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This thesis is focused on various aspects concerning the Distributed Generation 

(DG) from Renewable Energy Sources (RES) and in particular from PhotoVoltaics 

(PV). 

The PV generation strongly depends on weather conditions (irradiance and 

temperature), therefore the solar irradiance forecast is very important for grid-connected 

PV systems. The PV power injected into the grid is concentrated during sunlight hours, 

in which the maximum peak load demand occurs and, as a consequence, an impact on 

the electrical system occurs. 

The task of the Transmission System Operator (TSO) is to ensure a constant balance 

between supply and consumption within the grid. Therefore, the presence of strong 

fluctuations of the solar radiation requires additional regulatory actions and 

compensation, through the use of short-term power backup, causing an increase in 

network costs. 

Thus, the solar irradiance forecast is necessary for an accurate evaluation of the PV 

power from PV systems, for the management of electrical grids in order to minimize the 

costs of energy imbalance and for the decisions concerning the energy market. 

This thesis essentially consists of two parts. In the first part, the profitability of 

investments in the rooftop grid-connected PV systems subjected to incentive and the 

grid-parity analysis in the two main European PV markets (Italy and Germany) are 

presented. In the second part, in order to minimize the costs of energy imbalance in the 

Italian electricity market, the comparison of irradiance and electric power predictions 

with respect to the experimental results of grid-connected PV systems is presented. 

Abstract 
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In the first part of the thesis, a deep study of the aspects on the PV installation 

performance, on the cumulative installed capacity in recent years and on the incentive 

policy, underlining, in particular, the differences between the two main European PV 

markets (Italy and Germany) is carried out. 

Then, the feed-in tariffs, the authorization procedures, the procedures for the connection 

to the network and the technical barriers for the installation of PV systems in the rooftop 

of buildings for both Italy and Germany are analyzed. 

Subsequently, the economic analysis of PV rooftop systems has been carried out, in 

order to identify the profit indicators, such as Net Present Value (NPV) and Internal 

Rate of Return (IRR) for particular case studies, different according to the type of the 

PV plant, the site of installation and the beginning of operation. 

Through this analysis, it was possible to quantify the differences in terms of economics 

performance over the past seven years (from 2006 to 2013) between the different types 

of PV installations on rooftop, highlighting much higher profits in Italy than in 

Germany, causing the so-called “gold rush” effect. 

Further analysis dealt with the “self-sustaining” policy of the PV market in Italy and 

Germany, in which the costs for the construction of facilities make the investment 

attractive in absence of incentive for the achievement of the so-called “grid-parity”, that 

occurs when the electricity produced by the PV system and the traditional energy drawn 

from the power grid have the same price. In particular, the analysis was performed for 

particular case studies (dwelling houses, common users of apartment-blocks and 

tertiary-sector users), including the PV penetration study and hidden costs in the energy 

bill. 

In the second part of the thesis, the aspects related to the prediction of solar irradiance 

and AC power profiles of real grid-connected PV systems in operation in the South of 

Italy have been analyzed. 
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Each PV system, under study, is equipped with: one pyranometer and two reference 

solar cells for measuring the horizontal global irradiance, two reference solar cells for 

the tilted global irradiance, and one thermo-hygrometer for measuring ambient 

temperature, relative humidity and wind speed. 

In order to improve the PV power injection into the grid, it is important to measure, as 

correctly as possible, the global solar radiation in short term on annual basis from these 

solar cells on the horizontal and tilted plane. For this reason, the validation of global 

irradiance data from solar cells on the horizontal and tilted plane, through the 

comparison with the pyranometer uncertainty, taken as reference, has been carried out. 

Then, through the solar irradiance forecasts data of 3-day ahead on the horizontal plane, 

at the same latitude and longitude of the PV plants, given us by a weather forecast 

provider, it has been possible to make a comparison with the measured data. 

Moreover, a method to classify each hour of a day in three categories (variable, cloudy, 

or clear) has been implemented. In this way, it has been possible to understand if there 

is a correlation between the solar irradiance from measured data and from forecasts. 

A special focus has been on the prediction of the so-called “broken clouds” 

phenomenon, in which the sky is mainly clear, but the passage of clouds affects the 

irradiance evolution. Therefore, in order to estimate the number of occurrence of 

“broken clouds” in a day, a specific threshold value has been considered. With the 

perspective of the day-ahead market, the “broken clouds” analysis has been performed 

for the 15-min averaged values. 

In order to determine the accuracy between the predicted and measured data, the error 

estimation measurement has been carried out through the use of statistical methods. The 

indicators used in this evaluation are the Mean Absolute Error (MAE) and the Mean 

Bias Error (MBE). 
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Then, in order to link the solar irradiance and cell temperature data with the AC power 

delivered to the grid, a dedicated PV conversion model has been defined. For the 

definition of the PV conversion model, many loss factors that influence the PV system 

behavior, have been taken into account. These losses are mainly due to: dirt in the PV 

modules; reflection of the PV module glass, thermal losses with respect to STC; 

electrical mismatch losses; DC-cable losses; MPPT and DC−AC conversion losses. 

Finally, the error parameters between the power measured by the meters and the AC 

power calculated from the model have been determined with respect to the real grid-

connected PV systems. 
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C I installation cost 
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 solar declination angle

Δ Gpyr absolute uncertainty of the pyranometer 

Δ G 21 deviations of 2-day ahead prediction with respect to the 1-day ahead prediction

Δ G 31 deviations of 3-day ahead prediction with respect to the 1-day ahead prediction

Δ0 deviation amplitude

ε estimation error 

E g_inj share of PV energy production delivered to the grid 

ε h relative uncertainty  for the irradiation Hh 

MPPT efficiency of the tracker

E s_cons amount of PV energy production self-consumed by the PV system’s owner 

ε t relative uncertainty of the “time” quantity

E Th voltage source 

 Z Th  t equivalent impedance

E T e.m.f. of secondary windings of the distribution transformer 

 azimuth angle 

 f inflation rate

 f elec national inflation rate of the electricity 

F sc sky-surface view factor 

g day of the year

G a_rain solar cell irradiation  in a clear-sky days after rain 

G bn beam normal irradiance 
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G fore 1-day ahead forecast  irradiance
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G meas measured irradiance
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G tcell tilted global irradiance from solar cells

γ th thermal coefficient of maximum power of the modules
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 h hour of the day

 i basic interest rate

i * real interest rate 

 i *
feed real interest rates for the feed-in tariff

i *
OM real interest rates for the O&M costs 

 i *
ose real interest rates for the on-site-exchange

IRR Internal Rate of Return
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k d fraction of the hourly diffuse irradiation on a horizontal plane 
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k s solar height at the sunset and at the sunrise 

k t hourly clearness index 

k tf hourly clearness index value of forecasts

l cable DC-cable losses 

l dirt losses for soiling and dirt 

l mis electrical mismatch losses 

l refl losses due to reflection of the PV module glass 

l th thermal losses 

MAE mean absolute error 

MARR Minimum Attractive Rate of Return 
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µPV-trnsf of the distribution-transformer 
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NPV Net Present Value
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P DC DC power

P fore delivered power to the grid

p inj unitary price paid to the PV owner per kWh injected into the grid

P L load profile 

P Lmin minimum peak 

P Lmax maximum peak 

P meas power from the energy meters of the PV plant

P mpp available power at maximum power point

p PV energy cost used for net metering in Germany

p PV
* energy cost used for energy sold to the grid in Italy

P PVlim PV power profile limit

P PVm peak power  at STC

P PVrev reverse flow of PV power profile 

 P PVr total rated power of the PV array
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 hour angle
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 R PV yearly revenues

s bill cost in €/kWh saved from the utility bill

s PV energy cost used for self-consumption in Italy

STDERR standard deviation of errors 

T amb ambient temperature

T C cell temperature

v w wind speed 
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Introduction 

In the past the installation cost of PV systems was so high that no economic 

convenience appeared, with respect to the bill paid to the utilities for the grid electricity. 

That was the reason, for which the stand alone PV systems were the unique applications 

of this technology in zones where the network was not available as in mountains, 

islands or rural sites. 

The increasing costs of fossil fuels, due to the impressive usage around the world, and 

the consequent concerns on climate change (greenhouse gases, global warming) have 

pushed the national Governments towards a major employment of RES, according to 

several protocols as e.g. the Kyoto one. Especially in Europe, in the last years, a policy 

for RES deployment, based on incentive in terms of feed-in tariffs, has been 

implemented.  

Chapter 1  

Economic analysis of investment in the 

rooftop photovoltaic systems in the two 

main markets 
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These tariffs have produced, for the owners of PV systems, such revenues that also the 

grid connected PV plants have become viable from the economic point of view. 

Obviously, the money for the incentive is a burden for the community, but, if the 

mechanism is well done, it can generate many advantages like reduction of installation 

cost due to economies of scale, clean electricity production, job creation, technological 

innovation and safe investments. 

In fact, the main target should be to create a self-sustaining market based on two factors: 

firstly, the economies of scale [1] i.e., the decrements in cost per unit, that PV 

companies achieve (about  -20 %), as the size of the facilities and the usage levels of 

other inputs increase; secondly, the cost of electricity from fossil fuels which is 

continuously increasing. After the start-up period, the feed-in tariff should be 

progressively reduced, in such a way as to reduce the burden on the electricity bill and 

to hold an attractive performance of the PV investments. 

Nowadays, Germany and Italy are the main markets in the world for PV installations: in 

Germany the feed-in tariff is in operation since 2000 with about 30 GWp of installed 

power and in Italy since 2005 with about 17 GWp, after many adjustments. 

In this chapter, a long-term research on the investments in regards to PV plants of active 

users charged by the retail electricity price with different size and location, roof 

mounted, in Germany and Italy, according to the variable conditions of the incentives 

(2006 − 2012) is provided. Such a study permits to determine the particular economic 

revenues during the time evolution among the various types of PV systems, 

emphasizing the efficiency of the incentive policies in the two major markets. At this 

aim, the installation costs of the PV plants, according to size, location and begin of life, 

have been defined by suitable assumptions; then, the performance indicators in terms of 

Net Present Value (NPV) and Internal Rate of Return (IRR) have been computed. 
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1.1.  The Worldwide PV Market 

Globally, the volume of new PV capacities world-wide rose from 16.6 − 20.2 

GWp in 2010 to 24.1 – 27.6 GWp in 2011 and 37.7 GWp in 2012 considering a 

remarkable difference between the installed power and the grid-connected power 

(typical delay of some months in Italy). The number of markets reaching more than 1 

GWp of additional capacity during 2011 rose from 3 to 6 [2]. 

The European share in the global PV arena still remains predominant with more than 75 

% of all new capacity in 2011. The two biggest markets, Italy and Germany, account for 

nearly 60 % of global market growth during 2010 [3].  

The growth rate of PV during 2011 reached almost 70 %, with growing contributions 

from Southern European countries, over 60 GWp of PV systems were installed at the 

end of 2011. In Italy and France, specific regulations created strong installation growth 

in 2010; however, the grid connection was to be counted only in 2011. This effect has 

included between 3 and 5 GWp of installations made in 2010 with grid connection 

taking place in 2011. 

During 2012, a 20 % increase of the grid-connected capacity occurred, in comparison to 

2011.Overall, at the end of 2012 it has been reached 101 GWp of cumulative installed 

capacity, value equal to 2.3 times compared to that recorded at the end of 2010. 

Table 1.1 shows the top markets world-wide, both in terms of grid-connected capacity 

during 2012, 2011 and 2010 and cumulative installed capacity at the end of 2011 and 

2012. It is interesting to note that China, at first place of PV module manufacturers in 

the world, is becoming an important market in the PV installation. 
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Table 1.1 − The installed and grid-connected capacity in 2010, 2011 and 2012 (source: IEA) 

 

The growth of the PV market is based on the increasing oil prices and consequent air 

pollution, on the requirement of environmentally friendly energy generation, and is 

sustained by the support of the environmentally-conscious public incentives, direct 

subsidies and Research and Development (R&D) support. Without such support, the 

industry could not grow to levels that would enable the reduction of the price of 

electricity generated from photovoltaics to the levels of conventional energy generation 

[4]. Due to the increasing market volume, performance and reliability of PV systems 

have become key issues for minimizing business risks and increasing market actors’ 

trust. A more accurate yield prognosis and information on operational availability of PV 

systems are crucial for investment decisions and market growth. In this context, 

performance and yield data, reliability statistics and empirical values concerning 

maintenance are by far more relevant today than in the past. 

As previously mentioned, Europe remains the geographic area leader for PV 

installations. During 2010 Germany represented the most important country in the PV 

market with around 7.4 GWp of installed new PV plants, while in 2011 Italy with 

around 9 GWp of grid-connected new PV plants had the primacy. Spain, major player in 

2008, has installed in the last years only around 400 MWp per year. The reason is in the 

incentive policy change, with the introduction of a too low threshold for installations 

and significant cuts in tariffs.  
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The main novelties of 2010 are in France and Czech Republic. As per France, the 

installed power during 2011 was around 1.5 GWp, a very big increase compared to the 

previous year. Regarding Czech Republic, where the PV market is in the large part 

constituted by small and medium-sized plants (4.2 MWp is the size of the largest PV 

plant built in 2010), the power installed in 2010 was 1360 MWp, which has permitted to 

reach USA in the cumulative installed power, however the installation in 2011 has gone 

down below 1,000 MWp.  

In addition, new European countries are entering in the PV market, for example Greece 

installed in 2010 around 150 MWp and in 2011 around 350 MWp, or Israel and Turkey 

had “strong” introduction of a new system of incentives in 2010. In Israel PV power of 

about 50 MWp has been installed, but it is expected to reach in 2015 the target of 300 

MWp. In Turkey, despite the power installed in 2010 does not reach 10 MWp, it is 

expected for 2015 a huge potential market [5]. 

1.2. PV Market and Industry in Italy 

The PV progress in Italy is impressive, particularly in 2010 when the so-called 

“Salva Alcoa” Decree has been implemented. In this Decree, the incentive rates, 

provided in 2010 by the “Nuovo Conto Energia” feed-in tariff, are recognized in all PV 

systems that have concluded the installation of mounting structure and electrical 

installation by December 2010 have concluded and the connection to the grid by June 

2011 have obtained.  

As per new installations, the year by year growth was +382 % in 2008, +112 % in 2009 

and +192 % in 2010. In 2010 about 138900 new PV plants (2.1 GW of total PV power) 

started into operation, and other 55000 PV plants (3.95 GW of total PV power) are 

completed (Fig. 1.1). The total PV power installed approximately in 210000 plants in 

operation at the end of 2010 was 3276 MW, more than 64 times the value in 2007 [5]. 
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Fig. 1.1 − The development of new installations and total PV power since 2007 in Italy. 

 

As shown in Fig. 1.2, the residential systems (1 − 20 kW) decreased from 44.5 % in 

2007 to 19.4 % in 2010. If in 2007 PV market was based on private customers who 

opted for the electrical system integration exploiting the space on their roof, in 2010 this 

phenomenon was in minority. The typical residential system customer is changed, both 

in terms of technologies knowledge and available implementation alternatives, and in 

terms of “contractual power” for installers, thanks to the “buying-groups” that install 

PV systems of large dimensions. 
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Regarding the Italian PV sector, 800 is the number of business companies operating in 

2010, to which several thousand local operators are added that takes care of the 

residential and commercial installation sand 430 bank sand financial institutions active 

in the facilities financing [5]. In 2010 an increasing of Italian companies in the PV 

industry takes place (Fig. 1.3). 

 

Table 1.2 − Number of installed PV plant and cumulative capacity according to the PV power range. 

 

  

Cumulative values
Number of installed 

PV plants

Cumulative 
installed capacity 

[MW]

All PV plants 333189 12855

< 20 kW 292492 1749

From 20 to 50 kW 11847 468

> 50 kW 28850 10637
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(a) (b) 

 
(c) (d) 

 
                                                (e) 
Fig. 1.3 − (a) Silicon and Wafer industry; (b) Solar Cells and Modules industry; (c) Inverter industry, (d) 

Other components industry; (e) Distribution and installation industry. 

 

The production of silicon and wafers is relatively marginal: in 2010, in addition to an 

US multinational corporation that has two branches in Italy (one in the northwest of 

Italy for the production of wafers and the other one in the northeast of Italy for the 

production of solar grade silicon), an Italian company joins in the PV market. In the 

production of solar cells and modules, Italian companies represent the majority share 

and also foreign companies that have a branch in Italy are grown (Table 1.3). 

  

Silicon and Wafer

Foreign companies

Foreign companies
with branches in Italy

Italian companies

Solar Cells and Modules

Foreign companies

Foreign companies
with branches in Italy

Italian companies

Inverter

Foreign companies

Foreign companies
with branches in Italy

Italian companies

Other components

Foreign companies

Foreign companies
with branches in Italy

Italian companies

Distribution and installation

Foreign companies

Foreign companies
with branches in Italy

Italian companies
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Table 1.3 − Solar cells and modules companies. 

 

Even in the production of inverters, a US multinational corporation with a branch in 

Italy in addition to the other Italian companies represent one of the majority share of the 

market (Table 1.4). The main inverter manufacturing companies in the world belong to 

Germany (approximately 70 % of installed capacity in 2010), USA (approximately >10 

% of installed capacity in 2010) and Austria (approximately 10 % of installed capacity 

in 2010). 

Distribution and installation are Italian companies activities, although in recent years 

there was a considerable number of foreign companies. Almost all Italian companies are 

involved in distribution and installation of PV components. 

 

Table 1.4 – Inverters companies. 

 

Value Chain Company
Capacity 2009 

[MWp]
Capacity 2010 

[MWp]
Production 2010 

[MWp]

Solsonica 25/50 35/70 35/64

Helios Technology 60/55 60/55 n/a

Xgroup 90/30 90/55 55/55

EniPower 30/30 30/30 1/10

MIX Group 60 90 48

Solarday 60 90 42

Renergies (gruppo Afin) 30 40 37

Brandoni Solare 20 40 28

Vipiemme Solar 20 25 21

Fully Integrated

(Cell/Module)

Module

Component Company
Capacity 2010 

[MWp]
Production 2010 

[MWp]

Power-One Italy 3000 2600

Elettronica Santerno 1400 880

Siel 400 380

Aros Technology           
(Riello Elettronica)

310 310

Answer Drives 200 195

Astrid Energy Enterprises 190 185

Italcoel 110 33

Fimer 240 n/a

Inverters
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1.3. Feed-In Tariff Policy and Bureaucratic Barriers 

1.3.1. The Italian situation 

GSE (“Gestore Servizi Energetici”) is the Italian Energy Services Operator for 

the approval of incentives for the electricity production from renewable sources and 

receives the energy delivered to the grid by the so-called “Scambio sul Posto”, i.e., on-

site exchange [6]. The owners of solar PV systems can use the incentives and/or 

services described in the following list. 

 The “Conto Energia” (CE, photovoltaic-electricity bill) is the incentive mechanism 

of production from solar photovoltaic energy. The incentive is paid according to the 

electricity production, since the grid-connection date of the PV plant for a period of 

twenty years. The rate is constant throughout the incentive period. The highest rate is 

approved for small domestic plants in building integration; on the other hand, the lowest 

rates are recognized to the large plants not architecturally integrated. 

1. The first phase of CE program (issued in late 2005) was completed during 2009. In 

this context 5,733 plants have been installed, corresponding to a total power around 164 

MWp. At this stage it was necessary to send the design documents to GSE for obtaining 

the assignment of the tariff before the installation. 

2. The second phase of CE program started in 2007, when the first phase was still in 

force, and was completed at the end of 2010. During this period, it resulted in setting 

into operation about 125,000 plants corresponding to a total power of 2,736 MWp. From 

this stage on, it was possible to install the PV plant and only after to send the final 

documents for the tariff assignment. Taking into account both the first and second 

phase, the installed PV power at the end of December 2010 was over 2.9 GWp without 

the contribution of the so-called “Salva Alcoa” Decree. The feed-in tariffs were constant 

for 2007 − 2008 and only a -2 % decay per year (period 2009 − 2010). 

3. In July 2010, a new edition of CE decree was established for the third phase At this 

stage the maximum power, that could have the feed-in tariff updated every quarter year, 
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was limited to 3500 MWp and a premium is given for PV plants with predictable power 

profiles. 

4. Furthermore, after a huge peak in PV installations, a fourth phase of CE decree, 

established in May 2011, was in force with an economic cap within 6 and 7 billion 

Euros for all the PV systems subject to incentive. Here, it is possible to distinguish 

between small and large grid-connected Photovoltaic (PV) Systems. Small grid-

connected PV are: Building Integrated Photovoltaic System (BIPV) with peak power up 

to 1,000 kWp, other photovoltaic systems at ground level with peak power up to 200 

kWp operating under on-site exchange, and systems of whatever power in buildings and 

areas whose owner is a public administration (Municipalities, Provinces, Ministries, 

schools). These PV systems receive automatically the feed-in tariff according to the 

power levels. All other PV systems, not covered by this definition, are called Large 

grid-connected PV systems [7] and need the positive check of GSE after the registration 

in a suitable logbook. 

5. Finally, a fifth phase of CE is in force up to now, since August 2012, when the 

threshold of 6 billion Euros has been reached and the maximum cap has been fixed to 

6.7 billion Euros. In this current mechanism the incentive is different because the PV 

energy is divided in two parts, one is the amount which is sold to the grid and the other 

one is the self-consumed that produces the maximum profit because it receives a 

premium tariff besides the saving in the utility bill. 

  “Ritiro Dedicato” (Dedicated Delivery) is a GSE service in force, a simple way to 

place the electricity generated and fed into the grid on the electricity market through the 

GSE. PV systems have access to this service through the GSE for the delivery of all 

energy into the grid. The GSE recognizes to the producer of the PV plant a electricity 

price in €/kWh variable in the range 0.07−0.105. 

 “Scambio sul Posto” (on site ) is a mechanism operated by the GSE since January 

2009 for PV plants powered by renewable energies with power up to 200 kWp. It 

permits to give an economic value to the energy fed into the grid, according to an 

economic compensation principle with the energy value paid from the grid. 
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An additional amount in the feed-in tariff will be paid whenever the PV system is 

combined with energy saving techniques. 

Differently from Germany, one of the main hindered problems for a more virtuous 

development of the Italian PV market in recent years has definitely been the excessive 

bureaucratization of the necessary authorization practices for the installation, the 

starting of the production and the promoting of a new facility. 

The PV progress in Italy is impressive, particularly in 2010 when the so-called “Salva 

Alcoa” Decree has been implemented. In this Decree, the incentive rates, provided in 

2010 by the 2nd “Conto Energia” feed-in tariff, are generously recognized in all PV 

systems, in which the installations of mounting structure and electrical components 

have concluded by December 2010 and the connection to the grid has performed by 

June 2011. 

As per the new installations, the year by year growth was +382 % in 2008, +112 % in 

2009 and +192 % in 2010. In this year about 138,900 new PV plants (2.1 GWp of total 

PV power) started into operation, and other 55,000 PV plants (3.95 GWp globally) have 

been completed. The total installed PV power, approximately shared in 210,000 plants 

in operation at the end of 2010, was 3276 MWp, more than 64 times the value in 2007 

[5]. 

As shown in Table 1.5, the residential systems (1 − 20 kWp) decreased from 44.5 % in 

2007 to 19.4 % in 2010. If in 2007 PV market was based on private customers who 

opted for the electrical system integration exploiting the space on their roof, in 2010 this 

phenomenon was in minority. The typical residential system customer is changed, both 

in terms of technologies knowledge and available implementation alternatives, and in 

terms of “contractual power” for installers, thanks to the “buying-groups” that install 

multiple PV systems with large size. 

In Table 1.5 is reported the current number of installed PV plants and the installed 

capacity in Italy provided by the GSE in 2011. More than 90 % of capacity is covered 
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by high size plant, even if the most number of installed PV plants is within the 20 kWp 

power range. Moreover, the middle size power covers less than 3 % of the total number 

and less than 4 % of the total capacity. Table 1.6 provides the tariff rates valid up to 

August 2012 when the 5th CE has changed newly the amounts. 

Table 1.5 − Number of installed PV plants and cumulative capacity according to the PV power range in 
2011 in Italy (source: GSE). 

 

Table 1.6 − Italian PV feed-in tariff for the first and second half of 2012 (source: [8]). 

 

To obtain the incentive, the responsible person for PV system must submit relevant 

documents to the GSE, such as detailed drawings concerning electrical scheme with 

main devices (PV modules and their connections, grid-connected inverters, cables, 

protections and energy counters, etc.) and photos showing components and their 

locations in the plants. Moreover, as per the authorization, it must be submitted one of 

the following titles: 

 the exclusive license (“Autorizzazione Unica” − AU) referred to the Article 12 of 

Legislative Decree n. 387/2003: the procedure lasts at least 6 months and requires a 

joint agreement from many public agencies); 

Cumulative values
Number of installed 

PV plants

Cumulative 
installed capacity 

[MW]

All PV plants 333189 12855

< 20 kW 292492 1749

From 20 to 50 kW 11847 468

> 50 kW 28850 10637

Power Range
First half of 

2012
Second half of 

2012

[kW] [€/kWh] [€/kWh]

1≤P≤3 0.274 0.252

3<P ≤20 0.247 0.227

20<P ≤200 0.233 0.214

200<P ≤1000 0.224 0.202

1000<P ≤5000 0.182 0.164

P>5000 0.171 0.154
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 the Start Activity Document (“Denuncia di Inizio Attività” − DIA), according to the 

President of the Republic Decree n. 380 of 2001, if applicable, or the simplified 

habilitation declaration, according to the Legislative Decree n. 28/2011; 

 the hard copy of free-construction document (“comunicazione di attività in edilizia 

libera”), referred to guidelines adopted pursuant to the Legislative Decree n. 387/2003 

(the most simple and quickest procedure); 

 the Start Activity Notice (“Comunicazione di Inizio Attività” − CIA) or the Start 

Activity Certificate (“Segnalazione Certificata di Inizio Attività” – SCIA), of the 

Ministerial Decree, n. 122/2010. 

