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Chapter 1

Introduction

Ab initio total-energy calculations based on electronic structure theory have proved to

be a predictive tool to study the properties of materials, in the field of both basic and

applied research. The enormous increase in computational power has allowed to perform

calculations with high accuracy, and on increasing length and time scales, which renders

feasible the study of ’real’ systems. On the other hand, a significant new development in

experimental techniques and material preparation makes it possible to probe structure

of matter in ways never realized before. One of the best examples are nanostructures

of ZnO, where theoretical predictions have stimulated experiments and led to a deeper

understanding of the nature of such systems.

The theoretical approach, which is by far the most used at the present time for the

calculation of the total energy and other ground state properties of matter, is the Den-

sity Functional method (DFT), which was first developed by Hohenberg, Kohn and

Sham. These authors demonstrated that the exact ground state energy of the many-

body quantum-mechanical system is a unique functional of its charge density. Based on

this statement they built a method to map the many-body problem into a single particle

one, mimicking the interactions with an effective potential containing all the many-body

effects. This approach allowed to describe the state of matter in terms of its equilibrium

structure, its average electronic charge density, its total energy, and so forth.

In the present work, we applied the ab initio DFT approach to investigate the response

of ZnO nanaowires to specific external perturbations, in order to describe some trans-

ductive and sensing applications. To this aim, piezoelectricity and gas (ethanol) sensing

mechanisms are considered, along with the role of oxygen vacancies, and hydrogen in-

corporation, as possible causes of intrinsic n-doping, to parallel the experimental results.

ZnO is one of the most important multi-functional semiconductors that possess many

properties of technological relevance [8]. Indeed, the realization of p-type doping in ZnO

1



Chapter 1. Introdution 2

[9], as well as fabrication of flexible transparent thin film transistor [10] that are ex-

pected to meet emerging technological demands where silicon cannot provide a solution.

Therefore, this imply that wide-gap metal oxides, such as ZnO have the potential of

becoming future electronic material of choice. Recent advances in growth techniques

have resulted in fabrication of one-dimensional nanostructures in the form of nanowires,

nanobelts and nanorods [11, 12], which have attracted attention because of their unique

and novel applications in optics, optoelectronics, catalysis, and piezoelectricity. [13].

In particular, ZnO nanowires (NWs) are envisaged as ideal candidate for energy harvest-

ing application i.e., fabrication of nano-generators where piezoelectricity is employed to

convert mechanical energy to electrical energy for the operation of low-power electronics

[14]. Piezoelectric response of a material is usually expressed in terms of effective piezo-

electric coefficient, which can be obtained both experimental and theoretical approach.

In terms of experimental results, as pointed out in Ref. [15], several artifacts dominate

these measurements resulting in scatter in and conflicting results trends in the reported

size effects. These artifacts are related to uncertainties in boundary conditions, metrol-

ogy of the cross-section, instrument calibration and sample manipulation [16].

In ab initio studies, effective piezoelectric coefficient is determined within modern theory

of polarization proposed by Resta and co-workers [17], where the rate change in polar-

ization is normalized to volume. Therefore, this approach works well only for systems

whose volume is well defined, e.g. bulk. However, in NWs this approach becomes un-

reliable as shown by the large spread in values reported in literature [18–20]; therefore,

the role of size effect in this context need to be investigated further.

Semiconductor gas sensors have been extensively investigated for practical applications

such as the detection of gas leaks and the environmental monitoring of gaseous pollutants

[21]. Since the earliest reports in this field, research efforts were focussed on improving

gas response, selectivity, and sensor stability [22, 23]. The ability to detect ethanol gas is

highly desirable as it is used in a variety of commercial products and industrial processes.

Ethanol sensors based on ZnO nanostructures have been demonstrated by a number of

groups [4, 24–26]. The exact mechanism that determines gas response is still not well

understood; however, it is generally agreed that metal oxide based gas sensors rely on

changes in electrical conductivity upon interaction with the surrounding atmosphere:

when operating within semiconducting temperature range, surface reactions determine

the device conductivity. Therefore, for their practical use in sensing application, further

innovations are still in demand to address open questions.

Controlling the surface chemistry and conductivity of ZnO remains a major challenge.

Even relatively small concentrations of native point defects and impurities (down to

10−14cm−3 or 0.01 ppm) can significantly affect the electrical, optical and sensing prop-

erties of semiconductors [27]. Therefore, understanding the role of native point defects

(i.e. vacancies, interstitials, and antisites) and the incorporation of impurities is key
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toward controlling properties of ZnO. Although a number of studies have reviewed the

nature and the thermodynamics of intrinsic point defects in ZnO [28, 29], the understand-

ing is still incomplete. In particular, the role of oxygen vacancies has been insufficiently

analyzed, for example, the distribution and concentration of oxygen vacancies on the

surface and surface region of ZnO nanostructures is still not well understood. Vlasenko

et al. [30] reported noticeable concentration of oxygen vacancies in as-grown ZnO only

after electron irradiation, while Selim et al. [31] on the other hand found high concen-

tration in as grown ZnO detectable even without need of irradiation, to quote only a

few. Similar inconsistencies have been reported also in theoretical work [32–34].

In the present work, we applied the ab initio DFT approach to investigate the response

of ZnO nanaowires to specific external perturbations, in order to describe some trans-

ductive and sensing applications. To this aim, piezoelectricity and gas (ethanol) sensing

mechanisms are considered, along with the role of oxygen vacancies, and hydrogen in-

corporation, as possible causes of intrinsic n-doping, to parallel the experimental results.

An approach based on Wannier Function (WFs) is used to study piezoelectric properties

of ZnO NWs and the problem associated with ill-definition of volume in nanostructure

is overcome. A scheme that passes through normalization in terms of number of formula

units per supercell (a ZnO pair in the case of zinc oxide nanosystems) without loss of

generality is proposed. This approach takes advantage of the WFs definition that allows

to calculate local dipole contributions (one for each ZnO couple) to the average dipole

of a system. In this way, it is shown that the piezoelectric properties of NWs are only

mildly influenced by size reduction to the nanoscale. On the other hand, the effective

strain energy decreases with decreasing the size of the NWs, and for the smallest wire

it is reduced by about 50 %, thus making them ideal candidates for building efficient

energy scavenging devices irrespective of the fact that NW based nanogenerators (with

typical size of 40 nm) are expected to have piezoelectric properties similar to bulk ones.

Concerning the intrinsic n-character of the samples, our study reveals that the presence

of hydrogen modifies the electrical properties of ZnO, particularly their conductivity,

which is attributed to the fact that hydrogen acts as a donor thus populate electrons to

the conduction band. Ethanol gas sensing on ZnO is mediated by competitive adsorp-

tion between pre-adsorbed oxygen molecules and ethanol on the surface. In particular,

it is shown that due to ethanol large adsorption energy when compared to that of oxy-

gen, ethanol molecules are able to remove oxygen from the surface resulting in improved

surface conductivity. Furthermore, it is revealed that increase in surface conductivity is

solely due to release of trapped electrons to conduction band (CB), instead of a direct

injection to CB as claimed in previous studies. At surfaces, conductance switching can

be achieved solely by surface chemistry i.e., adsorption and desorption of gas molecules,

thus this open the possibility of developing sensors with improved performance.

Finally, it is shown that oxygen vacancies are formed on the surfaces of ZnO in ambient
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condition: if they occur in deeper layers they tend to diffuse to the surface. Our unified

study predicts that non-destructive introduction of oxygen vacancies on the surface of

ZnO can be achieved by using SO as one of the precursors during growth because it

induces a Zn rich environment, which is ideal for formation of oxygen vacancies.

This dissertation is organized as follows. In the first chapter a general description of open

questions associated with ZnO nanostructures applications in energy scavenging and gas

sensing, and the approaches used to address these problems are presented. Chapter 2

discusses aspects that renders ZnO nanostructures a superior material for energy har-

vesting and gas sensing. Chapter 3 and 4 are centered on the computational methodology

that has been applied to investigate ZnO nanostructures. First the fundamental theory

of ab initio DFT and the various extensions used in this work are introduced, then the

optimization of the computational parameters is discussed. In Chapter 5 the results

on the simulation of piezoelectric properties of ZnO NWs is presented, while Chapter 6

is dedicated to studies on ethanol gas sensing mechanism. Analysis on formation and

diffusion mechanism of oxygen vacancies near surface regions of ZnO are presented in

Chapter 7.



Chapter 2

ZnO nanowire applications

Recently, zinc oxide (ZnO) has attracted much attention within the scientific community

due to its wide range of potential applications that has been attributed to its unique

electrical, piezoelectric, optoelectronic, and photochemical properties. The renewed in-

terest in this material has been prompted by the development of growth technologies

for the fabrication of high quality single crystals and epitaxial layers, allowing for the

realization of ZnO-based electronic and optoelectronic devices. ZnO has a direct and

wide band gap of about 3.4 eV and a large free-exciton binding energy (∼60 meV ) such

that excitonic emission processes can persist at or even above room temperature [8, 35].

At ambient pressure and temperature, ZnO crystallizes in the wurtzite (B4 type) struc-

ture, as shown in Fig. 2.1. This is a hexagonal lattice, belonging to the space group

P63mc, and it is characterized by two interconnecting sublattices of Zn2+ and O2−,

such that each Zn ion is surrounded by a tetrahedra of O ions, and vice-versa. This

tetrahedral coordination gives rise to polar symmetry along the hexagonal axis (c axis

in Fig. 2.1), which is responsible for a number of the properties of ZnO, including its

piezoelectricity and spontaneous polarization. The most important physical properties

Figure 2.1: Ball and stick representation of the hexagonal wurtzite structure of ZnO.
Zn atoms are represented as large purple spheres, while O atoms are shown as small

red spheres. One unit cell is outlined for clarity.

5
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Figure 2.2: Scanning electron microscopy image of ZnO nanowires grown on paper
substrate using chemical solution [1].

of ZnO are presented in table 5.2.

Property value

Lattice parameter a = b = 3.2496 Å
c = 5.2042 Å
u = 0.3819 Å

Band gap 3.3 eV (direct)
Melting point 2248 K
Density 5.606 g/cm3

Hardness (Moh’s scale) 4.5

Table 2.1: Physical properties of bulk wurtzite ZnO [7].

Most recently, there has been a significant shift in interest towards ZnO nanostructures

due to their unique physical, chemical, and electronic properties, which make them ideal

candidates for a wide range of technological applications [4, 36–38].

Owing to their remarkable properties coupled with the need for device miniaturization,

large effort has been focused on the synthesis, characterization and device applications

of ZnO nanomaterials. A large variety of ZnO nanostructures, such as nanowires, nan-

otubes, nanorings, and nano-tetrapods have been successfully grown via a variety of

methods including chemical vapor deposition, thermal evaporation, and electrodeposi-

tion [39–41] on many different substrate. For example, in the case of ZnO nanowires

(NWs), it has been demonstrated that they can be even grown on many different kind of

hard and flexible by chemical solution. Fig. 2.2 shows for example a ZnO NWs sample

grown on paper [1]. It is worth noting that as the dimension of semiconductor materials

continuously shrinks down to nanometer or even smaller scale, some of their properties

undergo changes with respect to the bulk phase know as quantum size effects. Although
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these effects have been extensively studied when considering optical, electrical or me-

chanical properties, it is less know how size affects other properties. For example, in the

case of piezoelectric materials, such as ZnO, it is not know how size affects spontaneous

polarization or piezoelectricity, although different applications rely on these properties.

2.1 ZnO NWs for mechanical energy harvesting

The global energy consumption is projected to rise by more than 56 % by 2040 [42]. As-

suming that current energy policies and practices remain in place, most of the increased

energy production is expected to come from combustion of fuels, such as oil, ethanol,

natural gas and coal. Therefore, a commensurate increase in CO2, which is a prominent

green-house gas anticipated, and much of which is attributed to burning coal, which

is becoming the fastest growing source of energy globally. To moderate global reliance

on exhaustible natural resources and their environmentally hazardous combustion, more

scientific efforts have been directed toward reducing the cost of energy production from

renewable sources. There exist many potential renewable energy technologies in the form

of solid-state devices, such as, piezoelectric nanogenerators, which convert mechanical

energy (such as body movement like muscle stretching), vibrational energy (such as

acoustic) and hydraulic energy (such as body fluid and blood flow) into electric energy

that can be used to power nanodevices that operate at a very low power, i.e. in the

range from nW to µW [15].

Piezoelectricity is a linear electromechanical coupling, which manifests itself as a direct

effect Pi = dijkσjk, where P is the polarization vector, σ is the stress tensor, and d is

the piezoelectric third rank tensor. In direct piezoelectricity, application of mechanical

stress to a piezoelectric material results in generation of electrical charges (voltage) on

its surface. This charge can be utilized in a variety of applications, such as, sensing and

energy harvesting.

The first piezoelectric nanogenerator was developed by Wang et. al [14] and it was based

on ZnO NWs. The mechanism of power generation in such devices relies on the coupling

between the semiconducting and piezoelectric properties of the material. Moreover the

power generated with these devices depends on the direction of the exerted force i.e.,

perpendicular or parallel to the axis of the NW, and can lead to production of alternat-

ing or direct current, respectively, as illustrated in Fig. 2.3 and Fig. 2.4.

When piezoelectric semiconducting NWs are subjected to an external force, a piezoelec-

tric potential is generated in the nanowire, due to the relative displacement of the cations

with respect to the anions. The piezoelectric potential in the nanowires originates a dis-

placement electrical current in the external circuit if a Shottky barrier is present between

the ZnO NWs and the electrodes. A DC-type output originates when a force is applied
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on a flexible top electrode, see Fig. 2.3. In this case the NWs beneath are subjected

to forces with different directions, hence lateral bending occurs, and electrons flow from

the compressed side of the NW to the top electrode ( for more details see Ref. [43]).

AC-type current occurs when ZnO NWs are compressed by an external force, directed

along the NW axis (c-axis) as shown in Fig. 2.4. In this case, a piezoelectric potential

is generated NW along the NW axis, therefore, one side of the NW experiences a nega-

tive piezoelectric potential and the other side a positive potential. The piezo-potential

moves electrons in the external circuit accumulating them at the interface between the

electrode at positive potential and the of the NWs ( Fig. 2.4). As the external force

is removed and the compressive strain is released, the piezoelectric potential disappears

inside the NW and the accumulated electron flow back via the external circuit, creating

a negative electric pulse, and consequently an AC signal is generated.

During the first experiments conducted by Wang et al. [14], nano generators were driven

by a force that induce lateral bending of ZnO NWs i.e., using atomic force microscope

(AFM) tip scanning or ultrasonic vibrations. Wang et al. [14] established that in lateral

Figure 2.3: (a) Schematic diagrams showing DC-type output charge generation from
ZnO NWs. ZnO NWs are brought into contact with the top ITO electrode by applying
an external force, electrons flow from the compressed sides of the ZnO nanorods to the

top electrode, (b) DC-type charge generation profile (Ref. [2]).

bending by an AFM tip, the maximum potential produced at the NW surface has an

inverse relationship with the cube of its length/diameter, and a direct relationship with

the lateral displacement by the probe. Furthermore, it was shown that for a ZnO NW

with a diameter of 50 nm and length of 600 nm, the piezoelectric voltage is in the order

of 0.3 V, which is enough to drive metal-semiconductor Schottky diode at the interface

of the AFM probe and the NW.

