at monitoring the
energy consumption of the cloud infrastructure. These tactics
are often combined with tactics from other categories; Self-
Adaptation in particular because information from monitoring
components is typically used to trigger adaptive mechanisms.

Example Tactic – Energy Modeling:
Motivation. In order to implement self-adaptive mechanisms
it is necessary to have near-real-time energy consumption in-
formation. This enables the modification of software behavior
according to how much energy the system is actually con-
suming. When metering systems are unavailable, the Energy
Modeling tactic is a viable option.
Description. The Energy Modeling tactic enables a dynamic
estimation of power consumption values through predictive
Energy Models. These Models are embedded in Energy In-
dicators, components that provide the power consumption
estimation to the rest of the software architecture, e.g. to enable
energy–aware behavior. Typically, Energy Models are built
through regression analysis based on software runtime metrics,
i.e. resource usage (CPU, disk, memory) [7].
Constraints. The limitation of this tactic lies in the accuracy
of the software Energy Models. To date, many models and
tools are available to estimate software energy consumption but
their accuracy varies greatly based on the selected hardware
platform. In addition, not all hardware resources are good pre-
dictors of energy consumption; identifying the best predictors

Fig. 1. Example of the Energy Modeling tactic.

is still an issue for the researchers in the field [8].
Example. A prototype showing the application of this tactic is
provided by de Oliveira et al. [9]. The context is a Service-
Oriented Architecture (SOA) applied to a cloud infrastructure.
As shown in Figure 1, for each service of the SOA, the
Operating System of each physical node provides service-
related Resource Usage Data (in the case of the example,
CPU, memory and disk [9]). A linear Energy Model retrieves
this data and estimates the power consumption impact of each
service. The estimation is modeled into a Green Performance
Indicator (GPI), of type Energy Indicator. Each GPI describes
a service in terms of EE.

B. Self-Adaptation

The Self-Adaptation scenario for EE starts from the Energy
Monitor that reports an alert of excessive energy consumption
while the system is not fully loaded. In response, the Cloud
Hypervisor (i.e. the Virtual Machine Monitor [10]) migrates
some of the VMs to less-loaded servers so that it can shut
down the resulting idle servers.
Tactics in this category implement mechanisms that modify
runtime software configurations for the specific purpose of
lowering energy consumption. In cloud-based environments
Self-Adaptation mostly concerns the configuration, deploy-
ment, and workload of Virtual Machines (VMs).

Fig. 2. Example of the Consolidation tactic.

Example Tactic – Consolidation:
Motivation. On-demand resource provisioning is an important
feature of cloud-based environments. For example, in cloud
application server provisioning1 creating new VM instances
may provide additional flexibility and help to perform load
balancing among servers. This is called horizontal scaling
(or scaling out). This operation, however, may easily lead to
inefficient usage of physical resources if the density of VMs
across the physical servers is not accurately managed in low-
request phases. Indeed, the Consolidation tactic concentrates
the VM instances on the minimum number of servers needed.
Powering down the unused servers will evidently increase the
EE of the cloud-based software.
Description. The main component of the Consolidation tactic
is the VM Allocator, the software component responsible for
live VM migration. This component can be (a part of) the
Hypervisor, as in the Adaptation Engine in the Scaling tactic.
The SLA Violation Checker is needed as well to check the
fulfillment of service-level objectives after VM migrations.
Constraints. Consolidation must take place at runtime. This
means that VMs must be represented in a format that allows
them to be seamlessly migrated from one location to another,
along with their context, workload, and metadata. This may
introduce high network traffic and security risks.
Example. Dupont et al. [11] provide a sample implementation
of the Consolidation tactic, depicted in Figure 2. The Power
Calculator, of type Energy Model, provides a power con-
sumption estimation to the CP Engine, of type SLA Violation
Checker. The CP Engine formulates a constraint programming
problem using the constraints extracted from the SLAs in
XML format (SLAConstraintsXML). The CP engine solves the
problem and the Optimizer (of type VM Allocator) produces
a VM allocation scheme applying the solution to the Virtual
Resources.
Dependencies. The presence of the Power Calculator indicates
a dependency from the Energy Modeling tactic: as shown in
Figure 2, the Power Calculator is an instance of an Energy
Model.

1http://www.enterprisenetworkingplanet.com/netos/article.php/3753836/
Practical-VM-Architecture-How-Do-You-Scale.htm, last visited on October
4th, 2013.