1.3.2. The German situation 

The rapid increase of PV market in Germany began in 90’s decade with the so-

called “Thousand Roofs Programme”, showing that the grid coupled feed-in from many 

small PV systems was technically possible [9]. The “Thousand Roofs Programme” sent 

a positive signal to the PV industry and provided an important impulse for the further 

development of the technology. It was aimed specifically at house owners and hence for 

the first time included private households in electricity generation; so these people 

became power producers. 

After this, the Renewable Energy Sources Act (“Erneuerbare-Energien-Gesetz” −  EEG) 

in 2000 provided a reliable and long-term framework for PV and made solar electricity 

generation economically interesting. In terms of achieving expansion targets for 

renewable energies in the electricity sector, the EEG is actually the most effective 

funding instrument at the German government’s disposal [10]. It determines the 

procedure of grid access for renewable energies and guarantees favourable feed-in 

tariffs. 

The purpose of this Act is to facilitate a reliable development of energy supply, 

particularly for the sake of protecting the climate and the environment, to reduce the 
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costs of energy supply to the national economy, also by incorporating external long-

term effects, to preserve fossil fuels [11]. The Act aims to increase the share of 

renewable energy sources in electricity supply to at least 30 % by 2020 and to 

continuously increase that share thereafter. 

The Act regulates: the priority connection to the grid for electricity supply of 

installations generating electricity from renewable energy sources within the Germany 

territory, including its exclusive economic zone; the priority purchase, transmission, 

distribution and payment for such electricity by the grid system operations, and the 

nationwide equalization scheme for the quantity of electricity purchased. 

For PV, the feed-in tariff depends on the system size and whether the system is ground 

mounted or attached to a building [12]. Since 2009, there is also a tariff for self-

consumed power. The rates are guaranteed for an operation period of 20 years. Initially, 

a steady yearly reduction of the PV tariffs was foreseen. On the background of a 

constantly rising number of installations, a mechanism was introduced to adapt the EEG 

tariff to the market growth. Under this scheme, the reductions are increased or 

decreased if the market deviates from a predefined corridor. 

For 2009 this corridor was defined to be between 1,000 MWp and 1,500 MWp, which 

was significantly exceeded as the market reached 3,800 MWp. For 2010 to 2012, a new 

corridor between 2,500 and 3,500 MWp was defined. Furthermore, for 2010 two 

additional reduction steps were agreed to adapt the tariff to the system price level. With 

around 7,000 MWp installed in 2010 the new corridor was surpassed again 

considerably. Beside the EEG support for the development of PV installations, the 

decrease of system prices continues which makes PV systems economically more and 

more attractive. 

In addition to the EEG, PV receives support from other sources: local fiscal authorities 

provide tax credits for PV investments; the state owned bank (KfW− Bankengruppe) 

and other banks (e.g., UmweltBank and SwkBank) provides loans for individuals as 

well as for local authorities. Since at the beginning of 2009 the owners of new PV 
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systems are legally obliged to register their systems at the German Federal Network 

Agency, which showed in 2011 an additional capacity of 7.4 GWp and in total around 

24.7 GWp connected to the German grid. 

As a consequence, Germany produced 12 TWh of PV−electricity in 2010, which were 

roughly 2 % of the national consumption. All renewable energies together have a share 

of 16.8 % of the domestic energy supply. At the same time, the German National 

Renewable Energy Action Plan includes a target of a 38.6 % share of renewable 

energies in the electricity sector for 2020. 

For PV, the scenario assumes a future development of annually 3,500 MWp from 2012 

to 2020. This leads to an installed capacity of almost 52 GWp in 2020 and a resulting 

electricity production of around 8% of the overall consumption. 

In the debate over the second EEG revision in 2008, the rising remuneration payments 

drew intensive criticism as per their effectiveness. The growing demand for solar 

systems had been the reason that module prices did not drop proportionally with 

manufacturing costs. Solar companies thus made very high profits at this time. 

The new version of the Renewable Energy Sources Act, which came into force in 2009, 

therefore established a steeper digression of feed-in tariffs, increasing the rate of 

reduction from 5 % annually to 8 or 10 %. 

System prices dropped further, by about 30 % in 2009, even though the number of 

installed solar power systems grew considerably and more strongly than expected. 

Finally, the debate over support for solar power and changes in the feed-in tariffs 

illustrates the excellent development which Photovoltaics has undergone in recent years 

[9]. For typical home roof systems up to 30 kWp of capacity, feed-in tariffs of 

December 2011 is 24,43 ct€/kWh, as shown in Table 1.7. The costs of PV systems will 

drop still further in future. Solar PV power in Germany will reach the so-called grid 

parity from the active-user viewpoint, i.e. equal retail price as household power, as soon 

as in three years with a very high probability. That will be a watershed for investments 
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in Photovoltaics, the self-produced power will be cheaper than what the power company 

can provide. 

Table 1.7 − PV feed-in tariff of the EEG from 2010 in Germany 

 

1.3.2.1. PV Industry in Germany 

During the year 2010 in Germany a lot of companies opened new production 

facilities or expanded their production [12]. Table 1.8(a) shows the production capacity 

and the total number of employees in major German companies of crystalline silicon, 

wafer, cell, module and fully integrated production for 2010, on the contrary Table 

1.8(b) shows the thin film production companies. 

Due to the well-developed PV industry, all components for an entire PV system are 

available in Germany as shown in Table 1.9. 

Table 1.10(a) shows the leading manufacturers of materials for PV modules produced in 

Germany, while Table 1.10(b) shows the leading manufacturers of PV system 

components. 

  

Date of commissionig < 30 kWp up to 100 kWp up to 1 MWp > 1MWp

01.01.2010- 30.06.2010 39,14 37,23 35,23 29,37

01.07.2010 - 31.09.2010 34,05 32,39 30,65 25,55

01.10.2010 - 31.12.2010 33,03 31,42 29,73 24,79

01.01.2011 - 30.06.2011 28,74 27,33 25,86 21,56

01.07.2011 - 31.12.2011 24,43 23,23 21,98 18,33

2012 (-15%) 20,77 19,75 18,68 15,58
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Table 1.8 − Production capacity and number of employees in German companies: (a) crystalline silicon, 
wafer, cell, module and fully integrated production; (b) thin film production. 

 
(a) 

 
(b) 

Value Chain Company
Capacity 2010 

[MWp]
n° of employees

Wacker chemie 33,000t 1766

PV Crystalox Solar Silicon 1,800t 115

SCHOTT Solar Wafer 500 400

PV Crystalox 400 145

Q-Cells 500 1300

SCHOTT Solar 305 520

ITS Innotech Solar 135 36

Sunways 116 350

Solland Solar Cells 110 275

CENTROSOLAR 350 700

 Aleo solar (Bosch) 280 801

SOLON 251 470

SOLARWATT 240 470

Solar-Fabrik 210 350

Scheuten Solar technology 200 270

Heckert Solar 180 205

ALGATEC Solar 130 233

SolarWorld 1000/250/550 990

Bosch Solar Energy 400/550/150 2500

Conergy 200/250/250 750

Sovello 180/180/180 1250

Silicon

Wafer

Cell

Module

Fully Integrated

(Wafer/Cell/Module)

Value Chain Company
Capacity 2010 

[MWp]
n° of employees

a-Si                 
a-Si/μc-Si

Schϋco TF 110 150

CIS Solibro (Q-Cells) 135 500

 CIGS AVANCIS 120 223

CIGSSe Nanosolar 120 77

CdTe First Solar 447 600

GaAs Azur Space Solar Power 250 135
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Table 1.9 − Leading PV equipment suppliers produced in Germany. 

 

  

Equipment Company n° of employees

Silicon Centrotherm SiTec 150

ALD Vacuum Technologies 365

Centrotherm SiTec 150

KUKA Systems 1200

RENA 1150

Cell Centrotherm Photovoltaics group 1500

 - Turnkey Lines Roth & Rau 500

Cell

 -  Thermal Equipment

Cell

 -  West Chemistry

Cell Centrotherm Photovoltaics group 1500

 - Anti-reflective Roth & Rau 500

coating VON ARDENNE Anlagentechnik 570

Module Centrotherm Photovoltaics group 1500

 - Turnkey Lines KUKA Systems 1200

Thin Film

 - Turnkey Lines

Thin Film Grenzebach 1500

 - Vacuum Deposition KUKA Systems 1200

RENA 1150

Manz Automation 400

Rofin 1600

Ingot/Wafer

Laser Processing

Rehm Thermal Systems 170

RENA 1150

Centrotherm Photovoltaics group 1370
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Table 1.10 − Major companies and number of employees of materials for: (a) PV modules; (b) PV 
systems components. 

 
(a) 

 

 
(b) 

1.4. Economic Analysis of a PV Rooftop System 

In recent years, a progressive price decrease of components for PV installations 

(modules, inverters) has occurred. In order to reduce the burden of the incentive rate on 

the national budget and maintain the investment attractive for investors, a progressive 

tariff decline is also occurred [13].  

This section provides an economic analysis method of investments in PV systems 

installed on the roof, considering current incentive policies, and apply it to some 

Material Company n° of employees

Frontsheets Wacker Chemie AG 10000

Tapes/Adhesives/Seala
nts

Wacker Chemie AG 10000

Phoenix Contact Deutschland GmbH 8400

Tyco Electronics GmbH 1950

Weidmϋller Interface GmbH & Co. KG 1800

Junction Boxes

Component Company
Capacity 2010 

[MWp]
n° of employees

Bonfiglioli Vectron n/a 80

Diehl AKO 700 140

KAKO new energy 1200 350

REFU Elektronik n/a 170

SMA Solar technology 10000 4000

Steca Elektronik 40 510

Lumberg Connect 1000

Multi-Contact 120

Tyco Electronics 1950

Multi-Contact 120

U.I.Lapp GmbH 800

Wieland Electric 1000

Connectors

Inverters

Cables
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significant case studies in the European Countries in which PV market is currently the 

most prosperous: Germany and Italy. This analysis highlights the current convenience 

margin of the PV investments. 

The most important cost items for a PV plant are: the PV module costs (40 – 55 % of 

total amount), the inverter/cable/protection costs (10 %), the building-integration costs 

(10 – 15 %), the installation costs (10 – 15 %), the design/bureaucratic-document costs 

(5 – 10 %). Usually, the support structure of PV modules influence only for a little, 

without a complete building integration. As per installation costs a continuous decline 

occurs. Concerning the PV modules, a reduction from 3200 €/kWp of 2009 to 1200 

€/kWp of 2011 occurs for crystalline silicon; while regarding the thin film technology, 

the costs are reduced from 2200 €/kWp of 2009 to 1000 €/kWp of 2011 [14]. Nowadays, 

these figures are within 500-1000 €/kWp for the technologies available in market. 

1.4.1. Investment Assessment in PV systems by NPV and 

IRR 

In order to determine the convenience of an investment, as for example the 

electricity production, with respect to other investments, a conventional method implies 

the assessment of the NPV and the IRR during the PV plant life [15]. 

The parameters which influence the yearly NPV calculation [16], [17] are: 

 the installation cost CI in €/y [18], [19], [20], [21], [22], [23]; 

 the rated power PPVr in kWp of the PV system; 

 the yearly Revenues, RPV in €/y, are calculated as: 

billconssinjinjgPVACkPV sEpEpER  __,
 (1.1) 

where: 

EAC : PV energy production in kWh; 

pPV : feed-in tariff unitary price in €/kWh; 
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Eg_inj: share of PV energy production delivered to the grid (different according to 

residential, commercial and industrial loads) in kWh; 

pinj: unitary price in € paid to the PV owner per kWh injected into the grid; 

Es_cons: amount of PV energy production self-consumed by the PV system’s owner 

(different according to residential, commercial and industrial loads) in kWh; 

sbill: cost in €/kWh saved from the utility bill; 

 the yearly Operation and Maintenance (O&M) cost COM in €/y; 

 the real interest rate i*. 

According to the following formula, the real interest rate i*takes into account the effect 

of the inflation rate f that reduces the basic interest rate i, if the feed-in tariff is updated 

through the inflation rate 

fi
f

fi
i 





1

*  when f<< 1  (1.2) 

In fact, the present value of a future cash flow CFk (at k-th year) that includes inflation 

rate is equivalent to a present value weighted by i*, according to: 

 
   k

k

k

k
k

i

CF

i

fCF
*11

1







 (1.3) 

The cash flows at k-th year is composed of multiple items in terms of both revenues and 

costs, characterized by different real interest rates: the situation is different between 

Germany and Italy. In particular, in Germany the real interest rates are two: one for the 

feed-in tariff, i*
feed = i,, not updated [24], [25] according to the national inflation rate 

(determined by multiple goods and services), f, the other for the O&M costs, i*
OM, that 

includes the national inflation rate [26],calculated as a mean value in the last ten years 

according to equation (1.2): 

fii OM *  (1.4) 
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On the other hand, in Italy the real interest rates are three: the first two items are the 

same (feed-in tariff not updated according to the inflation [24]), the additional item, that 

deals with the on-site-exchange, i*
ose, is defined by the national inflation rate of the 

electricity as a single good, felec, [27], [28], [29], [30], according to equation (1.2): 

elecose fii *  (1.5) 

Many papers present suitable formulas for the economic analysis of investment in 

renewable energy installations [31], [32], [33], [34]. Here the discussion starts from 

equation (1.1), in order to define basically NPV as a mathematical series after N years of 

operation. In our case, the NPV after 25 years of guaranteed energy production (20 years 

of feed-in tariff in Germany and Italy and 25 years of on-site exchange in Italy), is 

defined as: 
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111
 (1.6) 

As previously mentioned, it is possible to evaluate the investment through economic 

indicators, such as the net present value and the internal rate of return. 

 NPV of a time series of cash flows is defined as the sum of the present values of the 

individual cash flows of the same entity. The interest rate takes into account the 

alternative uses of capital, or the minimum return that an investment must generate in 

order to equalize an investment of equal duration and risk on the financial market. 

Therefore, NPV takes into account the lacking revenues arising from the alternative use 

of money. If an investment is associated with a positive NPV, it is not only convenient 

from the economic and financial point of view but can be also more convenient than 

other investments with similar characteristics. A negative NPV means the investment 

return is less than the alternative one. 

 The interest rate of the cash flows of an investment is equal to the Weighted Average 

Cost of Capital (WACC). WACC is calculated considering only objective parameters, 
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such as the rate of return without risk (long-term government bonds, e.g. German 

“bund”), or the Market Premium between the return of a portfolio of stock titles and the 

return rate without risk. 

 IRR is a financial viability indicator and represents the yield of an investment. IRR is 

an annual compound rate of the real return of investment. In general, an investment 

should be pursued when IRR is greater than the Minimum Attractive Rate of Return 

(MARR), which coincides with the normal rate of return for an investor or a company. 

Mathematically, IRR is defined as the interest rate that makes the NPV of a series of 

cash flows equal to zero. According to this criterion, an investment is desirable when 

IRR is greater than another reference rate (for example, WACC). 

Based on these considerations, a possible analysis of economic investment for PV 

systems on rooftop in Italy and Germany is made, considering both the various rules of 

feed-in tariffs and the current installation costs. Obviously, this analysis should take into 

account the geographical location of the PV system or the predicted productivity. 

Actually, in the economic analysis of a grid-connected PV system, it is necessary to 

calculate, with adequate accuracy, the yearly electricity production at the AC terminals 

(EAC). Therefore, the following formula can be used [35]: 

PRYNPE rmPVmAC   (1.7) 

where: 

mPVm NP   is the total rated power of the PV array PPVr, constituted by Nm equal modules 

with individual rated or peak power (i.e., in the maximum power point) PPVm at the 

Standard Test Conditions (STC, irradiance GSTC = 1 kW/m2, cell temperature TSTC = 25 

°C), declared by the manufacturer; 

Yr is the reference yield, i.e. the ratio   STC, GH g  , in other words the ideal number of 

equivalent hours per year (peak solar hours); it is worth noting that the global irradiation 
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  ,gH is strongly dependent on the site with variations around the average value of 

±20 % in Italy and ±10 % in Germany, in kWh/m2, corresponding to the optimal tilt 

angle β with azimuth angle  = 0° (South orientation); 

PR is the Performance Ratio, i.e., the recommended parameter for comparing the PV 

systems. In case of building integration, PR is 2 − 5 % lower (with crystalline silicon) 

for higher thermal loading consequent to less air circulation. Usual values are in the 

range 0.65-0.85 pu. 

Finally, the yearly energy production of a PV plant characterized by PVrP can be written: 

fPVrAC YPE   (1.8) 

in which the final yield is Yf = YrPR , i.e. the ratio of the energy production to the 

installed PV power (in kWh/kWp). 

Therefore, it is possible to calculate the revenues from electricity according to the 

productivity of the PV system and the feed-in tariff pPV by the German and Italian 

formulas, respectively: 

PVfPVrPV pYPR    and   SbillfPVrSinjfPVrPVfPVrPV sYPpYPpYPR   1 (1.9) 

where, as a first approximation, the share of energy sold to the grid αS = 0.7 for loads 

<= 20kWp and αS = 0.3 for loads > 20kWp, whereas the remainder (1-αS) is the saved 

energy. In the Italian formula the price paid to the PV owner per kWh injected into the 

grid pinj is curtailed through a taxation [36], that is typically assumed equal to 20 % 

[37]. 

Due to purposes of comparison between PV systems of different size, the NPV equation 

can be divided by the rated power PPVr to obtain npv in €/kWp. If we introduce the 

Capital Recovery Factor (CRF, defined in [32]), each term of the summation, except the 

installation cost, is divided by its CRF: 
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 (1.10) 

where 

PVrII PCc   is the specific installation cost in €/kWp; 

IOMIOM CCcc   is the O&M cost expressed as a percentage of the specific 

installation cost. 

In conclusion, the ratio of the npv to the specific installation cost permits the definition 

of a normalized index of profitability npvpu in per unit, as displayed in the following 

case studies. 

1.4.2. Case Studies in Italy and Germany 

Generally speaking, the production of goods or services follows the experience 

curve (or learning curve). Each time cumulative volume doubles, value added costs 

(including manufacturing, marketing, distribution, etc.) fall by a constant percentage 

[1], [38].  

With reference to the cumulative installation volume of grid-connected PV power in 

Italy and Germany (more than 50 % of the world PV market), the experience curve of 

the global installation cost and the same curve of the main item, i.e., the PV module 

cost, are shown in Fig. 1.4 on the basis of statistical data [18], [19], [20], [21], [22], 

[23].  

It is worth noting that every doubling in the market volume corresponds to about -19 % 

reduction in the installation cost and about -25 % reduction in the PV module cost. 
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Thus, in long run (6 years) the percentage of the PV module cost decreases with respect 

to the installation cost from 75 % down to 40 %. 

 
Fig. 1.4 − Experience curves of installation cost and PV module cost vs. the installation volume of PV 

power (2006-2011). 

Now, it is possible to analyze each PV investment, referring to Central Italy and Central 

Germany: in this case the final yield per year from PVGIS (Photovoltaic Geographical 

Information System) website from European Commission JRC is roughly 1250 

kWh/kWp for Italy and 875 kWh/kWp for Germany in 2006. Due to the continuous 

improvement in the design methodology, installation techniques, efficiency and 

availability of commercial inverters, it is supposed an increment of 1 % per year in the 

yearly productivity. 

About the possible PV investments in the economic analysis during seven years (since 

2006 to 2012), four types of PV systems installed on rooftop for energy saving are 

considered, by assuming money paid by the owners and typical O&M costs [39], [40]: 

1. residential, small size of 3 kWp for Italy and 6 kWp for Germany (due to major 

consumption typical at German latitudes with less sunlight hours), in which the investor 
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is a family for satisfying the consumption of a dwelling house (O&M yearly cost = 1 % 

of the total investment); 

2. commercial A, size of 20 kWp, typical for small business, in which the investor is a 

owner of a shop or a laboratory (O&M yearly cost = 1 % of the total investment); 

3. commercial B, size of 200 kWp, typical for medium-large business, in which the 

investor is a company (O&M yearly cost = 1.5 % of the total investment, higher than 

the previous cases due to the advisable periodic cleaning); 

4. industrial, size of 1 MWp, typical for industrial business, in which the investor is a 

company (O&M yearly cost = 1.5 % of the total investment, higher than the previous 

cases due to the advisable periodic cleaning). 

The incentive rates differ according to the current feed-in tariff (e.g. in Italy five 

different frameworks in the examined period) and the PV system size. The choice of the 

interest rate, derived from a financial investment with the same duration and risk of the 

PV installation in the considered Country, is influenced by the different investors (i = 4 

%, f = 2 %, felec = 2.2 %, for residential and commercial A investors, i = 7 %, f = 2 %, 

felec = 7.3 %, for commercial B and industrial investors in Italy) and takes into account 

the different economic situation ([41] in which a 2 %-spread is given in average) of 

Italy vs. Germany, where the interest rates are assumed 2 % and 5 %, respectively, 

whereas the inflation f = 1.7 %. 

The case-study results are shown in terms of time evolution of three quantities: the total 

specific installation cost cI, the feed-in tariff pPV according to the year and the npv in per 

unit or in percent with respect to the installation cost. The uncertainty bars in the npv 

index puts in evidence the difference due to the role of the site in the reference yield, 

according to the Northern Italy or Germany (lower) or to the Southern Italy or Germany 

(higher) installation. Moreover, in a single diagram the IRR trends are simultaneously 

displayed for all the case studies. 

With reference to Italy, starting from the 1st phase of the CE, a forecasting analysis for 

2013, with respect to the new feed-in tariff (i.e. the 5th CE) is represented. The 
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forecasting analysis is examined in two limit conditions, defined when the self-

consumed energy is 100 % (best case, complete saving) and when zero self-

consumption (worst case) occurs. 

For the residential investor (Fig. 1.5), the npv performance follows the reduction of the 

installation cost and the feed-in tariff in the period 2006 − 2007, while it is constant ( 

0.5 pu) in the period 2007 − 2008. From2008 to 2010a sharp increase occurs in the npv 

(up to 1.3 pu), due to the strong reduction of the installation cost and almost constant 

feed-in tariff (2nd CE from 2007 to 2010). The 3rd CE permits still a low increment in 

npv (1.5 pu), but, after this, the npv trend is declining down to 0.3-1.1 pu with the 4th − 

5th CEs, according to the share between the PV energy sold to the grid and the PV 

energy self-consumed. 

 
Fig. 1.5 − The time evolution of the three quantities in the economic analysis for 3 kWp system in Italy. 

In case of the 20 kWp investor (Fig. 1.6) a sensible reduction of the npv trend is noted in 

the period 2006 − 2007 when the installation cost is almost constant. Then, in 2008 − 

2010 interval the situation is similar to the previous case, even if the npv for 20 kWp 

investor is quite higher (1.66 pu) than npv in the residential case. The major increase 

of the npv trend is in the period 2009 − 2010 when a noticeable reduction of the 

0

0,3

0,6

0,9

1,2

1,5

1,8

2,1

2,4

0

1000

2000

3000

4000

5000

6000

7000

8000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

N
et

 P
re

se
n

t 
V

al
u

e 
(p

er
 u

n
it

)
F

ee
d

-i
n

 t
ar

if
f 

(€
/k

W
h

)

In
st

al
la

ti
on

 c
os

t 
(€

/k
W

)

Residential investor

cI

NPV

ppv



                                                                                                                                                Chapter 1 

31 
 

installation cost occurs. With the 3rd CE the trend of npv can no longer increase and the 

last two programs determine the decrements in 2012 and 2013 down to  0.47 − 1.49 

pu. 

 
Fig. 1.6 − The time evolution of the three quantities in the economic analysis for 20 kWp system in Italy. 

 

Considering the 200 kWp investor (Fig. 1.7), in the period 2006 − 2007 a low reduction 

of the npv trend is observed, due to an almost constant trend of the installation cost and 

a low reduction in the feed-in tariff. Two increments of the npv trend are observed: the 

first in the period 2008 − 2009 and the second, which is the major, in the period 2010 − 

2011 when a strong reduction of the installation cost occurs. The peak of npv happens 

with 3rd CE ( 2.2 pu) and then it deviates in the range 0.2 − 2.4 pu with 4th – 5th CEs. 
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Fig.1.7 − The time evolution of the three quantities in the economic analysis for 200 kWp system in Italy. 

 

In regards to the industrial investor (Fig. 1.8), due to an almost constant trend of the 

installation cost in the period 2006 − 2007 but a low decrease of feed-in tariff, a low 

reduction of the npv trend is observed. Moreover, as the case of the 200 kWp investor, 

two increases of the npv trend are observed: the first in the period 2008 − 2009 which is 

the higher (from 0.7 to 1.5 pu) for a strong reduction of the installation cost, and the 

second in the period 2010 − 2011 (from 1.6 to 2.2 pu). In this case, with the 5th CE, the 

npv values drop to 0.1 − 1.5 pu, i.e., the minimum value for all the 4 investments. 
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Fig. 1.8 − The time evolution of the three quantities in the economic analysis for 1 MWp system in Italy. 

It is noteworthy that, in all the examined PV investments, the period 2009 − 2010 has 

permitted the highest growth, whereas in 2011 − 2012achange in the NPV trend occurs 

from positive to negative. 

Concerning the 2013 predictions about the residential and the commercial investors, the 

5th CE permits still profitable NPV indices, if the self-consumption is maximized. 