Since the first experiment by Wang and coworkers [14], there have been sustained efforts

to improve the design and fabrication of nanogenerator capable of harvesting various
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Figure 2.4: (a) Schematic diagrams showing output charge generation from ZnO
nanowire. The electrons flow from the electrode in contact with the sides of the nanowire
having a negative potential to the opposite electrode in contact with the sides of the
nanowire having a positive potential through the external circuit under a compressive

force, (b) AC-type charge generation (forward and reverse connections) (Ref. [2]).

sources of mechanical energy with better performance [15]. This resulted in the de-

velopment of a fiber-based flexible nanogenerator with ZnO NWs [44], an integrated

transparent flexible nanogenerator with ZnO nanorods [43], an integrated sound-driven

nanogenerator with ZnO NWs [45], and a flexible high-output nanogenerator based on

lateral ZnO nanowire arrays with output voltages of up to 2.03 V and a peak power den-

sity of 11 mW cm3, which was used successfully to light up a commercial light-emitting

diode [46], as shown in Fig. 2.5 .

Figure 2.5: A schematic illustration of the microfiber-nanowire hybrid nanogenerator,
which is the basis of using fabrics for generating electricity [3].
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On the theoretical side, a large effort has been devoted to investigating how the piezo-

electric properties of a material, and specifically ZnO, changes when small diameter

nanowires are considered. One of the main question to be addressed is whether con-

finement effects can also be observed in the piezoelectric behavior of nano-sized system.

Espinosa and co-workers [19] studied the size-dependence of piezoelectricity in GaN and

ZnO NWs with diameters ranging from 0.6 to 2.4 nm using the Berry-phase approach

[47] implemented within DFT. A giant piezoelectric size effect was observed for both

classes NWs, with GaN exhibiting larger and more extended size dependence than ZnO.

Approximately two orders of magnitude enhancement in piezoelectric coefficient was

demonstrated when the diameter of a nanowire is reduced to less than 1 nm.

On the contrary, mild enhancement of piezoelectric constants were identified for [0001]

ZnO NWs, using similar DFT approach for NWs with diameter upto 2.8 nm [18]. The

overview of piezoelectric trends of ZnO NWs presented in this section reinforces the

fact that further characterization are needed to reduce the existing scatter and identify

size-effects trends in the piezoelectricity of NWs. Coupling of improved experimental

techniques that allow in-situ structural characterization and advanced computational

methods would be needed to achieve a unified set of piezoelectric constant values and

deeper understanding of the physics behind the observed effects.

2.2 ZnO NWs for gas sensing

During the last decade of 20th century, there has been a strong interest in the develop-

ment of wide bandgap semiconductor gas sensors for the detection of several molecules

such as ethanol, liquified petroleum gas, CO2 and CO. Gas sensors based on metal oxide

semiconductor like SnO2, TiO2, WO3, ZnO, Fe2O3, and In2O3 have an important role

in environmental monitoring, chemical process controlling, personal safety, wine quality

monitoring, and traffic safety [4, 26, 48]. These group of metal oxide are capable of

operating at much higher temperatures than more conventional semiconductors such as

silicon, thus they are suitable for sensing in extreme environment [35]. In particular,

ZnO has a long history for use as a gas sensing material [49, 50], due to its low cost,

easy production, compact size and simple measuring electronics [51].

Since the first demonstration of the ability of metal oxide nanowires to detect a variety

of chemical species [52], the interest in this research area has grown exponentially in the

past few years as testified by recent literature (see the following reviews [21, 23, 53–55]).

Metal oxide nanostructures have several advantages with respect to traditional thin- and

thick film sensors such as
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• better sensitivity due to large surface-to-volume ratio

• superior stability owing to the high crystallinity [56]

• relatively simple preparation methods that allow large-scale production [53]

• ease to functionalize their surface with a target-specific receptor species [57] to

achieve better selectivity

• possibility to achieve field-effect transistors (FET) configuration that allows the

use of gate potential controlling the sensitivity and selectivity [58].

Gas sensors based on metal oxide nanostructures generally consist of three parts, i.e.,

the sensing element, the electrodes and a heater. Metal oxide nanostructures, often in

the form of wire, are the active element that change their resistance upon exposure to

target gases. The electrodes are used to measure the resistance of the sensing wires.

Finally, the gas sensors are usually furnished with a heater so to achieve the working

temperature that maximize the device response.

Figure 2.6: (a) Top-view SEM image of the fabricated substrate embedded with
Pt interdigitating electrodes and Pt heater, (b) 3D schematic of the fabricated sensor

structures (Ref. [4]).

In the example of Fig. 2.6 a ZnO NW based gas sensor has been fabricated on a silicon-

based membrane embedded with Pt interdigitating electrodes and a heater [4]; the size

of the membrane is 1.4×1.4 mm2 and the device is 3×3 mm2 in area, therefore reduced

power consumption is achieved.

In particular in this study, we focus on the detection of ethanol because it is widely used

in industries and in our daily life. For example, an ethanol sensor is contained in breath

analyzers which are used to monitor ethanol vapour in human breath; this is correlated

with ethanol concentration in the blood [59] and has help in reducing road fatalities

related to drunken driving.
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Various studies have demonstrated ethanol gas sensing capabilities of ZnO NWs [4, 60,

61]. Furthermore, these studies have shown that enhanced selectivity and sensitivity can

be attained in ZnO nanostructures by doping or surface functionalization. For example,

Kim and Son [62] showed that ZnO nanowires doped with 3% Al gave the highest sen-

sitivity towards ethanol gas.

Yet the mechanism responsible for realization of ethanol gas sensing in ZnO is still not

well understood. It is believed that ethanol adsorption/desorption on ZnO surface is

responsible for changes in the electrical properties of the NW. However, it is less known

how the presence of other gases in ambient condition affects sensitivity. Ethanol gas

sensing mechanism is often explained based on complex experimental measurements,

where several parameters are varied simultaneously hence it is difficult to understand

the role of each parameter. Therefore, it becomes necessity to perform theoretical stud-

ies oriented to understanding the fundamentals of gas-sensing effects. Moreover, the

effect of surface defects is also unclear for such a reaction. While it has been shown that

surface oxygen vacancies on ZnO surfaces and nanostructures can enhance the adsorp-

tion strength of small molecules, including NO2, NO, O2, NH3, H2, H2S (see for example

Refs [63–65]) and even lead to dissociation of the adsorbate (NO2, O2) to fill the defect

site [64, 66, 67], it is unclear whether the same effect occurs for ethanol.

Ab initio or quantum mechanical type calculations, in particular, have been used to

investigate a wide variety of materials, their properties and their interactions with atoms

and molecules. Such methods have proved extremely useful for examining gas/surface

interactions due to their ability to model the direction of the charge transfer, the reaction

mechanism, the structural changes and the electronic and magnetic properties involved.

In order to take advantage of the benefits of a computational approach to studying these

systems, reaction of alcohol molecules on ZnO NW surface needs to be investigated in

a more realistic setting that may contribute to better understanding of real system i.e.,

by considering possible sources of n-type doping in ZnO, amongst others. Such studies

are need in order build a more complete picture of gas-sensor surface reaction details,

which will assist in determining the applicability of these materials for sensing in a wide

range of environments.
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Methods

In the last decades, ab initio atomistic approach has emerged as a powerful tool able to

predict material properties starting from a quantum description of the electrons. Among

the possible methods proposed to solve the Schrödinger equation of a complex many-

body system, the Density Functional Theory (DFT) is one of the most employed. In

this chapter, the principles on which DFT is based are recalled and few practical aspect

of DFT implementation in the case of periodic structures are presented.

3.1 The Born-Oppenheimer approximation

The DFT approach relies upon two basic assumptions: ions are regarded as classical

particles and the adiabatic (Born-Oppenheimer) approximation holds, i.e. system for

which a separation between classical motion of ions and quantum motion of electrons

can be achieved. For such systems, the interaction potential among the ions V ({RA})
can be derived from first principles from equation:

V ({RA}) =< ψ0|H({RA})|ψ0 > (3.1)

Here H is the Hamiltonian of the system at a fixed atomic positions ({RA}) and ψ0 is

the corresponding ground state eigenfunction.

If we suppose to have a system composed by M ions and N electrons; then, the form of

the Hamiltonian written in equation (3.1) would be:

H = −
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA
∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+

N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

(3.2)

13
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(atomic units are used throughout).

The Born-Oppenheimer approximation is based on the observation that ions are much

heavier than electrons so they move more slowly: the significant electronic velocities

are, for electrons at Fermi level, 108 cm/sec while typical ionic velocities are at most 105

cm/sec. We therefore can consider the electrons to be moving in the field of fixed ions.

Within this approximation, the second term of equation (3.2), the kinetic energy of the

nuclei, can be neglected and the last term of (3.2), the repulsion between the nuclei, can

be considered to be constant. Since any constant added to an operator simply shifts

the operator eigenvalues without changing its eigenfunctions, we can remove it, so in

equation (3.2) what remains is only the electronic Hamiltonian describing the motion of

N electrons in the field of M fixed point charges located at riA

Helec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
(3.3)

The solution of a Schrödinger equation involving the electronic Hamiltonian

Helecψelec = Eelecψelec (3.4)

is the electronic wave function

ψelec = ψelec({ri}; {RA}) ≡ ψR (3.5)

which describes the motion of the electrons and explicitly depends on the electronic co-

ordinates, but depends parametrically on the nuclear coordinates, as does the electronic

energy:

Eelec = Eelec({RA}) (3.6)

The parametric dependence means that, for different arrangements of the nuclei, ψR

is a different function of the electronic coordinates, but the nuclear coordinates do not

appear explicitly in it. The total energy for a fixed nuclei configuration must also include

the constant nuclear repulsion:

Etot = Eelec +

M∑
A=1

M∑
B>A

ZAZB
RAB

(3.7)

3.2 Density Functional Theory

Density Functional Theory (DFT) is a mean-field approach to describe a system of many

interacting electrons that was formulated in the sixties by Hohenberg and Kohn [68] and

Kohn and Sham [69]. It is a theory for the electronic structure formulated in terms of
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the electron density as basic unknown, instead of the electronic wavefunction. Since the

density of particles in the ground state plays a central role in the theory, it can be consid-

ered as a ”basic variable” and all properties of the system can be considered to be unique

functionals of the ground state density. DFT can be regarded as the direct descendant

of the Thomas-Fermi theory (1927) [70, 71]. Although Thomas-Fermi approximation is

not accurate the approch illustrates the way DFT works. In the Thomas-Fermi method

the kinetic energy of the system of electrons is approximated as an explicit functional

of the density, idealized as non-interacting electrons in a homogeneous gas with density

equal to the local density at any given point. Dirac improved this model and formulated

the local approximation for exchange that is still in use today [72]. In this section the

basic formalism of the theory is presented starting from the fundamental Hohenberg

and Kohn theorems which demonstrate the central role played by the electron density

in quantum mechanics.

3.2.1 Hohenberg-Kohn theorems

Let’s consider a system of N electrons enclosed in a large box and moving under the

influence of some time-independent local external potential v(r). The first Hohenberg-

Kohn theorem demonstrates that, for a system with a fixed number of particles, v(r) is

determined within an additive constant, once the electron density n(r) is known. This

means that the density determines univocally the external potential, and consequently

the Hamiltonian and all the electronic properties of the system. According to this

statement, the ground state expectation value of any observable (e.g. the Hamiltonian)

is a unique functional of the ground state density n0. In this formalism the total energy

can be written as:

Ev[n] =

∫
n(r)v(r)dr + F [n] (3.8)

The functional F [n] is a universal functional, sum of the kinetic and electron-electron

repulsion energy and it is unique in the sense that it does not depend on the external

potential which acts on the system. The second Hohenberg-Kohn theorem states that

for any trial density ñ:

E0 ≤ E[ñ] (3.9)

being E0 the total energy calculated with respect to the exact ground state density n0.

The proof is based on the variational principle as for any trial wave function ψ̃:

< ψ̃|H|ψ̃ >=

∫
ñ(r)v(r)d(r) + F [ñ] = Ev[ñ] ≥ Ev[n] (3.10)



Chapter 3. Methods 16

Equality stands only in the true ground-state. The variation of the total energy at

constant number of electrons (N)

δ

{
Ev[n]− µ

[∫
n(r)d(r)−N

]}
= 0 (3.11)

leads to the Euler equation:

µ =
δEv[n]

δn
= v(r) +

δFHK [n]

δn
(3.12)

where the Lagrange multiplier µ is the chemical potential.

By knowing the analytical expression for the energy functional, Ev[n], and solving the

Euler equation 3.12, one would get the ground state density n0.

3.2.2 Kohn-Sham equations

The ground-state electron density can be in principle determined by solving the Euler

equation (3.12); however, the exact form of the functional F[n] is unknown. Kohn and

Sham proposed a scheme to solve the multielectronic problem in which, starting from

a model of non interacting electron system, they obtain a single particle Schrödinger

equation whose solution gives the same electron density of the interacting electron sys-

tem. It is first convenient to define a new functional G[n(r)], obtained from F [n(r)] by

subtracting the term of the electron-electron electrostatic repulsion:

G[n(r)] = F [n(r)]− 1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
(3.13)

It is than useful to extract the kinetic energy functional Ts of the non-interacting system

from G[n(r)], isolating all the exchange and correlation many-body contributions:

G[n(r)] = Ts[n(r)] + Exc[n(r)] (3.14)

In this way the Total Energy functional expressed in equation (3.8) becomes:

E[n(r)] = Ts[n(r)] +
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
+

∫
n(r)v(r)dr + Exc[n(r)] (3.15)

The variation of the previous expression as a function of the electron density at constant

number of electrons N leads to the following Euler equation:

µ =
δTs[n]

δn
+

∫
n(r′)

|r− r′|
dr′ + v(r) +

δExc[n]

δn
(3.16)
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which can also be written as:

µ = vKS(r) +
δTs[n]

δn
(3.17)

where vKS(r) is the Kohn-Sham potential consisting of the external potential, the clas-

sical Coulomb and the exchange-correlation potentials. If we express for the model of

the non interacting electron system the electron density as a function of the one electron

orbitals ψi:

n(r) =
occ∑
i=1

|ψi(r)|2 (3.18)

This procedure leads to the following single particle eigenvalue equation:

hKSψi =

[
−1

2
∇2 + vKS(r)

]
ψi =

N∑
j1

εijψj (3.19)

Making use of the fact that the operator hKS is Hermitian, a unitary transformation of

the orbitals leads to the Kohn-Sham equation:[
−1

2
∇2 + vKS(r)

]
ψi = εiψi (3.20)

Once solved this equation, it is possible to obtain the electron density of the interacting

system as a sum over each single particle orbital. This is probably the most important

equation of the Density Functional Theory. It states that the motion of the interact-

ing electrons can be treated exactly as a system of independent (i.e. non-interacting)

particles. The electrons can be considered as if they move in a common effective poten-

tial vKS . All the interaction between the electrons can be merged exactly into a single

potential vKS .

Although DFT is an exact theory of the ground state, it is affected by the limit that

the expression of the exchange and correlation potential appearing in the Kohn-Sham

potential is not known explicitly. Different formulations of this functional have been

proposed in the literature, based on different theoretical arguments.

