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Scaling behaviour for the water transport
in nanoconfined geometries
Eliodoro Chiavazzo1,*, Matteo Fasano1,2,3,*, Pietro Asinari1 & Paolo Decuzzi2,3,4

The transport of water in nanoconfined geometries is different from bulk phase and has

tremendous implications in nanotechnology and biotechnology. Here molecular dynamics is

used to compute the self-diffusion coefficient D of water within nanopores, around

nanoparticles, carbon nanotubes and proteins. For almost 60 different cases, D is found to

scale linearly with the sole parameter y as D(y)¼DB[1þ (DC/DB� 1)y], with DB and DC the

bulk and totally confined diffusion of water, respectively. The parameter y is primarily

influenced by geometry and represents the ratio between the confined and total water

volumes. The D(y) relationship is interpreted within the thermodynamics of supercooled

water. As an example, such relationship is shown to accurately predict the relaxometric

response of contrast agents for magnetic resonance imaging. The D(y) relationship can help

in interpreting the transport of water molecules under nanoconfined conditions and tailoring

nanostructures with precise modulation of water mobility.
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D
espite its fundamental importance in science and
technology, the physical and transport properties of water
are far from being completely understood1. The self-

diffusion of water molecules D in proximity of solid surfaces,
at the interface between immiscible liquids, and in confined
geometries, such as nanopores and nanotubes, is a very different
process as compared to the bulk phase2–4. The thermal agitation
of the water molecules in the bulk liquid is only dictated by the
local temperature and pressure conditions, and molecular
diffusion follows the Einstein relation5. Differently, under
confined conditions, the mobility of water molecules is
perturbed by the presence of additional interaction forces
arising at the water/solid interfaces, mainly van der Waals and
Coulomb interactions. These additional forces usually reduce the
local molecular diffusion6,7. Even if considerable work has been
done in recent years, both experimentally and theoretically, to
understand and characterize the perturbed behaviour of the water
molecules in confined geometries, there is still no complete
comprehension of the process and often the published results are
contradictory8.

Controlling the mobility of water molecules is of relevance to
several scientific disciplines and has implications in multiple
technological applications. For instance, water adsorption/
desorption in nanoporous materials, such as zeolites, has potential
in long-term thermal storage and energy engineering9,10; filters
with nanopores and nanochannels are increasingly explored for
their large surface area and higher efficiency11,12; in heat transfer
problems, nanofluids are under investigation because of their
peculiar thermal properties13,14; in micro/nanotechnology
processes, controlling the deposition and surface diffusion of
water molecules is critical for precise manufacturing15,16; in
biology, the mechanisms regulating the transport of single water
molecules through cell membrane channels (aquaporins) and the
multi-scale water compartmentalization in tissues are still
elusive17–20. Also, proteins tend to modify their structure and
function according to the surrounding aqueous environment21,22.

Certainly, nanomedicine is one of the fields where several
exciting discoveries and technological applications can be directly
related to the anomalous behaviour of water in confined
geometries. A few examples are the enhancement in longitudinal
relaxivity associated with the entrapment of Gd3þ -ion complexes
in mesoporous structures23,24; the dynamics of water molecules in
nanotubes and nanochannels for controlled drug delivery25,26;
and the design of hydrogel-based nano/microparticles27,28.
In particular, the dynamics of water molecules is essential
in magnetic resonance imaging (MRI), in that contrast
enhancement is influenced by the local diffusion of water
molecules29,30. It is known that for paramagnetic metal
complexes, such as Gd3þ ions, the Solomon–Bloembergen–
Morgan theory31 would predict a change in longitudinal
relaxivity r1 of the complex following a variation in the relative
translational diffusion time (tD) of the water molecules
surrounding the complex, and in the residence lifetime (tM) of
the water molecules bound to the complex. Similarly, for
magnetic nanoparticles (NPs), such as the iron oxide NPs, an
increase in tD (that is, decrease in D) would enhance the
transversal relaxivity r2 (ref. 32). Hence, the modulation and
precise control of the diffusion of the water molecules in the
vicinity of an MRI contrast agent plays an important role in
imaging performance. This concept has been already successfully
proved by experiments23, but a clear rationale (and a
computationally efficient tool) for optimally designing such
agents is still missing.

In this work, the self-diffusion coefficient D of water molecules
is investigated through molecular dynamics (MD) simulations
under five different isothermal configurations, namely, within

silica (SiO2) nanopores, around spherical hydroxylated NPs,
within SiO2 nanopores filled by NPs, around single-wall carbon
nanotubes (CNTs) and proteins. The coefficient D has been
estimated for almost 60 cases by varying the size of the NPs and
nanopores, the electrostatic surface charges and level of
hydrophobicity, as well as the type of protein. The self-diffusion
coefficient D for all different configurations has been found to
scale with a single non-dimensional parameter y, incorporating
both geometrical and physicochemical information, following the
relationship D(y)¼DB[1þ (DC/DB� 1)y]. The D(y) scaling is
modulated by the coefficients DB and DC, which represent the
bulk and totally confined diffusion of water, respectively. This
D(y) law has been applied to estimate the enhancement in MRI
contrast in magnetic nanoconstructs obtained by geometrically
confining super-paramagnetic iron oxide NPs (SPIOs) into
silicon mesoporous matrices. It has been confirmed that the
transversal relaxivity of SPIOs can be significantly augmented by
modulating the diffusion of water molecules. This law would help
in explaining and rationalizing previous experimental evi-
dences23, and represent a ready-to-use tool for the rational
design of nanoconstructs based on the nanoscale confinement of
water molecules.

Results
Computing the diffusion of nanoconfined water molecules.
MD simulations were used to compute the self-diffusion
coefficient D of water molecules confined under different con-
figurations. These are shown in Fig. 1 and include the case of
water molecules (blue dots) moving (a) around spherical hydro-
xylated nanoparticles (NPs) (grey dots); (b) within a hydrated
nanopore (grey dots); (c) around hydroxylated NPs (red dots)
adsorbed on the surface of a hydrated nanopore (grey dots); (d)
around and within single-walled carbon nanotubes (CNTs); (e,f)
around proteins. The NPs are made out of magnetite (Fe3O4)
crystals (red and cyan dots), with OH� functional groups on
their surface, or SiO2 crystals (grey dots), with silanol SiOH
functional groups on the surface. The nanopores are made out of
SiO2 only.