Fig. 1.9 shows the evolution of IRR index for all the investors: the two higher power 

sizes exhibit sensible gains in the interval 2009 − 2012, whereas in 2013 the values will 

go back to 2008 levels. 
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Fig. 1.9 − The time evolution of IRR for all the four PV systems in Italy. 

With reference to Germany, Figures 1.10, 1.11, 1.12, 1.13 show the economic indicators 

cI, pPV and npv in Germany. The evolution of NPV is similar couple by couple, i.e. the 

residential and 20 kWp investors have always positive values, usually higher than 0.3 

pu, while the 200 kWp and 1 MWp investors exhibit NPV  > 0 only since 2009 and 

2008, respectively, with increasing trend in the last years. In particular, the 20 kWp 

investment is the most profitable, the npv values are almost constant with a sensible 

increment in 2010 − 2012. Then, Fig. 1.14 shows the IRR graph, in which from 2006 to 

2009 the indicators are superimposed for all the investors, whereas in the range 2010 − 

2012 the medium size PV systems give the best economic gains. 
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Fig. 1.10 − The time evolution of the three quantities in the economic analysis for 3 kWp system in 

Germany. 

 
Fig. 1.11 − The time evolution of the three quantities in the economic analysis for 20 kWp system in 

Germany. 
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Fig. 1.12 − The time evolution of the three quantities in the economic analysis for 200 kWp system in 

Germany. 

 
Fig. 1.13 − The time evolution of the three quantities in the economic analysis for 1 MWp system in 

Germany. 
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Fig. 1.14 − The time evolution of IRR for all the four PV systems in Germany. 

Tables 1.11 and 1.12 shows the economic-analysis results, after 25 years of each 

considered type (1−4), in which: 

 npv (pu) is the NPV in per unit with respect to the initial cost of the investment; 

 Z-NPV-P (Zero NPV Period) is the number of years when NPV without loan become 

zero. 

Table 1.11 − Economic analysis results after 20 years of four Italian PV systems in 2012 
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Type npv  (pu) IRR
Z-NPV-P      

Years   

1 1,34 14,6% 8

2 1,66 16,7% 7

3 2,07 20,0% 6

4 2,22 21,2% 6
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Table 1.12 − Economic analysis results after 20 years of the four German PV systemsin 2012 

 

The Italian market ensures till 2012 major profit margins: the npv indexes are always 

higher than 100 % with peak up to 250 % with the industrial investor; the IRR 

parameters are always higher than 10 %. In Italian market the political incentive 

preserve large sizes of PV systems, in which the npv exceeds 200 % and the Zero NPV 

Period goes down to 6 years, whereas in Germany the feed-in tariff pushes the 

development of medium size PV plants. This is due to the great Italian productivity and 

the incentive mechanism has not yet reached the same maturity as in Germany. 

Comparing Table 1.11 and Table 1.12, for current year, there is a considerable 

convenience of PV market in Italy (with the 4th CE) for investors of the PV sector. 

An economic analysis should take into account a possible funding body (i.e., a bank). 

The financial indicators to evaluate the investment should be compared in cases where 

the initial capital for the installation of the PV system belongs to the investor or it is 

anticipated by the lender, according to the current conditions of major Italian and 

German banking groups. Therefore, the financing terms vary depending on the PV plant 

size and private or company investors: a strong difference in the economic conditions 

between Germany and Italy occurs. The investment up to 100,000 € can be totally 

loaned with interest rate of 6 – 8 % in Italy and 2 – 3 % in Germany. On the other hand, 

above this threshold, the investment is partially loaned (70 – 80 %) with interest rate 

around 10 % in Italy and 4 % in Germany with typical duration of 10 − 15 years [42], 

[43], [44], [45]. 

If we analyzed the results, the financing of investment would involve interesting NPV 

achievements, for a zero initial capital (small plants) or minimum (20 – 30 % of total). 

Type npv (pu) IRR
Z-NPV-P       

Years

1 0,42 6,0% 13

2 0,98 10,6% 9

3 0,48 10,3% 11

4 0,3 8,4% 13
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In particular, IRR without loan would be lower than the same with loan, corresponding 

to minimum risk. Infact,  IRR is not appropriate to measure the actual convenience of an 

investment, because it does not consider the comparison among the investment cases in 

terms of NPV, but it considers only the percentage efficiency. Hence, a little investment 

with a very high IRR can have a lower NPV than a great investment with lower IRR. In 

other cases, when the investment does not provide negative cash flows, IRR cannot be 

calculated. Finally, if the own capital is invested, even if with a lower IRR, a npv higher 

than the unity without any risk is obtained. Thus, the cases with loan are not presented 

in this context. 

1.5. Summary 

From statistical information in terms of learning curves the incentive policies 

bring to noticeable installation volume increments and cost decrements in the two main 

PV markets. The analysis presented in this work highlights the 2006 − 2012 profit 

margins of four different investments in rooftop PV systems, in which the 2012 

economic situation is, by far, more profitable in Italy with npv > 200 % of the 

installation cost after 20 years and IRR > 20 % in the industrial PV system with respect 

to the best German PV system, characterized by npv > 1 pu and IRR  10 %. 

The maturity of German feed-in tariff is substantially reached in the last seven years, 

because the NPV and IRR parameters are subject to limited fluctuations, thanks to 

timely legislator regulations after the decline of the installation costs, whereas in Italy 

the situation in the studied period is affected by a stop-and-go mode. Here, the political 

intervention was so slow that the incentive rates had a little decay in 2007 − 2010, when 

the worldwide economies of scale in PV modules achieved an impressive decrement in 

the global costs and the national huge irradiation permitted booming production 

revenues. Consequently, the exaggerate profits, particularly in the PV systems 

belonging to the megawatt size, have almost saturated the global funds in the Italian 

electricity bill. 
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Concerning the near future, two joint reasons create concern in Italy: with the new feed-

in tariff the 2013 economic indicators will drop close to the German levels, i.e., npv in 

the range 0.3 − 1.2 pu and IRR in the range 6 – 15 %; then, the rapid penetration of DG, 

as the PV systems, will require new grid-interface protections and new functionalities 

for the inverters in order to improve the network stability in case of unpredictable 

perturbations. Less problems are foreseen in Germany in these directions. 

Finally, the long-term and sustainable development of PV systems, already in grid 

parity in Southern Italy, will be concentrated in the residential and commercial sizes, 

where the energy saving is substantial and the grid connection is already available and 

poorly influenced by the intrinsic variations of the PV power profiles. 
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Introduction 

Roughly speaking, the grid-parity concept [46], [47] deals with the economic 

conditions which make the PV electricity as convenient as the electricity produced by 

the conventional centralised power stations (wholesale cost [48]) or delivered by the 

distribution system operators (retail cost [49]), thanks to the possibility to install PV 

plants near the consumers.  

The Levelized Cost of Electricity (LCOE) is a life-cycle cost concept which seeks to 

account for all physical assets and resources required to deliver one unit of electricity 

output [50], [51]. Installation cost of PV systems, their operation and maintenance costs, 

prices of electricity injection into the grid are items involved in the LCOE assessment. 

Obviously, the economic conditions depend on technical parameters as the reference 

yield, the performance ratio and the final yield of the PV systems, but now the 

impressive deployment of PV installations in Europe (as, for example, in the two main 

PV markets Germany and Italy) induces some technical barriers [52], [53], [54], [55] 

both at transmission level (e.g., the possibility of replacing substantial amount of 

generation from fossil fuels with intermittent sources as solar PV/wind power systems 

Chapter 2 

Photovoltaic grid-parity in the main 

European markets 
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in the national consumption profile) and at distribution level (e.g., the possibility of 

inverting the behaviour of passive lines with risk of overvoltage and in general voltage 

rise for the grid transformers). 

Usually, the cost of electricity from utility grid is referred to the consumption in terms 

of €/kWh, but for deeper insight the cost consists of three contributions, the variable 

cost function of the consumed energy (generation, transmission, distribution, taxes, 

incentives for renewable energies, etc.) and two fixed costs, one depending on the 

delivery/exchange contract, the other depending on the available power. 

Therefore, the transmission/distribution limits and the fixed costs must be taken into 

account in the grid-parity analysis with respect to the photovoltaic systems. 

This chapter is devoted to the comprehensive study of the conditions, both technical and 

economic, needed for the true achievement of grid parity in regards to the photovoltaic 

electricity. The PV systems under study are those on the rooftop, i.e., close to the users, 

belonging to residential and tertiary sectors, and thus the reference cost is the retail 

electricity price. The chapter starts from the technical barriers (at distribution levels), 

then it examines the hidden costs within the electricity bill, prior to present the financial 

analysis of investment, based on the PV installation cost and the solar irradiation, which 

permit to achieve the full competitiveness with the retail electricity cost. 

2.1. Technical barriers in the development of PV 

rooftop systems 

2.1.1. Theoretical background 

In the past, most of the distribution networks at high, medium and low voltage 

level, was designed in order to operate in radial configuration with a single source [56]. 
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With this kind of network, the power flow is from the substation to the loads in every 

point of the grid. On the other hand, in presence of DG as the one from PV systems, i.e., 

when the network has multiple sources, it is possible to have power flow in reverse 

direction, from DG units to the substations. In this case, it is possible to define power 

penetration as the percentage of DG power referred to the rated power of the 

distribution transformer. The reverse power flow is the main problem that makes the 

integration of DG units not easy: the distribution limit (bottleneck) is prevailing on the 

transmission limit that is not considered in this work. Obviously, a grid-connected PV 

system increases the voltage in its point of common coupling (PCC). 

The grid behaviour is assumed as that of a Thévenin generator, in which the voltage 

source ETh and the equivalent impedance ZTh take into account different contributions: 

 the e.m.f. of secondary windings of the distribution transformer ET; 

 the primary grid impedance ZMVg (in other terms the short circuit power of the grid in 

that point) and the short circuit impedance of the distribution transformer ZscT; 

 the impedances of the distribution lines ZLVl (by neglecting the capacitive parameters 

if they are below a given limit) ZLVl2; 

 the corresponding impedances ZL of the loads supplied by these lines (however, 

many times, it is not possible to define a constant impedance when the loads are non-

linear as occurs for power electronics, discharge lamps, electro-magnetic machines in 

no-load condition,…). 

Fig. 2.1 shows an example with two lines and two loads. The value of the equivalent 

impedance named as Zgrid, seen by the DG unit, depends on the PCC: if it is at the 

beginning of the lines, near the transformer, as in case (a), the voltage drop and power 

losses of the lines are not influenced; the situation changes if it is at the end, near the 

loads, as in case (b) with the line which supplies the load ZL2. Usually, as a first 

approximation, the impedance of the loads are considered infinite in the calculation of 

Zgrid and so in the case (a) it results:  
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Zgrid = ZMVg + ZscT  (2.1) 

 

while in the case (b) it results:  

Zgrid = ZMVg + ZscT + ZLVl2  (2.2) 

In the latter case, the value of Zgrid could be so high that the PV power capacity should 

be reduced, in order to satisfy the constraints for transformer and lines of the network in 

terms of power losses, voltage variation, unbalance, harmonics and so on. 

 
Fig. 2.1 − PCC at the beginning or at the end of the LV lines. 

2.1.2. Application to residential and tertiary-sector users 

From this simple case it is clear that every distribution grid must be examined in 

order to assess the maximum penetration of PV generation. In this work two real case 

studies are presented, in which the typical users are different, in one case they are 

residential users and in the other one they belong mainly to the tertiary sector. These 

case studies deal with a big city, in which the commercial users are concentrated in 

downtown and the residential users are concentrated in outskirts: thus, the grid is 

particularly strong compared with rural areas. In a national energy balance, e.g. from 

Eurostat database [57], the residential loads account for 20-30 % of the total 

consumption, as well as the tertiary-sector loads; hence, these two types of loads cover 

above 50 % of grid electricity. The corresponding load profiles depend on the actions of 

ET
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the people, in other words with residential loads people stay at home in the first part of 

the morning and in the final part of the evening, while around the noon the consumption 

is relatively low. Contrary, with the tertiary sector the consumption is concentrated in 

the central part of the day (the usual 8-hour work period plus lunch), that permits a 

better matching with the PV power profile. 

In details, the starting data for the PV penetration study include (Table 2.1(a) and 

2.1(b)): 

 the power rating of the distribution transformer, equipped with no-load tap changer, 

and the short circuit parameters (voltage in percent corresponding to the rated current, 

power losses in percent); 

 the section and length of the cables with the corresponding current rating (ampacity); 

 the weekly monitoring of the three-phase currents and active power, since the power 

factor is always higher than 0.9. 

From these well-known parameters one can calculate the grid impedance, with the 

abovementioned approximation, for the two application cases. 

Concerning the residential users, the grid impedance of each line is within 35 − 41 m, 

the resistive component is within 18 − 22 m, whereas the inductive component is 30 − 

34 m. In this situation it is not advisable to use the ampacity of every distribution line, 

owing to both the consequent transformer overload and the excessive voltage drops (> 4 

% of the rated value). Actually, the weekly monitoring puts into evidence that the 

loading in the three distribution lines is generally weak (up to 35 − 50 % of the 

ampacity), as well as the voltage drops ( 1.9 %). 
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Table 2.1 − The main specifications of MV-LV distribution systems of: 
(a) residential users (b) tertiary sector users 

    
 

Concerning the tertiary sector users, the transformer has the same size, the distribution 

lines have the same section but different lengths and thus the grid impedances are in the 

range 34 − 38 m, the resistive component is within 17 − 20 m, whereas the inductive 

component is 30 − 33 m. Similar remarks can be done as in the previous case, even if 

the loading and voltage drops are generally higher (up to 60 % of the ampacity and 2.1 

%, respectively). 

For PV penetration study, by assuming a pessimistic guess (rule of thumb), one can 

consider the month with maximum irradiation in clear-sky day, in which also the 

commercial/residential loads are particularly huge, due to the air cooling demand: the 

summer solstice, obviously, occurs in June at North latitudes with peak irradiance Gp = 

960 W/m2 in Turin, Italy. Then, it is possible to simulate the connection of rooftop PV 

systems by a simplified model [58] which involves the direct proportionality with the 

solar irradiance without the various sources of losses (unitary performance ratio). 

Certainly, the rated power (named “watt-peak” at Standard Test Conditions) of a PV 

device, measured when it is subject to irradiance GSTC = 1000 W/m2 and temperature 

TSTC = 25 °C, is needed for the simulation. For what concerns the power factor of a PV 

inverter, the reactive power at the output is negligible. 

On the basis of this information about MV−LV distribution, Figures 2.2, 2.3, 2.4 show 

the experimental comparison among residential/tertiary users in work days and 

holidays. In particular, within the week of monitoring, for the residential-users in Fig. 

Power rating V SC % P SC %

400 kVA 6 1.2

Section Length Ampacity

150 mm
2

116 m 357 A

150 mm
2

105 m 357 A

120 mm
2

70 m 310 A

Transformer 22 kV / 0.4 kV

LV Lines

Power rating V SC % P SC %

400 kVA 6 1.2

Section Length Ampacity

150 mm
2

97 m 357 A

150 mm
2

85 m 357 A

120 mm
2

64 m 310 A

Transformer 22 kV / 0.4 kV

LV Lines
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2.2 it has been selected the day with both the maximum peak PLmax = 261 kW occurring 

in the evening, and the minimum peak PLmin considering only the sunlight hours (from 9 

a.m. to 5 p.m.), due to the practical similarity of the profiles day by day. Then, in the 

tertiary-sector loads the day with maximum power load (Fig. 2.3 with PLmax = 304 kW) 

and the day with minimum power during the weekend (Fig. 2.4) are examined for 

including the best and the worst cases. 

 

 
Fig. 2.2 − The daily profile of residential loads and two possible PV profiles. 
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Fig. 2.3 − The work-day profile of tertiary loads and the limit PV profile. 

 
Fig. 2.4 − The Saturday profile of tertiary loads and the limit PV profile with reverse flow. 
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After that, it is possible to simulate the connection of rooftop PV systems (25° tilt angle 

towards South) at the end of the distribution lines. 

Both for residential and tertiary sector loads, the condition for maximum penetration 

can be stated in such a way as to limit the PV power profile PPVlim below the load profile 

PL in every sunlight situation (PLmin = 139 kW for residential loads and PLmin = 229 kW 

for tertiary-sector users). As per the red PV profile, corresponding to a peak power of 

145 kWp, in Fig. 2.2 no reversal of the power flow, in order to avoid possible 

unpredicted reduction of the load. Likewise, Fig. 2.3 shows the generated power of 240-

kWp photovoltaic systems without reverse injection into the grid. 

Therefore, the estimations of PV penetration, for all the two types of users, are rounded 

with pessimistic assumption, due to the possibility to increment the peak power taking 

into account the actual losses (I-V mismatch due to manufacturing tolerance, dirt, over-

temperatures with respect to 25 °C, inverter efficiency, etc.) and non-optimal sun 

exposition. 

Otherwise, if at the higher voltage level (MV or HV) of the distribution transformer the 

control is able to manage (e.g., by on-load tap-changer or, more recently, “electronic 

transformer”) the reverse power flows, it is feasible to load the distribution lines with 

negative active power (i.e., from the end to the start of the lines by means of PV 

generation) and with absorbed reactive power that counteracts the tendency to voltage 

rise (in the same way as the inductive behaviour of the loads). 

In this case, in Fig. 2.2 a power rating of 420 kWp, higher than the size of the 

transformer, generates the green curve PPVrev, in which the reverse flow is limited to the 

interval between 9 a.m. and 5 p.m. 

With reference to the tertiary loads in June, since the work days give much higher 

consumption (Monday-Friday in Fig. 2.3 with peak load PLmax = 304 kW), in the 

weekend a reverse flow, due to 240-kWp photovoltaic systems, occurs in the interval 10 

a.m. – 4:30 p.m., without causing voltage-rise problems (Fig. 2.4). 
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The most important results in these different situations (no reverse flow for residential 

users and reverse flow limited to the weekend period for tertiary-sector users) are 

expressed in terms of the following factors: 

 the peak power of the PV systems as a percentage of the power rating of the 

distribution-transformer µPV-trnsf or of the peak load µPV-load: µPV-trnsf = 36 % and µPV-load 

= 56 % for residential users, µPV-trnsf = 60 % and µPV-load = 79 % for tertiary users, 

respectively; 

 the ratioE= EPV/Eload defined as the PV energy production to the energy 

consumption: E = 28 % without reverse flow for residential users, E= 41 % in the 

work days and E= 57 % in the weekend for tertiary users, respectively. 

To know more in depth the PV penetration parameters, other consumption profiles of 

residential and tertiary sector users, with similar supply conditions defined in Table 

2.1(a) and 2.1(b), have been measured. Applying the previous procedure to calculate the 

PV peak powers through the maximum and minimum load powers, one is able to 

provide the readers a range of the factors µPV-trnsf, µPV-load andE. In particular, two 

additional profiles of residential users (Fig. 2.5) and four additional profiles of tertiary-

sector users (Fig. 2.6) are presented. About the residential users, the ranges are µPV-trnsf = 

30  36 %, µPV-load = 56  73 %, and E = 28  31 %, whereas, for the tertiary sector 

users in the work days, the ranges are µPV-trnsf = 19  60 %, µPV-load = 69  79 %, and E 

= 41  48 %. 
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Fig. 2.5 −Two additional residential profiles with in evidence maximum and minimum peak powers. 

 
Fig. 2.6 − Four additional tertiary-sector profiles. 
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Finally, these PV penetration results are achievable without any upgrading of the 

distribution systems. Hence, the further analysis in the following sections is valid under 

the assumption that the future PV installations in grid parity do not approach the 

abovementioned limits, otherwise it is clear that the electricity tariff will increase, due 

to the investments in the upgrading of the distribution system.  

In fact, the PV penetration levels can be boosted, whenever the distribution system 

operator installs new distribution lines and/or transformers. In addition, storage systems 

of both the PV systems and the distribution system operator can provide further 

increment in PV penetration levels. 

2.1.3. The structure of the electricity bill 

Within the framework [59], [60], [61], [62], [63] of either the net-metering 

(Germany) or the on-site exchange (Italy with different prices between the electricity 

sold to the grid and the electricity purchased by the utilities), three case studies about 

dwelling houses, common usages of apartment blocks and tertiary-sector consumers are 

studied in special detail. 

As previously said, the tariff can have three contributions on yearly basis: the contract 

cost in €/customer, the power cost in €/kW and the consumption cost in €/kWh are 

distinguished in Italy. Otherwise, the fixed cost is independent from the available 

power, as occurs in Germany. 

These fixed costs, for a given voltage level (low LV – medium MV - high HV) and type 

of connection (single-phase and three-phase), are mainly expressed according to: 

1. the delivery contract before the PV system connection or the exchange contract after 

it between the utility and the customer, that include administrative costs and the 

metering service (€/customer); 
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2. the available power that includes the investments in the construction of centralized 

power stations, power transformers, transmission/distribution lines, made by the 

electricity companies (€/kW). 

The tariff for the single residential households, the common loads of apartment-blocks 

(e.g., lift, night-lamps, auxiliary pumps, electric gates, surveillance devices, etc.) and the 

MV industrial/tertiary-sector customers (with contract power up to 200 kW) are 

different.  

For the residential customers about the dwelling house, the total consumption in kWh is 

subdivided into 4 ranges: 0−1800; 1801−2640; 2641−4400; >4400. The consumption 

cost increases from the first to the fourth range and the amounts, corresponding to the 

third and the fourth, are much greater than the first two ranges. In this case the fixed 

costs are kept low, because electricity is assumed as a primary welfare. 

For the common loads of the apartment-blocks (usually three-phase), the fixed costs 

(i.e., contract and power items) are much greater than the corresponding costs for 

residential, whereas the consumption cost is similar to the second range of residential 

cost without subdivision into ranges. 

For the industrial/tertiary-sector customers, which need to install their own MV/LV 

transformation system, the fixed costs are only slightly lower than the previous LV 

level, even if the supply is performed at MV level. The working hours, mainly during 

the sunlight ones, determine the peak-load hours in which the consumption cost is 

maximum, then the night-hours and holidays define the off-peak periods with minimum 

consumption cost. Finally, in the mid-level hours the consumption cost is intermediate 

among the two mentioned costs. 

The case studies in the successive section are based on actual electricity bills from Italy 

and Germany, the two main PV markets in the period 2010 − 2012. 
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The first case study (dwelling house) is characterized by these data: 

 yearly consumption of 4500 kWh with 3-kW available power from the utility (Italy); 

 fixed costs CF = 92 € (Italy) and CF = 85 € (Germany); 

 energy cost, i.e. money saving sPV = 0.182 €/kWh (Italy), and amounts sold to the 

grid pPV
*= 0.128 €/kWh (on-site exchange in Italy) or pPV = 0.26 €/kWh (mean tariff, 

applied in Germany for typical consumption of 4 persons and used for net metering). 

The second case study (common loads of apartment-block) is characterized by these 

data: 

 yearly consumption of 6000 kWh with 10-kW available power from the utility 

(Italy); 

 fixed costs CF = 609 € (Italy, with huge impact in the consequent results) and CF = 85 

€ (Germany); 

 energy cost, i.e. money saving, sPV = 0.195 €/kWh (Italy), and amounts sold to the 

grid pPV
*= 0.128 €/kWh (on-site exchange in Italy) or pPV = 0.26 €/kWh (used for net 

metering in Germany). 

The third case study (tertiary-sector loads) is characterized by these data: 

 yearly consumption of 330,000 kWh with 200-kW available power from the utility 

(Italy); 

 fixed costs CF= 4538 € (Italy) and CF = 164 € (Germany); 

 energy cost, i.e. money saving, sPV = 0.208 €/kWh (Italy), and amounts sold to the 

grid pPV
*= 0.11 €/kWh (on-site exchange in Italy) or pPV = 0.196 €/kWh (used for net 

metering in Germany). 
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2.2. PV grid parity in three case studies 

2.2.1. Methodology 

Generally speaking, the production of goods or services follows the experience 

curve (or learning curve). Each time cumulative volume doubles, value added costs 

(including manufacturing, marketing, distribution, etc.) fall by a constant percentage. It 

is worth noting that every doubling in the market volume corresponds to about -19 % 

reduction in the installation cost and about -25 % reduction in the PV module cost [64], 

[65]. In the further case studies, the specific installation costs cI are considered within 

the range 1400-2500 €/kWp [66]. 

As already seen in chapter 1, for the determination of the cost effectiveness of an 

investment, as for example the electricity production, with respect to other investments, 

a conventional method implies the assessment of the NPV during the PV plant life (25 

years with guaranteed performance). 

In this case, the parameters which influence the yearly NPV calculation are: 

 the installation cost CI in €/y, assuming that the capital is totally paid by the investor 

(100 % equity); 

 the rated power PPVr in kWp of the PV system (declared by the manufacturer); 

 the yearly Revenues, RPV in €/y, calculated as either the product of PV energy 

production EAC with the electricity price pPV (net-metering in Germany) or the sum of 

two contributions (on-site exchange in Italy), in which the first one is the product of the 

energy delivered to the grid (different according to residential/tertiary-sector loads) with 

the corresponding price p*
PV; the second one is the product of the self-consumed energy 

(different according to residential/tertiary-sector loads) with the money saving sPV (cost 

avoided from the utility bill); 

 the yearly Operation and Maintenance cost COM in €/y; 
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 the fixed costs CF in€/y; 

 the real interest rate i*. 

Actually, the real interest rate i* takes into account the effect of the inflation rate f 

(according to the inflation rate of electricity production, 1 – 2 % in Germany and 2 – 6 

% in Italy, mainly based on fossil fuels) that reduces the basic interest rate i. Due to the 

different economic situations between the two Countries as shown in [67], the interest 

rates are i =3 – 6 % in Germany and i =4 – 10 % in Italy. Thus, the corresponding real 

interest rates are calculated by the known formula, eq. (1.2). 