3.2.3 LDA and GGA exchange-correlation approximations

The whole complexity of the electron-electron interaction is confined in the exchange-

correlation term. Since DFT does not provide the analytical expressions of the functional

Exc[n], the practical application of the theory requires the choice of approximated forms

for Exc[n]. Over the years many approximate expressions have appeared, the most

simple and widely used of which is the local density approximation (LDA) [73, 74]. In
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a homogeneous gas of interacting electrons the density is constant and the exchange-

correlation energy per particle εxc(n) is a function (not a functional) of the density. The

total exchange-correlation energy is obtained by multiplying εxc(n) by the total number

of electrons present in the gas:

Exc[n] = Nεxc(n) (3.21)

Within the local density approximation, the non-homogeneous electron gas is treated

in complete analogy: the total exchange-correlation energy is obtained by accumulating

the contributions from every portion of the non-uniform gas as if it was locally uniform:

ELDAxc =

∫
n(r)εhomxc (n(r)) dr (3.22)

In calculating the integral 3.22 the function εhomxc (n) is evaluated for the local density

n(r) of the inhomogeneous system under consideration: εhomxc (n) = εhomx (n) + εhomc (n)

is the exchange and correlation energy per electron in the homogeneous electron gas of

density n. LDA is exact for an uniform system and is expected to be valid for systems

with slowly varying electron density. For all the other cases the LDA approximation

is indeed uncontrolled; its justification relies mainly upon its ability to reproduce the

experimental ground-state properties of a large number of solids. LDA performs best

for metals, while for semiconductors and insulators the band gap is underestimated by

up to 50 % in some cases, but this problem is not only pertinent to LDA, but also

to the formally not-justified interpretation of the Khon-Sham eigenvalues as excitation

energies.

A number of methods have been developed to correct the deficiencies of the LDA. For

a system of nonuniform density, Exc is no longer adequately reproduced by Eq. 3.22.

A simple modification appears to be the inclusion of gradient terms ∇n, which leads to

the Generalized Gradient Approximation (GGA) [75],

EGGAxc =

∫
f(n,∇n)dr (3.23)

Various recipes for constructing f(n,∇n) have been proposed. The PBE (Pendew, Burke

and Ernzerhof) form [76] is probably the simplest GGA functional. The form for the

correlation in this case is expressed as the local correlation plus an additive term both

of which depend upon the density gradient. For the calculations performed within this

thesis we have employed the PBE functional because it was reported that it correctly

reproduces structural, mechanical and electronic properties of bulk ZnO, ZnO surfaces

and nanostructure [77–80].
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3.2.4 LDA+U method

Studies based on LDA and GGA have been previously used to investigate electronic

and structural properties of ZnO, and Zn-3d electrons were treated as valence electrons

[81–83]. Although they could give a very accurate lattice constant, the results strongly

underestimated the band gap and gave the energy of Zn-3d states too close to the VBM

due to overestimation of the hybridization between Zn-3d and O-2p states. Several

approaches have been proposed to address band gap underestimation. For example,

Vogel et al. [84] studied the electronic structure by the method of LDA plus Self-

Interaction Correction (LDA + SIC). Their results were in good agreement with the

experimental value for the band gap and the bandwidth, but the d states were still 1 eV

lower than the experimental one. On the other hand, LDA + U corrections have been

proved to be an effective improvement of LDA results, especially for 3d-transition metal

oxides [85].

The main idea of LDA+U is to separate electrons into the subsystems: localized for

which Coulomb interaction should be taken into account by a term 1
2U
∑

i 6=j ninj (ni are

the orbital occupancies) and delocalized electrons which could be described by using an

orbital independent one-electron potential (LDA). This LDA+U functional is expressed

as,

ELDA+U [n] = ELDA[n] + EU [nσi ]− Edc[nσi ] (3.24)

Edc[nσi ] is the double counting term. Because we add explicitly the Hubbard term, we

have to remove the energy contribution of these orbitals included in the LDA functional

in so as to ensure their contribution is not counted twice. Edc[nσi ] is approximated as

mean-field value of the Hubbard term in the DFT. 1
2U
∑

i 6=j ninj is the double counting

term, and UN(N − 1)/2, where N =
∑

i ni.

Therefore:

ELDA+U [n] = ELDA[n] +
U

2

∑
i 6=j

ninj −
UN(N − 1)

2
(3.25)

We can obtain the orbital eigenvalue by taking the derivative of the total energy with

respect to the occupation number of that orbital. For LDA+U, we get:

εi =
δELDA+U

δni
= εLDAi + U(

1

2
− ni) (3.26)

This last expression shows that is the state that is occupied, its energy is shifted -U/2

and if it is not occupied, its energy is raised by U/2. The LDA+U potential would be:

V LDA+U (r) = V LDA + U(
1

2
− ni)Pi (3.27)
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The operator Pi is the projection operator on the localized orbital. From this formulation

of the potential, we can see that if the state i is initially occupied by less than half, the

Hubbard potential is positive and tend to repulse electrons. On the other hand, if the

occupation is more than half filled, the potential is attractive and encourage electrons

to localized on this particular site.

3.2.5 Hellmann-Feynman theorem

If we suppose to know the ground state eigenfunction ψR for a system in a fixed config-

uration of nuclei {RA}, solving the equation (3.4), the energy will be given by:

E =
< ψR|H({RA})|ψR >

< ψR|ψR >
(3.28)

Thus, the force on a nucleus n will be given by the negative gradient of the energy with

respect to its coordinates (Rn):

Fn = −∇nE = −∇n
[
< ψR|H({RA})|ψR >

< ψR|ψR >

]
(3.29)

When deriving the term at the right side of this equation, one must observe that not only

the Hamiltonian but also the ground state depend on the particular configuration R.

The Hellmann-Feynman theorem [86, 87] states that this dependence can be neglected

if ψR is an eigenstate of the Hamiltonian. Thus, equation (3.29) gives:

∇nE =
< ψR|∇nH({RA})|ψR >

< ψR|ψR >
(3.30)

This means that in order to obtain the forces acting on the atoms in a particular geo-

metric configuration, it is enough to know the explicit dependence of the Hamiltonian

on the nuclear coordinate of the system. Once the forces acting on atoms are known one

can integrate the classical equation of motion and study the evolution of the system, or

simply minimize them in order to obtain equilibrium (or minimum energy) structures.

3.3 Wannier functions

The electronic ground state of a periodic system is usually described in terms of ex-

tended Bloch orbitals, simultaneous eigenstates of the periodic Hamiltonian and of the

direct lattice translations. An alternative representation in terms of localized orbitals

was proposed by Gregory Wannier in 1937 [88]; besides its theoretical relevance in sev-

eral areas of solid-state theory, it has gained recent prominence due to its connection

with the Berry-phase theory of bulk polarization. The connection between the Bloch
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representation and the Wannier representation is realized by families of transformations

in a continuous space of unitary matrices, and carries a large degree of arbitrariness. By

transforming the occupied electronic manifold into a set of maximally-localized Wan-

nier functions (MLWFs), it becomes possible to obtain an enhanced understanding of

chemical coordination and bonding properties via analysis of factors, such as, changes in

shape or symmetry of the MLWFs, or changes in the locations of their centers of charge.

In particular, the charge center of a MLWF provides a kind of classical correspondence

for the ”location of an electron” (or electron pair) in a quantum-mechanical insulator.

This analogy is extended further by the modern theory of bulk polarization [89, 90],

which directly relates the vector sum of the centers of the Wannier functions to the

macroscopic polarization of a crystalline insulator. Thus, the heuristic identification by

which the displacements of the Wannier centers provide a microscopic map of the local

polarization field is augmented, via the theory of polarization, by an exact statement

relating the sum of displacements to the exact quantum-mechanical polarization of the

system.

The one-particle effective Hamiltonian Ĥ that commutes with the lattice-translation

operator T̂R, allowing one to choose as common eigenstates the Bloch orbitals |ψnk〉,

[Ĥ, T̂R]⇒ ψik(r) = eiφi(k)µik(r)e
ik.r, (3.31)

where µnk(r) has the periodicity of the Hamiltonian. There is an arbitrary phase φn(k),

periodic in reciprocal space, that is not assigned by the Schrödinger equation and that

we have written out explicitly. We obtain a (non-unique) Wannier representation using

any unitary transformation of the form 〈nk | Rn〉 = eiϕn(k)−ik.R:

〈Rn| =
V

(2π)3

∫
BZ
〈ψnk| eiϕn−ik.Rdk. (3.32)

Here V is the real-space primitive cell volume, and ϕn(k+G) = ϕn(k), for any reciprocal-

lattice translation G. It is easily shown that the |Rn〉 form an orthonormal set, and that

two Wannier functions |Rn〉 and |R′n〉 transform into each other with a translation of a

lattice vector R − R′
. The arbitrariness that is present in ϕn(k) [or φn(k)] propagates

to the resulting Wannier functions, making the Wannier representation non-unique.

Thus, the most general operation that transforms the Bloch orbitals into Wannier func-

tions is given by

〈Rn| =
V

(2π)3

∫
BZ

N∑
m=1

U (k)
mn 〈ϕmk| e−ik.Rdk. (3.33)
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where U
(k)
mn is a unitary matrix of dimension N which is the occupied states. Alterna-

tively, we can regard this as a two-step process in which one first constructs Bloch-like

orbitals

|ϕ̃nk〉 =

N∑
m=1

U (k)
mn |ϕmk〉 (3.34)

and then constructs Wannier function |wn〉 from the manifold of states |ϕ̃nk〉. The extra

unitary mixing may be optional in the case of a set of discrete bands that do not touch

anywhere in the Brillouin zone, but it is mandatory when describing a case like that

of the four occupied bands of silicon, where there are degeneracies at symmetry points

in the Brillouin zone. An attempt to construct a single Wannier function from the

single lowest-energy or highest-energy band would be doomed in this case, because of

non-analyticity of the Bloch functions in the neighborhood of the degeneracy points.

Instead, the introduction of the unitary matrices U
(k)
mn allows for the construction of

states |ϕ̃nk〉 that are everywhere smooth functions of k. In this case, the Wannier

functions wn(r − R) = 〈Rn|, can be shown to be well localized: for a Ri far away from

R, wn(r−R) is a combination of terms like
∫
BZ

umk(0)eik.(Ri−R)dk, which are small due

to the rapidly varying character of the exponential factor.

3.3.1 Maximally-Localized Wannier Functions (MLWFs)

Several heuristic approaches have been developed that construct reasonable sets of Wan-

nier functions, reducing the arbitrariness in the U
(k)
mn with symmetry considerations and

analyticity requirements [91], or explicitly employing projection techniques on the oc-

cupied subspace spanned by the Bloch orbitals [92]. At variance with those approaches,

we introduce a well-defined localization criterion, choosing the functional

Ω =
∑
n

[〈0n| r2 |0n〉 − 〈0n| r2 |0n〉2] =
∑
n

[〈r2〉n − r̄
2
n] (3.35)

as the measure of the spread of the Wannier functions. The sum runs over the n functions

|0n〉; 〈r2〉n and r̄n = 〈r〉n are the expectation values 〈0n| r2 |0n〉 and 〈0n| r2 |0n〉. Given

a set of Bloch orbitals |ϕmk〉, the goal is to find the choice of U
(k)
mn in Eq. 3.33 that

minimizes the values of the localization functional (Eq. 3.35). We are able to express

the gradient G = dΩ
dW of the localization functional with respect to an infinitesimal
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unitary rotation of our set of Bloch orbitals

|unk〉 → |unk〉+
∑
m

dW (k)
mn |umk〉 , (3.36)

where dW an infinitesimal anti-unitary matrix dW † = −dW such that

U (k)
mn = δmn+ dW (k)

mn (3.37)

This provides an ”equation of motion” for the evolution of the U
(k)
mn , and of the |Rn〉

derived in Eq. 3.33, towards the minimum of Ω; e.g., in the steepest descent approach

small finite steps in the direction opposite to the gradient decrease the value of Ω, until

a minimum is reached.

3.3.1.1 Real-space representation

There are several interesting consequences stemming from the choice of Eq. 3.35 as the

localization functional, that we briefly summarize here. Adding and subtracting the

off-diagonal components Ω̃ =
∑
n

∑
Rm 6=0n

| 〈Rm|r|0n〉 |2, we obtain the decomposition,

Ω = Ω1 + Ω̃ = Ω1 + ΩD + Ω0D (3.38)

where Ω1, Ω̃, ΩD, and Ω0D are respectively

Ω1 =
∑
n

[
〈0n|r2|on〉 −

∑
Rm

| 〈Rm|r|0n〉 |2
]
, (3.39)

Ω̃ =
∑
n

∑
Rm 6=0n

| 〈Rm|r|0n〉 |2,

ΩD =
∑
n

∑
Rm 6=0n

| 〈Rm|r|0n〉 |2,

Ω0D =
∑
m6=n

∑
R

| 〈Rm|r|0n〉 |2.

It can be shown that each of these quantities is positive-definite (in particular Ω1, see

Ref. [93]); moreover, Ω1 is also gauge-invariant, i.e., it is invariant under any arbitrary
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unitary transformation Eq. 3.35 of the Bloch orbitals. The minimization procedure

thus corresponds to the minimization of Ω̃ = ΩD + Ω0D. At the minimum, the elements

| 〈Rm|r|0n〉 |2 are as small as possible, thus realizing the best compromise in the simul-

taneous diagonalization, within the space of the Bloch bands considered, of the three

position operators x, y and z.

3.3.1.2 Reciprocal-space representation

As shown by Blount [94], matrix elements of the position operator between Wannier

functions take the form

〈Rn|r|0m〉 = i
V

(2π)3

∫
dkeik.R 〈unk|∇k|umk〉 (3.40)

and

〈Rn|r2|0m〉 = − V

(2π)3

∫
dkeik.R 〈unk|∇2

k|umk〉. (3.41)

These expressions provide the needed connection with our underlying Bloch formal-

ism, since they allow us to express the localization functional Ω in terms of the matrix

elements of ∇k and ∇2
k. In addition, they allow us to calculate the effects on the local-

ization of any unitary transformation of the |unk〉 without having to perform expensive

recalculation (at least when plane-wave basis sets are used) of scalar products. We thus

determine the Bloch orbitals |umk〉 on a regular mesh of k-points, and finite differences

is used to evaluate the above derivatives.

3.4 Practical aspects of DFT implementation

In the following paragraphs some practical aspects regarding DFT implementation will

be discussed, namely, the use of pseudopotential, the use of a plane wave basis set to

expand the system wave-function and the concept of supercell to deal with non-periodic

structures.

3.4.1 Plane Wave basis set

Ions in a perfect crystal are arranged in a regular periodic way (at 0K), therefore the

external potential felt by the electrons is periodic and the period is the same as the
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length of the unit cell (l). The external potential on an electron at ri can be expressed

as V (r) = V (r + l) . For these kind of systems, the Bloch Theorem holds, and the

wavefunction can be written as the product of a cell periodic part and a wave-like part:

φi,k = ui,k(r)eik·r (3.42)

where ui,k(r) is a function that has the lattice periodicity. The periodic part of the wave

function can be expanded using a basis set of plane waves whose wave vectors G are the

reciprocal lattice vectors of the crystal:

ui,k(r) =
∑
G

ci,Ge
iG·r (3.43)

therefore each electronic wave function can be written as a linear combination of plane

waves (PW):

φi,k =
∑
G

ci,k+Ge
i(k+G)·r (3.44)

the ci,k+G are unknown and must be determined for each specific case. The plane-waves

basis set is in principle infinite, but in real calculations it is reduced to a finite one

by truncating the sum over G to include only those plane waves with a kinetic energy

Ek = 1
2(k + G)2 less than a given energy cutoff (Ecut). This truncation will lead to an

error in the computed total energy. At variance with other techniques (and basis sets)

the convergence of the plane-wave basis set (and thus the error) can be controlled simply

by increasing the cutoff energy. When pseudopotentials are used (see next paragraph) to

include the electron/ion interaction, it is possible to reduce sensibly the cutoff energies,

without loosing accuracy.