To investigate the influence of geometry and material proper-
ties, the self-diffusion coefficient D of the water molecules was
computed for 58 different cases. In particular, these cases were
different in terms of NP diameter, being 1.3, 2.0 or 5.2 nm;
nanopore diameter, with values 2.0, 4.1, 8.1 and 11.0 nm; number
of NPs adsorbed on the nanopore wall, varying from 0 to 66 NPs
per pore; CNT armchair chirality, namely, (5,5), (10,10), (20,20)
and (30,30); and type of proteins, including molecules with a
spherical (for example, ubiquitin) and elongated (for example,
Ca2þ -ATPase) shapes; of small (for example, 562 atoms of
B1-immunoglobulin-binding domain) and large (for example,
9667 atoms of Ca2þ -ATPase) sizes; and exhibiting a catalytic
(for example, glucokinase), hormonal (for example, leptin) and
transport (for example, myoglobin) function. As per the material
properties, two types of interactions were considered in the MD
simulations: bonded interactions and non-bonded interactions
between the water molecules and the solid surfaces, described via
van der Waals and Coulomb potentials. In the SiO2 structures
and spherical NPs, the bonded interactions are modelled by
means of harmonic terms. For the NPs, the strength e of the
Lennard–Jones potential was varied from 2.49 to 24.94 kJ mol� 1

and the partial electrostatic charges of atoms were set to either the
nominal value or zero for NPs and nanopores. For simulations
with CNTs, the non-bonded interactions between CNTs and
water molecules were modelled by the Lennard–Jones potential,
with neutral carbon atoms and sCC¼ 0.36 nm, eCC¼ 0.29
kJ mol� 1 (ref. 33). Finally for the proteins, all bonded and
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non-bonded interactions were modelled using the GROMOS96
43a2 force field34, which has been widely used for studying
similar applications35,36. Finally, various hydration levels were
considered providing an overall water density ranging from 715
to 941 kg m� 3. Note that for these density values, there is no
heterogenous wetting and consequently no anomalous behaviour
related to low water-filling regimes3,7.

All computed values of the self-diffusion coefficient D are
reported in the Supplementary Tables 1–11 and Supplementary
Note 1. In general, it is observed that the coefficient D decreases
compared with the bulk value, 2.60� 10� 9 m2 s� 1 at 300 K
(ref. 37), as the ratio between the total area of the solid–liquid
interface and the total volume occupied by the water (Vw)
increases. More specifically, for a SiO2 nanopore, D is reduced
from 2.50±0.09� 10� 9 m2 s� 1 to 0.82±0.22� 10� 9 m2 s� 1 as
the pore diameter decreases from 11.0 to 2.0 nm. Moreover, D is
inversely proportional to the NP concentration and diameter. For
a 5.2-nm SiO2 NP, D decreases from the almost unconfined value
to 2.12±0.04� 10� 9 m2 s� 1 following a 36% increase in NP
concentration. Indeed, the increase in NP concentration is
associated with a decrease in separation distance between
adjacent NPs and, consequently, a decrease in the volume
available to water molecules. Consistently, D reduces as the
concentration of Fe3O4 NP increases within a nanopore: D is
2.20±0.10� 10� 9 m2 s� 1 in an 8.1-nm SiO2 nanopore; how-
ever, if 2 Fe3O4 NPs, of 2.0 nm in diameter, are adsorbed on the
nanopore surface, D decreases to 2.07±0.14� 10� 9 m2 s� 1 and
it drops to 0.44±0.05� 10� 9 m2 s� 1 (B80% decrease), if 16
Fe3O4 NPs, of 2.0 nm in diameter, are added in the nanopore. In
addition, for 16 Fe3O4 NPs adsorbed on the wall of an 8.1-nm
nanopore, D is 1.46±0.09� 10� 9 m2 s� 1 for 1.3 nm NPs and
becomes 0.44±0.05� 10� 9 m2 s� 1 (B70% decrease) for 2.0 nm
NPs. A similar trend is observed for the CNTs and proteins by
reducing the size of the water box. More specifically, around the

(5,5) chirality CNT with a length of 5 nm, the water diffusivity
D decreases from the bulk value (box of 316 nm3) to
1.22±0.12� 10� 9 m2 s� 1 (box of 21 nm3). Similarly, around
the B1-immunoglobulin-binding domain, the diffusivity D
decreases from 2.41±0.04� 10� 9 m2 s� 1 (box of 348 nm3) to
0.87±0.10� 10� 9 m2 s� 1 (box of 23 nm3). As expected, the
above data qualitatively demonstrate that the self-diffusion
coefficient D of water is strongly correlated to the ratio between
the interface surface and the total water volume: the larger this
ratio the smaller the water mobility. However, the possible
contribution of other parameters should also be assessed.

To this end, sensitivity analyses were performed to elucidate
the effect of the Lennard–Jones potential strength e and Coulomb
interactions on D. Larger values of the parameter e are associated
with lower mobility of the water molecules. As an example, let us
consider the case of eight Fe3O4 NPs (2.0 nm diameter) adsorbed
on the walls of an 8.1-nm diameter SiO2 nanopore. A one order
of magnitude decrease of e of Fe3O4 atoms only carries a 10%
increase of D: for e¼ 24.94 kJ mol� 1 D is equal to 1.33±0.13�
10� 9 m2 s� 1, whereas D increases to 1.47±0.11� 10� 9 m2 s� 1

for e¼ 2.49 kJ mol� 1. Moreover, D increases as the surface
electrostatic charges decrease. For neutral Fe3O4 NPs, D grows to
1.64±0.04� 10� 9 m2 s� 1 and, if both the NPs and nanopore
wall are electrically neutral, D takes the value of 1.69±0.20�
10� 9 m2 s� 1 (B30% increase as compared with the example
above). Although the water molecule confinement is affected by
the strength of the interaction potentials (van der Waals and
Coulomb), geometrical parameters show a greater influence on the
coefficient D. The reason is that all considered surfaces have effective
wall potentials that are strong enough to induce a significant
reduction of the water mobility in a region close to the wall. On the
other hand, as clarified below, the volume of the low mobility region
only slightly depends on the wall potential strength, namely, the
minimum of the potential well generated by the wall.

Figure 1 | Selected configurations. (a) SiO2 particle in water, diameter f¼ 5.2 nm (blue dots: water molecules; grey dots: SiO2 atoms); (b) SiO2

nanopore filled by water, diameter F¼8.1 nm; (c) sixteen Fe3O4 NPs within a SiO2 nanopore filled by water, f¼ 2.0 nm and F¼8.1 nm (red and cyan

dots: Fe3O4 atoms); (d) single-walled CNT with chirality (5,5); (e) green fluorescence protein; (f) leptin protein (the standard ribbon visualization of

secondary structures has been used for proteins). In d–f water molecules have been removed for clarity. Almost 60 different cases have been analysed

by varying the size and surface properties of the NPs, nanopores and nanotubes as well as the type of protein.
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Finally, the self-diffusion coefficient D did not change
significantly with the level of hydration in the considered range,
in accordance with previous studies7. Considering again the
representative case of eight Fe3O4 NPs, of 2.0 nm in diameter,
adsorbed on the wall of an 8.1-nm SiO2 nanopore, D ranges
from 1.30±0.11� 10� 9 to 1.40±0.07� 10� 9 m2 s� 1 (o10%
variation) as the water density increases from 700 to 930 kg m� 3.