The interest rate is equal to the rate of return on the capital with low risk [68] (long-term 

government bonds, e.g. German “bund” or Italian “BTP”). 

Therefore, it is possible to define the NPV after N years of cash flows, in our case after 

25 years of operation, as: 

   



N

k
iCCRCNPV

k

FkOMkPVI

1
1 *

,,  (2.3) 

Assuming the revenues, the O&M and fixed costs constant, the previous formula can be 

rewritten as: 

  


N

k

k

FOMPVI iCCRCNPV
1

*11)(  (2.4) 

If the well-known summation (the reciprocal of the capital recovery factor) is replaced, 

NPV equation becomes: 

     **11 iiCCRCNPV
N

FOMPVI

  (2.5) 

In the economic analysis of a grid-connected PV system, it is required to calculate the 

yearly electricity production at the AC terminals (EAC). Therefore, according to [69], as 

previously seen in chapter 1, the used expression for EAC is the eq. (1.8). 
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By the final yield Yf, it is possible to calculate the required peak power, in such a way as 

to compensate for the yearly consumption in the different case studies. 

Actually, it is possible to calculate the revenues from electricity according to the 

productivity of the PV system and the net-metering or the on-site exchange 

mechanisms: 

PVfPVrPV pYPR    or   SPVfPVrSPVfPVrPV sYPpYPR   1*  (2.6) 

where, as a first approximation, the share of sold energy αS = 0.7 with residential loads 

and αS = 0.3 with tertiary sector loads. 

For comparison between PV systems of different size, the NPV equation can be divided 

by the rated power PPVr in the net-metering case for the sake of simplicity [70] 

     **11 iiPCcYpcPNPV
N

PVrFOMfPVIPVr

  (2.7) 

where: 

PVrII PCc   is the specific installation cost in €/kWp; 

IOMIOM CCcc   is the O&M cost expressed as a percentage (1 %) of the specific 

installation cost, essentially for the cleaning of PV modules, replace of inverters and 

energy monitoring cost [71],[72]. 

2.2.2 Simulation results 

Global irradiation data are available on the PVGIS website [73]. Average values 

of 10 years are considered accurate and representative. Table 2.2 and Table 2.3 report 

the energy assessment parameters of the twenty German/Italian major cities with the 

peak powers for all the three case studies A, B and C (tilt angles of 35°/25°). 
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The trend of NPV, as a function of the installation cost, is linear with negative slope; 

each line is shifted towards the bottom by increasing the real interest rate. The intercept 

of NPV with the horizontal axis represents the starting condition of cost effectiveness 

for a PV system in grid parity. The overall results from Matlab® software are presented 

only for two cities, the best and the worst ones, Düsseldorf and Munich in Germany, 

Trento and Palermo in Italy, chosen with the purpose of covering different weather 

conditions. 

 

Table 2.2 − Parameters for energy assessment (PVGIS site) for the major German cities. 

 

  

German 
major cities

Yr   

(h/y)

PR       

(% )

Yf    

(h/y)

P PVr (A) 

(kW )

P PVr (B) 

(kW )

P PVr (C) 

(kW )

Berlin 1150 78.1 891 5.1 6.7 370

Bremen 1100 78.2 857 5.3 7 385

Dorthmund 1090 78.1 847 5.3 7.1 390

Dresden 1130 78.6 882 5.1 6.8 374

Düsseldorf 1090 78 846 5.3 7.1 390

Erfurt 1130 78.5 887 5.1 6.8 372

Essen 1090 78 848 5.3 7.1 389

Frankfurt 1150 78.2 894 5 6.7 369

Hamburg 1100 78.4 861 5.2 7 383

Hannover 1090 78.5 852 5.3 7 387

Kiel 1130 78.1 879 5.1 6.8 375

Köln 1090 78.1 849 5.3 7.1 389

Leipzig 1120 78.5 877 5.1 6.8 376

Magdeburg 1100 78.4 858 5.2 7 385

Mainz 1160 78.1 899 5 6.7 367

Mϋnchen 1310 78.7 1030 4.4 5.8 320

Saarbrücken 1200 78 929 4.8 6.5 355

Schwerin 1130 78.5 886 5.1 6.8 372

Stuttgart 1220 78.2 948 4.7 6.3 348

Wiesbaden 1150 78.2 895 5 6.7 369
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Table 2.3 − Energy assessment (PVGIS site) for the major Italian cities. 

 

Basically, we can claim that the geographic location has a strong impact in grid-parity 

fulfilment and thus the ranking of all the cities is ordered according to Southern zone 

(first positions), Central zone (intermediate positions) and Northern zone (last 

positions).  

However, there are significant exceptions as, for example, Berlin and Aosta, in which 

Northern sites exhibit energy production similar to Central zone of Germany and Italy, 

respectively. Other particularities involve: Munich and Stuttgart, in which the Eastern 

city gives greater yields than the Western city, even if the latitudes are very close; Aosta 

and Trento, in which the first one (Western city) behaves much better than the other at 

nearly the same latitude.  

Italian 
major cities

Yr   

(h/y)

PR       

(% )

Yf    

(h/y)

P PVr (A) 

(kW )

P PVr (B) 

(kW )

P PVr (C) 

(kW )

Ancona 1640 76.4 1250 3.6 4.8 264

Aosta 1580 76.9 1210 3.7 5 273

Bari 1800 75.5 1350 3.3 4.4 244

Bologna 1420 76.6 1090 4.1 5.5 303

Cagliari 1830 75.8 1380 3.3 4.3 239

Campobasso 1690 76.9 1300 3.5 4.6 254

Catanzaro 1730 76.1 1310 3.4 4.6 252

Firenze 1530 76.4 1130 4 5.3 292

Genova 1540 76.5 1170 3.8 5.1 282

L'Aquila 1620 77.4 1250 3.6 4.8 264

Milano 1450 77.5 1120 4 5.4 295

Napoli 1680 75.6 1260 3.6 4.8 262

Palermo 1860 75.9 1410 3.2 4.3 234

Perugia 1590 76.3 1210 3.7 5 273

Potenza 1780 76.4 1350 3.3 4.4 244

Roma 1660 76.4 1260 3.6 4.8 262

Torino 1540 77.7 1190 3.8 5 277

Trento 1370 77.2 1050 4.3 5.7 314

Trieste 1440 77 1100 4.1 5.5 300

Venezia 1440 76.6 1100 4.1 5.5 300
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Moreover, two cities, Palermo and Cagliari, located in islands (Sicily and Sardinia, 

respectively) reach the first places in PV productivities. Then, the relative deviations of 

the German cities in the performance ( ±10 % of the average value) are reduced with 

respect to the deviations of the Italian cities ( ±15 %).  

Fig. 2.7 shows the outputs for a “dwelling-house” (case A), in which with a real interest 

rates of 2 % the limit for installation cost in grid parity is achieved in Germany, because 

the 2012 cost is within 2000  2400 €/kWp [66]. 

On the other hand, in Fig. 2.8 the corresponding limit for grid parity in Italy is almost 

reached, since the 2012 cost is 2500  2800 €/kWp [66], indicating that the grid parity is 

near to be achieved also in Northern Italy. Reference [74] provides similar results for 

this case study. 

Fig. 2.9 shows the same results for the common loads of “apartment-block” (case B), in 

which only the German cities provide the grid-parity conditions with real interest rate of 

3 % and 2012 installation cost in the range 1800  2200 €/kWp [66]. 

Finally, Fig. 2.10 and Fig. 2.11 are related to the “tertiary sector” (case C), in which the 

grid parity conditions with a real interest rate of 4 % are fulfilled, due to the 2012 

installation cost is comprised in the range 1400  1500 €/kWp in Germany and in the 

range 1500  1700 €/kWp in Italy [66]. 

The fulfilment of the grid parity is highlighted in Table 2.2 and Table 2.3, where the PV 

rated power for each case and each city is written in green colour, otherwise the same 

power is written in red colour. In conclusion, the PV systems which cannot achieve the 

grid parity are uniquely in Italy and are dwelling houses in Northern zone and all the 

common loads of apartment blocks. 
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Fig. 2.7 − PV grid parity conditions for dwelling house in Düsseldorf and München (Germany). 
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Fig. 2.8 − PV grid parity conditions for dwelling house in Trento and Palermo (Italy). 
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Fig. 2.9 − PV grid parity conditions for common loads of apartment-block in Düsseldorf and München 

(Germany). 
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Fig. 2.10 − PV grid parity conditions for tertiary-sector loads in Düsseldorf and Munich (Germany). 
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Fig. 2.11 − PV grid parity conditions for tertiary-sector loads in Trento and Palermo (Italy). 
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2.3. Summary 

In this chapter a new concept of photovoltaic grid parity is presented, with 

reference to three typical case studies, by including the distribution-network limits and 

the fixed costs of the electricity bills. 

In regards to the residential/tertiary sector loads, real cases from medium-voltage 

distribution systems are described, in which the ratio of the admissible PV peak power 

to the peak load reaches 73 % for residential users and 79 % for tertiary-sector users, 

whereas the corresponding energy ratio goes up to 31 % for residential users and 48 % 

for tertiary-users in work days without reversal of the power flow. 

The electricity bills have been deeply analysed for dwelling houses, common loads of 

apartment blocks and tertiary-sector users: in Germany the fixed costs are generally 

negligible, whereas in Italy the “available power” item charges a heavy fee for the 

common loads of apartment blocks. 

Therefore, the grid parity problem is analysed as an investment in which the net present 

value is the tool for proving the cost effectiveness or not of the installation of a 

photovoltaic plant. 

The main results, shown in the maximum spread of irradiation depending on the 

installation-sites, take into account the different economic situation in the Countries by 

the interest rates of 3 – 6 % in Germany and 4 – 10 % in Italy. In details, the grid parity 

for dwelling houses is reached in Germany and Central/Southern Italy, whereas it is 

almost achieved in Northern Italy. For the common users in apartment-blocks the grid 

parity is reached in Germany, while it is unrealistic to be reached in Italy with the 

current economic/regulatory situation. Finally, for the tertiary-sector users the grid 

parity is reached in Germany and in Italy. 
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Introduction 

The operation of grid-connected PV systems is characterized by several 

uncertainties due to the irradiance variations, the number of currently operating units, the 

points where these units are sited, the power rating and the injection of harmonic 

currents. Models have been developed for the calculation of power flows, harmonics and 

voltages in the feeders [75]-[78]. A PV array can be modeled as an irradiance-driven 

current generator, with a proper Maximum Power Point (MPP) tracking algorithm; it is 

connected to the network via a PV inverter. 

Other models have been successfully used to determine the power output series of a PV 

plant of any size using only irradiance measurements. From the operator viewpoint, this 

can be a powerful tool to study the integration of PV plants in the power network, 

providing artificial power output series for the grid operator in his simulation software. 

Maximum power fluctuation is needed to establish the maximum permitted PV 

penetration rate at a particular grid. As expected, due to the big surface covered by a PV 

plant in comparison with the discrete character of a irradiance sensor, the power curve is 

significantly smoother than the irradiance curve [79]. Moreover, a wavelet variability 

Chapter 3 

Accurate measurements of solar 

irradiance 



                                                                                                                                                Chapter 3 

68 
 

model (WVM) for simulating PV power output, given time series of single irradiance 

sensor using spatio-temporal correlations, is described in [80]. 

The acceptable penetration level of PV systems is under investigation, especially today 

when e.g. about 30 GWp in Germany and 16 GWp in Italy have been connected to the 

grid (PV power rating corresponding to 1000 W/m2 and 25 °C, i.e., Standard Test 

Conditions, STC). In order to enhance the penetration of the intermittent PV power into 

the network, it is important to measure as correctly as possible the solar irradiance both 

by pyranometers, which exhibit relative uncertainties of 1 % − 2 %, and by reference 

solar cells with higher uncertainties around 2.5 % − 5 %. These two types of instrument 

have intrinsically low accuracy for different reasons: 

 the pyranometer, based on the Seebeck effect (thermocouple), with wide (0.3 − 3 

m) and constant spectral response in function of the wavelength, has low sensitivity (a 

few µV/W·m-2) and requires an electronic amplifier with consequent repetitive 

calibration and maintenance; 

 the reference solar cell in crystalline silicon has narrow ( 0.3 − 1.1 m) and variable 

spectral response and sensitive to deviations from the STC solar spectrum, but have the 

same spectral response of the PV modules with higher sensitivity (tens of mA/W·m-2). 

Another difference concerns the response time that is 5 − 20 s for the pyranometer and 

less than 1 ms for the reference solar cells. The directional error, i.e., linked to the angle 

of the solar beam with respect to the vector normal to the surface, is typically lower for 

pyranometer than for reference solar cell. 

From the previous considerations it can be understood the interest for an experimental 

campaign for comparing the outdoor performance of different irradiance-meters. 

In this chapter it is presented a comprehensive study of sensors placed both in horizontal 

position and in tilted one. In particular, five meteorological stations have been installed 

in different location in South of Italy. The checking of the measurement uncertainty has 

been carried out for guaranteeing the reliability of the results. The study includes various 
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The main specifications of the pyranometers are:  

 spectral range from 0.285 m to 2.8 m; 

 sensitivity 7 − 14 V/Wm-2; 

 response time  5 s; 

 zero offset < 10 W/m2; 

 directional error (up to 80° with 1000 W/m² beam) < 10 W/m2. 

The calibration procedure, carried out by the manufacturer, can be performed by 

comparison with a Primary Standard subject to the actual solar spectrum or by a sun-

simulator. 

The tilt angle of the solar cells is 30°, with South orientation, for optimizing the solar 

energy capture. The time step for all the stored parameters is 1 min, value useful for the 

electricity market, in which supply and demand are matched, every 15 min, according to 

the updates of bids and offers. 

The absolute uncertainty of the pyranometer (Gpyr  10 − 20 W/m2) is the starting point 

for the computation of the corresponding uncertainties [81] for the daily/monthly 

irradiations in kWh·m-2. 

The formula of propagation of relative uncertainty Hh for the irradiation Hh is the 

following with k index of the measurements during the sunlight period: 

    
k

hk
k

GhkhktHh GG   (3.1) 

in which the relative uncertainty of the “time” quantity t is considered negligible with 

respect to the relative uncertainty Ghk of the “irradiance” quantity Ghk. 

Hence, the expression is coincident with the weighted average of the relative 

uncertainties Ghk by the irradiance values. Typical values of uncertainties are ± 250 

Wh/m2 on daily basis and ± 7.5 kWh/m2 on monthly basis in spring/summer period. 



                                                                                                                                                Chapter 3 

71 
 

Furthermore, these values are the threshold within which the measurements of the solar 

cells must be included for having the label of “acceptable values”. The recorded 

measurements are extended to 1 year, from January 2012 to December 2012. The 

missing values in the five stations are limited to a few days. Tables of event have been 

compiled for 12-month period, in which the lack of data lasts for 1 day and a half at 

maximum; the regular data are obviously recorded. Finally, it can be stated that the 

availability of the two stations is at least 99 %. 

3.2. Quasi-instantaneous quantities during a single 

day 

Starting from the summer period, it is possible to note in Fig. 3.2 the different 

behavior of the horizontal irradiances Gpyr, Ghcell vs. the tilted one Gtcell. in a clear-sky 

day. Actually, in July in the morning till 11 a.m. and in the afternoon after 3 p.m., Gpyr is 

higher than Gtcell, whereas only in 4 hours the tilted plane collects more solar radiation 

than the horizontal plane. In particular, at midday the sun-height is  70° and it is 

reasonable that the direct beam is closer to the normal in case of tilted plane ( 1000 

W/m2) than in case of horizontal plane ( 960 W/m2). About the ambient temperature 

Tamb and the relative humidity RH, they have a “complementary” behavior in clear-sky 

conditions. When Tamb achieves peak values around 35 °C in the interval 2 − 5 p.m., RH 

decreases down to the minimum values around 30 %. On the other hand, the peak values 

of RH at sunrise ( 6 a.m.) and at midnight ( 80 %) are corresponding to the minimum 

values of Tamb ( 20°C). 

The days with “broken clouds” exhibit a special behavior, in which the sky is mainly 

clear, but the passage of clouds affects the irradiance evolution. When the obstruction of 

the clouds occurs, the irradiance is attenuated, but when the clouds are around the Sun, 

the beam irradiance is amplified and so the peak values can rise up to 1200 W/m2 (Fig. 

3.3). This situation corresponds to 20 % more irradiance than STC. Furthermore, steep G 
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The analysis of days with completely cloudy sky is very difficult in summer, since many 

times, e.g. in July, there are not situations in which the only diffuse irradiance is present. 

If one considers the winter data in clear sky days, the more evident result is the 

impressive increment in the irradiance on the tilt angle with respect to the horizontal 

irradiance. Indeed, the peak value of Gtcell exceeds by far 800 W/m2, while the 

corresponding Gpyr is less than 500 W/m2 (Fig. 3.4). With low sun heights it is possible 

to have shade on the sensors, as in case of the morning at 7:30 − 8:00 a.m.. Moreover, 

the discussion about RH brings to higher impact than in the summer, since there are more 

than 12 h with RH > 80 %; then, the minimum value is, however, about 45 %. 

Also in this season, the “broken clouds” phenomenon produces peak values of irradiance 

very close to 1000 W/m2 or, in other words, it overcomes by far ( 20 %) the values with 

clear sky condition. 

In winter it is easier the analysis of days with completely cloudy sky, even if the types of 

diffuse radiation are many, since the color is variable from blue to grey. In fact, Fig. 3.5 

shows an example, in which the irradiance evolution is always below 100 W/m2 and no 

practical difference happens between horizontal and tilt quantities. Furthermore, the 

ambient temperature is subject to little variations (about 8 °C) and the relative humidity 

is above 70 % along nearly 20 hours. 
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3.3. Monthly quantities for a whole year 

After the study of the daily evolution of the quantities, the monthly and yearly 

behavior are here summarized. 

Firstly, it is needed to note that the measurements of the solar cells are generally within 

the measurement uncertainty of the pyranometer in spring-summer period. In particular, 

the values from the solar cells are slightly lower than those from the pyranometer. In 

winter, in some conditions, the deviations of solar-cell sensors exceed the uncertainty of 

pyranometer with sensors placed on the horizontal plane, due to the great directional 

errors of solar cells when the angles between the sun beam and the normal to the surface 

are higher than 60°. On the other hand, the deviations of solar-cell sensors are within the 

pyranometer uncertainty, when the sensors are installed on the tilted plane. 

Table 3.1(a) and Table 3.1(b) report, from January 2012 to December 2012, the percent 

deviations of the horizontal solar cell 1 and horizontal solar cell 2 respectively, vs. the 

pyranometer for the five meteorological stations. From these table, it is worth noted that 

in the month of August, the minimum deviations for the horizontal solar cell 2, within 

±12 % (but less than percent in some months), is achieved by the stations “Gi”. The 

station “Ma” achieves the minimum deviations within ±5 − 6 % both for the horizontal 

solar cells 1 and 2. 

Table 3.2(a) and 3.2(b) show, in the same interval, the percent deviations of the tilted 

solar cell 1 and tilted solar cell 2 respectively, vs. the pyranometer for the same stations. 

Here, the minimum deviations, within ±9 %, are achieved by the station “Ma”. In this 

case the pyranometer measurements are corrected by a suitable procedure which takes 

into account many quantities as, for example, the extra-terrestrial horizontal irradiation 

and the clearness index [82], [83]. 
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Table 3.1− (a) Monthly deviation of the horizontal solar cell 1 vs. pyranometer (year 2012). 

 

 

Table 3.1 − (b) Monthly deviation of the horizontal solar cell 2 vs. pyranometer (year 2012). 

 

 

Table 3.2 – (a) Monthly deviation of the tilted solar cell 1 vs. pyranometer (year 2012). 

 

  

Stat.s Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Ga1 -9.8 -3.8 -4.8 -2.6 -2.7 -2.8 -2.5 -3.6 -4.6 -5.9 -8.3 -11.5

Ga2 -5.2 -0.7 -1.8 -0.9 -1.3 -1.8 -1.3 -2.2 -2.1 -2.2 -2.8 -4.8

Ru -9.1 -4.1 -4.5 -2.5 -2.3 -2.2 -2.5 -3.5 -3.6 -5.1 -6.3 -9.5

Gi -4.1 -0.1 -0.7 0.4 0.0 -1.0 -0.8 -1.7 -1.1 -1.0 -0.8 -4.1

Ma -3.5 0.3 -0.6 0.4 -0.2 -0.9 -1.1 5.6 0.3 -0.8 -1.1 -3.5

Stat.s Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Ga1 -8.8 -7.4 -5.3 -2.5 -1.5 -3.0 -2.2 -3.2 -4.5 -6.3 -7.5 -8.5

Ga2 -5.1 -1.1 -2.4 -1.2 -2.2 -3.3 -2.0 -3.3 -3.5 -2.5 -3.3 -4.9

Ru -9.2 -4.1 -6.0 -2.8 -3.2 -3.1 -3.5 -3.9 -4.3 -5.5 -6.5 -9.9

Gi -3.6 -0.4 -1.3 -0.1 -1.0 -2.1 -2.6 -11.9 -1.1 -1.0 -0.8 -5.0

Ma -4.6 -0.4 -1.6 -0.2 -1.1 -1.5 -1.2 5.0 -0.5 -1.8 -2.3 -4.8

Stat.s Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Ga1 0.1 -2.3 -2.5 -0.3 -0.8 -2.0 -0.7 -0.1 -0.4 -1.3 -0.6 -1.6

Ga2 -0.4 -2.8 -2.0 0.8 0.6 -0.3 1.1 1.2 0.2 -0.9 -0.8 -1.4

Ru 1.8 -1.1 -0.8 1.6 1.5 0.2 0.4 0.7 0.8 -1.3 -0.8 -8.6

Gi 2.2 2.2 -0.4 0.4 1.9 1.4 2.1 3.2 2.1 2.6 1.2 1.7

Ma -0.3 0.0 -1.6 3.0 1.3 0.6 2.7 9.5 2.5 0.5 1.5 -0.4
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Table 3.2 – (b) Monthly deviation of the tilted solar cell 2 vs. pyranometer (year 2012). 

 

 

The linearity and the correlation between pyranometers and solar cells are evident, as 

shown in Fig. 3.6(a) and 3.6(b) for the site “Gi”, Fig. 3.7(a) and 3.7(b) for the site “Ma”, 

Fig. 3.8(a) and 3.8(b) for the site “Ga1”, Fig. 3.9(a) and 3.9(b) for the site “Ga2”, Fig. 

3.10(a) and 3.10(b) for the site “Ru”. 

 
Fig. 3.6(a) − Plot of pyranometer measurements vs. horizontal solar cell 1 measurements for the solar 

station “Gi”. 

Stat.s Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Ga1 0.0 -2.8 -2.9 -0.4 -0.9 -1.9 -0.2 0.3 -0.7 -1.5 -2.0 -3.0

Ga2 -0.3 -3.1 -2.8 0.2 -0.3 -1.7 0.0 0.6 -0.4 -2.0 -1.7 -2.3

Ru 0.9 -1.8 -1.8 1.1 0.7 -0.2 0.0 0.4 0.2 -1.3 -0.7 -9.2

Gi 2.1 2.1 -0.7 0.1 0.9 0.5 0.4 2.3 1.9 2.5 1.2 1.5

Ma -0.3 -0.1 -1.9 2.8 0.8 0.1 2.3 9.1 2.2 0.6 1.5 -0.4
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Fig. 3.6(b) − Plot of pyranometer measurements vs. horizontal solar cell 2 measurements for the solar 

station “Gi”. 

 
Fig. 3.7(a) − Plot of pyranometer measurements vs. horizontal solar cell 1 measurements for the solar 

station “Ma”. 
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Fig. 3.7(b) − Plot of pyranometer measurements vs. horizontal solar cell 2 measurements for the solar 

station “Ma”. 

 
Fig. 3.8(a) − Plot of pyranometer measurements vs. horizontal solar cell 1 measurements for the solar 

station “Ga1”. 
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Fig. 3.8(b) − Plot of pyranometer measurements vs. horizontal solar cell 2 measurements for the solar 

station “Ga1”. 

 
Fig. 3.9(a) − Plot of pyranometer measurements vs. horizontal solar cell 1 measurements for the solar 

station “Ga2”. 
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Fig. 3.9(b) − Plot of pyranometer measurements vs. horizontal solar cell 2 measurements for the solar 

station “Ga2”. 

 
Fig. 3.10(a) − Plot of pyranometer measurements vs. horizontal solar cell 1 measurements for the solar 

station “Ru”. 
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Fig. 3.10(b) − Plot of pyranometer measurements vs. horizontal solar cell 2 measurements for the solar 

station “Ru”. 
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It is interesting to know which months for the tilt irradiation are more favorable than for 

the horizontal irradiation. The answer is the period from September to April, whereas the 

horizontal irradiation is higher in the period from May to July. 

The transition among the two irradiation occurs in August (Table 3.3(a) for the site “Gi”, 

Table 3.3(b) for the site “Ma”, Table 3.3(c) for the site “Ga1”, Table 3.3(d) for the site 

“Ga2” and Table 3.3(e) for the site “Ru”). Obviously, these statements are valid for the 

latitudes under study, i.e. in the range 39° − 41° N, in which the majority of PV systems 

is connected to the public network in Italy. 

 

Table 3.3(a) − Monthly values of irradiation in the station “Gi”. 

 

  

Months
Hh pyr. 

(kWh/m2)

Ht sol.1 

(kWh/m2)

Hh sol.1 

(kWh/m2)

Ht sol.2 

(kWh/m2)

Hh sol.2 

(kWh/m2)

Jan 67 112 64 112 64

Feb 65 88 65 88 65

Mar 137 170 137 169 136

Apr 147 156 147 156 146

May 197 192 197 190 195

Jun 238 221 236 219 233

Jul 229 218 227 214 223

Aug 209 221 205 219 184

Sep 146 173 145 173 144

Oct 108 151 106 151 106

Nov 57 86 57 86 57

Dec 57 100 55 99 55

Year 2012 1657 1888 1640 1877 1608
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Table 3.3(b) − Monthly values of irradiation in the station “Ma”. 