3.4.2 The Pseudopotential approximation

A further approximation for the calculation of the electronic properties of a system con-

sists in the use of pseudopotentials (PP). In most molecular or solid state systems, it

is possible to separate atomic states into valence states, which determine the bonding

properties, and core states which are much deeper in energy and can therefore be con-

sidered as chemically inert. In the pseudopotential scheme the electronic problem is

simplified by including only the valence states. The core states, which can be considered

as essentially unchanged with respect to the free atom, affect the valence wave functions

only because of the orthogonality conditions. These inert states can be eliminated by

replacing the true atomic Coulomb potential by a pseudopotential, designed in such a

way that the effect of the core states on the valence states is properly reproduced. Since

the number of core states per species is not fixed, this does not impose limitations on
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the accuracy of the method.

A possible way of constructing pseudopotentials, within the framework of DFT, has

been proposed by Hamann, Schlüter and Chiang [95]. For most of the elements, a fully

local pseudopotential cannot reproduce accurately the properties of the all-electron wave

function, thus a non-local form is proposed in which a different pseudopotential, vl, is

used for each angular momentum channel l:

vps(r) =
∞∑
l=0

vl(r)P̂l (3.45)

Here P̂l is a projector onto the l-th angular momentum. Since for high l (e.g l ≥ 2 for

most elements) the l component of the wavefunction is very small in the core region, vl

can eventually be taken to be independent of l. The pseudopotentials are derived in the

case of the free atom and required to satisfy the following conditions:

• for every angular momentum, the pseudo-eigenstates are required to be equal to

the all-electron eigenstates;

• a core radius cutoff (rc) is defined beyond which the pseudo-wavefunction matches

the all-electron wave-function;

• in the core region, the pseudo-wavefunction is nodeless and carries the same charge

as the all electron wavefunction (norm conserving condition).

See Fig. 3.1 for a schematic illustration of this construction.

Pseudopotentials are usually required to be applicable to a number of different configu-

rations (solid, molecule, ionized atom...) for the atomic species: this constrain is known

as transferability.

The replacement of the true ionic potential by a weaker pseudopotential allows the

electronic wavefunction to be expanded using fewer plane-waves than would be needed

to expand the wavefunction in a full ionic potential. The rapid oscillations of the valence

wavefunctions in the cores of the atoms are removed, and the core electron states are no

longer present.

The pseudopotential approximation has a number of other advantages in addition to

reducing the number of plane-waves required to expand the electronic wavefunctions.

The removal of the core electrons means in fact that less electronic states have to be

calculated. Most importantly, the total energy of the valence electron system is typically

a thousand times smaller than the energy of the all-electron system. The difference be-

tween the electronic energies of different ionic configurations appears almost totally in
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Figure 3.1: Schematic illustration of all electron (solid lines) and pseudoelectron
(dashed lines) potential and their corresponding wave functions. The radius at which

all-electron and pseudo-electron values match is designed as rc.

the energy of the valence electrons, so that the accuracy required to determine energy

differences between ionic configurations in a pseudopotential calculation is much smaller

than the accuracy required in the all electron calculation. Of course, the total energy

is meaningless, in the pseudopotential approach, and only differences count. This au-

tomatically improves the overall accuracy of the method, since smaller values become

meaningful. Convergence tests are needed in order to be sure to have chosen a cutoff

able to reproduce structural experimental data and converged energy differences.

3.4.2.1 Ultrasoft pseudopotentials

Ultrasoft pseudopotentials (USP) were proposed by Vanderbilt and coworkers [96] where

norm-conserving condition were relaxed so that a much softer potentials were generated.

In this scheme the pseudo-wave-functions are allowed to be as soft as possible within

the core region, so that the cutoff energy can be reduced dramatically. Technically, this

is achieved by introducing a generalized orthonormality condition. The electron density

given by the squared moduli of the wave functions has to be augmented in the core region

in order to recover the full electronic charge. The electron density is thus subdivided

into a smooth part that extends throughout the unit cell and a hard part localized in

the core regions.

USP generation algorithm guarantees good scattering properties over a pre-specified
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energy range, which results in much better transferability and accuracy of pseudopoten-

tials. USP usually also treats ”shallow” core states as valence by including multiple sets

of occupied states in each angular momentum channel. This also adds to high accuracy

and transferability of the potentials, which made them attractive choice in this study.

For more details see Refs. [97, 98].

3.4.3 Reciprocal-space integration and k points sampling

When considering periodic systems, in the Kohn-Sham calculation scheme the valence

electron density and the band structure energy are defined as sum over the entire BZ as

follows:

n(r) =

occ∑
i=0

∑
k∈BZ

|φv,k(r)|2 (3.46)

Eband =

occ∑
i=0

∑
k∈BZ

εv,k (3.47)

for an infinitely periodic system the discrete sums are replaced by integrals over the

Brilluoin Zone (BZ) and an average over the BZ of the k-dependent functions is actually

performed. In practice, it is possible to approximate the integral over the BZ by using

a selected set of k-points, exploiting both the space group of the crystal, and a clever

sampling of the BZ. Due to the group symmetry the sum over k can be restricted to

the irreducible part of the BZ (IBZ), and then sample this zone with a special point

technique. Typically, one employes a Monkhorst-Pack grid [99], which consists of a

mesh of equally spaced points along the three reciprocal space primitive vectors and it

is defined by three integer (nx ny nz). These ni represent the number of sampling point

along each lattice vectors, and of course, the larger are ni the finer the grid will be and

the more accurate will be the calculated electronic density. The actual ni values to be

used generally depend on the problem that needs to be solved; usually convergence test,

at increasing ni, have to be performed to determine for each specific system the grid

that gives accurate results. For example, systems with a gap in the energy spectrum

typically require fewer points, whereas in case of metallic systems a much denser k-mesh

must be employed, ensuring good sampling of the Fermi surface.

3.4.4 Supercells for Nanowires and Surfaces

The supercell approach allows to deal with aperiodic configurations of atoms within

the framework of Bloch theorem, allowing to use a PW basis set. In this approach,

when dealing, for example with surfaces, that may have periodicity in the plane of the
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Figure 3.2: Schematic illustration of a supercell geometry for a surface of a bulk solid,
taken from [5]. The supercell is the area enclosed by the dashed lines: it contains a

crystal slab and the vacuum region.

surface, but without periodicity in the perpendicular direction, one simply constructs

a large unit cell containing the configuration of interest included in a vacuum region;

some precautions must be taken, depending on the system. To ensure that the results

of the calculation accurately represent an isolated surface, the vacuum region must be

wide enough so that faces of adjacent crystal slabs (replicas) do not interact across

the vacuum region; the slab itself must be thick enough so that the two surfaces do

not interact through the bulk crystal, and furthermore bulk properties themselves are

accurately reproduced. The supercell for a surface calculation is illustrated schematically

in Fig. 3.2. Similarly, nanostructures such as nanowires can be studied in this approach,

but the supercell must be large enough so that the interaction between the object and

its images in the neighboring cells are negligible. Also when using only the Γ point in

the reciprocal space integration, it is necessary to use supercells, i.e. cells which are not

primitive and contain more than one unit cell. Replicating a cell in the direct space is

in fact equivalent to fold the Brillouin Zone (BZ) in the reciprocal space. When doing

so, the Γ point of the supercell will map a certain number of k points of the irreducible

BZ. If the cell is big enough, the number of k points mapped by Γ is sufficient to get

a wavefunction which can accurately reproduce the properties of the studied material.

Nevertheless since the computational cost of the simulation increases as the supercell

dimensions increase, a compromise must be reached.
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3.4.5 Climbing Image Nudged Elastic Bands (CI-NEB)

An important problem in theoretical chemistry and condensed matter physics is the

calculation of transition rates, for example, rates of chemical reactions or diffusion events.

Harmonic approximation to transition state theory (hTST) [100] is routinely used to

study diffusion and reactions in crystals or crystalline surfaces.

A path that connects the initial and final states is chosen such that it has the greatest

statistical weight and is considered as the minimum energy path (MEP) [101]. At any

point along the path, the force acting on the atoms is only pointing along the path, and

is stationary for any perpendicular degree of freedom. The maxima on the MEP are

saddle points on the potential energy surface. The relative distance along the MEP is

a natural choice for a reaction coordinate, and at the saddle point the direction of the

reaction coordinate is given by the normal mode eigenvector corresponding to negative

curvature.

The MEP is found by constructing a set of images (replicas) of the system, typically

on the order of 4–20, between the initial and final state. A spring interaction between

adjacent images is added to ensure continuity of the path, thus mimicking an elastic

band. An optimization of the band, involving the minimization of the force acting on

the images, brings the band to the MEP.

The nudged elastic band (NEB) method is an efficient method to find the MEP between

a given initial and final state of a transition. An elastic band with N+1 images can be

denoted by R0, R1, R2, ...., RN , where the endpoints, R0 and RN ,are fixed and given by

the energy minima corresponding to the initial and final states. The N-1 intermediate

images are adjusted by the optimization algorithm. The total force acting on an image

is the sum of the spring force along the local tangent and the true force perpendicular

to the local tangent

Fi = FSi

∣∣∣∣
‖
−∇E(Ri)

∣∣∣∣
⊥
, (3.48)

where the true force is given by

∇E(Ri)
∣∣
⊥ = ∇E(Ri)−∇E(Ri).τ̂i. (3.49)

Here, E is the energy of the system, and is a function of all the atomic coordinates, and

τ̂i is the normalized local tangent at image i. The spring force is

FSi
∣∣
‖ = k(

∣∣Ri+1 −Ri
∣∣− ∣∣Ri −Ri−1

∣∣)τ̂i (3.50)
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where k is the spring constant. An optimization algorithm is then used to move the

images according to the force in Eq. 3.48: a projected velocity Verlet algorithm in the

code used in this work. The images converge on the MEP with equal spacing if the

spring constant is the same for all the springs. Typically none of the images lands at

or even near the saddle point and the saddle point energy needs to be estimated by

interpolation.

The climbing image NEB (CI-NEB) method constitutes a small modification to the

NEB method. Information about the shape of the MEP is retained, but a rigorous

convergence to a saddle point is also obtained. This additional feature does not add any

significant computational effort. After a few iterations with the regular NEB, the image

with the highest energy imax is identified. The force on this one image is not given by

Eq. 3.48 but rather by

Fimax = −∇E(Rimax) + 2∇E(Rimax)
∣∣
‖

−∇E(Rimax) + 2∇E(Rimax).τ̂imax τ̂imax (3.51)

This is the full force due to the potential with the component along the elastic band

inverted. The maximum energy image is not affected by the spring forces. Qualitatively,

the climbing image moves up the potential energy surface along the elastic band and

down the potential surface perpendicular to the band. The other images in the band

serve the purpose of defining the one degree of freedom for which a maximization of the

energy is carried out. Since the images in the band eventually converge to the MEP, they

give a good approximation to the reaction coordinate around the saddle point [102].
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ZnO test calculations

In this chapter we briefly discuss the results for bulk ZnO, which is the reference structure

for all the calculations presented in the next chapters. Physical properties of ZnO are

determined and compared to those in literature to test our computational approach and

parameters. Furthermore, the role of hydrogen as source of n-type conductivity in ZnO

is studied.

4.1 Introduction

ZnO is a polar semiconductor, whose wide band gap and large excitonic energy have

inspired several applications in electronics and optoelectronics [8, 80]. Physical prop-

erties of ZnO have been extensively studied both experimentally and theoretically (see

Refs. [8, 29, 30, 103–105]), thus the purpose of this section is to test the reliability of

our computational parameters in describing ZnO.

One of the most serious challenges to the development of ZnO-based technologies for

electronics is controlling its electrical properties. As-grown ZnO shows high levels of

unintentional n-type doping, with carrier concentrations typically varying from ∼1016

to ∼1017 electrons cm−3 [27]. This n-type conductivity has often been attributed to

intrinsic defects, particularly Zn interstitials and O vacancies, but the subject is still

controversial [27, 106, 107]. In this chapter, hydrogen contamination is investigated as

possible source of n-type conductivity of ZnO.

32
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4.2 Computational details

The DFT calculations presented in this thesis have been performed with the Quan-

tum Espresso suite [108]. In these calculations, we have used ultrasoft pseudopotential

plane wave implementation of DFT, with energy cutoff of 28 Ry (280 Ry) for the wave-

functions (charge density). The exchange-correlation energies were calculated by using

the Perdew-Burke-Ernzerhof [109] approximation of the generalized gradient approach.

Converged (8×8×8) Monkhorst-Pack grids [110] have been employed for the k-point

sampling and all atomic positions have been relaxed with the conjugated gradient al-

gorithm till all forces become smaller than 0.01 eV/Å. In the case of nanowires and

surfaces, the computational details are presented in Appendix A.

4.3 Structural and mechanical properties

Using the computational parameters presented in previous section, structural and me-

chanical properties of bulk ZnO are determined to test reliability of our approach. These

test are performed for the wurtzite structure, which is the stable structure of ZnO at

ambient condition. The lattice parameters determined by various experimental measure-

ments and theoretical calculations (see Ref. [8] ) are in good agreement with our results.

Concerning its mechanical properties, ZnO is a relatively soft material; with an average

Paramters current works (GGA) Others (GGA,LDA Ref. [104]) Expt (Ref. [104])

a(Å) 3.289 3.282, 3.192 3.25
c(Å) 5.315 5.291, 5.163 5.207
Eg(eV) 0.70 0.74, 0.78 3.34
B0 (GPa) 126 128, 161 142
B’0 (GPa) 4.88 5.75 (Ref. [8]) 3.6
e31(C/m2) -0.44 -0.51 -0.51, -0.62
e33(C/m2) 1.09 0.89, 1.21 0.96, 1.22
PZ (C/m2) -0.036 -0.057, -0.050 -0.07
εeff 33(C/m2) 1.29 1.28 (Ref. [111]) 1.22 (Ref. [17])

Table 4.1: Structural and Mechanical Properties of ZnO calculated with DFT method
and their comparison with previous theoretical and experiments works. B0 and B’0 are
the bulk modulus and bulk hardness, respectively. e31, e33 represent piezoelectric con-
stants, while PZ and εeff 33 are the spontaneous polarization and effective piezoelectric

constant, respectively.

bulk hardness of ∼5 GPa for c-axis oriented crystals compared to 12 and 15 GPa for

Si and GaN respectively [112]. Furthermore, the piezoelectric constants (e31, e33, and

εeff 33 ) compares well with those obtained by other groups; this gives us confidence to

apply the approach to nanostructure as will be shown in the next chapter 5.
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4.4 Role of hydrogen interstitial in n-type conductivity

The source of intrinsic n-type conductivity of as-grown ZnO has for long been attributed

to oxygen vacancies [106, 107]; however this claim has been questioned by recent studies

that have suggested hydrogen as the most probable source [113–115]. Detection of hy-

drogen atoms adsorbed on surface and subsurface region of ZnO with standard surface

characterization techniques, such as, low energy electron diffraction (LEED), transmis-

sion electron microscopy (TEM), and X-photoelectron spectroscopy (XPS) is difficult,

thus dedicated experimental measurements are required, such as low/medium energy

ion scattering (L/MEIS). With this respect, theoretical results are highly desirable and

needed to complement experimental investigations and may help in understanding ad-

sorbate geometry.

In this section, we focus on understanding structural and electronic properties of inter-

stitial hydrogen in ZnO. This is motivated by carefully performed experiments that have

demonstrated reversible loading and depletion of interstitial hydrogen on a perfect ZnO

crystal, and how this has direct effect on the electrical properties of the crystal [114].