Characteristic length of confinement. In the bulk fluid, the water
molecules fluctuate with a kinetic energy proportional to kBT,
where kB is the Boltzmann constant (1.38� 10� 23 J K� 1) and
T is the temperature. As opposed to molecules in the bulk, those
in a close proximity of solid surfaces are subjected to additional
van der Waals (Uvdw) and Coulomb (Uc) interactions interfering
with their state of agitation. This induces a layering of water
molecules with reduced mobility near the solid surface (see
Supplementary Figs 1–3 and Supplementary Discussion), as
already pointed out in other works38,39. A characteristic length
d can be introduced to quantify the thickness of such confined
water layer.

Referring to the popular notion of solvent accessible surfaces
(SAS)40–42, the quantities Stot and Sloc can be introduced as the
total and specific (per atom) SAS areas, respectively. For an
arbitrary atom i of the solid structure, a number Nn of nearest
neighbours (including the atom i itself) can be identified within a

fixed cutoff radius (Fig. 2a,b). The corresponding effective
potential energy Ueff on the water molecules, due to both van
der Waals (Uvdw) and Coulomb (Uc) interactions, can be
computed as:

Ueff nð Þ ¼ Uvdw nð Þþ hUci nð Þ; ð1Þ
along the n direction, orthogonally to the SAS and passing
through the centre of the atom i (Fig. 2b). For the 12-6
Lennard–Jones potential, it follows that Uvdw nð Þ¼

PNn
k¼1 4ek

sk
rk

� �12
� sk

rk

� �6
� �

, with ek, sk and rk denoting the depth of the

potential well, the distance at with such potential becomes zero
and the Euclidean distance between the generic line point with
coordinate n and the centre of kth nearest neighbour, respectively.
For the Coulomb interactions, the average potential energy at a
fixed temperature T between the Nn atoms and the water
dipoles is hUci nð Þ ¼ � EmwGðEmw=kBTÞ, where E, mw, kB and G
denote the electrical field strength, water dipole moment
(7.50� 10� 30 C m for the SPC/E model), the Boltzmann
constant and the Langevin function G(x)¼ coth(x)� 1/x. The
strength of the electrical field E can be readily computed following
the law of electrostatics (see Methods). Knowing the effective
potential Ueff(n) for the atom i, a corresponding characteristic
length di can be estimated within which the water molecules have
reduced mobility. This length di is given by di¼ ni,2� ni,1 where

Watera

b e

c d
Ueff = Uvdw + 〈Uc 〉
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Figure 2 | The characteristic length of confinement d. (a) A local characteristic length di can be defined at any atom i (with non-vanishing SAS).

(b) The contribution to the total potential energy of neighbours along a direction orthogonal to the SAS (line l with local coordinate n) is computed.

(c) The thermal energy level provides a criterion to (locally) define the characteristic length di, which typically varies along the whole SAS.

(d) A characteristic length of confinement d for the whole structure can be defined by a weighted average of all di. (e) The length of confinement is

reported for a SiO2 nanopore (d1E0.33 nm) and for a Fe3O4 NP (d2E0.50 nm). For SiO2, only the first water layer (with distance rw,1 from the pore axis)

is located within the volume of influence. For Fe3O4, both the first and the second water layers (with distances rw,1 and rw,2 from the particle centre,

respectively) are found within the volume of influence (more cases are reported in the Supplementary Figs 1 and 2).
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ni,2 and ni,1 are the two zeros of the equation Ueff(n)þ kBT/4¼ 0
(Fig. 2c). Therefore, based on the definition of di, all the water
molecules located within such a distance are significantly affected
by the van der Walls and Coulomb interactions, whereas all the
water molecules beyond the characteristic length di can escape the
potential well generated by the solid wall. Here kBT/4 is half the
kinetic energy per independent degree of freedom according to
the equipartition of energy (see Methods). By proper averaging
over the surface, the mean characteristic length d of the overall
solid surface (Fig. 2d) can be derived as

d¼

PN
i¼1

diSloc;i

Stot
; ð2Þ

with Sloc,i and N being the specific (per atom) SAS for the atom
i and the total number of atoms, respectively. Note that the
above formulation is general and applies to hydrophilic and
hydrophobic surfaces, regardless of their electrostatic surface
charge. Also, the characteristic length d can be conveniently
computed based on the geometry of the problem, Lennard–Jones
force field parameters and the partial electrostatic charges using
the script provided in the Supplementary Software 1.

In Fig. 2e, the water density profile within (a) a SiO2 nanopore
and (b) around a single Fe3O4 NP is shown, where peaks denote
the typical water layers nearby a solid wall at the nanoscale2,39.
It is noteworthy that despite the great difference in the potential
strength between SiO2 and Fe3O4 (min(Ueff,2)/min(Ueff,1)E2.7),
the corresponding difference in terms of characteristic lengths is
much more moderate (d2/d1E1.5). From the density profiles,
Fe3O4 clearly induces a stronger perturbation in the nearby water
molecules’ distribution. However, except for a first thin water
layer strongly adsorbed to the NP surface (and accounted by
d24d1), the amplitude of these perturbations rapidly decays
further away and becomes comparable in the remaining confined
volume for both cases. Similarly, although there is a significant
difference in the potential minimum between green fluorescence
protein and (5,5) chirality CNT (min(Ueff,2)/min(Ueff,1)E1.5), the
difference between the two characteristic lengths is negligible. The
above observations suggest that geometrical parameters could
more significantly affect D as compared to energetic parameters.

Scaling law. Since water mobility is impaired mostly in a thin
layer next to the liquid–solid interface with thickness d, it is
reasonable to assume that the observed variation in the self-
diffusion coefficient D is mainly associated with the altered
mobility of the water molecules within such a layer and the
corresponding volume (volume of influence— Fig. 2d). In addi-
tion, it has been already observed that the self-diffusion coeffi-
cient D reduces as the ratio between the total interfacial area and
the total volume occupied by water increases. On the basis of such
an evidence, a scaling parameter y can be introduced as the ratio
between the total water volume of influence (Vin) and the total
volume accessible to the water molecules (Vw); thus,

y¼Vin

Vw
�

P
p

S pð Þ
tot d

pð Þ

Vw
: ð3Þ

This parameter y varies from 0 (bulk water case) to 1 (totally
confined water). The volume of influence (Vin) is the volume
of water that feels the van der Walls and Coulomb interactions
and is therefore influenced by the presence of solid walls. This
volume is readily given by VinE

P
pStot

(p)d(p), where Stot
(p) and d(p)

represent the total SAS and characteristic length of the pth
particle, respectively. As detailed in the Methods, possible overlap
of the volumes of influence due to several particles/pores (for

example, several NPs loaded within a SiO2 nanopore) can be
easily taken into account by the continuum percolation theory
(CPT), and a more accurate estimate of Vin may include the effect
of particle curvature.