 

  

Months
Hh pyr. 

(kWh/m2)

Ht sol.1 

(kWh/m2)

Hh sol.1 

(kWh/m2)

Ht sol.2 

(kWh/m2)

Hh sol.2 

(kWh/m2)

Jan 69 113 66 113 65

Feb 67 90 68 90 67

Mar 143 175 142 174 141

Apr 153 163 153 163 152

May 206 200 205 199 204

Jun 243 222 240 221 239

Jul 238 225 235 224 235

Aug 199 222 210 221 209

Sep 147 176 148 175 147

Oct 114 158 113 158 112

Nov 61 93 60 93 59

Dec 55 92 53 92 53

Year 2012 1694 1927 1694 1922 1682
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Table 3.3(c) − Monthly values of irradiation in the station “Ga1”. 

 
  

Months
Hh pyr. 

(kWh/m2)

Ht sol.1 

(kWh/m2)

Hh sol.1 

(kWh/m2)

Ht sol.2 

(kWh/m2)

Hh sol.2 

(kWh/m2)

Jan 67 104 60 104 61

Feb 70 88 67 88 64

Mar 147 176 140 175 139

Apr 154 163 150 162 150

May 210 203 204 203 207

Jun 244 224 237 224 237

Jul 238 226 232 227 232

Aug 213 220 205 221 206

Sep 155 179 148 179 148

Oct 111 145 104 144 104

Nov 65 94 59 92 60

Dec 57 88 50 87 52

Year 2012 1730 1909 1658 1906 1661
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Table 3.3(d) − Monthly values of irradiation in the station “Ga2”. 

 
  

Months
Hh pyr. 

(kWh/m2)

Ht sol.1 

(kWh/m2)

Hh sol.1 

(kWh/m2)

Ht sol.2 

(kWh/m2)

Hh sol.2 

(kWh/m2)

Jan 66 107 63 108 63

Feb 70 91 69 91 69

Mar 146 179 144 178 143

Apr 154 163 152 162 152

May 210 202 207 200 205

Jun 243 220 238 217 235

Jul 237 223 234 221 233

Aug 212 219 208 218 205

Sep 154 180 151 179 149

Oct 110 149 108 148 107

Nov 64 97 62 96 62

Dec 56 92 53 92 53

Year 2012 1723 1924 1690 1908 1676
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Table 3.3(e) − Monthly values of irradiation in the station “Ru”. 

 

A topic concerning the energy production of PV systems is the variation of the global 

irradiation among sites located within a range of a few hundreds of kilometers: four sites 

with flat terrain, 20 − 70 km away from each other, exhibit monthly and yearly 

deviations within ± 2 %. With greater distance ( 150 km) for the last station the 

variation can arrive at -7 %. 

Further noticeable problem is the variation minute by minute of the irradiance (i.e., the 

derivative or in practice the incremental ratio): this parameter assumes reduced values 

when the weather is sunny or completely cloudy, but it requires a careful monitoring in 

broken-cloud conditions. 

If we consider a single location with huge derivative, this variation is higher than the 

variation of the average of the locations together considered. In other words, the increase 

Months
Hh pyr. 

(kWh/m2)

Ht sol.1 

(kWh/m2)

Hh sol.1 

(kWh/m2)

Ht sol.2 

(kWh/m2)

Hh sol.2 

(kWh/m2)

Jan 67 112 61 111 61

Feb 70 92 67 92 67

Mar 147 182 140 180 138

Apr 152 162 148 161 148

May 206 200 201 198 200

Jun 243 221 237 220 235

Jul 235 219 229 218 227

Aug 212 217 204 217 204

Sep 152 178 146 177 145

Oct 111 149 105 149 105

Nov 64 96 60 96 60

Dec 56 91 50 91 50

Year 2012 1714 1919 1651 1910 1639
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of the number of locations, with the corresponding increment of the covered surface, has 

a “smoothing effect” on the combined PV energy production. 

An example is shown in Fig. 3.11 with the 15-min irradiances in three sites (black, green 

and orange colors), 150 km away from each other, and their average values (red color). 

The smoothing effect provides strong reductions in positive and negative derivatives: the 

positive derivative has a percent reduction within - 44 %  −  - 78 % vs. each site, whereas 

the negative derivative has a reduction of -37 % − -57 %. 

 

 
Fig. 3.11 − Smoothing effect in the irradiances of 3 sites due to the average values. 

  

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24

Ir
ra

di
an

ce
 (W

/m
2 )

 

GMT

1st site 2nd site 3rd site Average



                                                                                                                                                Chapter 3 

89 
 

3.4. A comparison with simulated clear sky/cloudy 

sky days 

The experimental results for the horizontal and tilt irradiances in case of clear sky 

and completely cloudy sky conditions suggest the search of models to simulate these 

practical evolutions. 

A possible solution is the employment of the PVGIS online software [73] in the tool 

“Daily irradiance”, which provides computed values GhSIM every 15 min. In a clear day 

of July the GhMEAS deviations are quite low (around 20 W/m2) and within the 

measurement uncertainty, as it is possible to see in Fig. 3.12 for the horizontal irradiance. 

Moreover, in PVGIS the diffuse contribution is corresponding to the blue color of the 

sky, thus, in case of complete covering from grey clouds, the actual irradiance values are 

lower than the simulated values. 

In Fig. 3.13 the two types of days (blue sky vs. grey sky) with prevailing diffuse 

radiation are compared with the PVGIS simulation of cloudy-sky day. With grey clouds 

(on 21st Dec) the deviations between measurements (Gh) and simulation (GdSIM) are 

noticeable both in percent (> 50 %) and in physical units (> 60 W/m2), instead of mainly 

blue-sky conditions (on 26th Dec). 
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Fig. 3.12 − A comparison between measurements and simulation of horizontal irradiance in a clear day. 

 
Fig. 3.13 − A comparison between measurements and simulation of horizontal irradiance in cloudy days. 
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3.5. Summary 

This chapter has shown the setup of five meteorological stations and the 

concerning experimental results of short-term global irradiance on the horizontal plane 

and on the best tilted plane. These findings on yearly basis can be easily linked with the 

power profiles of PV plants installed at ground level typically without shading. 

It is evident that the knowledge of “broken clouds” phenomenon and its prediction can 

be very useful to the Transmission System Operator for the management of the peak 

generation. Rapid variations of more than 500 W/m2 can occur upward and downward in 

a few minutes. Therefore, in case of impressive derivatives of irradiance, positive or 

negative, a smoothing effect of the average values of multiple sites has been proved. 

The information on the sunlight evolution of relative humidity could somehow substitute 

the direct measurement of the global irradiance. That is important, due to the frequent 

lack of the irradiance sensor in the usual meteorological stations. 

Simple models for global irradiance in clear sky and completely cloudy sky situations 

can be used as a first approximation tool to predict the photovoltaic power profiles for 

the electricity market. 
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Introduction 

The strong increase of power production by RES involves a substantial change in 

the system management for the generation, transmission and distribution of electricity. 

The hierarchical structure, in which a few centralized power plants deliver the energy 

required, becomes a distributed structure, in which many small production units are 

located in the territory. The advantage in terms of versatility and reliability is 

considerable, in fact, the subdivision of the production in many distributed power plants 

permits to deal with failure or maintenance situations, which involve the temporary 

shutdown of some units, as well as to respond more effectively to changes in energy 

demand.  

The prediction of the power profiles with intermittent RES is essential to formulate 

saving and dispatching plans. Due to the lack of information and communication systems 

between the parts, the current forecasting of power plants’ production does not take into 

account the contributions of DG systems. For an optimal management of the whole 

power system, it is needed to get the data of the power allocation and the corresponding 

forecasting in real time. 

Chapter 4 

Prediction of irradiance vs. 

experimental results 
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One of the main challenges for the future energy supply will be to integrate RES with the 

existing structures. To achieve this result, the important issue about the prediction of 

power flows must be treated [84]. This goal is not easy to be achieved, because the 

available power depends on the time-varying performance of RES, some of which are 

subject to considerable fluctuations during the day, as e.g. wind speed or solar irradiance. 

Here, only the latter source will be treated, analyzing an approach to predict PV power 

output based on forecasts up to three days ahead provided by the “Servei Meteorològic 

de Catalunya”(Meteo.cat). 

4.1. State of the art 

About the state of the art of the solar irradiance forecasting, early research was 

conducted more than twenty years ago in [85], using the Model Output Statistics (MOS) 

technique [86], which allows the prediction of a daily average value with one or two days 

ahead. 

Remaining in the field of very short period (time horizon of a few hours), [87] has 

demonstrated the effectiveness of a statistical approach based on the prediction of the 

motion of the clouds through images provided by satellites of the Meteosat constellation; 

this method, however, requires a computational effort far from negligible. 

Reference [88] has used a multi-resolution decomposition technique applied to satellite 

images to obtain information on the local mean value and the gradient of irradiance in 

different spatial scales. Other studies on short and very short time scales are available in 

literature, which make use of the information provided by satellites. 

Concerning the current weather forecasting tools, they are based on numerical 

techniques, which provide good results when applied on extended spatial scales, but they 

are not able to collect the local variability. 
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The problem can be addressed using the most powerful analysis tools, especially the 

Artificial Intelligence techniques, which are able to achieve better results than traditional 

methods in many areas. The term Artificial Intelligence (AI) is a set of mathematical 

paradigms that address complex engineering problems replicating cognitive mode of 

humans. In the last few years, several researches for forecasting the solar irradiance in 

different timescales have been based on Artificial Neural Networks (ANNs), Fuzzy Logic 

(FL), Adaptive Network based Fuzzy Inference System(ANFIS) and Genetic Algorithm 

(GA) (for more information see Glossary). 

4.2. Irradiance model on horizontal surface 

Solar radiation, which affects the Earth's surface, is the result of complex 

interactions between the light radiation from the sun, the atmosphere and the Earth's 

surface. In general terms, it is subject to changes determined by the geometry of the 

Earth, its rotation and its revolution around the sun. 

Otherwise, on a local scale, the main factor is the topography, especially the altitude, the 

slope, the exposure, and the shading effect caused by mountains or other natural 

obstacles. Some of these terms cannot be determined a priori, because they depend on the 

particular environmental conditions of a place, other, however, lend themselves to be 

represented by a mathematical model. 

4.2.1 Reference coordinates for the position of the radiation 

source 

During the year the Sun sends to Earth a certain amount of energy in the form of 

light radiation. An amount is reflected by clouds and atmospheric gases, another more 

modest part is absorbed by the atmosphere, while the remaining part, about 45 % of the 

total, crosses the gaseous layer surrounding the Earth without alterations. It is possible to 
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The latitude and the longitude are the only parameters that not require calculations, 

because are well-known at the moment in which the place of observation is fixed. 

The solar declination  can be found from the approximate equation of Cooper (1969): 

 







 


totg

g0
0

2
sin

180

  (4.1) 

where, Δ0=23.45°, 0=284, g is a progressive number that represents the day of the year, 

and gtot is the total number of days in the year. 

The hour angle  of the Sun is a more complex parameter, because it depends on the 

position of the observer and on the measurement of the local time. 

During the course of the year, the time indicated from a meridian deviates periodically a 

few minutes than the time indicated by a clock, which in Italy it is normally referred to 

the Central European Time (CET). 

This difference, neglecting the presence of the daylight savings time, is called “time 

equation”, τ, and it is due to the combined effect of the inclination of the ecliptic plane 

than the Earth's equator and the eccentricity of the orbit of the Earth around the Sun. In 

other words, the “time equation” component represents the conditions according to which 

the Sun is lagging with respect to the clock (sign +) or leading (sign -) [90]. 

The effects of the longitude and the time equation lead to obtain the maximum solar 

irradiance at a time instant different with respect to the hour 12:00. Considering the 

meridian line passing through the Etna volcano, with ref =15°, and using the value of  

taken from the time equation, the tip hour (i.e., the hour of maximum solar irradiance) is 

defined as: 

    15/12 refth  (4.2) 
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The hour angle, in radians, corresponding to the hour h is then defined by the following 

expression: 

180
15)(

 thh   (4.3) 

The azimuth angle  is: 




cos

sincos
sin   (4.4) 

The zenith angle z corresponds to the expression: 

 sinsincoscoscossincos z  (4.5) 

The solar height at the sunset and at the sunrise (tilt angle  = 0) is expressed as: 

)tgtg(arccos  s  (4.6) 

The previous variables allow to identify the position of the Sun with respect to any point 

on the Earth’s surface. However, to complete the mathematical model, it is necessary to 

define the intensity of irradiation. 

4.2.2 Extraterrestrial radiation on a horizontal surface 

From the point of view of an observer, the energy flow, which comes from the 

Sun, passed through the Earth’s atmosphere and reached the surface of the planet, is not 

constant, but varies during the day and throughout the year. 

It is important to note that the total radiation emitted by the Sun, that falls on a 

hypothetical perpendicular plane to the rays, placed at the top of the Earth’s atmosphere, 

is almost constant in time. It is the solar constant Gsc and it is equal to 1360 W/m2. 
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More precisely, this value is not perfectly constant, because it varies by about ± 3.3 % 

during the year, due to the revolution of the Earth. 

At any point in time, the solar radiation incident on a horizontal plane outside of the 

atmosphere is the normal incident solar radiation given by [91]: 

z
n

GG sc cos
365

360
cos033.010 






   (4.7) 

where n is the day of the year. 

Combining the equation (4.5) with equation (4.7), it is possible to obtain G0 for a 

horizontal surface at any time between sunrise and sunset: 

)sinsincoscos(cos
365

360
cos033.010  






 

n
GG sc  (4.8) 

Integrating the equation (4.8) for a period between hour angles  and , which define 

an hour (where  is the larger), G0 in [MJ/m2] is obtained, as: 

    


sinsin sinsincoscos
365

360
cos033.01

360012
12120 






 




n
GG sc

 (4.9) 
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4.2.3 Estimation of clear-sky radiation 

It is noteworthy that the solar radiation, during its travel though the atmosphere 

toward the earth surface, meets various phenomena, including scatter, absorption, 

reflection, diffusion, meteorological conditions and air mass, which change with time 

[92]. 

It is useful to define a standard “clear” sky and calculate the hourly and daily radiation 

which would be received on a horizontal surface under these standard conditions [93]. 

In order to calculate the clear sky solar radiation, several methods have been developed 

[94], [95]. Among these methods, the Moon-Spencer model provides the theoretical 

instantaneous values of the solar irradiance at clear sky on a surface orientated in any 

direction [96]. 

In the Moon-Spencer model, the contributions to the solar irradiance are partitioned into 

total horizontal irradiance Gth, beam normal irradiance Gbn, and horizontal diffuse 

irradiance Gdh. 

The input data include the month and day of the year, converted into a progressive 

number g representing the day, the total number of days in the year gtot, the hour of the 

day h, the latitude  and longitude  of the site, the tilt  and azimuth  of the surface, 

and the albedo ρ, namely, the portion of irradiance reflected at the surface. 

From the previous values, the sky-surface view factor is defined as: 

2

cos1 
scF  (4.10) 

The parameters of the Moon-Spencer model ,in Table 4.1, are used to define, in function 

of the day, the following constants: 
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 apparent solar constant A, expressed in [W/m2] 

 







 


tot

A
AA g

g
A

 2
sin  (4.11) 

 coefficient of atmospheric extinction B 

 







 


tot

B
BB g

g
B

 2
sin  (4.12) 

 coefficient of diffuse irradiance C 

 







 


tot

C
CC g

g
C

 2
sin  (4.13) 

 solar declination as expressed in equation (4.1). 
 

Table 4.1 − Parameters of the Moon-Spencer model. 

 
 

 

The value of the time equation,, is further added. At hour h, the hour angle   and the 

cosine of the zenith angle zcos are computed. 

For 0cos z , the following irradiance values are obtained: 

 normal beam irradiance 
zB

bn eAG cos/  (4.14) 

 diffuse horizontal irradiance 

bndh GCG   (4.15) 

 total horizontal irradiance 

bnth GzCG )cos(  dhbn GzG  cos  (4.16) 

 

average 

value

deviation 
(amplitude)

Δ0= 23.45 ΔA = -73 ΔB = 0.035 ΔC = 0.04

deviation 
(phase)

 0 = 284  A  = 268  B  = 268  C  = 268

---  A  = 1158  B  = 0.17  C  = 0.095
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The total irradiance is then computed in function of the auxiliary variable  (i.e., the 

angle between the solar beam and the direction orthogonal to the tilt plane) evaluated in 

the cases with 0cos z as: 




sinsinsincoscoscossinsincos

coscoscoscoscossincossin-cossinsincos




 (4.17) 

thus obtaining, for 0cos  , the total irradiance 

   scthscdhbnt FGFGGG  1cos   (4.18) 

The irradiance values obtained from the Moon-Spencer model refer to free view with 

respect to the horizon. The results may differ in case of obstacles hiding the visual 

landscape, for some parts of the day, in the directions in which the Sun should impact on 

the surface (e.g., presence of mountains or adjacent buildings). In these cases, the results 

of the Moon-Spencer model have to be adjusted in order to take into account the actual 

skyline seen from the surface. 

In order to compare the measured solar irradiance data with reference data set up, a 

dedicated variable space is created, in which the time axis is normalized in such a way to 

map the time interval between the sunrise and the sunset in the [0,1] interval. In the same 

way, the solar irradiance values are normalized in such a way that the unity value 

corresponds with the conditions at clear-sky taken from the Moon-Spencer model. 

Fig. 4.2, Fig. 4.3, Fig. 4.4 and Fig. 4.5 show the comparison between the measured 

irradiance from the pyranometer, Gpyr, and the total horizontal irradiance extracted from 

the Moon-Spencer model, Gth, for the site “Gi” for the 01 July 2012, for the first week of 

July 2012, for the first week of January 2012 and for the whole year 2012. 
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Fig. 4.2 – Irradiance values from the Moon-Spencer model (green line) vs. measured irradiance values 

(blue line) for 01 July 2012 in the site “Gi”. 

 
Fig. 4.3 – Irradiance values from the Moon-Spencer model (green line) vs. measured irradiance values 

(blue line) for the first week of July 2012 in the site “Gi”. 
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4.3 Beam and Diffuse Components of hourly 

irradiation 

The amount of solar radiation that reaches the ground, besides the daily and 

yearly apparent motion of the sun, depends on the geographical location (latitude and 

longitude) and on the climatic conditions (e.g. cloud cover). Many studies have proved 

that cloudiness is the main factor affecting the difference between the values of solar 

irradiation measured outside the atmosphere and on the Earth surface. 

The split of total solar irradiation on a horizontal surface into its diffuse and beam 

components is of paramount interest. The main reason is that calculation methods of total 

irradiation on surfaces of different tilt orientation from data on a horizontal surface 

require separate treatments of beams and diffuse radiation [97]. 

In order to give an hourly classification of sky conditions, it is possible to correlate kd, 

defined as the fraction of the hourly irradiation on a horizontal plane which is diffuse, 

with the hourly clearness index kt = Gth / G0, defined as the ratio of the irradiance on the 

horizontal plane Gth [kW/m2], that is the commonly available pyranometer measurement, 

to the extra-atmospheric total solar irradiance G0 [kW/m2]. 

For this purpose, several correlations have been proposed to establish a relationship 

between diffuse and total global horizontal irradiance. As explained in De Miguel et al. 

[98], some of the existing models [99], [100] have been developed for northern latitudes 

with high albedos and air masses. This is the reason for differences in diffuse radiation 

values and an error source in modelling diffuse solar irradiation [101], [102]. 

Only in most recent years, the development of models to calculate daily/hourly diffuse 

irradiation from the respective daily/hourly global value for the European Mediterranean 

area occurred. 
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Therefore, the hourly correlations taken into account in this context are represented by 

the following expressions: 

 















76.0180.0

76.021.0967.432.8738.2724.0
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 (4.19) 

 

The correlations, above mentioned, permit to give an hourly classification of the sky 

conditions. In particular, it is possible to note that for kt greater than 0.76 a linear 

expression is presented, with the meaning that the sun is not obscured by clouds, i.e. a 

clear-sky condition occurs, on the contrary for kt ≤ 0.21 a constant value is presented, 

with the meaning that a total cloudy (i.e. overcast) sky condition occurs, while for the 

range 0.21<kt ≤0.76, the correlation is represented by a cubic polynomial expression, 

with the meaning that a variable (i.e. partly-cloudy) sky condition occurs, in which the 

sun is partially obscured by clouds. 
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4.4 Forecast data 

As it is known, meteorological data can be considered as widely variable sources 

and for this reason, it is important to forecast models of these meteorological data. In this 

chapter, forecast weather data, provided by the meteorological service of Catalonia 

(Meteo.cat [103]) have been used. 

The available data are based on the Weather Research and Forecasting (WRF) [104] 

model: a next-generation mesoscale numerical weather prediction system designed to 

serve both atmospheric research and operational forecasting needs. It features two 

dynamical cores, a data assimilation system, and a software architecture allowing for 

parallel computation and system extensibility. The model serves a wide range of 

meteorological applications across scales ranging from meters to thousands of 

kilometers. 

As regards the available irradiance prediction data, the forecast length is 72 hours, with 

an output sampling rate of three hours. Therefore, in order to compare with the measured 

data, the forecast data have been first interpolated (polynomial splines) [105] and the 

daily evolution of irradiance is classified into three categories: clear, variable and cloudy 

sky. 

The data set provided by Meteo.cat consists of the solar radiation forecasts for only two 

of the five meteorological stations, “Gi” and “Ma”, during the whole year 2012. The 

other three sites are outside the boundary limits of Meteo.cat provider. 
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4.5 Hourly classification in clear, variable and cloudy 

sky according to the clearness index values 

On the basis of the hourly correlations (eq. 4.19) presented in the work of De 

Miguel et al., it has been developed an algorithm, which permits to classify each hour of 

a day as clear, cloudy or variable. This algorithm essentially consists of two parts. 

In the first part, the hourly classification procedure has been developed examining the 

value of the hourly clearness index kt calculated as the ratio of the solar irradiance of the 

pyranometer to the extra-atmospheric total solar irradiance G0. 

In the second part, the classification procedure has also been developed taking into 

account the hourly clearness index value (called synthetically ktf) calculated as the ratio 

between the 1-day ahead prediction data, considered as more accurate measurement, and 

G0. 

Moreover, in order to estimate the number of occurrences of “broken clouds” in a day, an 

additional control was performed. As previously said (Chapter 3 section 3.2), the 

presence of “broken clouds” appear when the sky is mainly clear, but the passage of 

clouds affects the irradiance evolution. For this purpose, it has been considered as clear-

sky model, the one provided by the PVGIS online software [73]. 

So, establishing a threshold value, equal to the maximum clear-sky irradiance value on a 

fixed plane, Gmax_PVGIS, (e.g. for the month of July in the site “Gi” it is equal to 1020 

W/m2), if the global irradiance of one of the 30° tilted solar cells, Gtcell, exceeds this 

threshold, then the presence of broken clouds can be considered. 

In section 4.5.1 and 4.5.2, the measurements from the pyranometer (Gpyr), the three-hour 

predictions from Meteo.cat by satellite (represented with circles in the following figures) 

and the interpolated predictions (polynomial splines) are shown for the sites “Gi” and 
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“Ma” for the month of July 2012, when the irradiation is at maximum. Moreover, only 

the daylight hours (from 5 a.m. to 7 p.m.) were considered. 

As per the three days ahead forecast data, the red line corresponds to the 1-day ahead 

prediction, the blue line corresponds to the 2-day ahead prediction and the green line 

corresponds to the 3-day ahead prediction. 

 

4.5.1  Experimental results for the site “Gi” 

In Fig. 4.6, the first week of the month of July 2012 is shown for the site “Gi”. 

The hourly algorithm related to the measurements from the pyranometer classifies all the 

hours of these days as variable. On the other hand, concerning the hourly algorithm for 

the prediction of the 1-day before, all the hours of only the first 3 days of July are 

classified as variable. 

More precisely, only the first day follows perfectly the predictions and the hourly 

clearness index kt is between 0.27 and 0.69, while the hourly clearness index for the 1-

day ahead prediction ktf is between 0.67 and 0.75: maybe white clouds can have filtered 

radiations. The second day is different from the predictions in the hours from 4 p.m. to 6 

p.m., and in particular at 6 p.m. it is considered as cloudy with kt=0.18, on the contrary 

ktf= 0.68 in the same hour, in all other hours the values of kt is in the range0.26 − 0.69, on 

the contrary ktf is between 0.66 and 0.74. 

On 3 July kt is between 0.39 and 0.72 until 2 p.m., while ktf is in the range 0.68 − 0.75. At 

3 p.m., the solar irradiance value of the pyranometer goes down to 200 W/m2 (kt=0.31, 

while ktf=0.75), then this value decreases much more at 5 p.m. and the situation is cloudy 

with kt=0.20, while ktf=0.71. 

A similar situation occurs on 5 July, in which kt is in the range0.33 − 0.75 until 2 p.m., 

then from 3 p.m. to 6 p.m. kt is within 0.37 and 0.24.The simulation related to the 1-day 
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ahead prediction classifies the hours from 9 a.m. to 4 p.m. as clear-sky, with ktf  in the 

range 0.77 − 0.78, and the remaining hours as variable, with ktf in the range 0.72 − 0.74. 