4.4.1 Structural properties

Experimental studies have revealed that interstitial hydrogen in ZnO is located at bond-

centered (BC) position between O and Zn atoms [116, 117], whereas other experimental

studies have suggested anti-bonding (AB) site as being the preferred site [118]. Our

ab initio calculations showed that the BC site of interstitial hydrogen is energetically

preferred, consistently with previous theoretical studies [119, 120]. Our results show

Figure 4.1: (a) Ball and stick model of the relaxed atomic positions of surface with
interstitial hydrogen. Red, pink, and blue spheres represent zinc, oxygen, and hydrogen
atoms, respectively. (b) Various interstitial sites for hydrogen. BC and AB denote the
bond-center and anti-bonding site, respectively. Symbols ‖ and ⊥ shows the configura-

tion of O–H bond parallel and perpendicular to c-axis, respectively.
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that when hydrogen with neutral charge is introduced in ZnO as an interstitial with a

concentration of 0.70 % a stable configuration is obtained with the formation of a strong

O–H bond on BC‖ site, and breaking Zn–O bond, as shown in Fig. 4.1. Large lattice

relaxations occur around the hydrogen interstitial; in particular, the Zn is displaced by

a distance equal to 50% of the bond length (1.0 Å), to a position slightly beyond the

plane of its nearest neighbors, while the O atom moves outward by 11% of the bond

length, as shown in Fig. 4.1(a).

Previous studies have shown that both substitutional and interstitial forms of hydrogen

have low formation energies in ZnO [27], and for this reason it can be easily incorporated

either intentionally or unintentionally in significant concentration. Interstitial hydrogen

is highly mobile and can be removed by annealing at relatively modest temperatures (∼
420 K); however, hydrogen also exist as thermally stable donor that persist even upon

annealing at temperatures up to high temperature ∼ 800 K eventually as substitutional

hydrogen [121].

4.4.2 Electronic properties

The density of states of pure and hydrogen doped ZnO are presented in Fig. 4.2 calcu-

lated at GGA + U level [122].
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Figure 4.2: Density of state plots for (a) undoped and (b) hydrogen doped ZnO
surface. Dotted line show the location of Fermi level and VBM is set to zero energy.

While the unroped system is semiconducting as demonstrated by location of Fermi level

(EF ) in the band-gap, introduction of hydrogen shifts EF to the CB, hence the system

becomes conductive. This is attributed to the fact that hydrogen acts as a shallow donor

populating the CB with electrons. We will thus consider in the following chapters H as
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responsible of n-type conductivity, as observed in most common as-grown ZnO experi-

mental structures [113–115, 118].

It should be pointed out that hydrogen is by no means the only source of n-type con-

ductivity of ZnO. Recent studies have identified Al, Ga, and Si as present in as-grown

ZnO and act as shallow donor [123], but do not occur in high concentration to explain

the unintentional n-type conductivity of ZnO crystals.



Chapter 5

Piezoelectric properties of ZnO

NWs

As introduced in Chapter 1, an innovative approach for converting mechanical energy

into electricity has been recently proposed by Wang and coworkers [14] which relies

on the use of piezoelectric ZnO NWs. ZnO has several key advantages in these area,

since, beside being a piezoelectric semiconductor, it is biologically safe and it occurs

in a wide range of 1D and 2D nanostructures which can be integrated with flexible

organic substrates for future flexible, stretchable, and portable electronics. Although

these applications are promising, they are still away from being commercially available,

mostly due to issues of reliability and robustness [124], as well as performance opti-

mization, which remains to be addressed. For example, it is desirable to know which

set of nanowire morphological (diameter, length), structural (crystal structure, defect

type and density, etc.), and electrical properties (conductivity, polarizability) gives the

best performance. Some experimental investigation have proven an enhancement of the

mechanical [16], and electromechanical [125] properties of nanowires with diameter be-

low 100 nm and, as such, they evidenced that piezoelectric harvesting is more effective

with nanostructures rather than with thin films or bulk ZnO. On the contrary, other

experimental investigations did not find relevant differences in the piezoelectric behav-

ior of bulk and nanostructured material. With this respect, development of detailed

theoretical approaches is desirable to complement and support experimental work and

unambiguously characterize the physical properties of nanosized materials. Indeed, the

challenging nature of experimentation at the nanoscale requires comparison between

measurements and theoretical studies such as first principle calculations in order to

discard methodological artifact. In this chapter, we investigate the piezoelectric and

37
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mechanical response of ZnO nanowires in terms effective piezoelectric constant and ef-

fective strain energy. These quantities are compared with the ones reported in literature

and are connected to the to energy harvesting capability of ZnO nanowires.

5.1 State of the art

Since the successful demonstration of energy scavenging capabilities of ZnO NWs [14],

numerous studies have been performed to characterize their electro-mechanical behav-

ior. Using piezoelectric force microscopy (PFM) on individual ZnO NWs grown along

the [0001] axis, piezoelectric constant was measured to be 14.3 to 26.7 pm/V [3], higher

than the bulk value (∼ 9.9 pm/V). A similar study for ZnO NWs with diameter in the

range of 150–500 nm, and length of 400–600 nm, reported a variation of piezoelectric

constant from 0.4–9.5 pm/V [126]. However, other studies have questioned the validity

of these results [127], therefore for practical application of ZnO, better understanding of

its structural and electric properties are still needed. Beyond this, a better knowledge

of the elastic response of nanostructures to external deformations would be beneficial

to prevent failure and fractures of novel nanodevices. Furthermore, controversial results

appear in the literature, depending on the material, on the nanostructure form, and on

the growth direction [15, 127, 128]. From the experimental point of view, indeed, the

characterization of mechanical properties of NWs can be severely affected by artifacts

linked to the specific experimental set-up, such as AFM on a single sample or a network,

measurements performed on clamped or free standing samples, on conductive versus

insulating substrates, etc. (see e.g. H. D. Espinosa et al.[15]).

On the theoretical front, as well, while it has been assessed that spontaneous polariza-

tion of wires strongly depends on the nanostructure size [78], the question whether size

affects piezoelectric properties still remains open. In particular, Cicero and co-workers

[78] established the existence of a minimum diameter below which the NW polarization

field is inverted with respect to bulk because of large surface effects in small nanostruc-

tures. As for the piezoelectric response of ZnO NWs, Xiang et al.[18] proposed that NWs

with diameter larger than 2.8 nm tend to have almost constant effective piezoelectric

constants (close to the bulk value), while for smaller NWs, they found a non-trivial de-

pendence of the electromechanical coupling on the radius as a result of two competitive

effects, i.e., increase of the lattice constant along with decrease of the NW radius. On

the contrary a giant piezoelectric response was predicted by Agrawal et al.[19] of ap-

proximately 2 orders of magnitude larger than bulk for NWs with diameter lower than

1 nm; such increase would be attenuated for NWs with diameters exceeding 1.5 nm. It

is noteworthy that effective piezoelectric coefficients of ZnO NWs reported in the above

mentioned studies [18, 19, 129] were all calculated using Berry-phase method within the
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modern theory of polarization [47, 89], yet leading to dramatically different results, as

shown in Table 5.1.

eeff33 (Cm−2) NW1 NW2 NW3 NW4 NW5 Bulk

Ref. [19] 50.2 18.1 14.1 1.18
Ref. [18] 4.77 2.21 1.82 1.74 1.62 1.29
Ref. [129] 6.35 2.59 1.87 1.84

Ref. [111] Expt 1.22

Table 5.1: Effective piezoelectric constant eeff33 of ZnO NWs of varying diameter
compared to bulk value.

Figure 5.1: (a) Cross section view of ZnO NWs with different radii as indicated by
dashed circles and labelled NW1, NW2, NW3, and NW4. (b) Side view of the largest
wire, NW4, (two repetition of the unit cell are shown along the [0001] wire axis). Grey
(red) spheres represent Zinc (Oxygen) atoms; d and D represent two possible choices
of the NWs diameter, calculated either when atoms are considered as point charges or

as spheres, respectively; dx indicates the uncertainty induced by surface relaxation.

The origin of the above mentioned debate is most probably due to the sources of uncer-

tainty, that, although often neglected, severely alter the volume definition of a nanos-

tructure: these are namely surface relaxation (dx) and ionic radius (see Fig. 5.1). While
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the first source of error can be easily accounted for via accurate calculations or dedicated

experimental techniques, the second issue is more tricky. The volume definition used

to calculate polarization of nanowires is usually not mentioned in previously published

papers; however, the nanowire size can be defined through its diameter either by con-

sidering the atoms as point charges or as finite spheres (e.g. via the ionic radius): this

is enough to obtain an uncertainty of few Angstroms on its value (' 2Å in the case of

ZnO). This uncertainty on the diameter has increasing relevance at the nanometer scale,

and indeed leads to a large uncertainty in the volume occupied by the nanostructure

(up to 70 % in the case of the smallest NW considered in this work): the smaller the

structures the larger is the uncertainty. As such, all the physical quantities normal-

ized to volume, like spontaneous polarization and piezoelectric constants, present large

variability depending on the particular volume definition employed in the calculations.

5.2 Definition of Local dipole and effective piezoelectric

constant

In this work, we propose a rigorous method to overcome the problem associated with

volume definition of a nanostructure: we adopt a scheme that passes through a nor-

malization in terms of number of formula units per supercell without loss of generality.

This approach was successfully employed by Cicero and coworkers [78] to describe the

size effect on the spontaneous polarization of nanowires, while correctly reproducing

bulk values at increasing diameter. In particular, we take advantage of the Wannier

Functions (WFs) definition that allows one to calculate local contributions (one for each

ZnO couple) to the average dipole of a system. The procedure allows to define in a

unique rigorous way the different contributions (bulk vs. surface) relevant to evaluate

the nanostructure response to external deformation (thus assigning correct to NWs due

to size), thus finally opens the possibility for an optimized design of novel piezo-devices

at the nanoscale.

According to the modern theory polarization [47, 90], the macroscopic polarization of

a periodic structure, P, is defined only with respect to a reference system; for example,

in the case of wurtzite (WZ) one can choose the zincblende (ZB) phase, since the two

structures are equivalent up to third neighbors 1. In terms of WFs [93] polarization can

be written as

P = PWZ − PZB =
e

V

∑
I

ZI∆RI −
2e

V

∑
i

∆rWi (5.1)

1In experiment, only polarization changes are accessible; similarly the polar behavior of a system is
defined and calculated as difference with respect to a reference structure: one usually takes a non-polar
phase as reference structure that has null polarization.
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where we indicate with rWi the positions of the Wannier centers, with RI (ZI) the ionic

positions (charges) and with V the volume of the system. For a periodic structure, P is

defined modulo 2eRl/V , with Rl being a direct lattice vector.

In the previous formula (Eq. 5.1), if one divides by the number of ZnO pairs that

compose the system instead of dividing by V , one gets a dipole averaged over the whole

structure (<LD>) [78]: in the case of a nanowire, this is a quantity that contains both

bulk and surface effects. More specifically, local contributions (Local Dipoles - LD)

can be obtained by partitioning the WF set and ionic charges into neutral units (Zn-

O couples) in such a way to obtain zero polarization for the reference bulk ZB phase

structure [78]. In this approach, one may think of the electronic charge as being localized

into point charges (−q) located at the wannier center (WC) associated with occupied

band states in each unit cell. Thus the approach entails mapping a quantum mechanical

system onto a classical system which consist of point charges. This partition scheme

yields DZnO = -0.24 D/pair for bulk ZnO, and when normalized to the volume occupied

by a ZnO couple, P = -0.03 C/m2 is obtained in agreement with other computational

techniques, such as Berry Phase [18, 129].

For a WZ structure elongated along the spontaneous polarization axis [0001], and free

to contract or expand along the perpendicular axes, as in the case of NWs, the change

in polarization can be written in terms of the piezoelectric constants and of the applied

strain as:

P − P◦ = 2e31ε1 + e33ε3 = (e33 − 2e31ν)ε3, (5.2)

where P indicates the polarization for a strained structure, P◦ is the equilibrium struc-

ture polarization, e31 and e33 are the piezoelectric constants, εi are the strains along

the three lattice directions and ν is the Poisson ratio. In this case, the appropriate

quantity to describe the response to strain is the effective piezoelectric constant, eeff33 =

(e33− 2e31ν). In the case of a bulk system (or in the core part of a NW as shown later),

multiplying equation 5.2 by the volume, V , occupied by a ZnO pair, and expressing V as

a function of the strained lattice parameters, it is possible to write an analytical formula

for the dependence of <LD> on the applied strain, ε3:

< LD >= PV = (P◦ + ε3(e33 − 2e31ν))V0(1− ε3ν)2(1 + ε3). (5.3)

(V0 is the equilibrium volume/ZnO pair, i.e. at zero strain)

With above Eq. 5.3, <LD> and P can be linked, thus we can compare results obtained

using our approach with those obtained via other methods reported in literature.
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5.3 Structural properties of ZnO NWs

In this study, we have considered ZnO NWs of increasing diameter in the range '4 Å

to 23 Å which are represented in the insets of Fig. 5.1. Description of computational

procedure and parameters used are presented in the Appendix A. These NWs have

hexagonal shape (being made of N hexagonal shells, N = 1, . . . , 4) and present non polar

(1100) facets, in agreement with experimental observation. At equilibrium geometry, two

main relaxation mechanisms occur: The lattice parameter along the NW axis changes

with respect to the bulk value and the atoms at the NW surfaces relax. The lattice

constant c along the NW axis increases decreasing the NW diameter and, except for the

smallest diameter NW1 (N = 1), the behavior appears to be linear. The anomalous

behavior of the smallest NW is due to the fact that this NW has no bulk-like ZnO

pairs: None of its atoms is four-fold coordinated. While the NWs elongate along the

c direction, the lattice parameters along the perpendicular directions (a = b) shrink,

since ZnO has a positive Poisson ratio (ν = −ε1/ε3) for a strain applied along the c

axis. The NW surfaces present a relaxation mechanism which is very similar to what

observed for extended surfaces [77, 79]: oxygen atoms move outwards and the zinc atoms

inwards, as shown in Fig. 5.1(b). We find that the ZnO bonds at the surface are about

1.88 Å and thus they are shrunk of about 4.3 % with respect to bulk bond length; this

bond deformation decays away from the surface and finally approaches zero at the core,

in agreement with other studies in literature [77]. The charge rearrangement at the

NW surfaces is also consistent with what observed for an infinite (1100) surface: the

HO orbital appears to be a surface state characterized by charge accumulation on the

surface O atoms.

We have also evaluated the formation energy of the ZnO NWs (∆ENW ) with increasing

diameter defined as:

∆ENW = ENWT − nµbulkZnO. (5.4)

where ENW represents the total energy of the ZnO NW, n in the number of ZnO

couples in the NW unit cell and µbulkZnO is the chemical potential of bulk ZnO in its stable

phase (wurtzite structure). The calculated values of ∆ENW are presented in Fig. 5.2.

It is apparent that NWs formation energies are positive and as such they represent

metastable ZnO structures. The formation energy decreases with increasing NW radius

and it approaches the ZnO bulk value for vary large diameter due to the decrease of the

surface/volume ratio.
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Figure 5.2: Formation energy for NWs with increasing diameter. The calculated bulk
formation energy is set as the reference.