C. Cloud Federation

The Cloud Federation scenario for EE is the following:
the Energy Monitor notifies about an excessive energy con-
sumption arising from a service, which is a composition of
multiple cloud services. The Service Orchestrator then tries to
swap some services in the service composition by searching
in a Green Service Directory for services that consume less
energy than those currently being used.
A cloud federation is a multi-cloud environment that can be
defined as “[a platform that] comprises services from different
providers aggregated in a single pool” [12]. Cloud Federation
tactics allow cloud-based software systems to “lease” or “nego-
tiate” cloud services from multiple providers based on energy
consumption information.

Example Tactic – Service-Adaptation:
Motivation. The main benefit of the Cloud Federation
paradigm is the possibility to select services among different
providers. Through Energy Monitoring tactics, we are able
to know the energy consumption of services. This enables
cloud-based software systems to discover services that are
more energy-efficient than those currently in use. The Service-
Adaptation tactic describes how Cloud platforms should switch
to these more energy-efficient services.
Description. Two components realize the Service-Adaptation
tactic. The first component is the Energy Orchestrator that
discovers energy-efficient services that fulfill a certain task and
eventually performs the registration of those services with the
system. This operation has to be authorized by the second
component, the SLA Violation Checker, which ensures that
the new services meet the service-level objectives required by
the system. This component is similar to its analog in the
Self-Adaptation tactics, but instead of checking the SLOs that
internal services have to fulfill, it checks if external services
meet the SLOs required by the system.
Constraints. The Service-Adaptation tactic assumes centralized
cloud service orchestration. This creates some disadvantages
in terms of flexibility because it concentrates all service
orchestration logic in a single point.
Example. Villegas et al. [13] illustrate an example of the
Service-Adaptation tactic in a federated cloud architecture.
In their view, the Service-Adaptation is performed at the
Software-as-a-Service (SaaS) layer: whenever a service request
to the federated cloud cannot be fulfilled with the required
service level or is too costly in terms of energy, it is forwarded
to another federated cloud provider. As shown in Figure 3,
the SaaS Broker, of type Energy Orchestrator, negotiates the
usage of a Green Service with other cloud providers. The
Reputation of the cloud provider (of type SLA Violation
Checker) determines if the provider meets the required service-
level objectives. The Reputation is based on the SLA violation
rate of the provider.
Dependencies. As implied by the tactic description, Service-
Adaptation depends on Energy Monitoring tactics in order to
retrieve the energy information of services.

IV. DISCUSSION

The Green Architectural Tactics presented in this work
were explicitly formulated with reusability in mind. For this
reason, we kept to a minimum the constraints that a tactic may
impose on the general software architecture. When necessary,

Fig. 3. Example of the Service-Adaptation tactic.

TABLE II. ENERGY EFFICIENCY TRADEOFFS INTRODUCED BY GREEN

ARCHITECTURAL TACTICS

Tactic Quality Attribute Rationale

Consolidation
Availability During VM migration some services

may not be available.

Security Live VM migration over the network
requires to transfer application code,
metadata and workloads, making them
vulnerable to attacks.

Energy Modeling Modifiability Energy Connectors are component-
specific and therefore must be reimple-
mented if the architecture changes.

Service-Adaptation Flexibility The orchestrator concentrates all service
composition logic in a single node.

we made them explicit. For example, the Service-Adaptation
tactic assumes the presence of a service orchestration mech-
anism; most of the Energy Monitoring tactics introduce a
centralized Energy Database; Self-Adaptation tactics assume
a high degree of decoupling between the virtual and the
physical infrastructure. If these tactics are meant to be applied
to an existing cloud-based system, software architects should
consider whether these assumptions are compatible with the
current architecture. Sometimes, Green Architectural Tactics
cannot be adopted in isolation: when introducing them in
a software architecture, they might require other tactics to
be adopted as well. In the previous section, we made such
dependencies explicit. It is relevant to point out that the
occurrence of a combination of tactics does not always imply
a dependency. This suggests a deeper relationship between
the tactics that we will further explore in our future research.
Furthermore, our tactics introduce tradeoffs between EE and
other quality attributes, summarized in Table II. Along with the
scenarios provided in Section III, this initial trade-off analysis
contributes to the identification of EE as a quality attribute.
It is still under discussion to what extent EE and other sub-
characteristics of environmental sustainability might influence
traditional quality requirements. In our ongoing and future
work, we are investigating this topic.