On 4 July kt is between 0.38 and 0.74 until 12 a.m., then the forecast data are different 

from the pyranometer measurements in the second part of the day, i.e. from 1 p.m. to 3 

p.m. and from 5 p.m. to 6 p.m., in which kt is 0.50 and 0.27, respectively. As per the 1-

day ahead prediction, the situation is similar to day 5, in which the hours from 10 a.m. to 

4 p.m. are classified as clear-sky, with ktf in the range 0.77−0.78, and the remaining hours 

as variable, with ktf in the range 0.70−0.75. 

An opposite situation takes place on 6 July, when the measurements are different respect 

to the predictions in the first part of the day, i.e. from 6 a.m. to 10 a.m. and from 11 a.m. 

to 6 p.m., in which kt is in the range0.32−0.75.Also in this case, the situation for the 1-

day ahead prediction is analogous to days 4 and 5, in which the hours from 10 a.m. to 4 

p.m. as clear-sky, with ktf in the range 0.76−0.78, and the remaining hours as variable, 

with ktf in the range 0.69−0.75. 

On day 7, the hourly variability is enhanced in the hours from 12 a.m. to 4 p.m. and from 

11 a.m. to 5 p.m., in which kt is in the range 0.38−0.72, on the contrary the simulation 

related to the 1-day ahead prediction classifies these hours as clear-sky, with ktf within 

0.77. Moreover, the presence of broken clouds on this day is verified for 39 minutes. 
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Fig. 4.6 − Measurements from the pyranometer, the three-hour predictions from Meteo.cat and the 
interpolated predictions from 01 July 2012 to 07 July 2012 for the site “Gi”. 
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In Fig. 4.7 the second week of the month of July 2012 is shown. The trends that follows 

well the predictions are related to day 09 and day 11.The latter day follows well only to 

the prediction of 1-day before and 3-day before. As per day 9, both the clearness index 

from the pyranometer and the same index for the 1-day ahead prediction classify all 

hours as variable, with kt in the range 0.31 − 0.70 and ktf in the range 0.68 − 0.75. Days 

08 and 10 have a greater cloud cover in the hours from 1 p.m. to 2 p.m., considering the 

pyranometer measurements, in which kt is about 0.65−0.68, on the contrary for all other 

hours of these days kt is between 0.31 and 0.71. 

As per day 08, the simulation related to the 1-day ahead prediction classifies all the hours 

as variable, with ktf in the range0.67 − 0.74.On the other hand, the simulation related to 

the 1-day ahead prediction on day 10 classifies the hours from 9 a.m. to 3 p.m. as clear-

sky, with ktf  between 0.76 and 0.77, and the remaining hours as variable, with ktf in the 

range 0.70 − 0.75. 

As mentioned before, unlike the previous days, in which the three days predictions are 

almost overlapped, for day 11 the prediction of 2-day before is closer to the pyranometer 

measurements and kt is between 0.34 and 0.75. For this day, the simulation related to the 

prediction of 1-day before classifies the hours from 9 a.m. to 4 p.m. as clear-sky, with ktf  

between 0.72 and 0.80, and the remaining hours as variable, with ktf in the range 0.72 − 

0.75. 

On 12 July, the hourly algorithm related to the measurements from the pyranometer 

classifies all the hours of this day as variable. The hourly variability is enhanced in the 

hours from 12 a.m. to 4 p.m. and from 11 a.m. to 5 p.m., in which kt is in the range 0.30 

− 0.60. Moreover, the presence of broken clouds is verified for 31 minutes. As per the 

simulation related to the 1-day ahead prediction on day 12, it classifies the hours from 9 

a.m. to 4 p.m. as clear-sky, with ktf  between 0.77 and 0.78, and the remaining hours as 

variable, with ktf in the range 0.71 − 0.75.  

Days 13 and 14 follow quite well the forecast trends, and kt is in the range 0.32 – 0.75. 

For day 13, the simulation related to the 1-day ahead prediction classifies the hours from 
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10 a.m. to 3 p.m. as clear-sky, with ktf  within 0.77, and the remaining hours are classified 

as variable, with ktf  in the range 0.69 − 0.75. For day 14, the simulation related to the 1-

day ahead prediction classifies all the hours as variable, with ktf in the range0.68 − 0.74. 

  



                                                                                                                                                Chapter 4 

113 
 

Fig. 4.7 − Measurements from the pyranometer, the three-hour predictions from Meteo.cat and the 
interpolated predictions from 08 July 2012 to 14 July 2012 for the site “Gi”. 
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With respect to Fig. 4.8, the hourly classification algorithm, related to the pyranometer 

measurements, considers all the hours of the days from 15 to 21 July as variable. 

In fact, this variability is very pronounced on day 16 in the hours from 1 p.m. to 4 p.m., 

in which kt is between 0.64 and 0.70, and the presence of broken clouds is verified for 6 

minutes. For this day, the simulation related to the 1-day ahead prediction classifies the 

hours from 10 a.m. to 3 p.m. as clear-sky, with ktf > 0.76, and the remaining hours as 

variable, with ktf in the range 0.70 − 0.75. 

Day 15 has a similar trend to that of days 13 and 14, with kt in the range 0.32 – 0.75 and 

ktf in the range0.68 − 0.74. 

As for days 17 and 18, the algorithm related to the pyranometer measurements classifies 

five hours in the morning as clear, i.e. from 9 a.m. to 1 p.m. and from 10 a.m. to 2 p.m. 

respectively, with kt in the range from 0.77 and 0.78. The remaining hours of the day are 

considered variable, with kt between 0.32 and 0.75. 

The simulation related to the 1-day ahead prediction on day 17 and day 18 classifies the 

hours from 8 a.m. to 5 p.m. as clear-sky, with ktf between 0.77 and 0.80, and the 

remaining hours as variable, with ktf between 0.73 and 0.75. As per days 19, 20 and 21, 

the algorithm related to the pyranometer measurements considers all hours of these days 

as variable, with kt in the range 0.31 – 0.75. 

As per the simulation related to the 1-day ahead prediction on day 19, it classifies the 

hours from 9 a.m. to 4 p.m. as clear-sky, with ktf between 0.77 and 0.78, and the 

remaining hours as variable, with ktf in the range 0.71 − 0.74. Similarly for day 20, the 1-

day ahead prediction simulation classifies the hours from 11 a.m. to 13 p.m., as clear-sky, 

with ktf > 0.76, and the remaining hours as variable, with ktf in the range 0.69 − 0.75. 

Unlike the other days, for day 21 the mismatch between the pyranometer measurement 

and 3 days prediction is observed. The simulation related to the 1-day ahead prediction 

classifies all the hours as variable, with ktf in the range0.67 − 0.74. 
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Fig. 4.8 − Measurements from the pyranometer, the three-hour predictions from Meteo.cat and the 
interpolated predictions from 15 July 2012 to 21 July 2012 for the site “Gi”. 
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In Fig. 4.9 the trends from day 22 to day 28 are shown. In particular, on day 22 the sky 

variability is very pronounced, especially from 12 a.m. to 2 p.m., in which the presence 

of broken clouds occurs for 20 minutes and kt is 0.48 – 0.70. For this day, the prediction 

of 2-day before is deviated on the performance measured by the pyranometer. The 

simulation related to the 1-day ahead prediction on day 22 classifies all the hours as 

variable, with ktf in the range 0.68 − 0.75.  

The hours from 5 a.m. to 8 a.m. of days 23 and 24 are classified by the algorithm related 

to the pyranometer measurements as cloudy, in which kt is between 0.04 and 0.16, and 

the value of the pyranometer irradiance does not reach 200 W/m2. This situation is also 

repeated at 3 p.m. for day 23 in which kt = 0.20, and at 6 p.m. for day 24 in which kt = 

0.13. Furthermore, for day 24 the presence of broken clouds occurs for 103 minutes, and 

at 10 a.m. the algorithm classifies this hour as clear, with kt= 0.83. The simulation related 

to the 1-day ahead prediction of day 23 classifies all the hours as variable, with ktf in the 

range 0.36 − 0.67. 

For day 24, the forecast simulation of 1-day before classifies the hours from 9 a.m. to 4 

p.m. as clear-sky, with ktf between 0.77 and 0.78, and the remaining hours as variable, 

with ktf between 0.70 and 0.73. As per the days from 25 to 28 July 2012, the hourly 

algorithm related to the measurements from the pyranometer classifies all the hours as 

variable. Of these days, the greater variability of the sky is for days 25 and 26. In 

particular, for day 25 the algorithm indicates the situation of cloudy sky with kt= 0.18 at 

4 p.m.. Moreover, in this day the presence of broken clouds occurs for 1 h and the hourly 

values of kt (between 0.22 and 0.68) are lower than the ones of day 26 (between 0.31 and 

0.72), in which the presence of broken clouds occurs for 32 min only. As per the 

simulation related to the 1-day ahead prediction of day 25, the hours from 10 a.m. to 3 

p.m. as clear-sky, with ktf within 0.77, and the remaining hours as variable, with ktf in the 

range 0.71 − 0.74. For day 26, the simulation related to the 1-day ahead prediction 

classifies all the hours as variable, with ktf in the range0.67 − 0.75. Days 27 and 28 have 

hourly values of kt within the range from 0.33 and 0.72 and ktf between0.67 − 0.75. 
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Fig. 4.9 − Measurements from the pyranometer, the three-hour predictions from Meteo.cat and the 
interpolated predictions from 22 July 2012 to 28 July 2012 for the site “Gi”. 
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In Fig. 4.10 the trends from day 29 to day 31are shown. As per day 29, the hourly 

algorithm related to the measurements from the pyranometer classifies all the hours as 

variable, with kt within the range from 0.27 and 0.70. The simulation related to the 1-day 

ahead prediction on day 29 considers the hours from 10 a.m. to 2 p.m. as clear-sky, with 

ktf > 0.76, and the remaining hours as variable, with ktf in the range 0.72 − 0.75.  

Day 30 is classified as variable by the hourly algorithm related to the measurements from 

the pyranometer and the values of kt are in the range between 0.37 and 0.75, with the 

exception at hour 11 a.m., in which kt is >0.76 and it is considered as clear-sky. For this 

day the presence of broken clouds is estimated for only 8 minutes. 

Day 31 is considered as clear-sky at 11 a.m. and 12 a.m. by the hourly algorithm with 

kt>0.76, while in the other hours of the day it is considered as variable with kt between 

0.38 and 0.75. 

The simulation related to the 1-day ahead prediction on days 30 and 31 classifies the 

hours from 9 a.m. to 4 p.m. as clear-sky, with ktf between 0.77 and 0.79, and the 

remaining hours as variable, with ktf between 0.71 and 0.75. 
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Fig. 4.10 − Measurements from the pyranometer, the three-hour predictions from Meteo.cat and the 
interpolated predictions from 29 July 2012 to 31 July 2012 for the site “Gi”. 
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For winter months, the highest number of hourly passes occurs for the cloudy – cloudy 

condition. On the other hand, in spring months a great number of hourly fails for the 

variable – clear condition is recorded. The low number of clear days, especially in spring 

and summer months, can be explained by the actual turbidity in air, higher than the 

predicted turbidity: the pollution can play a fundamental role. It was also seen from the 

comparison with the clear-sky Moon-Spencer model (see Section 4.2.3). 

Table 4.2 – Number of passes/fails by the hourly classification for the months of January and February 
2012 for the site “Gi”. 

  

 

Table 4.3 – Number of passes/fails by the hourly classification for the months of March and April 2012 for 
the site “Gi”. 

  

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 114
Clear Clear 39

Cloudy Cloudy 160
Variable Clear 21
Variable Cloudy 4

Clear Variable 50
Clear Cloudy 0

Cloudy Variable 49
Cloudy Clear 28

Tot. Passes 313
Tot. Fails 152

January

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 64
Clear Clear 31

Cloudy Cloudy 149
Variable Clear 50
Variable Cloudy 2

Clear Variable 21
Clear Cloudy 0

Cloudy Variable 88
Cloudy Clear 30

Tot. Passes 244
Tot. Fails 191

February

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 104
Clear Clear 35

Cloudy Cloudy 89
Variable Clear 99
Variable Cloudy 4

Clear Variable 52
Clear Cloudy 1

Cloudy Variable 35
Cloudy Clear 46

Tot. Passes 228
Tot. Fails 237

March
Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 106
Clear Clear 44

Cloudy Cloudy 59
Variable Clear 146
Variable Cloudy 0

Clear Variable 6
Clear Cloudy 0

Cloudy Variable 58
Cloudy Clear 31

Tot. Passes 209
Tot. Fails 241

April
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Table 4.4 – Number of passes/fails by the hourly classification for the months of May and June 2012 for 
the site “Gi”. 

  

Table 4.5 – Number of passes/fails by the hourly classification for the months of July and August 2012 for 
the site “Gi”. 

  

Table 4.6 – Number of passes/fails by the hourly classification for the months of September and October 
2012 for the site “Gi”. 

  

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 147
Clear Clear 25

Cloudy Cloudy 12
Variable Clear 213
Variable Cloudy 0

Clear Variable 2
Clear Cloudy 0

Cloudy Variable 43
Cloudy Clear 23

Tot. Passes 184
Tot. Fails 281

May
Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 186
Clear Clear 15

Cloudy Cloudy 29
Variable Clear 212
Variable Cloudy 0

Clear Variable 0
Clear Cloudy 0

Cloudy Variable 5
Cloudy Clear 3

Tot. Passes 230
Tot. Fails 220

June

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 266
Clear Clear 14

Cloudy Cloudy 9
Variable Clear 142
Variable Cloudy 0

Clear Variable 0
Clear Cloudy 0

Cloudy Variable 33
Cloudy Clear 1

Tot. Passes 289
Tot. Fails 176

July
Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 221
Clear Clear 11

Cloudy Cloudy 25
Variable Clear 191
Variable Cloudy 0

Clear Variable 0
Clear Cloudy 0

Cloudy Variable 16
Cloudy Clear 1

Tot. Passes 257
Tot. Fails 208

August

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 199
Clear Clear 27

Cloudy Cloudy 86
Variable Clear 101
Variable Cloudy 1

Clear Variable 10
Clear Cloudy 0

Cloudy Variable 16
Cloudy Clear 10

Tot. Passes 312
Tot. Fails 138

September
Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 156
Clear Clear 12

Cloudy Cloudy 105
Variable Clear 99
Variable Cloudy 16

Clear Variable 19
Clear Cloudy 8

Cloudy Variable 39
Cloudy Clear 11

Tot. Passes 273
Tot. Fails 192

October
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Table 4.7 – Number of passes/fails by the hourly classification for the months of November and December 
2012 for the site “Gi”. 

  

It is useful to calculate the deviations of 2-day ahead prediction with respect to the 1-day 

ahead prediction, considered as the most accurate, and the deviations of 3-day ahead 

prediction with respect to the 1-day ahead prediction as follows: 

ΔG21 = G2-day – G1-day (4.20) 

ΔG31 = G3-day – G1-day (4.21) 

The mean value is calculated for an output cadence of 3 hours. In the following figures 

(Fig. 4.11 – Fig. 4.22) positive and negative deviations are shown for the site “Gi”. 

Positive deviations occur when the 2-day ahead forecast and 3-day ahead forecast are 

higher than the 1-day ahead forecast. On the contrary, negative deviations occur when 

the 1-day ahead prediction is higher than the other two forecasts. 

In summer months, positive and negative deviations are quite negligible (< 20 W/m2), 

with the exception of a few days of July (i.e. 21, 22 and 23), in which deviations are > 70 

W/m2. 

Major deviations occur in winter, spring and autumn months. In particular, in March, 

April and May, the deviations are higher than 160 W/m2. 

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 116
Clear Clear 0

Cloudy Cloudy 172
Variable Clear 5
Variable Cloudy 4

Clear Variable 51
Clear Cloudy 0

Cloudy Variable 76
Cloudy Clear 26

Tot. Passes 288
Tot. Fails 162

November

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 104
Clear Clear 20

Cloudy Cloudy 192
Variable Clear 14
Variable Cloudy 4

Clear Variable 66
Clear Cloudy 0

Cloudy Variable 64
Cloudy Clear 1

Tot. Passes 316
Tot. Fails 149

December
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Fig. 4.11 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of January 2012 

for the site “Gi”. 

 
Fig. 4.12 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of February 

2012 for the site “Gi”. 
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Fig. 4.13 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of March 2012 

for the site “Gi”. 

 
Fig. 4.14 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of April 2012 for 

the site “Gi”. 
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Fig. 4.15 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of May 2012 for 

the site “Gi”. 

 
Fig. 4.16 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of June 2012 for 

the site “Gi”. 
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Fig. 4.17 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of July 2012 for 

the site “Gi”. 

 
Fig. 4.18 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of August 2012 

for the site “Gi”. 
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Fig. 4.19 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of September 

2012 for the site “Gi”. 

 
Fig. 4.20 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of October 2012 

for the site “Gi”. 
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Fig. 4.21 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of November 

2012 for the site “Gi”. 

 
Fig. 4.22 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of December 

2012 for the site “Gi”. 
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By performing this analysis for all the months of the year 2012, it is possible to note that 

the broken clouds can be considered as a subset of the variable sky condition. In addition, 

the maximum value of clear-sky irradiance taken from PVGIS changes month by month, 

as shown in Table 4.8. 

Thus, considering the global irradiance of one of the tilted solar cells Gtcell with sampling 

time of one minute, an occurrence of broken clouds equal to 76.97 hours is verified or the 

whole year 2012, that corresponds to 3 days 4 hours and 58 minutes, as shown in Table 

4.9. 

It is noteworthy that the months with a higher occurrence of broken clouds are in winter 

(January and February) and in spring (April and May).  

Furthermore, with the perspective of the day-ahead market (MGP, Mercato Giorno 

Prima), it is useful to consider the occurrence of broken clouds for the quarter-hour 

averaged values. In this way, it has been considered the global irradiance of the same 

tilted solar cell Gtcell with sampling time averaged each 15 minutes. As it was desirable, in 

this situation, the presence of broken clouds is much more attenuated. In fact, an 

occurrence of broken clouds equal to 28.25 hours, that corresponds to 1 day 4 hours and 

15 minutes, is considered for the year 2012, as shown in Table 4.9. 

  



                                                                                                                                                Chapter 4 

130 
 

Table 4.8 – Maximum clear-sky irradiance values with tilted angle of 30° for the site “Gi” for each month, 
taken from PVGIS. 

 

Table 4.9 – The occurrence of broken clouds for the site “Gi” for each month, considering Gtcell with 
sampling time of one minute and with sampling time averaged each 15 minutes. 

 

  

Month

Max clear-sky 
irradiance on a fixed 

plane (30°) (W/m2)

January 852
February 971
March 1080
April 1100
May 1060
June 1060
July 1020

August 1080
September 1040
October 1000

November 906
December 856

PVGIS

Month
N° of 

BrokenClouds/min
N° of 

BrokenClouds/15 min

January 942 29
February 547 21
March 94 0
April 503 12
May 706 12
June 152 1
July 300 7

August 38 0
September 410 8
October 398 8

November 285 7
December 243 8

Tot. Year 2012 4618 113

Year 2012
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4.5.2 Experimental results for the site “Ma” 

In Fig. 4.23 the first week of the month of July 2012 is shown for the site “Ma”. 

The hourly algorithm related to the measurements from the pyranometer classifies all the 

hours of these days as variable, with kt in the range 0.22 − 0.75, with the exception of day 

5, in which the hours from 10 a.m. to 1 p.m. are considered as clear, with kt within 0.78.  

Concerning the hourly algorithm for the prediction of the 1-day before, all the hours of 

days 1, 2, 3 and 7 of July are classified as variable.  

For days 5 and 6, the simulation related to the prediction of 1-day before classifies the 

hours until 8 a.m. as variable, with ktf in the range0.71 − 0.75, then from 9 a.m. to 3 p.m. 

as clear-sky, with ktf between 0.77 and 0.78, and the remaining hours as variable, with ktf 

in the range 0.67 − 0.75. 
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Fig. 4.23 − Measurements from the pyranometer, the three-hour predictions from Meteo.cat and the 
interpolated predictions from 01 July 2012 to 07 July 2012 for the site “Ma”. 
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In Fig. 4.24 the trends from day 8 to day 14 for the month of July are shown. The hourly 

algorithm for the pyranometer measurements classifies all the hours of these days as 

variable, with the exception of day 11, with kt between 0.33 and 0.72 for day 8, 9, 10 and 

14.For day 11, the hours from 11 a.m. to 12 p.m. are considered as clear, with kt within 

0.76. 

The simulation related to the 1-day ahead prediction on days 8, 9 and 14classifies all the 

hours as variable with ktf in the range 0.64 − 0.75. 

Moreover, unlike the previous days, in which the three days predictions are almost 

overlapped, for day 11 we note that the prediction of 2-day before is closer to the 

pyranometer measurements. 

For day 10, 11, 12 and 13 the hours from 9 a.m. to 3 p.m. are considered as clear, with ktf 

between 0.77 – 0.79, while the remaining hours are considered as variable with ktf in the 

range 0.40 – 0.75. 

In Fig. 4.25 the trends of the third week of July are shown. The hourly algorithm for the 

pyranometer measurements classifies all the hours of days 15, 16, 19, 20 and 21 as 

variable, with kt between 0.34 and 0.75. 

On the other hand, days 17 and 18 classify the hours from 9 a.m. to 2 p.m. as a clear with 

kt between 0.77 and 0.78, and the remaining hours as variable with kt between 0.36 and 

0.77. 

Concerning the simulation related to the 1-day ahead prediction on days 15, 20 and 

21classifies all the hours as variable with ktf in the range 0.42 − 0.75. Days 16, 17, 18 and 

19 classify the hours from 9 a.m. to 2 p.m.as clear with ktf between 0.77 and 0.80,and the 

remaining hours as variable with kt between 0.44 and 0.75. 
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Fig. 4.24 − Measurements from the pyranometer, the three-hour predictions from Meteo.cat and the 
interpolated predictions from 08 July 2012 to 14 July 2012 for the site “Ma”. 
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Fig. 4.25 − Measurements from the pyranometer, the three-hour predictions from Meteo.cat and the 
interpolated predictions from 15 July 2012 to 21 July 2012 for the site “Ma”. 
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In Fig. 4.26 the trends from day 22 to day 28 are shown. Unlike the other days, the 3-day 

predictions of days 22, 23 and 25 are not overlapped. In particular, the prediction of 2-

day before on day 22 and 23 follow better the pyranometer measurement. 

For day 25, the 1-day before prediction is less accurate than the other predictions, with 

respect to the pyranometer measurement. 

Concerning the hourly algorithm for the pyranometer measurements, it classifies all the 

hours of days 22, 26, 27 and 28 as variables, with kt between 0.31 and 0.72. Days 23 and 

24 have some hours as variable. 

In particular, for day 23 the hours from 4 p.m. to 5 p.m. are classified as cloudy with kt 

within 0.13, and the remaining hours as variable with kt between 0.21 and 0.61. 

On the contrary, for day 24 the hours between 5 a.m. to 7 a.m. are classified as cloudy 

with kt between 0.08 and 0.13, then the hours from 8 a.m. to 12 p.m. and from 3 p.m. to 6 

p.m. are classified as variable with kt between 0.24 and 0.71, and the hours from 1 p.m. 

to 2 p.m. are classified as clear with kt within 0.78. 

Concerning the simulation related to the 1-day ahead prediction, all the hours of days 21, 

22, 26, 27, and 28 are classified as variable, with ktf between 0.37 and 0.75. Days 23, 24 

and 25 have some hours classified as clear and as variable. 

In particular, for days 23 and 24 the hours between 10 a.m. to 1 p.m. are classified as 

clear with ktf in the range 0.77 − 0.78 , and the remaining hours are variable with ktf in the 

range 0.42 − 0.75, for day 25 only the hours from 9 a.m. to 10 a.m. are classified as clear 

with ktf within 0.77, and the remaining hours are variable with ktf between 0.49 and 0.75. 
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Fig. 4.26 − Measurements from the pyranometer, the three-hour predictions from Meteo.cat and the 
interpolated predictions from 22 July 2012 to 28 July 2012 for the site “Ma”. 
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In Fig. 4.27 the trends from day 29 to day 31 are shown. Concerning the simulation 

related to the pyranometer measurements all the hours of day 29 are classified as variable 

with kt between 0.28 and 0.70. For days 30 and 31, the hours 10 a.m. to 1 p.m. are 

classified as clear with kt within 0.77, and the remaining hours as variable with kt 

between 0.37 and 0.75. 

The hourly algorithm for the 1-day ahead prediction of day 29 classifies the hours from 

10 a.m. to 1 p.m. as clear with ktf within 0.77 and the remaining hours as variable with ktf 

in the range 0.70 − 0.75. 

The simulation related to the 1-day ahead prediction on days 30 and 31 classifies the 

hours from 9 a.m. to 4 p.m. as clear-sky, with ktf in the range0.77 − 0.79, and the 

remaining hours as variable, with ktf between 0.72 and 0.75. 

Fig. 4.27 − Measurements from the pyranometer, the three-hour predictions from Meteo.cat and the 
interpolated predictions from 29 July 2012 to 31 July 2012 for the site “Ma”. 

4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

hours

Ir
ra

di
an

ce
 [

W
/m

2 ]

07/29/2012

 

 
data
1 day before
data
2 days before
data
3 days before
Gpyr

4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

hours

Ir
ra

di
an

ce
 [

W
/m

2 ]

07/30/2012

 

 
data
1 day before
data
2 days before
data
3 days before
Gpyr

4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

hours

Ir
ra

di
an

ce
 [

W
/m

2 ]

07/31/2012

 

 
data
1 day before
data
2 days before
data
3 days before
Gpyr



                                                                                                                                                Chapter 4 

139 
 

In Table 4.10, Table 4.11, Table 4.12, Table 4.13, Table 4.14 and Table 4.15 the number 

of passes/fails (in hour) recorded by the hourly classifications from pyranometer 

measurements respect to the hourly classifications from 1-day before forecast are 

summarized for all the month of the year 2012 for the site “Ma”. 