Assuming y as the sole, independent variable for D, all
computed values relax within a narrow band around a linear
curve (Fig. 3) that can be readily described by the relationship

D yð Þ¼DB 1þ Dc

DB
� 1

� �
y

� �
; ð4Þ

where DB is the self-diffusion coefficient of bulk water, while DC

the self-diffusion coefficient of totally confined water. Remark-
ably, Fig. 3 presents data from 58 different cases analysed in this
work as well as data available in the published literature. Here
despite the variety of the considered configurations, particles and
sources of the results, a simple law is found to be sufficiently
accurate to describe the phenomenon under study, thus
confirming that y is indeed an important controlling parameter
under very diverse conditions and geometrical configurations. To
have a more explicit formulation of equation (4), details about the
evaluation of DC are provided in the section below.

Thermodynamic insights. Nanoconfined water shares some
features with supercooled ordinary water in that it may not
crystallize on cooling below the melting temperature of
TME273.15 K (refs 1,43). Within the thin d layer of water
molecules next to a solid surface, the thermodynamic state
depends on the characteristic confinement length scale44. In
particular, the specific heat capacity cp of nanoconfined water has
been experimentally measured in narrow SiO2 nanopores and its
variation with the temperature T is plotted in Fig. 4a for a pore
diameter of 1.7 nm (ref. 45). Using these experimental data, the
energy variation associated with the transition from bulk

3
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Eq.(4) for DC = 0 m2 s–1

Eq.(4) for DC = 0.39 × 10–9 m2 s –1
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0

Figure 3 | Scaling behaviour of the water diffusion coefficient D. The

self-diffusion coefficient of water D has been calculated for over 60

different cases including spherical NPs in water, water within nanopores

with and without spherical NPs, proteins and CNTs in water. Fifty-eight

cases are the results of MD simulations performed in this work, under

isothermal conditions. Results from the literature are also provided, for

which the scaling variable y was computed as from the Supplementary

Discussion. The solid and the dashed lines represent equation (4) for

DC¼0 and DC¼0.39� 10�9 m2 s� 1, respectively. Equation (4) accurately

recovers simulation and literature results with high coefficient of

determination (R240.90). The uncertainties on the value of D (vertical

bars) refer to the fitting of the mean square displacement, whereas the

uncertainties on the value of y (horizontal bars) refer to the estimate of

the total volume accessible to water molecules Vw (see Methods).
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to confined water can be readily computed as
Dh¼�

R T0

T cpdT¼f Tð Þ, with f(T0)¼ 0 at the bulk water
temperature T0¼ 300 K. From this, the inverse function
T¼f � 1 Dhð Þ can be derived as plotted in Fig. 4b. The energy
variation associated with water nanoconfinement can also be
written as Dh¼hC� hB � 0, where hB and hC are the energy of
bulk and confined water, respectively. Since the confined region is
typically limited to 1–2 layers of water molecules (for all the
considered structures, do0.6 nm), it can be assumed that hE� e,
which is the minimum of the effective potential (Ueff) generated
by the solid surface. The function f� 1 can be used to compute the
supercooled temperature of nanoconfined water corresponding to
the energy variation � e, that is, to say T¼ f� 1(� e). In the work
by Chen et al.1, the diffusion coefficient of water molecules under
strong nanoconfinement (that is, within SiO2 pores with diameter
of 1.4–1.8 nm) is reported as a function of the temperature. From
the latter experimental data, the diffusion coefficient of totally
confined water DC can be readily expressed in the form
DC¼DB g(T) (Fig. 4c). Therefore, by combining the two sets of
experimental data and knowing the value of e, the diffusion
coefficient of totally confined water DC can be computed as
DC/DB¼ g0(T)¼ g0(f� 1(� e))¼ g(� e). The ratio DC/DB is
plotted in Fig. 4d for the different 58 cases analysed here. For
the iron oxide NPs and CNTs, which are characterized by a fairly
strong effective potential (large e), DCE0. As the strength of the
effective potential reduces, the value for the diffusion coefficient
of totally confined water increases. However, even for the SiO2

NPs and nanopores, and for the proteins that are characterized by
lower e, in our computations DC is at most 15% of DB. We stress
that the function g(Dh) is a property of water, and here we have
chosen to estimate it on the basis of measurements in SiO2

nanopores only, because such experiments are among the very
few that are well documented in literature.

In general, the volume of water can be partitioned into bulk (B)
and confined (C). Invoking the mixing rule, the average
diffusivity D of the system can be presented as

D¼ 1� NC

NBþNC

� 	
DBþ

NC

NBþNC
DC; ð5Þ

where NC and NB are the number of water molecules in the
confined and bulk regions, respectively. Considering that NC¼
rCVC/mw, with rC being the water (mean) density in the
adsorbed region and mw being the mass of one water molecule, it
follows:

D y; eð Þ¼DB 1þ DC

DB
� 1

� �
rCy

rCyþrB 1� yð Þ

� �
: ð6Þ

This implies that the average diffusivity D depends in general
on a geometrical parameter (y) and an energetic parameter (e).
However, the following approximation (rCy)/(rCyþ rB

(1� y))Ey can be safely made for the full range of y (see
Supplementary Fig. 4 and Supplementary Discussion). Therefore,
equation (6) degenerates into equation (4) demonstrating that the
diffusion of nanoconfined water can be interpreted invoking the
thermodynamics of supercooled water. Moreover, based on the
above discussion on DC (see Fig. 4d), for a large variety of
nanoconfined systems, the simplifying assumption DC/DBE0 can
be safely made. In such cases, the much simpler law
D(y,e)ED(y)¼DB(1� y) is readily derived showing the direct
linear dependence of the water diffusion coefficient on the sole
scaling parameter y. Note that no empirical factor is needed to
derive D(y), with the latter law matching the values of the 58 MD
simulations as well as 13 further configurations from the
literature with a quite good coefficient of determination
(R2¼ 0.93, solid line in Fig. 3). The dashed line in Fig. 3
represents, instead, equation (4) with DC/DB¼ 0.15, correspond-
ing to the largest value of DC only observed in a few simulated
cases (Fig. 4d).

Discussion
It has been shown that the relaxometric properties of contrast
agents for MR imaging can be enhanced by proper modulation
of the water molecule dynamics46. Recently, Decuzzi and
collaborators23,24 have shown that the geometrical confinement
of Gd3þ -based MRI contrast agents and SPIOs within
mesoporous structures can increase by several folds the
longitudinal and transversal relaxivities, respectively, of the
original agents. Here it is shown that the scaling law D(y) can
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be effectively used to predict the enhancement in transversal
relaxivity exhibited by SPIOs confined in mesoporous silicon
structures. Referring to Fig. 5a, discoidal mesoporous silicon
particles (SiMPs) of 1,000 nm in diameter and with an average
pore size of 40 nm are synthesized by a combination of optical
lithographic techniques and electrochemical etching26. These
particles are exposed to a concentrated solution of SPIOs, which
are loaded within the pores by capillary suction and form clusters
of controlled size. As schematically shown in Fig. 5b and
documented by the transmission electron microscopy (TEM) and
energy-dispersive X-ray spectroscopy (EDX) images of Fig. 5c, the
SPIOs are distributed more or less uniformly within the pores and
across the porous matrix of the silicon particles. The black and
red spots, respectively, in the TEM and EDX images identify the
SPIO clusters within the mesoporous silicon matrix. In these
experiments, commercially available SPIOs (Sigma-Aldrich) are
considered, coated with a thin layer of polyethylene glycol to
facilitate their dispersion in water, and presenting an average core
diameter of 5.13±1.07 nm, as derived by TEM analysis. In bulk
water the transversal relaxivity of the unconfined SPIOs has been
measured to be (r2¼ 107±24 mM� 1 s� 1), whereas on geometri-
cal confinement within the SiMPs, the relaxivity rises up to
r2¼ 270±73 mM� 1 s� 1.