Bulk NW4 NW3 NW2 NW1

N ∞ 4 3 2 1
a[nm] 3.289 3.280 3.276 3.269 3.274
c[Å] 5.315 5.361 5.385 5.423 5.397

d[nm] ∞ 2.30 1.65 0.99 0.38
<LD>/Strain [D] 9.53 9.95 10.19 10.81 13.11

U
′′
[eV] 30.75 22.37 21.94 19.44 15.94

Table 5.2: Structural, mechanical, and piezoelectric properties of ZnO in bulk and
NWs form. N is the number hexagonal shells of the NWs, d [nm] is the diameter of the
ZnO NWs with atoms taken as point charge, c represents the lattice periodicity along
the NW axis, <LD>/Strain is the rate change of average LD with respect to strain,

and U
′′

is the effective strain energy (see equation 5.7).

5.4 Piezoelectric properties of ZnO NWs

As described before, the polar properties of a ZnO NWs has been studied in terms of

LD. From a radial analysis of LDs, obtained by averaging LD contributions of ZnO pairs

contained in concentric cylindrical shells at increasing distance from the NW center, one

can see that for the largest wires considered in this study (NW3 and NW4), bulk behav-

ior (<LD>=-0.24 D) is quickly recovered after the outermost shell, as shown in Fig. 5.3.

In particular, for these two wires, one can clearly identify a core part in which ZnO pairs

have bulk-like behavior (points of the flat region of Fig. 5.3) and a surface shell that

strongly deviates from bulk-like behavior. In this way, one eliminates inconsistencies

and arbitrariness linked to the common relations that use diameter or volume of the

system: the scheme provides a method to define in an unambiguous and rigorous way a

normalization useful in particular for nanostructures, although recovering bulk limits at
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Figure 5.3: Radial LD analysis in NWs: each point represents the average LD in
concentric cylindrical shells at increasing distance from the NW center located an the

zero of the abscissa axis.

increasing size [78].

The piezoelectric response of the ZnO wires grown along the [0001] axis, which is also

the direction of spontaneous polarization, was calculated in terms of variation of <LD>

with respect to strain. The results for longitudinal strain (ε3) ranging from -3% to 3%

are reported in Fig. 5.4[a]. It is apparent that apart from the smallest wire, which

structurally does not have any bulk-like ZnO pair, the behavior is well approximated by

a linear fit whose slope is related to the piezoelectric response of the wire (see table 5.2).

Also the analysis in terms of <LD>/strain reveals that NWs and bulk ZnO have similar

piezoelectric behavior. Only NW1 is characterized by a fairly large increase of the slope,

but this system is most probably unphysical. This close similarity between bulk and

nanostructure piezoelectric responses reveals that the high enhancement of piezoelectric

constants reported in Ref. [19] should not occur, and it is possibly related to different

effects, other than the NW size. Taking advantage of the local analysis previously dis-

cussed, for NW3 and NW4 it is possible to separate the surface and core contribution to

<LD> as a function of strain. The surface contribution is obtained by averaging LD on

the ZnO pairs that deviate from bulk-like behavior and uniquely identified by the radial

analysis reported in Fig. 5.3, while the core contribution is obtained by averaging over

bulk-like inner ZnO shells (results are reported in panel [c] and panel [b] of Fig. 5.4

respectively). Interestingly, also the surface contribution to the wire response is almost

linear and the values of <LD>/strain have values of 1.79 D and 1.25 D for NW3 and

NW4 surfaces respectively (to be compared with the values reported in Table 5.2). This

result indicates that the surface response to deformation is about one order of magnitude

smaller than the bulk-like term and only slightly dependent on size; furthermore surface
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Figure 5.4: [a] Plot of <LD> vs strain (ε3) for NWs with increasing diameter; [b]
([c]) represents the core (surface) contribution alone, for NW3 and NW4 compared to

bulk.

contributions become quickly negligible and the surface/volume ratio decreases. These

results are comparable to those reported in Ref. [18, 129], but significantly smaller than

those reported in Ref. [19], probably due to the use of incorrect volume values in their

calculated quantities.

We then use Eq. 5.3 to fit the data reported in Fig. 5.4(b) letting V0, P◦, e31, e33 and

ν as free parameters. From the latter values it is possible to estimate eeff33 for the wire

cores: for NW3 and NW4 we obtain Poisson ratio, ν, values of 0.27 and 0.28, respec-

tively that well compare to the value of 0.29 calculated for ZnO bulk. Correspondingly,

the effective piezoelectric constant of NW3 and NW4 estimated in this way are 1.19 and

1.21 C/m2 respectively, very close to the DFT bulk value of 1.28 C/m2 (experimental

1.22 C/m2[111]).

In order to verify the consistency of the analysis made in terms of LD with a more

”classical” approach to polarization, we have analyzed how the displacement (dz) of

the ions in a ZnO bond change when a strain along the nanowire axis is applied (ε3).

In particular, we have analyzed how the dz(ε) varies in a bulk system and in different

portions of a nanowire (core vs shell). This quantity reflects only the ionic contribution

to polarization, completely neglecting the electronic one, which is instead captured by
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the analysis made in terms of wannier function, presented before. From an analysis of
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Figure 5.5: ZnO bond distance (dz) as a function of the applied strain for a bulk ZnO
systems and for the core and surface portion of ZnO nanowires

Fig. 5.5 it is apparent that the core of the wires has a behavior close to the bulk one

(the slope of the data are 0.69 Å for a ZnO bulk, 0.66 Å for NW4 and 0.65 Å for NW3).

Moreover, comparing the curve characterizing the core and the surface of a wire, it is

evident that, in the case of the surface layer, the slope is reduced by about 40% (0.39 Å

for NW4 and 0.35 Å for NW3). In summary, also this analysis shows the bulk behavior

is quickly recovered moving away from the surface already beyond the second ZnO layer

from the surface.

In conclusion, bulk polar behavior is quickly recovered moving away from the surface

and even in small nanowires the core part has a response to strain in terms of polariza-

tion that does not present enhancement effects. Furthermore, our analysis shows that

piezoelectric constants expressed in terms of <LD> are negligibly influenced by the NW

size. Surface effects and quantum confinement which are normally anticipated to dra-

matically modify properties of nanostructures seem to have minor influence especially

on piezoelectric properties. Similar findings have been reported by Dai and co-workers

[130], who, using DFT, showed that for thin films the piezoelectric constant converges

rapidly with increase in film thickness, in contradiction with classical molecular dynam-

ics results where slow convergence was predicted [19].

5.5 Mechanical properties of ZnO NWs

In order to explain the energy harvesting mechanism observed in ZnO NWs [14], and

to describe why it is expected that nanostructures perform better than bulk systems,

we analyzed how nanowires respond to external mechanical deformation and evaluated
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their effective spring constants. In the elastic regime the strain energy, U , required to

elongate the lattice parameter of a wire along its main axis of an amount ∆c can be

written as:

U(∆c) =
1

2
k∆c2 =

1

2
k∆c2(

c0

c0
)2 (5.5)

=
1

2
kc2

0ε
2
3 =

1

2
Kε23 (5.6)

where k is the elastic constant of the nanostructure, K = kc2
0 is the effective spring

constant, c0 is the NW equilibrium lattice parameter and ε is the strain applied along

the wire axis. From the above equations we obtain the strain energy per Zn-O pair, Us:

Us =
U(∆c)

n
=

1

2n
Kε23 =

1

2
U

′′
ε23 (5.7)

where n is the number of ZnO pairs in the simulation supercell and U
′′

= K
n is called

effective strain energy of the system. The latter quantity gives a quantitative estimate

of the amount of energy required to deform a finite structure and contains both bulk

and surface effects. As reported in table 5.2, the effective strain energy decreases with

decreasing the size of the NWs, and for the smallest wire it is reduced of about 50%.

Indeed, other studies have shown nanowires can sustain high deformation, thus can be

repeatedly used for energy harvesting without breaking them [131].

The above results contribute to solve an existing debate on the mechanical properties

of ZnO NWs still present in literature (see e.g. [15] and Refs therein), and support the

conclusion that the Young’s modulus of ZnO wires decreases with decreasing size. This

information is relevant to open the way for the design and fabrication of efficient energy

scavenging devices based on nanostructures. Furthermore, the results show that the

energy requirements of these smart devices belong to the range of environmental noise,

such as air, vibration, fluid flow and others [132].
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Ethanol gas sensing with ZnO

NWs

This chapter deals with ethanol gas sensing by ZnO NWs with emphasis on the mecha-

nism responsible for detection which is experimentally achieved by monitoring changes

in electrical properties of the wires upon gas exposure. In particular, we employ first

principles calculations to investigate how the electronic properties of ZnO(11̄00) surfaces

change when they interact with ethanol and oxygen, moreover intrinsic n-type doping

typical on ZnO samples has been modelled by introducing interstitial hydrogen in the

ZnO structure as discussed in Chapter 4. The electronic properties of the systems were

studied at the GGA+U level, to cope with the well known band gap underestimation

typical of GGA.

6.1 Introduction

As early as 1962, it was known that ZnO films could be used as gas sensors due to the fact

that adsorption and desorption of gases cause change in ZnO electrical conductivity [22].

In particular, it was observed that at high temperature (about 400 ◦C) the adsorption

and successive desorption process on the surface of ZnO was rapid enough to show a

marked change in electrical conductivity. Since then, several critical issues related to

ZnO gas sensing have been studies, such as, the role of catalyst [133], effects of additives

[134], and significance of grain-size [135] amongst others.

Recent advances in growth techniques of ZnO nanostructures with different morphologies

has lead to shift in interest to nanostructures due to their promising performance as gas

sensors. Nanowires, defined as wires with at least one spatial dimension in the range of

1–100 nm [136], exhibit a variety of interesting and fascinating properties, and have been

48
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functioning as building blocks for nanosensing technology [137, 138]. Although the basic

gas sensing principle remains unchanged compared to the conventional sensors based on

flat films, nanowire gas sensors and sensors arrays exhibit many inspiring characteristics:

• Ultra sensitivity and fast response time. Owing to their small size that ensures

high surface-to-volume ratio, only a few gas molecules are sufficient to change the

electrical properties of the sensing elements. This allows detection of very low

concentration of gas within several seconds.

• Higher selectivity and stability. With the development of nanowire gas sensors,

large arrays of macroscopic individual gas sensors can be replaced with a single

device that integrates the sensing and signal processing functions in one chip, thus

improved selectivity and stability can be achieved [139].

• Light weight, low power consumption and wireless communication capability. NW

sensors having minimal size, light weight and consuming less power, are ideal for

long range coverage [140], e.g. advanced gas sensor and wireless communication

capabilities can be realized via distributed ad-hoc sensor networks, enabling long

range guidance of all kinds of gas detection.

• Low-temperature operations. Very small amounts of gas can change the electrical

characteristics of nanowires; this enables the sensors to work at lower-operating

temperature. Single ZnO nanowires coated with Pt clusters by sputtering are

shown to selectively detect hydrogen at room temperature, and operate at ex-

tremely low power levels of 15–30 W [141].

Usually, a nanocrystalline based layer deposited or grown among interdigitized electrodes

is used in real experimental devices [4]. However, this device configuration prevents de-

tailed studies and analysis from being carried out. Various difficulties exist for such con-

figuration: Surfaces of the nano crystalline material can hide and disguise the molecules

interactions and chemical surface reactions, also the complex network of grain boundaries

existing in the nanocrystalline sensing material can cause charge transfer complexities.

Furthermore, many basic analyses and studies, like surface analysis are experimentally

performed far away from realistic operation conditions, i.e., in vacuum conditions for

X-ray Photoelectron Spectroscope (XPS), High Resolution Transmission Microscopy (

HRTEM), Electron Energy Loses Spectroscopy (EELS), or the use of higher gas con-

centration than usual for Fourier Transformed Infrared (FTIR) [8, 142], which again

prevents reliable interpretation on the chemical to electrical transduction mechanisms.

For this reason, new experimental and theoretical studies are needed to achieve better

knowledge and understanding of the mechanism responsible for chemical to electrical

transduction.



Chapter 5.Ethanol gas sensing with ZnO NWs 50

6.2 State of the art

The ability to detect ethanol gas is highly desirable as it is used in a variety of commercial

products and industrial processes. Ethanol sensors based on ZnO nanostructures have

been realized by a number of groups [4, 24–26], in all cases the conductivity of ZnO

NWs increase when exposed to ethanol. The exact mechanism that cause a gas response

is still not well understood; however, it is generally agreed that metal oxide based gas

sensors rely on changes in electrical conductivity upon interaction with the surrounding

atmosphere. Some studies have suggested that, when interacting with the ZnO surface

at elevated temperature, ethanol undergoes a redox reaction and that it is the exchange

of electrons with the substrate responsible for the change in ZnO conductivity. In

particular, it has been proposed that ethanol can decompose following two different

reaction paths, depending on the oxide[143]:

C2H5OH → C2H4 +H2O(acidic− oxide) (6.1)

2C2H5OH → 2CH3CHO +H2(basic− oxide) (6.2)

Since ZnO is a basic oxide, the second of these two reactions (dehydrogenation) is fa-

vored. Other studies based on Temperature Programmed Desorption (TPD) [144] have

shown that ethanol molecularly adsorbs on the ZnO surface, and dissociates into ethoxy

and hydrogen as the temperature increases. This study claimed that ethoxy is adsorbed

on oxygen vacancies or Zn2+ ion sites while hydrogen is adsorbed on lattice oxygen. The

ethoxy adsorbed on the Zn2+ ion sites associates with atomic hydrogen and desorbs as

ethanol from the surface, while ethoxy, that is adsorbed on oxygen vacancies, can be

removed from the surface as ethylene through C–O scission and β-hydride elimination

reaction at 523 K.

Based on other type of measurements, other models have been proposed to describe gas

sensing mechanism of ZnO nanostructures [4, 24–26]; in particular some studies have

evidenced that sensing occurs also at temperature for which no ethanol dissociation

occurs. Since these measurements are not free from artifacts or ambiguous interpre-

tation, theoretical studies would assist in the validation or development of a realistic

unique model. However, past theoretical studies have been dedicated almost exclusively

to providing fundamental understanding of surface/ethanol interaction [64, 145], with

mechanism leading to ethanol sensing getting little attention.
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6.3 Results and discussion

Here we examine the ZnO sensing mechanism for ethanol, and show that O2 present in

the atmosphere plays a major role during detection. Our conclusions are based on model

systems consisting of ZnO(11̄00) surfaces1 doped with interstitial hydrogen, since it has

been recently shown that hydrogen is unintentionally present in ZnO samples [114] and

it acts as shallow donor, as already discussed in Chapter 4.

The electronic properties discussed throughout this chapter were calculated employing

the GGA+U method [122, 146], with Hubbard U values of 12.0 eV for the Zn 3d orbitals

and 6.5 eV for the oxygen 2p orbitals[80]. Finally, spin polarization was included in

calculations involving oxygen molecule (more computational details can be found in the

appendix).