Examining the results month by month, it is possible to note that the number of hourly 

passes, in which the 1-day prediction coincides with the pyranometer measurements, is 

higher than for the site “Gi”. 

In particular, in winter months an increase in the number of hours with the cloudy – 

cloudy condition occurs. On the contrary, in spring and autumn months, a greater number 

of hourly passes for the variable – variable condition is recorded. 

Moreover, in summer months, as well as an increase in the number of hourly passes for 

the variable – variable condition, there is also a decrease in the number of hours with the 

variable – clear condition and clear – clear condition. In general, the number of clear-sky 

days is lower than for the site “Gi”. This can be explained by the proximity of the site 

“Ma” with high pollution areas, for example due to great quantity of fine dust in air from 

industrial steel mills. 

 

Table 4.10 – Number of passes/fails, recorded by the hourly classification from pyranometer measurements 
vs. 1-day before forecast for the months of January and February 2012 for the site “Ma”. 

  
  

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 95
Clear Clear 93

Cloudy Cloudy 210
Variable Clear 29
Variable Cloudy 0

Clear Variable 1
Clear Cloudy 0

Cloudy Variable 30
Cloudy Clear 7

Tot. Passes 398
Tot. Fails 67

January
Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 70
Clear Clear 54

Cloudy Cloudy 159
Variable Clear 55
Variable Cloudy 0

Clear Variable 2
Clear Cloudy 0

Cloudy Variable 77
Cloudy Clear 18

Tot. Passes 283
Tot. Fails 152

February
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Table 4.11 – Number of passes/fails, recorded by the hourly classification from pyranometer measurements 
vs. 1-day before forecast for the months of March and April 2012 for the site “Ma”. 

  

Table 4.12 – Number of passes/fails, recorded by the hourly classification from pyranometer measurements 
vs. 1-day before forecast for the months of May and June 2012 for the site “Ma”. 

  

Table 4.13 – Number of passes/fails, recorded by the hourly classification from pyranometer measurements 
vs. 1-day before forecast for the months of July and August 2012 for the site “Ma”. 

  
  

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 123
Clear Clear 83

Cloudy Cloudy 86
Variable Clear 87
Variable Cloudy 1

Clear Variable 13
Clear Cloudy 0

Cloudy Variable 69
Cloudy Clear 3

Tot. Passes 292
Tot. Fails 173

March
Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 109
Clear Clear 54

Cloudy Cloudy 63
Variable Clear 136
Variable Cloudy 2

Clear Variable 6
Clear Cloudy 0

Cloudy Variable 49
Cloudy Clear 31

Tot. Passes 226
Tot. Fails 224

April

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 166
Clear Clear 37

Cloudy Cloudy 2
Variable Clear 183
Variable Cloudy 0

Clear Variable 1
Clear Cloudy 0

Cloudy Variable 54
Cloudy Clear 22

Tot. Passes 205
Tot. Fails 260

May
Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 219
Clear Clear 34

Cloudy Cloudy 24
Variable Clear 162
Variable Cloudy 0

Clear Variable 0
Clear Cloudy 0

Cloudy Variable 8
Cloudy Clear 3

Tot. Passes 277
Tot. Fails 173

June

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 284
Clear Clear 26

Cloudy Cloudy 0
Variable Clear 113
Variable Cloudy 0

Clear Variable 3
Clear Cloudy 0

Cloudy Variable 38
Cloudy Clear 1

Tot. Passes 310
Tot. Fails 155

July
Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 244
Clear Clear 3

Cloudy Cloudy 26
Variable Clear 171
Variable Cloudy 0

Clear Variable 0
Clear Cloudy 0

Cloudy Variable 16
Cloudy Clear 5

Tot. Passes 273
Tot. Fails 192

August
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Table 4.14 – Number of passes/fails, recorded by the hourly classification from pyranometer measurements 
vs. 1-day before forecast for the months of September and October 2012 for the site “Ma”. 

  

Table 4.15 – Number of passes/fails, recorded by the hourly classification from pyranometer measurements 
vs. 1-day before forecast for the months of November and December 2012 for the site “Ma”. 

  

In the following figures (Fig. 4.28 – Fig. 4.39) the deviations of the 2-day ahead 

predictions with respect to the 1-day ahead predictions, considered as the most accurate, 

and the deviations of the 3-day ahead predictions with respect to the 1-day ahead 

predictions are calculated for the site “Ma”, according to eq. (4.20) and (4.21). According 

to the site “Gi”, major deviations occur in winter, spring and autumn months, on the 

other hand in summer months, positive and negative deviations are quite negligible ( ≤ 

30 W/m2). In general, for each of the two site, the deviations between the 3-day before 

predictions vs. the 1-day before predictions are greater than the 2-day before predictions 

vs. the 1-day before predictions. In particular, the site “Gi” presents major deviations 

than the site “Ma”. 

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 214
Clear Clear 32

Cloudy Cloudy 86
Variable Clear 92
Variable Cloudy 1

Clear Variable 4
Clear Cloudy 0

Cloudy Variable 12
Cloudy Clear 9

Tot. Passes 332
Tot. Fails 118

September
Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 181
Clear Clear 21

Cloudy Cloudy 109
Variable Clear 82
Variable Cloudy 9

Clear Variable 20
Clear Cloudy 13

Cloudy Variable 26
Cloudy Clear 4

Tot. Passes 311
Tot. Fails 154

October

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 194
Clear Clear 7

Cloudy Cloudy 162
Variable Clear 10
Variable Cloudy 2

Clear Variable 12
Clear Cloudy 0

Cloudy Variable 61
Cloudy Clear 2

Tot. Passes 363
Tot. Fails 87

November

Hourly classification 
from pyranometer 

measurements

Hourly classification 
from the day before  

prediction

N° of pass/fail 
(hour)

Variable Variable 141
Clear Clear 21

Cloudy Cloudy 193
Variable Clear 13
Variable Cloudy 1

Clear Variable 41
Clear Cloudy 0

Cloudy Variable 54
Cloudy Clear 1

Tot. Passes 355
Tot. Fails 110

December
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Fig. 4.28 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of January 2012 

for the site “Ma”. 

 
Fig. 4.29 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of February 

2012 for the site “Ma”. 
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Fig. 4.30 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of March 2012 

for the site “Ma”. 

 
Fig. 4.31 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of April 2012 for 

the site “Ma”. 
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Fig. 4.32 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of May 2012 for 

the site “Ma”. 

 
Fig. 4.33 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of June 2012 for 

the site “Ma”. 
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Fig. 4.34 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of July 2012 for 

the site “Ma”. 

 
Fig. 4.35 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of August 2012 

for the site “Ma”. 
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Fig. 4.36 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of September 

2012 for the site “Ma”. 

 
Fig. 4.37 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of October 2012 

for the site “Ma”. 
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Fig. 4.38 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of November 

2012 for the site “Ma”. 

 
Fig. 4.39 – Deviations of 2, 3-day ahead forecasts vs. 1-day ahead forecasts for the month of December 

2012 for the site “Ma”. 
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In Table 4.16 and Table 4.17 the maximum value of clear-sky irradiance taken from 

PVGIS [73] for each month and the occurrence of broken clouds are shown for the site 

“Ma”. 

As well as the site “Gi”, for the calculation of the occurrence of broken clouds, it has 

been considered the global irradiance of one of the tilted solar cells Gtcell with sampling 

time, respectively, of one minute and the average value every 15 minutes. 

The occurrence of broken clouds for the whole year 2012 for the site “Ma” is lower than 

for the site “Gi”, in particular 67.92 hours of broken clouds per minute are verified, that 

corresponds to 2 days 19 hours and 55 minutes. 

It is noteworthy that the months with a higher occurrence of broken clouds are in winter 

(January) and in autumn (September). On the contrary, in spring and summer the number 

of broken clouds per minute is lower than for the site “Gi”. 

Also in this case, with the perspective of the day-ahead market , the occurrence of broken 

clouds for the quarter-hour averaged values is much more attenuated. In particular, for 

the whole year 2012 only 20.25 hours of broken clouds/15 min occur. 
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Table 4.16 – Maximum clear-sky irradiance values with tilted angle of 30° for the site “Ma” for each 
month, taken from PVGIS. 

 

Table 4.17 – The occurrence of broken clouds for the site “Ma” for each month, considering Gtcell with 
sampling time of one minute and with sampling time averaged each 15 minutes. 

 
  

Month

Max clear-sky 
irradiance on a fixed 

plane (30°) (W/m2)

January 856
February 977
March 1100
April 1110
May 1070
June 1060
July 1030

August 1080
September 1040

October 1020
November 905
December 853

PVGIS

Month
N° of 

BrokenClouds/min
N° of 

BrokenClouds/15 min

January 1155 33
February 367 8
March 210 0
April 279 1
May 338 6
June 138 1
July 106 2

August 17 0
September 640 9
October 183 4

November 282 10
December 360 7

Tot. Year 2012 4075 81

Year 2012
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4.6 Accuracy of predictions 

The data obtained with a forecasting model contain uncertainties: the only way to 

judge whether a forecast is good or not is to compare the estimated quantities with those 

measured. The result of this comparison is a representation of the estimation error, that 

represents the quality of the forecast compared to the historical measured data [84], 

[106], [107], [108], [109], [110], [111]. In other words, the uncertainties are quantities 

associated with future variables, but estimated according to historical evaluations [112]. 

Generally, the quantitative evaluation of the errors requires the use of some statistic 

methods. It is very important that such instruments give a representation of accuracy 

which is comparable to that obtained by other measurements. 

For this purpose, it is possible to define ε, the prediction error, as the difference between 

the forecast and the measured irradiance: 

εx = xfore− xmeas (4.22) 

In this way, positive errors stand for the prediction overestimates the actual value. In 

literature [84], [106]-[112], the most popular index is the root mean square error 

(RMSE), nevertheless the electric power generated by PV devices is not a square function 

of irradiance. It is defined as follows: 




N

i
iN

RMSE
1

21   (4.23) 

where N is the number of available data. 

The RMSE is a parameter that has the same measurement unit of the examining 

quantities. In order to compare different phenomena with different units is often 

convenient to normalize it, obtaining a relative value in percentage, the normalized root 

mean square error (nRMSE). For this purpose, the RMSE is conventionally divided by 
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the average value of the measured data on the same interval and then converted in 

percentage, that is: 







N

i
imeasx

N

RMSE
nRMSE

1

2

,

1
 (4.24) 

The RMSE measures the difference between the desired distribution and that obtained 

from numerical simulation and calculates a weighted average error. 

It is shown that this index can be expressed as a linear combination of two terms: 

222 STDERRMBERMSE   (4.25) 

The two terms in the previous formula are respectively: 

- the mean bias error (MBE), defined as the mean difference between the prediction 

and the measurement and it represents the systematic part (bias) of the error, defined as: 





N

i iN
MBE

1

1   (4.26) 

- the standard deviation of errors (STDERR), which indicates the dispersion level of 

errors around their arithmetic mean value, it corresponds to the statistical error: 

  


N

i
iN

STDERR
1

21   (4.27) 

From equation (4.25), it is worth noted that the standard deviation captures the part of the 

RMSE that is not due to systematic error, and provides an indication of the RMSE that 

can be achieved once the MBE is essentially eliminated [112]. The RMSE is only a 

relative indicator of the quality of the model, therefore, a difference of 20 – 30 % 

between a prediction model and another is significant and should be taken into account. 

However, a difference less than 10 % is meaningless, while a difference of a few percent 

is totally negligible. This means that to earn only 2 % or 5 % in terms of RMSE, 
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increasing the complexity of the model, does not give any significant improvement in the 

results, but only a greater computational effort. 

Another useful parameter to evaluate the accuracy of forecasts is the mean absolute error 

(MAE), defined as follows: 




N

i
iN

MAE
1

1   (4.28) 

This parameter is more sensitive to high-value errors, so it is a statistical measure, useful 

in those applications insensitive to minor error. The MAE provides a more appropriate 

measurement of the amplitude of the mean error than the RMSE, because the latter 

parameter also includes a part of error related to the dispersion of data. For this reason 

the values of MAE are never higher than those of RMSE (MAE ≤ RMSE). It should be 

noted that the MAE is inversely proportional to the number of available data N, while the 

RMSE is inversely proportional to √ , therefore when the number of data increases, their 

difference increases. 

As explained in [112], forecast evaluation and accuracy metrics provide a way to 

generate prediction intervals (or confidence intervals) for forecasting. These prediction 

intervals indicate the range in which the actual value is expected to appear with a 

quantified probability [84]. Therefore, adding prediction intervals to the forecasts, builds 

an indicator of its expected accuracy: single deterministic forecast values are replaced by 

distributions or ranges of values that can be expected. 
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4.7 Error calculation of the prediction with respect 

to irradiance measurements 

One of the main reasons of the importance of the solar irradiance forecast is the 

management of electrical grids in order to minimize the costs of energy imbalance. 

From eq. (4.22), the prediction error, ε, is defined as the difference between the 1-day 

ahead forecast and the measured irradiance from pyranometer: 

εG = Gfore− Gmeas (4.29) 

Tables 4.18, 4.19, 4.20, 4.21 and 4.22 show the errors calculation results between the 1, 

2, and 3-day ahead irradiance forecasts and the pyranometer measurements for the days 

of July 2012 in the site “Gi”. It is noteworthy that the RMSE and STDERR errors are in 

W/m2. On the contrary, the nRMSE, MBE and MAE errors are reported in per unit with 

respect to 1 kW/m2 for all the types of forecast. 

Examining the results, the 1-day ahead forecast is the most accurate, with low errors 

compared to the 2-day and 3-day ahead forecasts. In particular, considering the RMSE 

errors in Table 4.18, the average value of the 1-day ahead forecasts give figures around 

119 W/m2, whereas the maximum value is around 266 W/m2 and the minimum value is 

around 81 W/m2. As per the nRMSE errors in Table 4.19, the average value of the 1-day 

ahead forecasts is around 27 W/m2, the maximum value is around 81 W/m2, whereas the 

minimum value is around 16 W/m2. As shown in Table 4.20, the STDERR errors for the 

1-day ahead forecasts give figures around 108 W/m2 in average, whereas the maximum 

value is around 240 W/m2 and the minimum value is around 77 W/m2. 

Considering the MBE errors in Table 4.21, it can be pointed out that, in average, the 1-

day ahead forecasts give figures around 0.05. In the best results the MBE index decreases 

down to 0.02 and in the worst results they rise up to 0.14. As per the MAE errors show in 
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Table 4.22, the average value for the 1-day ahead forecasts is 0.09, the minimum value is 

0.06 and the maximum value is 0.18. 

Table 4.18 – The Root Mean Square Errors in July in the site “Gi”. 

 

   

Date RMSE  1-day RMSE  2-day RMSE  3-day

01/07/2012 88.50 124.81 152.06
02/07/2012 93.14 131.47 160.79
03/07/2012 124.98 176.37 217.65
04/07/2012 91.06 128.64 158.47
05/07/2012 138.21 196.59 241.15
06/07/2012 106.64 151.71 186.64
07/07/2012 187.72 265.60 324.53
08/07/2012 91.54 129.25 158.02
09/07/2012 90.06 127.96 157.86
10/07/2012 115.65 165.01 200.00
11/07/2012 90.10 119.08 148.58
12/07/2012 217.54 311.00 382.51
13/07/2012 82.02 115.34 140.77
14/07/2012 81.44 114.54 140.99
15/07/2012 86.81 123.07 154.13
16/07/2012 108.59 155.48 189.54
17/07/2012 83.22 115.68 141.03
18/07/2012 84.68 120.82 146.94
19/07/2012 86.23 121.04 148.92
20/07/2012 82.90 116.06 139.52
21/07/2012 93.81 130.77 143.52
22/07/2012 147.87 196.77 244.51
23/07/2012 219.18 373.12 486.69
24/07/2012 262.97 372.57 455.33
25/07/2012 266.33 378.85 463.78
26/07/2012 135.56 190.59 233.91
27/07/2012 88.01 125.35 152.41
28/07/2012 82.14 114.48 139.34
29/07/2012 98.71 140.02 171.38
30/07/2012 96.49 136.48 165.05
31/07/2012 81.50 112.22 135.96
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Table 4.19 – The Normalized Root Mean Square Errors in July in the site “Gi”. 

 

   

Date nRMSE  1-day nRMSE  2-day nRMSE  3-day

01/07/2012 18.20 18.15 18.06
02/07/2012 19.24 19.20 19.18
03/07/2012 26.56 26.51 26.71
04/07/2012 18.79 18.78 18.89
05/07/2012 29.70 29.87 29.92
06/07/2012 21.76 21.89 21.99
07/07/2012 42.25 42.27 42.17
08/07/2012 18.52 18.49 18.46
09/07/2012 18.64 18.73 18.87
10/07/2012 24.70 24.92 24.66
11/07/2012 18.40 17.20 17.52
12/07/2012 53.71 54.29 54.52
13/07/2012 16.28 16.19 16.13
14/07/2012 16.11 16.02 16.10
15/07/2012 17.83 17.87 18.28
16/07/2012 21.89 22.16 22.06
17/07/2012 16.43 16.15 16.08
18/07/2012 16.75 16.90 16.78
19/07/2012 17.41 17.28 17.36
20/07/2012 16.72 16.55 16.24
21/07/2012 19.48 19.20 17.20
22/07/2012 32.81 30.88 31.33
23/07/2012 81.48 98.08 104.46
24/07/2012 61.22 61.33 61.20
25/07/2012 75.46 75.90 75.87
26/07/2012 29.09 28.92 28.98
27/07/2012 18.09 18.21 18.08
28/07/2012 16.86 16.61 16.51
29/07/2012 21.98 22.05 22.03
30/07/2012 20.16 20.16 19.91
31/07/2012 16.90 16.46 16.28
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Table 4.20 – The Standard Deviation of Errors in July in the site “Gi”. 

 

   

Date STDERR  1-day STDERR  2-day STDERR  3-day
01/07/2012 77.30 117.36 164.16
02/07/2012 79.61 122.67 174.64
03/07/2012 106.23 163.87 235.84
04/07/2012 80.71 121.61 168.88
05/07/2012 117.84 182.11 262.06
06/07/2012 97.34 145.43 196.21
07/07/2012 168.37 252.37 345.44
08/07/2012 83.66 124.37 166.55
09/07/2012 79.29 120.43 168.53
10/07/2012 101.38 154.56 216.41
11/07/2012 80.74 118.20 152.76
12/07/2012 188.82 290.31 411.90
13/07/2012 77.31 112.36 146.20
14/07/2012 77.68 112.28 145.15
15/07/2012 78.63 117.64 160.98
16/07/2012 103.50 150.79 195.94
17/07/2012 78.07 113.16 146.85
18/07/2012 81.05 118.17 151.59
19/07/2012 80.08 117.26 155.28
20/07/2012 76.96 112.57 147.40
21/07/2012 85.96 126.84 155.66
22/07/2012 135.70 196.48 247.96
23/07/2012 180.53 319.13 509.40
24/07/2012 239.83 356.38 480.80
25/07/2012 228.02 352.05 503.53
26/07/2012 129.02 186.56 240.78
27/07/2012 84.83 122.84 156.70
28/07/2012 78.19 112.62 143.83
29/07/2012 86.10 131.23 184.78
30/07/2012 92.43 133.79 170.38
31/07/2012 77.83 110.75 140.11
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Table 4.21 – The Mean Bias Errors in July in the site “Gi”. 

 

   

Date MBE  1-day MBE  2-day MBE  3-day

01/07/2012 0.043 0.086 0.127
02/07/2012 0.048 0.096 0.143
03/07/2012 0.066 0.131 0.199
04/07/2012 0.042 0.084 0.128
05/07/2012 0.072 0.146 0.220
06/07/2012 0.044 0.087 0.131
07/07/2012 0.083 0.166 0.247
08/07/2012 0.037 0.072 0.107
09/07/2012 0.043 0.086 0.131
10/07/2012 0.056 0.113 0.165
11/07/2012 0.040 0.054 0.093
12/07/2012 0.108 0.220 0.331
13/07/2012 0.027 0.053 0.078
14/07/2012 0.024 0.047 0.070
15/07/2012 0.037 0.073 0.116
16/07/2012 0.033 0.071 0.104
17/07/2012 0.029 0.053 0.076
18/07/2012 0.025 0.050 0.071
19/07/2012 0.032 0.062 0.094
20/07/2012 0.031 0.059 0.080
21/07/2012 0.038 0.069 0.056
22/07/2012 0.059 0.069 0.124
23/07/2012 0.124 0.318 0.520
24/07/2012 0.108 0.217 0.323
25/07/2012 0.138 0.278 0.416
26/07/2012 0.042 0.081 0.122
27/07/2012 0.023 0.048 0.068
28/07/2012 0.025 0.046 0.066
29/07/2012 0.048 0.097 0.145
30/07/2012 0.028 0.055 0.077
31/07/2012 0.024 0.042 0.060
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Table 4.22 – The Mean Absolute Errors in July in the site “Gi”. 

 

   

Date MAE  1-day MAE  2-day MAE  3-day

01/07/2012 0.069 0.138 0.205
02/07/2012 0.073 0.146 0.219
03/07/2012 0.093 0.185 0.280
04/07/2012 0.069 0.138 0.208
05/07/2012 0.099 0.201 0.302
06/07/2012 0.071 0.142 0.215
07/07/2012 0.116 0.232 0.348
08/07/2012 0.068 0.137 0.205
09/07/2012 0.069 0.138 0.210
10/07/2012 0.083 0.169 0.250
11/07/2012 0.070 0.124 0.192
12/07/2012 0.146 0.294 0.441
13/07/2012 0.062 0.122 0.182
14/07/2012 0.063 0.125 0.189
15/07/2012 0.066 0.132 0.205
16/07/2012 0.074 0.149 0.221
17/07/2012 0.063 0.124 0.186
18/07/2012 0.067 0.135 0.202
19/07/2012 0.066 0.130 0.197
20/07/2012 0.061 0.121 0.179
21/07/2012 0.068 0.134 0.172
22/07/2012 0.096 0.167 0.261
23/07/2012 0.153 0.374 0.602
24/07/2012 0.179 0.358 0.536
25/07/2012 0.181 0.363 0.544
26/07/2012 0.084 0.166 0.250
27/07/2012 0.064 0.130 0.194
28/07/2012 0.063 0.124 0.184
29/07/2012 0.076 0.152 0.228
30/07/2012 0.069 0.138 0.205
31/07/2012 0.063 0.122 0.181
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Tables 4.23, 4.24, 4.25, 4.26 and 4.27 show the errors calculation results between the 1, 

2, and 3-day ahead irradiance forecasts and the pyranometer measurements for the days 

of July 2012 in the site “Ma”. 

By analyzing the results, for the RMSE errors in Table 4.23 the average value of the 1-

day ahead forecasts give figures around 107 W/m2, whereas the maximum value is 

around 280 W/m2 and the minimum value is around 82 W/m2. Considering the nRMSE 

errors in Table 4.24, the average value of the 1-day ahead forecasts is around 23 W/m2, 

the maximum value is around 82 W/m2, whereas the minimum value is around 16 W/m2. 

As shown in Table 4.25, the STDERR errors for the 1-day ahead forecasts give figures 

around 98 W/m2 in average, whereas the maximum value is around 248 W/m2 and the 

minimum value is around 79 W/m2. 

As per the MBE errors in Table 4.26, it can be pointed out that, in average, the 1-day 

ahead forecasts give figures around 0.04. In the best results the MBE index decreases 

down to 0.01 and in the worst results they rise up to 0.16. Considering the MAE errors 

show in Table 4.27, the average value for the 1-day ahead forecasts is 0.08, the minimum 

value is 0.06 and the maximum value is 0.19. 
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Table 4.23 – The Root Mean Square Errors in July in the site “Ma”. 

 

   

Date RMSE  1-day RMSE  2-day RMSE  3-day

01/07/2012 91.20 127.12 154.25
02/07/2012 92.01 130.40 160.08
03/07/2012 89.07 126.44 155.14
04/07/2012 84.97 120.23 147.35
05/07/2012 99.15 137.85 168.40
06/07/2012 157.58 223.53 275.71
07/07/2012 116.01 166.57 205.47
08/07/2012 83.67 119.47 144.69
09/07/2012 89.06 123.47 151.05
10/07/2012 95.65 136.01 165.47
11/07/2012 89.68 124.04 152.78
12/07/2012 126.50 181.64 222.98
13/07/2012 86.11 120.95 147.64
14/07/2012 85.01 120.45 149.85
15/07/2012 89.73 128.03 158.47
16/07/2012 82.39 117.06 142.63
17/07/2012 87.81 122.17 148.97
18/07/2012 87.61 124.42 151.78
19/07/2012 89.40 126.96 154.76
20/07/2012 84.32 119.03 145.01
21/07/2012 92.79 129.13 154.61
22/07/2012 90.67 117.73 146.23
23/07/2012 251.97 347.56 428.62
24/07/2012 280.46 399.24 487.39
25/07/2012 132.72 177.48 212.55
26/07/2012 112.16 157.71 192.83
27/07/2012 86.21 122.67 149.58
28/07/2012 83.60 117.74 143.29
29/07/2012 96.36 136.36 166.48
30/07/2012 85.54 120.91 146.53
31/07/2012 82.38 113.91 137.79
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Table 4.24 – The Normalized Root Mean Square Errors in July in the site “Ma”. 