From the theory on the MR relaxation of iron oxide NPs, the
transversal relaxivity r2 of the SPIOs dispersed in an aqueous
solution can be estimated as29,32,47

r2¼
1

T2
� 1

T0;w

� �
MFe

with
1

T2
/ u

D
; ð7Þ

where T2 and T0,w are the transversal relaxation times for the
solution with contrast agents and bulk water (¼ 2,800 ms),
respectively; MFe is the iron concentration (mM) in the solution;
u is the volume fraction of the SPIOs; and D is the diffusion of the
water molecules surrounding the SPIOs. Details on equation (7)
are provided in the Supplementary Discussion.

For a fixed iron concentration MFe in the solution, the
enhancement in transversal relaxivity is directly related to the
ratio En¼ (u/D)/(uB/DB), where the quantity u/D has to be
estimated for confined SPIOs and uB/DB for the free SPIOs
dispersed in bulk water. Since the distribution of the SPIOs within
the SiMP is not uniform, the diffusion coefficient D and the local
SPIO volume fraction u are expected to vary within the porous

matrix. The local enhancement in relaxivity En is plotted in
Fig. 5d. Areas are shown with mild and high enhancement, up to
20-fold, corresponding to different levels of SPIO loading and
clustering, and therefore different levels of water confinement. By
integrating over the whole silicon particle, an average relaxivity
enhancement En can be computed as being B2.7, which is in
excellent agreement with the experimental value of B2.52 (see
Methods for details). Note that the proposed law can be used
in several other fields to analyse different cases of water
confinement.

In summary, it has been shown that the self-diffusion
coefficient of nanoconfined water can be described by a unique
dimensionless parameter y, representing the ratio between the
confined and total water volumes. The coefficient D scales linearly
with y and can be readily estimated, knowing the bulk DB and
totally confined DC diffusion of water. This has been validated on
the basis of almost 60 different cases and 5 different geometrical
configurations, including the analysis of the water molecule
dynamics within nanopores and CNTs, around NPs and proteins.
The coefficient of diffusion for confined DC water is quantified on
the basis of the thermodynamics of supercooled water. As an
example, the scaling relation has been shown to accurately predict
the enhancement in magnetic resonance relaxivity of iron oxide
NPs confined into mesoporous silicon structures.

The proposed approach may be used to interpret experimental
data collected in different scientific disciplines on the dynamics of
water molecules under confined conditions and to rationally
design nanostructures for modulating the diffusion of water. This
is of relevance in nanomedicine, nanotechnology as well as in
more traditional engineering fields such as heat transport, fluid
dynamics and energy storage.

Methods
MD simulations. Atomic coordinates of Fe3O4 NPs are generated from Fe3O4

crystals48, whereas SiO2 crystals are considered in the case of nanopores and SiO2

NPs (Supplementary Figs 5–8)49. Crystal structures of proteins are taken from the
Protein Data Bank (http://www.rcsb.org; Supplementary Figs 9 and 10). CNTs are
generated by means of the Visual Molecular Dynamics software (Supplementary
Fig. 11)50. The SPC/E model51 is used for water molecules, which is known to
accurately predict some of the properties of water relevant for this study at room
temperature37. However, it is also worth noticing that the SPC/E model does not
accurately predict some other properties of water. For instance, shear viscosity or
thermal conductivity were found to be off by more than 50% at room
temperature52. Bonded interactions of SiO2 and Fe3O4 are treated by means of
harmonic stretching and angle potentials53. Van der Waals interactions are

40 nm

Z

X 1,000 nm

Si Fe
TEM

Y

X

EDX EDX

40
0 

nm

20
15

10

E
n 

(–
)

5
0

1,000

500

0 0
200

400
600

800
1,000

X (nm)
Y (nm)
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modelled by a 12-6 Lennard–Jones potential; partial charge interactions between
solid surfaces and water are modelled by a Coulomb potential (Supplementary
Tables 12–14)51,54–56. Non-zero partial charges are only assigned to atoms on the
surface of nanopore or NP, which belong to silanol and FeOH groups, whereas all
other atoms (bulk of SiO2 and Fe3O4) are considered as neutral.

Simulations are carried out with a leap-frog algorithm (time step: Dt¼ 0.5 fs),
and periodic boundary conditions are applied along the three Cartesian
coordinates. After energy minimization of NP, nanopore or nanotube setups, the
two subsystems (solid crystals and water) are initialized at 300 K (Maxwellian
distribution of velocities) and fully coupled to a Nosé–Hoover thermostat57,58

(at 300 K and time constant t¼ 0.2 ps) for 50 ps, until the energies of the system
relax to a steady state. During the latter preliminary calculation, one thermostat for
each subsystem is adopted. Afterwards, Nosé–Hoover thermostats (at 300 K) are
maintained attached to solid crystals only, whereas the simulation is continued up
to 2 ns. In the case of proteins, the MD protocol is slightly changed to improve
convergence. Energy minimization for proteins is performed before and after
solvation and ions are added when needed for achieving the neutrality of the
system, which is then equilibrated in two steps: 100 ps in canonical ensemble (fixed
number N of particles, volume V and temperature T - NVT) at 300 K (initialization
with Maxwellian distribution of velocities, Berendsen thermostats59 separately
attached to proteins and water, t¼ 0.1 ps); 100 ps in NPT ensemble (fixed number
N of particles, pressure P and temperature T) at 300 K and 1 bar (Berendsen
thermostats separately attached to proteins and water, t¼ 0.1 ps; Parrinello–
Rahman pressostat60 applied to the whole system, t¼ 2 ps). During the
equilibration, all bonds in the proteins are kept rigid using the LINCS (Linear
Constraint Solver) algorithm61. Finally, a Nosé–Hoover thermostat (300 K,
t¼ 0.2 ps) is attached to protein’s atoms and the simulation is continued for 1 ns.

In all simulated cases, steady state is reached when D, which is evaluated every
200 ps, tends to an asymptotic value (Supplementary Figs 12–28 and
Supplementary Note 2). This is generally achieved after about 600 ps, for all
configurations. Note that the root mean square deviation of the proteins in the
water box with respect to the crystallographic structures is on average found to be
below 0.3 nm (Supplementary Fig. 29 and Supplementary Note 2). The self-
diffusion coefficient D of the water molecules is determined following the classical
relationship of Einstein and computing the mean square displacement as5,62

MSD ¼ lim
t!1

~riðtÞ�~rið0Þk k2
 �
i2water¼6Dt, where the position vector~ri refers to the

centre of mass of the water molecule i at the generic time t and 0 refers to the initial
configuration of the system. Alternative approaches for computing the water
diffusivity could be considered as well (for example, those based on the
first-passage concept)63,64. Further details on the implementation of the MD
simulations and calculation of the self-diffusion coefficient D are provided in the
Supplementary Methods.