V. CONCLUSIONS

In cloud computing, energy efficiency aspects have to be
addressed from a software architecture perspective. In this
work, we provide a set of reusable design solutions, codified
as tactics, to support the design and development of cloud-
based energy efficient software. In order to help their under-
standing and adoption, each of our Green Architectural Tactics
is presented with an example of its application extracted
from literature. In addition, in this contribution we describe
energy efficiency as a software quality attribute and analyze
its architectural impact in terms of assumptions and tradeoffs.
In the future, we foresee the inclusion of energy efficiency in a

comprehensive software quality model. This will be the focus
of our future research: we are exploring the impact of energy
efficiency on other software quality attributes and we will
investigate guidelines and methods for assessing the energy
efficiency of existing software systems.

ACKNOWLEDGMENT

This work has been partially sponsored by the European
Fund for Regional Development under project MRA Cluster
Green Software and the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for
the operation of the Software Engineering Institute, a federally
funded research and development center (DM-0000704).

REFERENCES

[1] C. Preist and P. Shabajee, “Energy Use in the Media Cloud: Behaviour
Change, or Technofix?” in IEEE Second International Conference on
Cloud Computing Technology and Science (CloudCom). IEEE, 2010,
pp. 581–586.

[2] E. Masanet, A. Shehabi, L. Ramakrishnan, J. Liang, X. Ma, B. Walker,
V. Hendrix, and P. Maantha, “The energy efficiency potential of cloud-
based software: A u.s. case study,” Laurence Berkeley National Lab,
Berkeley, California, Tech. Rep., June 2013.

[3] Q. Gu, P. Lago, and S. Potenza, “Delegating data management to the
cloud: a case study in a telecommunication company,” in International
Symposium on the Maintenance and Evolution of Service-Oriented and
Cloud-Based Systems (MESOCA), vol. 7. IEEE Computer Society, sep
2013, p. 8.

[4] P. Lago, R. Kazman, N. Meyer, M. Morisio, H. A. Müller, F. Paulisch,
G. Scanniello, B. Penzenstadler, and O. Zimmermann, “Exploring
initial challenges for green software engineering: summary of the first
GREENS workshop, at ICSE 2012,” SIGSOFT Softw. Eng. Notes,
vol. 38, no. 1, pp. 31–33, Jan. 2013.

[5] G. Procaccianti, S. Bevini, and P. Lago, “Energy efficiency in cloud
software architectures,” in Proceedings of the 27th Conference on
Environmental Informatics - Informatics for Environmental Protection,
Sustainable Development and Risk Management, vol. 1. Shaker Verlag
GmbH, 2013, pp. 291–299.

[6] L. Bass, P. Clements, and R. Kazman, Software architecture in practice,
3rd ed. Addison-Wesley, 2012.

[7] S. Reda and A. N. Nowroz, “Power modeling and characterization
of computing devices,” Foundations and Trends in Electronic Design
Automation, vol. 6, no. 2, pp. 96–216, 2012.

[8] G. Procaccianti, L. Ardito, A. Vetrò, and M. Morisio, “Energy Efficiency
in the ICT - Profiling Power Consumption in Desktop Computer
Systems,” in Energy Efficiency - The Innovative Ways for Smart Energy,
the Future Towards Modern Utilities / InTech. Helwan: Prof. Moustafa
Eissa, 2012, pp. 353–372.

[9] F. G. A. De Oliveira Jr, T. Ledoux et al., “Self-optimisation of the
energy footprint in service-oriented architectures,” in Proceedings of
the 1st Workshop on Green Computing, 2010, pp. 4–9.

[10] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Communications of the ACM, vol. 17,
no. 7, pp. 412–421, 1974.

[11] C. Dupont, G. Giuliani, F. Hermenier, T. Schulze, and A. Somov,
“An energy aware framework for virtual machine placement in cloud
federated data centres,” in Third International Conference on Future
Energy Systems: Where Energy, Computing and Communication Meet
(e-Energy). IEEE, 2012, pp. 1–10.

[12] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze,
“Cloud federation,” in The Second International Conference on Cloud
Computing, GRIDs, and Virtualization (CLOUD COMPUTING), 2011,
pp. 32–38.

[13] D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda,
L. Fong, S. Masoud Sadjadi, and M. Parashar, “Cloud federation in
a layered service model,” Journal of Computer and System Sciences,
vol. 78, no. 5, pp. 1330–1344, 2012.