6.3.1 Oxygen adsorption at the ZnO(11̄00) surface

In ambient conditions, oxygen is one of the dominant gases and it has a tendency to

interact with the surfaces of metal oxides. Application of ZnO in photocatalysis and gas

sensing are routinely carried out in ambient environment, thus understanding the role

of oxygen in these application is relevant for designing better devices. In this study, we

found two adsorption configuration for the O2 molecule on the ZnO(11̄00) surface, as

shown in Fig. 6.1. Initially, the O2 molecule is placed 2.8 Å above the ZnO surface,

such that there is minimal interaction between the surface and the molecule. Then,

the system is relaxed to the minimum energy configuration. Two local minima were

d(Zn–O) d(O=O) ∆Eads Egap

On-top 2.16 1.27 -0.16 2.70
Bridging 2.18 1.29 -0.32 2.80

Table 6.1: Calculated structural parameters for the adsorption of oxygen on the
ZnO(1-100) surface: distance between the surface and molecule (d(Zn–Og )), oxygen
molecule bond length (d(O=O )), adsorption energy ( ∆Eads), and band gap (Egap).

found, an on-top configuration (see Fig. 6.1(a–b)), and a bridging configuration (shown

in Fig. 6.1(c-d)). The on-top adsorption configuration is characterized by one oxygen

atom of the O2 molecule binding to a surface Zn, while in the case of the bridging

configuration, both oxygen atoms of the O2 molecule bind to two neighboring Zn atoms

of the surface to form a bridging O2 molecule. In the case of bridging configuration a

stronger interaction is expected since both O atoms participate in bonding, and, as a

result the O=O bond-length is elongated by 5% with respect to the free molecule (see

1In ZnO nanowires (10–10) surface is the most stable and abundant [104]
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Figure 6.1: (a–b) Sideview and topview of oxygen molecule adsorbed in on-top con-
figuration, (c–d) Sideview and topview of oxygen molecule adsorbed in bridging con-

figuration.

Table 6.1).

The adsorption energy for these two configurations is determined by using Eq. 6.3 below,

∆Eads = Ebare+O2 − Ebare − EO2 (6.3)

where Ebare+O2 , Ebare, and EO2 are total energies of the surface with adsorbed an oxygen

molecule, of the clean surface and of the oxygen molecule in a vacuum, respectively.

In both the on-top and bridging adsorption configurations a negative ∆Eads was ob-

tained, which clearly shows that these interaction are favored processes and can occur

spontaneously in ambient conditions; however, the bridging configuration was found to

be more energetically preferred due to its higher ∆Eads of -0.32 eV. The total DOS for

O2 adsorbed on the ZnO surface is reported in Fig.6.2. Upon adsorption of an oxygen

molecule, the Fermi level (EF ), which was located initially in CB (see Fig.4.2(a)), shifts

back within the energy band-gap. signaling a reduction in conductivity, thus ZnO with

adsorbed oxygen molecules becomes semi-conducting similar to the undoped system.

The decrease in conductivity is attributed to the fact that when oxygen is adsorbed on

the ZnO surface, it traps electron from the CB. This leads to a decrease of free electron

carrier concentration and a decrease in conductivity, in agreement with experimental

measurements performed in oxygen rich atmosphere [4, 61, 147].
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Figure 6.2: Density of state plots for [Top panel] On-top, and [bottom panel] bridging
configuration of an oxygen molecule adsorbed on ZnO(1-100) surface. Dotted line show

the location of Fermi level.

6.3.2 Ethanol adsorption on ZnO surface

We considered ethanol adsorption on the clean ZnO (11̄00) surface of 1/4 ML surface

coverage, as shown in Fig. 6.4. Initially, the ethanol molecule was placed 2.8 Å above

the ZnO surface with the hydroxyl group (–OH) towards the ZnO surface. The sys-

tem was then fully relaxed. In the minimum energy configuration, ethanol adsorbes

Figure 6.3: Ethanol adsorption on clean surface, (a) side view, and (b) topview of
minimum energy configuration. Blue and yellow spheres represent hydrogen and carbon

atoms, respectively.

through the hydroxyl group (–OH) forming a bridging configuration. In particular, the

oxygen(hydrogen) of the hydroxyl binds to the surface Zn(O) with bond-length of 2.05

Å(1.56 Å), in agreement with previous theoretical studies [145, 148]. This configuration

has an adsorption energy of -0.92 eV, which is characteristic of chemisorption interac-

tion. Our results compare well with those of Spencer et al .[148] who obtained adsorption

energy of 1.09 eV. Adsorption of ethanol on hydrogen doped surface does not signifi-
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Figure 6.4: DOS plot for ethanol molecule adsorbed on stoichiometric ZnO surfaces
with interstitial hydrogen. Dotted line show the location of Fermi level.

cantly affect ZnO electrical properties i.e., the location of EF remain almost identical

to that of the clean surface doped with hydrogen, as shown in Fig. 6.4. This shows

that the quantity of free electrons in the CB does not change upon ethanol adsorption,

hence ethanol alone is not responsible for the increase in ZnO conductivity as claimed

in literature [148, 149].

6.3.3 Sensing mechanism

In the experimental set-up, gas detection is usually achieved by conductometric mea-

surement that are based on the principle that adsorption or desorption of gases on sensor

surface causes a change in conductivity. The sensing mechanism, however, can be very

complicated. For example, depending on temperature, it has been shown that oxygen

from the atmosphere may react with the oxide surface to form O2−, O−, and O−2 ions,

thus deterring this mechanism is not a straight forward exercise.

We have shown how surface electrical properties are modified when oxygen or ethanol is

adsorbed on ZnO surfaces, and with this information we can describe how ethanol gas

sensing is realized using ZnO. When pristine n-type ZnO NWs are exposed to ambient

condition, which is normally rich in oxygen gas, their surfaces are immediately covered

by O−2 species because adsorbed oxygen would capture electrons from the CB, hence

reducing free carrier density. When ethanol is introduced in the atmosphere, increased

conductivity is observed. This is attributed to the fact that ethanol has higher adsorp-

tion energy compared to oxygen, hence it is able to remove oxygen from the surface,

thus freeing trapped electrons which are injected back to CB, leading to increased surface

conductivity. Therefore, electron carrier density would be closely linked to the concen-
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Figure 6.5: Density of state plots for (a) undoped and hydrogen doped ZnO surface,
(b) oxygen molecule adsorption, and (c) ethanol molecule adsorption. Oxygen and
ethanol molecules are adsorbed on stoichiometric ZnO surfaces doped with hydrogen,

and the Dotted line show the location of Fermi level.

tration of ethanol in the atmosphere, such that higher conductivities can be attained

when O−2 ions are completely removed from the surface.

We can describe ethanol sensing mechanism as involving competitive adsorption occur-

ring on the surface, with ethanol being able to remove pre-adsorbed oxygen molecules

leading to enhanced conductivity, contrary to the usual models where ethanol is treated

as reductive gas [4, 150, 151].



Chapter 7

Formation, distribution, and

control of oxygen vacancies in

ZnO nano-structures

Native or intrinsic defects are imperfections in the crystal lattice that involve only the

constituent elements [152]. They include vacancies (missing atoms at regular lattice

positions), interstitials (extra atoms occupying interstices in the lattice) and antisites

(a Zn atom occupying an O lattice site or vice versa). In literature, studies have show

that oxygen vacancies influence some of the applications of ZnO. For example, oxygen

vacancies play a role in catalytic activity as well as optical application of ZnO [153, 154].

Furthermore, oxygen vacancies are considered to be crucial in ZnO doping, and are also

involved in the diffusion mechanisms connected to growth, device processing and degra-

dation [103]. Understanding the incorporation and behavior of oxygen vacancies in ZnO

is essential for its successful application in semiconductor industry.

Diffusion experiments provide information on atomic migration as well as the general

defect chemistry of a system [155]. The interpretation of diffusion experiments are often

difficult and defect properties are obtained from indirect measurement, hence prone to

errors and misinterpretation. Indeed several experimental studies focussed on the deter-

mination of defect diffusion coefficients [156–162] show a large scatter in the data, thus

no consensus has been reached on activation energies, exponential pre-factors, or migra-

tion mechanisms. Therefore, a systematic theoretical investigation is highly desirable

in order to obtain more fundamental insights on the subject. Hitherto, theoretical in-

vestigations based on quantum-mechanical calculations have been conducted to explore

static properties of intrinsic as well as extrinsic point defects in ZnO (see e.g., Refs.

[6, 32, 163, 164]). Recently, migration barriers were calculated for Li in wurtzitic ZnO

[162] and for the doubly positively charged zinc interstitial in cubic ZnO (zinc blende

56
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structure) [165], but at present there is no comprehensive study on the mobilities of

intrinsic point defects in zinc oxide.

Furthermore, distribution and concentration of oxygen vacancies at the surface of ZnO

nanostructures is still not well understood. For instance, Vlasenko et al. [30] reported

noticeable concentration of oxygen vacancies in as-grown ZnO only after electron irradia-

tion, while Selim et al. [31] on the other hand found high concentration in as grown ZnO

detectable even without need of irradiation. Similar inconsistencies have been reported

also in theoretical work [32–34].

7.1 Computational details

For the defect calculations we used hexagonal supercells with 96 atoms that is equiva-

lent to (2×2) lateral periodicity of primitive unit cells. In these calculations a shifted

k-point 4×4×1 mesh was employed, and all calculations were performed within GGA as

described in Appendix A.

In order to determine migration paths and barrier energies for oxygen vacancy in ZnO,

DFT calculations combined with Climbing Image Nudged Elastic Bands (CI-NEB) [102]

were performed considering diffusion path orthogonal to the surface. This is the most

probable route for in/out of surface diffusion [6], as shown in Fig. 7.2.

CI-NEB method allows minimal number of constraints to be imposed when searching

for saddle points, and unlike experiments which provide only an average value for the

diffusivity, the present approach allows to separate unequivocally the various contri-

butions to the diffusivity, thus better insights can be gained. The relevant quantities

are schematically depicted for a one-dimensional potential energy surface (PES) in Fig.

7.1(a). Local minima can be determined with comparably small computational effort

i.e., conjugated gradients minimization, Monte-Carlo techniques or simulated annealing.

The identification of minimum energy paths (MEP) and thus energy barriers constitutes

a more difficult task, and is routinely determined by NEB approach. In the NEB method

[166] a number of images are distributed between the initial (e.g., vacancy on site A)

and the final state (e.g., vacancy on site B) of the system, as shown in Fig. 7.2. The

images are connected via elastic springs. A numerical algorithm (e.g., conjugated gra-

dients or damped molecular dynamics) is used to minimize the forces on the images by

taking into account the action of the springs. Upon optimization, the chain of images

successively moves towards the nearest MEP. The situation is schematically shown for

a two-dimensional PES in Fig. 7.1(b).

The CI-NEB scheme is an extension of the standard NEB method [102]. Firstly, the

image with the highest energy is selected. Then the force along the direction of the two
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Figure 7.1: (a) Schematic of a one-dimensional potential energy surface, (b) Schematic
of a two-dimensional potential energy surface illustrating the NEB/CI-NEB method.
The blue and red circles mark the initial and final state respectively. The dashed and
solid lines show the NEB at the beginning and the end of the optimization. The white
circles mark intermediate images of the system. The yellow circles indicate the climbing
image which is the replica with the highest energy and which eventually is located at

the saddle point [6].

Figure 7.2: Graphical representation of diffusion path of oxygen vacancies via jumps
to first nearest oxygen site and the arrow shows the paths considered in the study, and

the purple (red) sphere represent Zn(O) atoms.
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neighboring images is projected out and inverted. Eventually, all forces are minimized.

When convergence is achieved, the climbing image is located at the saddle point.

7.2 Formation of oxygen vacancies

The formation energy of a defect or impurity as well as their concentration can be com-

puted entirely from first principles, without resorting to experimental data. Density-

functional theory allowed us to calculate the ground-state total energy of systems of

electrons subject to an external potential, i.e. the Coulomb potential given by the nuclei

or ions. From total energies one can easily compute the formation energy of defects, as

described in these Refs. [167–169]. First-principles density- functional calculations of

defects in solids are nowadays performed using supercells containing up to several 100

atoms, periodically repeated in the three-dimensional space. The supercell size should

be large enough to simulate isolated defects, i.e. the interactions between defects in

neighboring supercells should be negligible.

7.2.1 Structural properties

In our study, we consider a surface that consist of 12 layers of ZnO, which has been

shown to be sufficient for simulating surfaces [79]. In this configuration, oxygen vacancies

are introduced on the surface with a concentration of 1/4 of monolayer coverage, and

the distance between neighboring oxygen vacancies was large enough to consider the

vacancies as effectively isolated. DFT calculation based on GGA-PBE described in

Appendix A was employed in the study, and the oxygen vacancies were introduced as a

function of distance from the surface.

As far as the structural properties are concerned, the presence of a vacancy in the

topmost layer induces an inward displacement of the unpaired Zn atom so as to restore a

bulk-like 4-fold coordination with the two neighbor Zn atoms of the second layer (see Fig.

7.3(a)), in agreement with previous studies [79, 170, 171]. Significant relaxation effects

are also observed when the vacancy is located in the first two subsurface layers, however,

for oxygen vacancies located in deeper layers, relaxation effects are more moderate and

very similar to those observed in the defected bulk crystal. Moreover, the vacancy-

induced distortions are mostly localized around the defect, whereas the geometry of the

stoichiometric system is almost preserved in the regions far from the defect site.

As mentioned before, oxygen vacancies influence some of the application of ZnO based

devices, thus the knowledge of defect concentration and distribution in such surfaces

is important. The vacancy formation energy, which is a measure of energy required
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to remove an oxygen atom from the stoichiometric surface, have been calculated as a

function of the vacancy position with respect to the surface, as shown below,

Ef = Ed − Est +Nvac×
1

2
EO2 (7.1)

where Ed, Eclean, and EO2 are DFT total energies of defected surface, stoichiometric

slab, and spin polarized oxygen molecule calculated in vacuum, respectively.

Oxygen vacancies located on the surface have lower Ef (∼ 2.81 eV) compared to those

Figure 7.3: (a) Topview of relaxed 11̄00 surface with oxygen vacancy, (b) profile of
oxygen vacancy formation energy where vacancy located on the surface correspond to

0 Å depth and the dashed line shows vacancy formation energy in bulk.

located in subsurface region ( 3.29 eV), and bulk limit is approached in deeper layer, as

shown in Fig. 7.3(b). Therefore, oxygen vacancies are more likely to form on the surface

compared to deeper layers due to lower formation energies; most With the knowledge

of oxygen vacancy formation energy, it is possible to evaluate their concentration using

rate equation (Eq. 7.2 ). In thermodynamic equilibrium, defect concentration (C) is

quantitatively determined using rate equation shown below,

C = Nvac exp

(
−Ef
KBT

)
. (7.2)

where Nvac is number of vacancy sites per unit volume in the simulation cell, KB is the

Boltzmann constant, and T is the temperature. A low formation energy implies a high

equilibrium concentration of the defects, whereas a high formation energy means that
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defects are unlikely to occur. We further find that the formation energy of an oxygen

vacancy in the ZnO surface is about 0.775 eV lower than that in the ZnO bulk. This

indicates that oxygen vacancies can form even more easily in ZnO (10–10) surfaces than

in ZnO bulk. Although, the actual defect concentration may depend of the exchange

and correlation functional employed in the DFT calculations, the qualitative picture

of vacancy accumulation at surface would still hold. Indeed, the difference in bulk

versus surface defect formation energy is much larger than the dependence of the defect

formation energies on the functional [8].

7.2.2 Electronic properties

The character of the near-gap states can be inferred from the analysis of the projected

density of states (PDOS) on atomic orbitals, as shown in Fig. 7.4(a). In the surfaces, the

top valence band is mainly derived from the p orbitals of O atoms with Zn atoms giving

negligible contribution. On the other hand, the bottom conduction band is strongly

dominated by the bulk contributions in agreement with recent first- principles studies

[171, 172]. The presence of the defects is responsible for the appearance of detects
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Figure 7.4: Total and projected density of states for (a) clean, (b) defected surface.
The insets show a zoom in proximity of the band gap.

states which are located about 2 eV above top valence band. Such states, as revealed by

the PDOS analysis (see Fig. 7.4(b)), are mainly derived from the Zn4s atomic orbitals

belonging to Zn atoms surrounding the vacancy. The calculated distance of defect state

from CB as a function of the vacancy depth from the surface are reported in Table. 7.1.