The MD simulations are performed with the software package GROMACS65,66.
Rendering is performed with UCSF Chimera67.

Derivation of the characteristic length d. When defining the van der Waals
potential Uvdw(n) in equation (1), the parameters ek and sk already incorporate a
combination rule for the Lennard–Jones parameters between the atom i and
oxygen atoms of water (for example, the Lorentz–Berthelot rule). Moreover, in
the average potential hUciðnÞ¼� EmwGðEmw=kBTÞ, the effective strength of the
electrical field E¼ 8E(n)8 may be expressed by the following explicit form:

E nð Þ ¼ 1
4pe0er

XNn

k¼1

qkr
1

rk nð Þ

� 	�����
�����; ð8Þ

rk nð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x nð Þ� xk

2 þ ½y nð Þ� yk
2 þ ½z nð Þ� zk�2;
��q

ð9Þ

with qk being the electric charge of the kth neighbour, while (x,y,z) and (xk,yk,zk)
represent the Cartesian coordinates of the generic point on l (corresponding to the
local coordinate n) and the Cartesian coordinates of neighbour k, respectively. In
our approach, the relative permittivity er is an input parameter to be provided to
the Matlab(r) routine for the computation of d (see below, Supplementary Fig. 30,
Supplementary Methods and Supplementary Software 1). In particular, in this
work, er was included as a function of the distance from the particle er(n) following
the suggestion in ref. 68.

The expression of hUciðnÞ is a classical result of electrostatics and can be
justified as follows. Let E be the electric field acting on a dipole l. The
instantaneous energy can be expressed as Uc jð Þ¼� l � E¼� mE cosj, with E and
m being the field and dipole strength, respectively, while j is the angle between the
direction of the dipole and the field. The minimum and maximum values of energy
are attained for j¼ 0 and p, respectively. However, in the presence of thermal
agitation, the direction of l (hence j) is continuously changing in time. For
classical systems, a number of independent dipoles are distributed according to
their energy level Uc:Uc,minoUcoUc,max. In particular, at thermodynamic
equilibrium, the Boltzmann distribution predicts that the number N(Uc) of dipoles
with energy Uc is: N Ucð Þ¼C expð� Uc

kBTÞ, with C being a constant to be determined.
Note that, in three dimensions, all dipoles lying on a cone with angle 2j around the
electrical field direction have the same energy. Moreover, at every j, the total
number of such dipoles is N(Uc(j))dO, with O being the incremental solid angle.

The above dipoles at j give the component sum dm in the field direction:
dm ¼ NdOm cos j. Hence, according to the Boltzmann distribution, the average
dipole moment takes the more explicit form:

mh i¼m

Rp
0

expðmE cosj
kBT Þsinj cosj dj

Rp
0

expðmE cosj
kBT Þsinj dj

; ð10Þ

On substituting b¼mE/kBT and B¼ cosj, the above integral becomes
hmi¼mGðbÞ.

On construction of the potential in equation (1) at an arbitrary atom i, a local
characteristic length di can be defined as di¼ ni,2� ni,1, where ni,2 and ni,1 are the
two zeros of the equation (see Fig. 2c): Ueff(n)þ akBT¼ 0, where we expect aE1/4.
In fact, provided that kBT/2 is the kinetic energy attributed the each degree of
freedom of the water molecules, for planar surfaces a¼ 1/4 because molecule are
allowed to escape the potential well only along half of the direction orthogonal to
the surface. The previous equation implies that water molecules located beyond the
characteristic length di are in the position of escaping the potential well generated
by the Nn atoms in the solid wall owing to the kinetic energy kBT. Obviously, when
the horizontal line Uþ akBT¼ 0 does not intersect the function in equation (1),
di¼ 0.

In general, the quantity di varies at each atom i (see Fig. 2a). Moreover,
(meaningless) non-zero values for di can be found for bulk atoms. Thus, for a given
solid structure, it is convenient to define a mean characteristic length as in
equation (2) (see Fig. 2d). Note that both Stot and Sloc,i are readily computed by
GROMACS, once the geometry of the system is known (for example, in the form of
a pdb file). It is also worth emphasizing that d is a characteristic length of the whole
system of interest and can be straightforwardly computed based on the geometry,
Lennard–Jones force field parameters and partial charges.

The script for computing d is based on Matlab(r) and it is provided as
Supplementary Software 1 of this work.

Derivation of the scaling parameter h. Finding a proper scaling parameter y
(or equivalently d) is not trivial. A few unsuccessful attempts to find a general
scaling parameter for water self-diffusion coefficient are reported in Supplementary
Discussion and Supplementary Figs 31 and 32.

In equation (3) the particle curvature is neglected; thus, this is accurate in the
limit d pð Þoo d pð Þ, with d(p) being a representative radius of curvature of the pth
particle. If the latter approximation is not properly fulfilled, a more accurate
estimate of the numerator at the right-hand side of equation (3) can be easily
adopted (see also a few examples in the Supplementary Discussion).

Clearly, in cases of strong confinement (and high values of y) with the presence
of several particles (for example, the reported studies where a number of spherical
NPs are loaded within cylindrical nanopores), a partial overlap of the volumes of
influence becomes more and more probable. However, we notice that volumes of
influence due to different particles are not additive. As a result, the quantity y
computed by equation (3) is only apparent, with the effective fraction of the
volume of influence being smaller than y. The above issue is encountered in the
framework of CPT. To this respect, a classical result of CPT, under the assumption
of randomly placed volumes suggests that, to properly recover the effective fraction,
the apparent volume fraction should be corrected as: 1� exp (� y)69,70. Hence, we
suggest that the above correction applies in the presence of overlap of the volumes
of influence (for example, several particles within the computational box).

The volume Vw. For fully hydrated simple geometries, Vw can be computed by
considering the nominal size of a particle/pore (see the discussion below about
relaxivity enhancement). However, in general, the volume Vw in equation (3) can
be defined as:

Vw¼Nsol=rn; ð11Þ
where Nsol and rn are the number of water molecules within the computational
periodic box and the average water density, respectively. As a consequence, the
volume occupied by a solvated particle p is Vp¼Vbox�Vw, where Vbox is the
volume of the computational box. For complex configurations (for example, several
NPs surrounded by water or within nanopores), the volume Vw can be estimated as
Vw¼Vout �

PNp

p¼1 V ðpÞp , where Vp
(p) and Np are the volume of the pth particle and

the total number of particles, respectively, whereas Vout is the volume of the
surrounding space (that is, Vout¼Vbox for particles not loaded in nanopores, while
Vout¼Vpore for cases where particles are loaded within a pore whose volume,
computed by equation (11), is Vpore).

Clearly, the use of equation (11) relies on the computation of the number
density rn. Using available packages in standard MD software, an estimate of the
average value for rn can be easily computed after solvation of a dry geometry. In
our computations, we estimated the water volume in a few realizations of each
configuration of interest, several measures of rn were collected and used to
compute an average value and the corresponding s.d. The latter s.d. generates
uncertainties when computing the volume Vw, and consequently uncertainties of
the scaling parameter (horizontal error bars in Fig. 3). Alternative approaches
based, for instance, on Monte–Carlo integration can also be used to calculate Vw

accurately.
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Characterization of nanoconstructs and NPs. Details on the fabrication and
characterization of the discoidal SiMPs and the SPIOs are provided in the
Supplementary Methods and Supplementary Figs 33 and 34, together with the
protocols for the loading of SPIOs into SiMPs.

Relaxivity measurements. In vitro relaxation times were measured in a Bruker
Minispec (mq 60) bench-top relaxometer operating at 60 MHz and 37 �C. The
transverse (T2) relaxation times were measured using the Carr–Purcell–Meiboom–
Gill sequence.

Analysis of relaxivity enhancement. The function fEDX(X,Y) of the two spatial
coordinates X and Y is built from the EDX image for iron (Fig. 5c) and denotes the
position of the centre of a generic image pixel. Let NSPIO be the average number of
SPIOs within a single SiMP. Hence, a surface density function at a pixel scale for
the SPIOs can be written as

rareal¼
fEDXðX;YÞR

ASiMP

fEDXðX;YÞdXdY
NSPIO

Apix
; ð12Þ

where Apix and ASiMP are the surface area of a single pixel and the surface area of a
SiMP, respectively. The function rareal has been reported in the (left) bottom part of
Supplementary Fig. 35. SiMP pores that are loaded by SPIOs can be automatically
recognized by finding the local density map of the EDX non-zero elements (rpoint).
The density function in equation (12) depends on the image pixel size (that is, a
quantity that is not representative of the phenomenon under study), whereas a
more meaningful function should be based on the pore characteristic dimension
instead (representative of the confinement length). Hence, the following surface
density function at a pore scale for the SPIOs is introduced: rSPIO(X,Y)¼
Crpoint(X,Y), with C being a constant to be determined. To this end, owing to mass
conservation, it is imposed

Z
Ap

rSPIO X;Yð ÞdXdY¼
Z
Ap

rareal X;Yð ÞdXdY ; ð13Þ

hence,

C¼

R
Ap

rareal X;Yð ÞdXdY

R
Ap

rpoint X;Yð ÞdXdY
; ð14Þ

with Ap being the surface area of a representative SiMP pore (see also the (right)
bottom part of Supplementary Fig. 35). The total number of SPIOs within the
representative pore can be computed as Npore¼

R
Ap
rSPIO X;Yð ÞdXdY . Hence, the

water volume near the SPIOs (for the latter pore) Vw can be estimated as
Vw¼Ap hcfill �VSPIONpore, where h is the SiMP height, while 0r cfillr1 indicates
the fraction of the SiMP pore that has been effectively occupied by SPIOs. Clearly,
for homogeneously distributed SPIOs within the pore, cfill¼ 1. For the considered
representative pore, an estimate of the average scaling parameter �y can be obtained
as: �y¼1� expð� �y0Þwith

�y0¼Npore SSPIO dSPIO þp �D h cfill dSi

Vw
; ð15Þ

where �D is the average diameter of the pores. Finally, a map of the scaling para-
meter y¼ y(X,Y) is derived by the map rSPIO as y(X,Y)¼C0rSPIO(X,Y), where the
constant C0 is determined by imposing

1
Ap

Z
Ap

y X;Yð ÞdXdY¼�y; ð16Þ

hence

C0¼
�yApR

Ap

rSPIO X;Yð ÞdXdY
: ð17Þ

On the estimate of the scaling parameter map y¼ y(X,Y), the computation of a
corresponding map for the diffusion coefficient D¼D(X,Y) is straightforwardly
achieved by adopting the law suggested in this work.

The above procedure is slightly sensitive to the choice of the representative
pore. However, from our computations no significant changes in the final result
(map of y¼ y(X,Y)) was experienced by making difference choices. In
Supplementary Fig. 36, we report both the map of the scaling parameter y¼ y(X,Y)
and the corresponding D¼D(X,Y) at different pore filling.

Let us consider two contrast agents with the same iron molarity MFe. Let the
first one be based on SPIOs homogenously dispersed in bulk water, while the
second one adopts the same SPIOs (nanoconfined) within SiMPs. Given the
definition of r2 (Supplementary equation (9)), we can define a relaxivity

enhancement as follows:

En¼ r2ð Þ2
r2ð Þ1
¼

1
T2

� �
2
� 1

T0;w

MFe

MFe

1
T2

� �
1
� 1

T0;w

¼
1

T2

� �
2
� 1

T0;w

1
T2

� �
1
� 1

T0;w

ð18Þ

Since 1=T2 � 1=T0;w;

En �
1

T2

� �
2

1
T2

� �
1

ð19Þ

Finally, using the outer sphere theory (see Supplementary Discussion), the
enhancement can be recast as

En �
1

T2

� �
2

1
T2

� �
1

¼
4
9 u2

r2

D2
Dorð Þ2

4
9 u1

r2

D1
Dorð Þ2

¼ u2

D2

D1

u1
: ð20Þ

Consistently with the above procedure, we aim at estimating the map En(X,Y):

En � D1

u1

u2 X;Yð Þ
D2 X;Yð Þ ; ð21Þ

where D1 and u1 are the self-diffusion coefficient of bulk water and the average
volume fraction of SPIOs, respectively. Let us assume that u2 X;Yð Þ¼C00rSPIOðX;YÞ
with 1

Ap

R
Ap

u2 X;Yð ÞdXdY¼�u; hence,

C00¼ �uApR
Ap

rSPIO X;Yð ÞdXdY
; ð22Þ

and

�u¼NporeVSPIO

A h cfill
: ð23Þ

In Fig. 5d we report the function En(X,Y) corresponding to the SiMP particle of
Fig. 5c.

Finally, the average enhancement due to the entire SiMP can be estimated as

En¼
Z

ASiMP

En X;Yð ÞfSPIO X;Yð ÞdXdY; ð24Þ

where fSPIO(X,Y) is the following distribution function

fSPIOðX;YÞ¼
rSPIOðX;YÞR

ASiMP

rSPIOðX;YÞdXdY
: ð25Þ

For the case in Fig. 5d, we find En � 2:7. In Fig. 5c, we consider SiMPs filled by
5 nm SPIOs, the transverse relaxivity of which was experimentally assessed as
(r2)2¼ 270±73 mM� 1 s� 1. Moreover, 5 nm SPIOs (Sigma-Aldrich) show trans-
verse relaxivity in bulk conditions of water (r2)1¼ 107±24 mM� 1 s� 1. As a result,
the experimentally measured enhancement for the agent in Fig. 5c (compared with
SPIOs in bulk water) is En � 2:52, which is in excellent agreement with the above
prediction, fully based on the EDX signal (iron) and our model.
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anisotropy of water in sheep Achilles tendon. NMR Biomed. 18, 577–586
(2005).