The distance of defect state from CB is strongly influenced by the hybridization of the

atomic orbitals surrounding the vacancy, which explains its dependence on the vacancy
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Depth (Å) 0.0 0.8 2.9 3.5

Distance of defect 1.8 1.9 2.2 2.3
state from the CB

Table 7.1: Bandgap calculated using GGA+U for oxygen vacancy located at varied
depth from the surface.

site. In particular, a moderate dependence on the depth is found for oxygen vacancies,

similar results have been reported elsewhere [171].

7.3 Oxygen vacancy diffusion

Barrier energy (Eb) is the minimum energy that must be input to a chemical system, con-

taining potential reactants, in order for a chemical reaction to occur. Once Eb is known,

the process rate can be easily determined using the expression Γ = Γo exp(-Eb/kBT)

[171], where the prefactor Γo is the ratio of the vibrational frequencies at the initial

configuration to the frequencies at the saddle point (see Fig. 7.1(a)); kB is the Boltz-

mann constant; and T is the temperature. A reasonable estimate of the temperature

at which the oxygen vacancy becomes mobile can be obtained by taking the definition

of the activation temperature, i.e., the temperature at which the jump rate Γ is 1 s−1.

To a good approximation, Γo can be taken as a typical phonon frequency, i.e., 1013 s−1

[171]. Therefore, we can use Γ = 1 s −1, Γo = 1013 s−1, and the calculated Eb values

for each path to estimate the annealing temperature, shown in Table 7.2.

Table 7.2: Calculated barrier energy (Eb) and estimated anneal ing temperature (Ta)
for the oxygen vacancy diffusion between first neighbours following path shown in Fig.

7.2. Arrow has been used to show diffusion direction of the oxygen vacancy.

diffusion path Eb(eV) Ta (K)

direct inverse direct inverse

VO,1A → VO,2A 1.92 1.23 744 477
1.90a 1.24a 737a 481a

VO,1B → VO,2B 2.07 1.76 802 682
VO,2B → VO,2B) 2.14 2.04 830 790

Bulk 2.23, 2.00a 2.23 428 428
2.36b

a Ref. [171]

b Ref. [173]

From our study, we obtain lower Eb for subsurface to surface diffusion of oxygen vacan-

cies, which indicate the ease for vacancies to diffuse to the surface and is activated at
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Figure 7.5: Barrier energy for oxygen vacancy diffusion into and out of the surface.
Surface oxygen vacancy correspond to 0 Å depth with the dashed line showing the bulk

limit.

moderate temperature of about 480 K. On the other hand, large value of Eb was obtained

for surface to deep layer diffusion, thus suggesting that oxygen vacancies migration from

surface to deeper layers is largely inhibited and unlikely to occur.

Our results compares well with previous studies, in particular, the bulk values that have

been reported (see Table 7.2) shows reasonable agreement with our work, thus validating

the oxygen vacancy prediction in surface and subsurface region that is not well docu-

mented in literature.

From this section, we can conclude that oxygen vacancies are likely to be formed on the

surface of ZnO, and even if some may be formed in bulklike region of the nanostructure

diffusion profile shows it will migrate to the surface when sufficient energy is supplied

to overcome migration barrier i.e. when annealed.

7.4 Control of oxygen vacancies

Recent research has shown that the catalytic activity of ZnO is only indirectly related to

the surface area; in fact it depends on the density of active sites [174]. For example, ac-

cording to recent studies on methanol synthesis on ZnO surface [175], oxygen vacancies

formed on the surface of ZnO crystals served as the active sites. Furthermore, recent

studies have shown that oxygen vacancies are instrumental in the realization of p-type

doping in ZnO [168, 176], also oxygen vacancies are essential for NO2 gas sensing with

ZnO by acting as adsorption sites [145, 177].
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Previous studies have shown that oxygen vacancy rich ZnO NWs can be grown using

chemical deposition technique with mixed ZnO and ZnS powder, and with sulfur act-

ing as reducing agent. Indeed, photoluminescence measurements confirmed presence of

intense green emission that is normally associated with oxygen vacancies. It is claimed

that abundant generation of oxygen vacancies on the surface of ZnO NW was due to

competition between ZnO and SO2 for oxidation [178].

In this section, results of ab initio studies performed to give a microscopic understanding

on the role of reducing agent, in this case sulphur or carbon in controlling the formation

of oxygen vacancies is presented.

7.4.1 Structural properties

In our study, CO molecule was introduced 2.5 Å above the surface and perpendicular

to oxygen atom on the surface. Both C-down and O-down orientation were considered,

and it was found that the surface area in the vicinity of the topmost O ion was purely

repulsive interaction for both cases of O and C atoms are and were repelled from the

surface. On the other hand, both C-down and O-down showed enhanced interaction

when introduced perpendicular to topmost Zn ion, and C-down orientation was found

interact more favorably compared to O-down orientation, in agreement with experimen-

tal observation [179]. The data is presented in Table 7.3.

Table 7.3: Calculated distance between surface ions and adsorbed molecule (do(Å)),
bond length of adsorbed molecule, and adsorption energies (Ead (eV))

Orient do(Å) SO/CO Å Ead (eV)

ZnO(Zn)C-down 2.18 1.14 -0.29, -0.36a, -0.24b

ZnO(Zn)O-down 2.36 1.14 -0.10

ZnO(Zn)O-down 2.33 1.40 -0.23
ZnO(Zn)S-down 2.36 1.43 -0.50

Zn(O)S-down 1.70 1.65 -1.70

a Ref. [179]

b Ref. [180]

Therefore, we can conclude that for the case of CO interaction with ZnO surface, Zn–C

bonding is the most probable interaction to be anticipated, thus suggesting that CO

would act as a dopant. Similarly, experimental measurements based on Raman spec-

troscopy have indicated the presence of lattice defects and Zn–C type of complexes in

the nano-crystalline carbon doped ZnO matrix, and is thought to be responsible for the

enhancement of ferromagnetism in ZnO nanostructures [181, 182].

In the case of SO adsorption on ZnO surface, both O-down and S-down orientation were

found to have negative adsorption energies, which shows these are favored interactions.
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Figure 7.6: Schematic representation of preferred configuration for (a) CO, and (b)
SO adsorption on ZnO surface. The red and purple spheres represent O, and Zn atom,
respectively. The small yellow sphere in panel (a) is carbon, while the large yellow

sphere in panel (b) represent sulphur atom.

On the other hand, O-down configuration on surface oxygen atom showed negligible

interaction, while it was more preferred on Zn as demonstrated by higher adsorption

energy.

S-down adsorption orientation had a more robust interaction on both Zn and O top-

most surface ions; however, adsorption on surface O ion was more energetically preferred

and is characterized by elongation of S–O bond to form SO2, with both bondlength of

O1–S and S–O2 being 1.65 Å and 1.7 Å, respectively. The S–O bondlength obtained in

this work is comparable to experimental value of 1.4 Å [178], as shown in Fig. 7.6(b),

and the slight difference is attributed to GGA method which is know to overestimate

bondlength.

7.4.2 SO2 removal from ZnO surface

In the previous section, we have shown that sulphur can be used to induce Zn rich

environment during growth of ZnO NWs by capturing oxygen to form SO2, which is

an important step in the creation of oxygen vacancies. Using CI-NEB described in the

previous chapter, we explore the removal of SO2 from the surface such that a vacancy

is left behind, thus formation of vacancies, as described by Seo et al. [178].

In order to estimate the energies involved in removal of SO2 from the surface, we

consider SO2 adsorbed on ZnO surface shown in Fig. 7.6(b) as the initial state, while

the final state is a position where SO2 is at least 3.0 Å away from the surface.

In order to remove SO2 from the surface, an energy barrier of 0.63 eV has to be overcome,

as shown in Fig. 7.7. It should be recalled that CI-NEB calculations are performed for
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Figure 7.7: Energy pathway of SO2 for removal from the surface, 0 coordinate cor-
respond to SO configuration shown in Fig. 7.6(b), while 1 correspond to SO2 at a

distance from the surface.

a system at zero temperature, however growth condition occur at elevated temperatures

of about 700 ◦C [178]. Indeed, ab initio molecular dynamic calculations showed that

SO2 get detached from the surface at sufficiently high temperatures of about 700 K.

This clearly shows that sulphur can introduce oxygen vacancies on surfaces of ZnO in a

controlled manner. Our theoretical study validates experimental study of Seo et al.[178]

that have shown that sulphur can be used to form oxygen vacancies.

7.5 Discussion

ZnO NWs synthesized in Zn rich atmosphere favour formation of oxygen vacancies to

occur in high concentration, and this has been confirmed by experimental measure-

ment where strong green emission that is associate with oxygen vacancies was reported

[30, 183], and when annealed at high temperature (∼ 800 ◦C) the intensity of green

emission decreased dramatically, which signals reduction of oxygen vacancies. From our

study, we can interpret this behaviour as follows: as grown ZnO NWs have majority of

oxygen vacancies located near the surface region. When exposed to ambient conditions,

vacancies are filled almost immediately, while those in subsurface diffuse to the surface

since ambient temperature can supply sufficient energy to activate migration and are

filled once on the surface. In the case of large nanostructures that consist of bulk like

cores and surface region annealed at high temperature oxygen vacancies in deep layers

gain sufficient energy to overcome the migration barrier, thus diffuse to surface. This
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leads to a decrease in concentration of oxygen vacancies, consistent with above experi-

mental observation.



Chapter 8

Conclusion

The present dissertation combines Quantum Mechanical simulations based on Density

Functional Theory, including Wanner Functions and Climbing Image-Nudged Elastic

Band methods, with Thermodynamic concepts to elucidate energy harvesting and sens-

ing capabilities of ZnO surface and nanostructures. The complexity of the experimental

setup and demand, the non-standard characterization techniques, and the controversial

theoretical studies existing in the field, still call for a consistent, unified description

of the nanostructure response. In the first part of this work, using ab initio Density

Functional Theory combined with Wannier functions, piezoelectric characterization of

ZnO nanowires is performed. Our results reveal that piezoelectric coefficients of ZnO

nanowires are independent of size effects, at least for most common NWs diameters: in-

deed, we have shown that wires whose diameter is more than 1.6 nm have piezoelectric

coefficient similar to that of bulk ZnO. Our results reveal that the huge piezoelectric

enhancement reported in previous studies is due to approximations that are valid to

bulk systems, and appear to be ill defined quantities for nanostructures. To understand

the reason behind the successful use of ZnO nanowires in energy scavenging and other

related application, we studied their mechanical properties. It is revealed that effective

strain energies of nanowires are more sensitive to size reduction and are much lower

compared to bulk. Therefore, our theoretical predictions indicate that the advantage

of using nanowires for energy harvesting is due to their sensitivity to small mechanical

agitation: this knowledge may help in designing more efficient nanogenerators.

In order to understand the sensing mechanism of ethanol on ZnO surface, the ener-

getic of oxygen and ethanol gases adsorption on the surface are studied separately and

compared. In n-type material, as obtained for instance in the presence of hydrogen

interstitial in ZnO, our results reveal that adsorption of oxygen on the surface is respon-

sible for reduced conductivity as it traps electrons from conduction band, thus reduced
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carrier concentration. On the other hand, ethanol adsorption on the surface have neg-

ligible effects on the electronic properties, in particular, the location of the Fermi level

remains unchanged when compared to that of the clean surface. However, ethanol has

an adsorption energy that is three times higher than that of oxygen gas, and is able

to remove pre-adsorbed oxygen from the surface. We have interpreted this result in

terms of competitive adsorption between oxygen and ethanol: since ethanol has higher

adsorption energy on ZnO surfaces, it is able to remove pre-adsorbed oxygen, resulting

in improved conductivity. This result, associated with release of trapped elecrons in

conduction band, is consistent and explains the experimental observation that relates

changes in conductivity upon ethanol exposure

Previous studies on intrinsic defects focussed mainly on bulk system, however defects

near the surfaces region have received little attention yet are responsible for influencing

performance of device based on ZnO. In the present work, combined density functional

theory and climbing image nudged elastic band are used to study formation and dis-

tribution trends of oxygen vacancies. It is revealed that oxygen vacancies occur on the

surface at 0 K: since growth occurs at elevated temperatures oxygen vacancy is possible,

thus diffusion profile is studied, and it is revealed that oxygen vacancies experience low

diffusion barrier in the case of deep layer to surface diffusion. Therefore, high mobility

to the surface is predicted and better stoichiometry is expected in deeper layers of the

surface.

In summary, the present study contributes to the understanding of the electromechani-

cal properties of ZnO nanowires, gas sensing mechanism and formation trends of oxygen

vacancies near the surface region of ZnO. These results provide basis for the interpre-

tation and reinterpretation of experiments, which may be instrumental in development

and optimization of devices for energy harvesting and gas sensing application.



Appendix A

Additional information

A.1 Computational details

All DFT calculation presented in this dissertation were performed with Quantum Espresso

suite. In the case of nanowires, calculations were performed with reference to the the-

oretical DFT equilibrium lattice parameters of the ZnO wires ( see Ref. [78]), using

the ultrasoft pseudopotential plane wave implementation of DFT, with energy cutoff

of 28 Ry (280 Ry) for the wavefunctions (charge density). The exchange-correlation

energies were calculated by using the Perdew-Burke-Ernzerhof [109] approximation of

the generalized gradient approach. Wannier functions for ZnO bulk and nanowires were

evaluated using the wanT [184] code.

The nanowires were modeled in periodic supercells with the z direction corresponding

to the wire axis (equilibium c lattice constants are reported in table 5.2), and lateral

lattice parameters (along the x and y axes) large enough to avoid interaction between

periodic replicas. The convergence of k-space sampling was studied and a Monkhorst

pack grid of 1× 1× 6 was used for the DFT calculations.

The surface was modelled as a periodic slab in a supercell, the results presented in

Chapters 6,7 relates to 2 × 2, and 3 × 2 supercells for undoped, and H doped surfaces,

respectively. A thick vacuum layer (∼15 Å) was included in the direction perpendicu-

lar to the surface to ensure no interaction with it’s periodic images. Integration over

Brillouin zone was performed with k-point sampling mesh of 4 × 4 × 1, and structures

were relaxed until forces on all atoms were lower than 0.02 eV/Å. Adsorbates were sym-

metrically introduced on both top and bottom surfaces to avoid spurious electrostatic

interactions between adjacent replicas.

DFT failure to predict band gap was addressed by employing DFT+U only for the re-

laxed structure, with Hubbard U values of 12.0 eV on Zn 3d orbitals and 6.5 eV on
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oxygen 2p orbitals being used, as have been shown to work well for ZnO[80]. Finally,

spin polarization was included in calculations involving oxygen molecule.

A.2 Overview of codes

A.2.1 Quantum ESPRESSO

Quantum ESPRESSO [108] is an integrated suite of open-source computer codes for

electronic-structure calculations. It features ultrasoft pseudopotentials [185] and the

projector augmented plane wave (PAW) method [186]. A number of algorithms which

allows implementation of nudged elastic bands method [102, 166] or dimer method [187],

ab-initio molecular dynamics [188] amongst others are included in the code.

A.2.2 wanT

The WanT package operates, in principles, as a simple post-processing of any standard

electronic structure code. The code allows calculation of Maximally-localized Wannier

Functions (WF’s), access to spontaneous polarization, density of states, real and com-

plex band structure, and many other properties.The code is available free of charge for

researchers in academic environments (http://www.wannier-transport.org).
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