19. Paran, Y., Bendel, P., Margalit, R. & Degani, H. Water diffusion in the different
microenvironments of breast cancer. NMR Biomed. 17, 170–180 (2004).

20. Smouha, E. & Neeman, M. Compartmentation of intracellular water in
multicellular tumor spheroids: diffusion and relaxation NMR. Magn. Reson.
Med. 46, 68–77 (2001).

21. Barron, L. D., Hecht, L. & Wilson, G. The lubricant of life: a proposal that
solvent water promotes extremely fast conformational fluctuations in mobile
heteropolypeptide structure. Biochemistry 36, 13143–13147 (1997).

22. Zhou, H.-X., Rivas, G. & Minton, A. P. Macromolecular crowding and
confinement: biochemical, biophysical, and potential physiological
consequences. Annu. Rev. Biophys. 37, 375 (2008).

23. Ananta, J. S. et al. Geometrical confinement of gadolinium-based contrast
agents in nanoporous particles enhances T1 contrast. Nat. Nanotech. 5,
815–821 (2010).

24. Sethi, R. et al. Enhanced MRI relaxivity of Gd3þ -based contrast agents
geometrically confined within porous nanoconstructs. Contrast Media Mol.
Imaging 7, 501–508 (2012).

25. Liu, Z. et al. Drug delivery with carbon nanotubes for in vivo cancer treatment.
Cancer Res. 68, 6652–6660 (2008).

26. Tasciotti, E. et al. Mesoporous silicon particles as a multistage delivery system
for imaging and therapeutic applications. Nat. Nanotech. 3, 151–157 (2008).

27. Key, J. et al. Engineering discoidal polymeric nanoconstructs with enhanced
magneto-optical properties for tumor imaging. Biomaterials 34, 5402–5410
(2013).

28. Wu, Y., Joseph, S. & Aluru, N. Effect of cross-linking on the diffusion of water,
ions, and small molecules in hydrogels. J. Phys. Chem. B 113, 3512–3520
(2009).

29. Brooks, R. A., Moiny, F. & Gillis, P. On T2-shortening by weakly magnetized
particles: the chemical exchange model. Magn. Reson. Med. 45, 1014–1020
(2001).

30. Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI
contrast agents. Chem. Soc. Rev. 35, 512–523 (2006).

31. Lauffer, R. B. Paramagnetic metal complexes as water proton relaxation agents
for NMR imaging: theory and design. Chem. Rev. 87, 901–927 (1987).

32. Tong, S., Hou, S., Zheng, Z., Zhou, J. & Bao, G. Coating optimization of
superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett.
10, 4607–4613 (2010).

33. Chiavazzo, E. & Asinari, P. Enhancing surface heat transfer by carbon nanofins:
towards an alternative to nanofluids? Nanoscale Res. Lett. 6, 1–13 (2011).

34. Schuler, L. D., Daura, X. & van Gunsteren, W. F. An improved GROMOS96
force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem.
22, 1205–1218 (2001).

35. Lervik, A., Bresme, F., Kjelstrup, S., Bedeaux, D. & Miguel Rubi, J. Heat transfer
in protein-water interfaces. Phys. Chem. Chem. Phys. 12, 1610–1617 (2010).

36. Mu, Y., Kosov, D. S. & Stock, G. Conformational dynamics of trialanine in
water. 2. Comparison of AMBER, CHARMM, GROMOS, and OPLS Force
Fields to NMR and infrared experiments. J. Phys. Chem. B 107, 5064–5073
(2003).

37. van der Spoel, D., van Maaren, P. J. & Berendsen, H. J. A systematic study of
water models for molecular simulation: derivation of water models optimized
for use with a reaction field. J. Chem. Phys. 108, 10220 (1998).

38. Asay, D. B. & Kim, S. H. Evolution of the adsorbed water layer structure
on silicon oxide at room temperature. J. Phys. Chem. B 109, 16760–16763
(2005).

39. Gallo, P., Rovere, M. & Spohr, E. Supercooled confined water and the mode
coupling crossover temperature. Phys. Rev. Lett. 85, 4317–4320 (2000).

40. Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C. & Scharf, M. The double cubic
lattice method: efficient approaches to numerical integration of surface area and
volume and to dot surface contouring of molecular assemblies. J. Comput.
Chem. 16, 273–284 (1995).

41. Lee, B. & Richards, F. M. The interpretation of protein structures: estimation of
static accessibility. J. Mol. Biol. 55, 379–400 (1971).

42. Shrake, A. & Rupley, J. A. Environment and exposure to solvent of protein
atoms. Lysozyme and insulin. J. Mol. Biol. 79, 351–371 (1973).

43. Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Phase behaviour of
metastable water. Nature 360, 324–328 (1992).

44. Swenson, J., Jansson, H. & Bergman, R. Relaxation processes in supercooled
confined water and implications for protein dynamics. Phys. Rev. Lett. 96,
247802 (2006).

45. Nagoe, A., Kanke, Y., Oguni, M. & Namba, S. Findings of Cp maximum at
233 K for the water within silica nanopores and very weak dependence of the
tmax on the pore size. J. Phys. Chem. B 114, 13940–13943 (2010).

46. Laurent, S. et al. Magnetic iron oxide nanoparticles: synthesis, stabilization,
vectorization, physicochemical characterizations, and biological applications.
Chem. Rev. 108, 2064–2110 (2008).

47. Gillis, P., Moiny, F. & Brooks, R. A. On T2-shortening by strongly magnetized
spheres: a partial refocusing model. Magn. Reson. Med. 47, 257–263 (2002).

48. Okudera, H., Kihara, K. & Matsumoto, T. Temperature dependence of structure
parameters in natural magnetite: single crystal X-ray studies from 126 to 773 K.
Acta Crystallogr. Sect. B Struct. Sci. 52, 450–457 (1996).

49. Kihara, K. An X-ray study of the temperature dependence of the quartz
structure. Eur. J. Mineral 2, 63–77 (1990).

50. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics.
J. Mol. Graphics 14, 33–38 (1996).

51. Berendsen, H., Grigera, J. & Straatsma, T. The missing term in effective pair
potentials. J. Phys. Chem. 91, 6269–6271 (1987).

52. Mao, Y. & Zhang, Y. Thermal conductivity, shear viscosity and specific heat of
rigid water models. Chem. Phys. Lett. 542, 37–41 (2012).

53. Lopes, P. E., Murashov, V., Tazi, M., Demchuk, E. & MacKerell, A. D.
Development of an empirical force field for silica. Application to the
quartz-water interface. J. Phys. Chem. B 110, 2782–2792 (2006).
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