 

   

Date nRMSE  1-day nRMSE  2-day nRMSE  3-day

01/07/2012 18.72 18.45 18.28
02/07/2012 18.96 19.00 19.04
03/07/2012 17.94 18.01 18.05
04/07/2012 17.16 17.16 17.18
05/07/2012 19.62 19.29 19.24
06/07/2012 33.48 33.59 33.82
07/07/2012 23.73 24.10 24.27
08/07/2012 16.36 16.52 16.33
09/07/2012 18.09 17.73 17.71
10/07/2012 20.02 20.12 19.99
11/07/2012 18.08 17.68 17.78
12/07/2012 27.08 27.50 27.56
13/07/2012 17.09 16.97 16.92
14/07/2012 16.88 16.91 17.18
15/07/2012 18.33 18.50 18.69
16/07/2012 16.27 16.35 16.26
17/07/2012 17.30 17.02 16.94
18/07/2012 17.35 17.42 17.35
19/07/2012 18.08 18.15 18.06
20/07/2012 16.63 16.60 16.51
21/07/2012 19.30 18.99 18.57
22/07/2012 19.00 17.44 17.69
23/07/2012 81.90 79.88 80.43
24/07/2012 75.31 75.80 75.56
25/07/2012 27.29 25.80 25.23
26/07/2012 23.19 23.06 23.02
27/07/2012 17.62 17.73 17.65
28/07/2012 17.11 17.04 16.93
29/07/2012 21.28 21.29 21.22
30/07/2012 17.53 17.53 17.34
31/07/2012 16.97 16.59 16.38
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Table 4.25 – The Standard Deviation of Errors in July in the site “Ma”. 

 

   

Date STDERR  1-day STDERR  2-day STDERR  3-day
01/07/2012 81.42 121.40 165.11
02/07/2012 82.08 123.42 170.48
03/07/2012 81.31 120.81 163.49
04/07/2012 78.64 116.13 153.92
05/07/2012 92.65 133.85 175.91
06/07/2012 145.30 215.37 287.74
07/07/2012 108.83 160.17 213.16
08/07/2012 80.15 117.24 149.13
09/07/2012 80.89 118.79 159.81
10/07/2012 84.55 128.26 177.92
11/07/2012 82.24 120.98 159.12
12/07/2012 112.55 170.61 237.80
13/07/2012 82.39 118.61 151.71
14/07/2012 81.95 117.99 152.75
15/07/2012 82.62 122.85 165.49
16/07/2012 79.32 114.52 146.47
17/07/2012 83.83 120.40 153.68
18/07/2012 84.69 122.51 155.34
19/07/2012 84.71 123.77 160.23
20/07/2012 82.06 117.49 148.28
21/07/2012 85.51 125.39 163.49
22/07/2012 84.63 115.99 151.48
23/07/2012 193.15 313.31 482.46
24/07/2012 248.40 376.59 522.05
25/07/2012 132.14 174.36 212.52
26/07/2012 109.32 156.16 195.98
27/07/2012 83.82 120.61 152.84
28/07/2012 80.52 116.06 146.96
29/07/2012 85.11 128.40 178.85
30/07/2012 83.19 119.74 149.60
31/07/2012 79.74 112.84 140.97
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Table 4.26 – The Mean Bias Errors in July in the site “Ma”. 

 

   

Date MBE  1-day MBE  2-day MBE  3-day

01/07/2012 0.041 0.079 0.115
02/07/2012 0.042 0.084 0.126
03/07/2012 0.036 0.074 0.111
04/07/2012 0.032 0.063 0.096
05/07/2012 0.035 0.068 0.100
06/07/2012 0.061 0.121 0.186
07/07/2012 0.040 0.086 0.131
08/07/2012 0.024 0.047 0.066
09/07/2012 0.037 0.071 0.105
10/07/2012 0.045 0.090 0.132
11/07/2012 0.036 0.063 0.099
12/07/2012 0.058 0.120 0.181
13/07/2012 0.025 0.049 0.073
14/07/2012 0.023 0.047 0.074
15/07/2012 0.035 0.071 0.109
16/07/2012 0.022 0.046 0.068
17/07/2012 0.026 0.047 0.065
18/07/2012 0.022 0.044 0.064
19/07/2012 0.029 0.057 0.083
20/07/2012 0.019 0.038 0.051
21/07/2012 0.036 0.067 0.093
22/07/2012 0.033 0.053 0.081
23/07/2012 0.162 0.312 0.473
24/07/2012 0.130 0.263 0.391
25/07/2012 0.012 0.046 0.077
26/07/2012 0.025 0.047 0.070
27/07/2012 0.020 0.043 0.060
28/07/2012 0.022 0.042 0.060
29/07/2012 0.045 0.091 0.135
30/07/2012 0.020 0.037 0.049
31/07/2012 0.021 0.036 0.050
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Table 4.27 – The Mean Absolute Errors in July in the site “Ma”. 

 

  

Date MAE  1-day MAE  2-day MAE  3-day

01/07/2012 0.070 0.138 0.205
02/07/2012 0.068 0.136 0.205
03/07/2012 0.068 0.137 0.207
04/07/2012 0.064 0.128 0.193
05/07/2012 0.075 0.147 0.221
06/07/2012 0.097 0.194 0.294
07/07/2012 0.079 0.162 0.246
08/07/2012 0.065 0.131 0.195
09/07/2012 0.068 0.133 0.199
10/07/2012 0.074 0.148 0.220
11/07/2012 0.067 0.130 0.196
12/07/2012 0.092 0.187 0.281
13/07/2012 0.067 0.133 0.199
14/07/2012 0.066 0.133 0.203
15/07/2012 0.068 0.137 0.208
16/07/2012 0.062 0.125 0.187
17/07/2012 0.069 0.136 0.204
18/07/2012 0.069 0.139 0.208
19/07/2012 0.070 0.141 0.211
20/07/2012 0.066 0.132 0.199
21/07/2012 0.071 0.140 0.205
22/07/2012 0.072 0.128 0.197
23/07/2012 0.189 0.370 0.558
24/07/2012 0.188 0.378 0.566
25/07/2012 0.100 0.186 0.271
26/07/2012 0.070 0.141 0.211
27/07/2012 0.066 0.133 0.199
28/07/2012 0.065 0.130 0.193
29/07/2012 0.073 0.147 0.219
30/07/2012 0.068 0.137 0.204
31/07/2012 0.064 0.126 0.187
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In the following figures, the error duration curve, calculated both for MBE and MAE, of 

the 1-day ahead predictions with respect to the irradiance measurements with sampling 

time of quarter-hours and on an annual basis are represented for the sites “Gi” and “Ma”. 

In Fig. 4.40 the error duration curves of positive and negative MBE are shown for the site 

“Gi”. In this case, the prediction error is within a range of 10 − 80 %. To consider the 

maximum errors (here equal to 80 %) corresponding to 100 % of the time for MBE 

parameter is not a practical choice. In this regard, a good compromise is represented by 

the 95 % threshold for which the previous parameters are highlighted in the following 

duration curves. Therefore, for the 95 % of the time, considering positive MBE errors 

(prediction > measurement), MBE is less than 25 %; on the contrary, for negative MBE 

errors (prediction < measurement), MBE is less than 20 %. Similar considerations are 

made for MAE. In Fig. 4.41 the MAE error duration curve is shown for the site “Gi”. 

Also in this case, to consider the maximum errors corresponding to 100 % of the time for 

MAE parameter is not a practical choice. Therefore, for 95 % of time, MAE is less than 

28 %. 

In Fig. 4.42 the error duration curves of positive and negative MBE are shown for the site 

“Ma”. In this case, the prediction error is within the 80 % and 10 %. For 95 % of the 

time, considering positive MBE
 
errors, MBE is less than 22 %; on the contrary, for 

negative MBE errors, MBE is less than 20 %. Considering the MAE error duration curve 

for the site “Ma” in Fig. 4.43, for 95 % of time, MAE is less than 25 %. 

Actually, from the given definitions of the different errors, the MAE figures are 

intrinsically higher than the corresponding ones in MBE. 

In Fig. 4.44 the zoom of duration curves for positive MBE errors are shown in the same 

graph for the site “Gi” and “Ma”. For 95 % of the time, positive MBE is less than 50 % 

for the site “Gi” and around 45 % for the site “Ma”. On the contrary, in Fig. 4.45 the 

zoom of duration curves for negative MBE errors are shown in the same graph for the site 

“Gi” and “Ma”. For 95 % of the time, negative MBE is around 27 % for the site “Gi” and 

less than 25 % for the site “Ma”. In Fig. 4.46 the zoom of duration curves for MAE errors 
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are shown in the same graph for the site “Gi” and “Ma”. For 95 % of the time, MAE is 

around 42 % for the site “Gi” and less than 38 % for the site “Ma”. 

It is noteworthy that the two locations are closed to the correctness boundary limits of 

Meteo.cat provider. Therefore, considering more locations the errors may decrease. 

 

 
Fig. 4.40 − Error duration curve of positive and negative MBE errors for the prediction wrt irradiance 

measurements for the year 2012 for the site “Gi”. 
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Fig. 4.41 − Error duration curve of MAE error for the prediction wrt irradiance measurements for the year 

2012 for the site “Gi”. 

 

 
Fig. 4.42 − Error duration curve of positive and negative MBE errors for the prediction wrt irradiance 

measurements for the year 2012 for the site “Ma”. 
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Fig. 4.43 − Error duration curve of MAE error for the prediction wrt irradiance measurements for the year 

2012 for the site “Ma”. 

 

 
Fig. 4.44 – Zoom of the error duration curves of positive MBE errors for the prediction wrt irradiance 

measurements for the year 2012 for the sites “Gi” and “Ma”. 
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Fig. 4.45 – Zoom of the error duration curves of negative MBE errors for the prediction wrt irradiance 

measurements for the year 2012 for the sites “Gi” and “Ma”. 

 

 
Fig. 4.46 – Zoom of the error duration curves of MAE errors for the prediction wrt irradiance 

measurements for the year 2012 for the sites “Gi” and “Ma”. 
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4.8 Summary 

Due to the intermittent nature of the solar irradiance, the ability to predict, with low 

error, the 1-day ahead PV production permits to reduce the unbalance between 

provisional budget and final budget in the electricity market. In this chapter, the 

comparison between irradiance measurements and 3-day ahead forecasts, properly 

interpolated, is presented for two sites (“Gi” and “Ma”) placed in South of Italy. 

A method to classify each hour of a day in three categories (variable, cloudy, or clear) is 

implemented on annual basis. In this way, the number of passes/fails recorded by the 

hourly classification method from pyranometer measurements with respect to the hourly 

classification method from 1-day before forecast is analyzed. As results, in summer the 

highest number of hourly passes occurs for the variable − variable condition; on the 

contrary, in winter it occurs for the cloudy – cloudy condition. The low number of clear-

sky days in spring and summer months, can be explained by the turbidity in air, e.g. due 

to pollution. In the site “Ma” the number of clear-sky days is lower than in the site “Gi”, 

e.g. due to its proximity with high pollution areas (industrial steel mills). 

From the comparison of the 2-day ahead and 3-day ahead predictions vs. the 1-day ahead 

prediction, considered as the most accurate, the deviations show that positive and 

negative deviations are quite negligible in summer months (< 20 W/m2 in the site “Gi” 

and ≤ 30 W/m2 in the site “Ma”). Major deviations occur in winter, spring and autumn 

months. In particular, the deviations between the 3-day ahead predictions vs. the 1-day 

ahead predictions are greater than the 2-day ahead predictions vs. the 1-day ahead 

predictions. The site “Gi” presents major deviations than the site “Ma”. Moreover, the 

analysis of the “broken clouds” phenomenon, considered as a subset of the variable sky 

condition, even if noticeable on 1-min scale, loses importance on 15-min scale. 

Finally, the accuracy between the predicted and measured data is carried out through the 

use of statistical indicators: the Mean Absolute Error (MAE) and the Mean Bias Error 

(MBE). Considering, positive and negative MBE errors, the error duration curves are 
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presented for 15-min averaged solar irradiance values and on annual basis. As results, for 

95 % of the time, in case of positive errors (prediction > measurement), the MBE is < 25 

% in the site “Gi” and ≈ 22 % in the site “Ma”, on the contrary for negative errors, MBE 

is  < 20 % in the site “Gi” and ≈ 20 % in the site “Ma”. 
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Introduction 

A dedicated PV conversion model is the tool to link the irradiance and cell 

temperature data with the AC power delivered to the grid. 

In this chapter, for the definition of the PV conversion model [113], many loss 

factors that influence the PV system behavior, are firstly taken into account. Moreover, 

the error parameters are determined with respect to the real grid-connected PV systems 

in the sites “Gi” and “Ma” 1 MWp per each. 

5.1. Loss Factors in PV systems 

In Ref. [114] the authors give a list of energy losses, that covers losses in PV 

systems under normal operation and excludes energy losses due to defects and 

breakdowns of the system. It is possible to classify these losses in irradiation losses and 

system losses, as follows. 

  

Chapter 5 

Prediction of AC power profiles vs. 

experimental results 
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[1] Irradiation losses: 

 Tilt conversion effect 

The tilt conversion effect includes the gain or loss of global irradiation in a tilted plane 

with respect to the horizontally received global irradiation in the same period. 

 Spectral losses 

The spectral loss covers the losses of useful irradiation due to the selective spectral 

response of PV modules in case of deviations between the available irradiation’s 

spectrum and the standard spectrum at AM 1.5. 

 Reflection losses 

The reflection loss is the loss of irradiation at the surface of the PV modules where a 

part of the incident light is reflected before being absorbed by the PV modules. 

 Irradiation losses caused by shading 

The irradiation loss caused by shading is the difference between the irradiation of the 

unshaded PV array and the irradiation of the shadowed array. 

 Soiling losses 

For the evaluation of the PV soiling losses, two environments, in which the PV system 

can be located, are considered. 

In the first case, i.e. clean environment, no maintenance is required because the losses 

are limited to 1 – 5 % (mean value 3 %). In the second case, i.e. dirty (polluted) 

environment, due to surrounding landfill, mine, construction site, agricultural land, 

quarries, etc., suitable cleaning should be carried out. 
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In particular, in order to decide the interval between two cleanings, it is possible to 

follow a conventional procedure taking into account the months from April to 

September (about 70 % of the yearly production) and assuming that in a clear-sky day 

after a rainy day the solar cell is considered clean. 

Thus, the losses due to soiling can be determined according to the values of daily 

irradiation of the solar cell in two clear-sky days, before rain (Gb_rain) and after rain 

(Ga_rain) as: 

100

_

__








 


raina

G

rainb
G

raina
G

dirt
  (5.1) 

Taking into account the data collected from the meteorological station in the site “Gi”, 

with time step of 1 minute, and considering that between 2 clear-sky days (July 20th and 

28th 2012) with the same weather conditions , after a long period without rain (about 1 

month and a half), there were moderate (2 − 6 mm/h) and strong (> 6 mm/h) rain, the 

losses due to soiling are equal to 2.4 % for one of the solar cells placed on the horizontal 

plane and 2.3 % for the pyranometer. 

Therefore, generally in case of suitable cleaning, the soiling losses are in the range 1 – 5 

% (mean value 3 %) and three washes in the spring/summer months are necessary. If no 

maintenance of the dirty environment is carried out, the soiling losses are in the range 

from 10 – 20 %. 

[2] System losses: 

 Module deviation from power specifications 

Module deviation from power specifications comprise the difference between the rated 

name-plate value of the PV modules and the mean installed nominal power per PV 

module under STC conditions. 
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 Low irradiance losses 

Low irradiance losses are the energy losses in the PV modules at irradiance levels other 

than the STC irradiance of 1000 W/m2, at the STC temperature of 25°C and assuming 

ideal maximum power-point tracking. 

 Temperature effect 

The temperature effect covers both the energy gain and the energy loss due to module 

temperatures being lower than or exceeding the STC temperature of 25°C, on the 

assumption of ideal maximum power-point tracking. 

 DC-cable losses 

DC-cable losses are defined by the ohmic losses in the wiring, on the assumption that 

parts of the PV array are uncoupled and that maximum power-point tracking is ideal. 

 Losses in string diodes 

String diodes bring about a small voltage drop in the DC-cables, which leads to an 

energy loss. 

 I − V mismatch losses 

Mismatch losses are caused by deviations between the shapes of the I-V curves of 

coupled PV modules or larger sub-parts of the PV system. For this reason, the 

maximum power-point decreases with respect to its optimum under the corresponding 

meteorological conditions. 

Several sources of variations in the I-V curves of modules can be distinguished: 

- Variations between PV modules due to the manufacturing process. 

- Spatially varying array temperatures. 
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- Mismatch losses due to inhomogeneous irradiance on the array plane: A PV array 

can be irradiated inhomogeneously because of shading resulting from surrounding 

objects, or because of differences in the orientation of portions of the array. 

- Different DC-cables. 

- Different types of PV modules. 

 Losses due to non-ideal maximum power-point tracking 

These losses, called MPPT-losses, occur when the power produced by PV array 

deviates from the expected value, given the actual meteorological and system conditions 

which cover all losses mentioned before. These losses can be subdivided into: 

- Static MPPT-losses that are determined by the efficiency of the MPP-tracker 

under stable irradiance conditions. 

- Dynamic MPPT-losses that include the energy effect of two causes, i.e. firstly the 

searching algorithm of the MPP-tracker, which sweeps through the voltage 

domain of the tracker, and secondly, fast fluctuating irradiance levels which result 

in a varying array power which may not be detected correctly by a relatively slow 

tracker. 

 Inverter-losses 

Energy effects occurring in the inverter can be divided into two sources: 

- Losses caused by DC/AC energy conversion. These losses are determined by the 

inverter's efficiency curve which should include the standby energy consumption 

of inverter. 

- Effects caused by inverter control. Effects resulting from inverter control are, 

firstly, the energy loss resulting from the protective cut-off procedure at high 

input powers and increased inverter temperatures, and, secondly, the effect of the 

cascade coupling of a number of inverters. 
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5.2. Description of the grid-connected PV systems 

The real grid-connected PV system has a power rating of 993.6 kWp for the site “Gi” 

and of 997.285 kWp for the site “Ma” in Standard Test Conditions (STC: global 

irradiance GSTC = 1 kW/m2 and cell temperature TSTC = 25 °C). 

The PV system in the site “Gi” is equipped with polycrystalline silicon modules of 230 

Wp each, tilted at 30° with South orientation (mod. SLK60P6L). 

On the contrary, the PV system in the site “Ma” is equipped with monocrystalline 

silicon modules of 230 Wp, 235 Wp and 240 Wp (mod. SLK60M6L) and with 

polycrystalline silicon modules of 230 Wp, 235 Wp and 240 Wp (mod. SLK60P6L), 

tilted at 30° with South orientation. 

The PV arrays of each site, placed on a metallic structure which permit the natural air 

circulation, feed two centralized inverters with high efficiency (transformerless option). 

These power conditioning units are slightly undersized, given that the 500-kVA inverter 

(mod. 500 HE) is supplied by a 552 kWp array for the site “Gi” and by a 541.956 kWp 

array for the site “Ma”; and the 400-kVA inverter (mod. 400 HE), is supplied by a 441.6 

kWp array for the site “Gi” and by a 455.329 kWp array for the site “Ma”, respectively. 

5.3. Comparison between predicted power profiles 

and experimental results 

As previously mentioned, for the definition of the PV conversion model [113], many 

loss factors that influence the PV system behavior, must be taken into account. In the 

case under study, the main sources are reported in the following: 
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 losses for soiling and dirt (ldirt), due to pollution, with the assumption that the plant is 

located in a clean environment, away from mines, landfills, etc. 

 losses due to reflection of the PV module glass (lrefl): the amount has been taken from 

PVGIS website [73]; 

 thermal losses (lth) with respect to STC, they are calculated by the following formula: 

 
STC

T
C

T
thth

l    (5.2) 

where γth is the thermal coefficient of maximum power of the modules, dependent on 

the PV technology (for crystalline silicon γth ≈ -0.5 %/°C); TC is the cell temperature, 

calculated, in a first analysis, by (5.3), in which NOCT (Normal Operating Cell 

Temperature: 42−50 °C) is a mean temperature in outdoor operation: 

  2/8.020 mkW
tcell

GCNOCT
amb

T
C

T   (5.3) 

 electrical mismatch losses (lmis), assumed equal to the manufacturing tolerance with 

typical values of ±3 %; 

 DC-cable losses (lcable) around 1 − 2 %, according to a good design criteria. 

On the basis of the previous parameters in terms of efficiencies, the available power at 

maximum power point is achieved by: 

 
cablemisthrefldirt

G
tcell

G
rated

P
mpp

P  
lim

 (5.4) 

where Glim is the irradiance limit below which the output is vanishing. 

Finally, thanks to the conversion model of power conditioning unit, the AC power 

injected into the grid is calculated: 

mpp
P

MPPTDC
P    (5.5) 
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2
0 AC

P
s

c
AC

P
L

cP
AC

P
DC

P   (5.6) 

where: MPPT is the efficiency of the tracker; P0 are the no-load power losses along the 

operation; cL is the linear loss coefficient; cS is the square loss coefficient. 

Thus, by using the solving formula of the 2nd order equation, PAC is calculated from the 

input power and the loss parameters of the inverter model as follows: 

     
S

c

P
DC

P
S

c
L

c
L

c

AC
P






2
0

4211
 (5.7) 

Therefore, if the reference-cell data Gtcell, averaged on 15-min basis, are used as inputs 

of the above-described model, the outputs in terms of delivered power to the grid, Pfore, 

can be compared with the energy meters of the PV plant, Pmeas. 

Figures 5.1, 5.2, 5.3, 5.4 and 5.5 show the application of the PV conversion model to 

the reference-cell data in the best month for the irradiation (July) in the site “Gi”. 

For example, in Fig. 5.2, day 10 shows that the 15-min averaging, typical for electricity 

tariff, smooth the power variations around 2 p.m. (at 35−40 quarters of hour) from the 

viewpoint of the utility grid. In Fig. 5.4, day 23 exhibits low deviations in this extremely 

variable day: that means the model is able to follow also huge irradiance variations. 

Moreover, thanks to the days with clear sky, since the deviations are proportional to the 

irradiance, it is possible to detect the failure of a portion in the PV arrays: the model is 

useful for fault diagnosis. More precisely, from day 04 to day 19 of July the failure of a 

portion in the PV arrays is detected. 
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Fig. 5.1 − PV power measurements vs. simulations from 01 to 07 of July 2012 in the site “Gi”. 
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Fig. 5.2 − PV power measurements vs. simulations from 08 to 14 of July 2012 in the site “Gi”. 
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Fig. 5.3 − PV power measurements vs. simulations from 15 to 21 of July 2012 in the site “Gi”. 
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Fig. 5.4 − PV power measurements vs. simulations from 22 to 28 of July 2012 in the site “Gi”. 
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Fig. 5.5 − PV power measurements vs. simulations from 29 to 31 of July 2012 in the site “Gi”. 

 

Moreover, it has been proven that better results, in which Pfore > Pmeas, as shown in Fig. 

5.6, Fig. 5.7, Fig. 5.8, Fig. 5.9, Fig. 5.10, in comparison, respectively, with Fig. 5.1, Fig. 

5.2, Fig. 5.3, Fig. 5.4 and Fig. 5.5, are obtained by calculating the solar cell temperature 

TC (°C) as a function of ambient temperature Ta, total irradiance G and wind speed vw, 

through the following formula [115]: 
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Fig. 5.6 – Improvement in the Tc formula due to wind speed, from 01 to 07 of July in the site “Gi”. 
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Fig. 5.7 – Improvement in the Tc formula due to wind speed, from 08 to 14 of July in the site “Gi”. 
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Fig. 5.8 – Improvement in the Tc formula due to wind speed, from 15 to 21 of July in the site “Gi”. 
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Fig. 5.9 – Improvement in the Tc formula due to wind speed, from 22 to 28 of July in the site “Gi”. 
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Fig. 5.10 – Improvement in the Tc formula due to wind speed, from 29 to 31 of July in the site “Gi”. 

5.4. Error calculation for the predicted power 

profiles with respect to the experimental results 

For the error calculation of the AC power profiles compared to the experimental 

results of each PV plant in the sites “Gi” and “Ma”, it is useful to normalize the MBE 

and MAE errors with the rated power of each plant. Therefore, a relative value in per-

unit is obtained. In this case, from eq. (4.22), the prediction error ε is defined as the 

difference between the predicted power to be delivered to the grid, Pfore, and the AC 

power measured by the energy-meter of each PV plant: 

εP = Pfore − Pmeas (5.9) 

For the calculation of Pfore, the reference-cell data on tilt plane Gtcell, averaged on 15-

min basis, are used as inputs of the model previously described. 
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As discussed in section 5.2., the real grid-connected PV system has a power rating of 

993.6 kWp for the site “Gi” and of 997.285 kWp for the site “Ma” in STC. 

In the following figures, the error duration curves, calculated for both MBE and MAE, 

are represented with sampling time of quarter-hours and on an annual basis. The 95 % 

threshold, i.e. the exclusion of the worst 5 % of the time, is a suitable choice for 

representing the maximum errors of the predictions, as already done in section 4.7. 

In Fig. 5.11 the error duration curves of positive and negative MBE errors are shown for 

the site “Gi”. For 95 % of the time, considering positive MBE errors (prediction > 

measurement), MBE is around 13 %; on the contrary, for negative MBE errors 

(prediction < measurement), MBE is around 5.5 %. Considering MAE error duration 

curve for the site “Gi” in Fig. 5.12, for 95 % of time, MAE is less than 10 %. 

In Fig. 5.13 the error duration curve for the site “Ma” is shown. For 95 % of the time, 

considering positive MBE
 
errors, MBE is around 12 %; on the contrary, for negative 

MBE errors, MBE is around 10 %. Considering the MAE error duration curve for the site 

“Ma” in Fig. 5.14, for 95 % of time, MAE is less than 10 %. 

Considering the geographical proximity between the two sites of about 70 km, it is 

useful to plot the positive and negative MBE errors for the sites “Gi” and “Ma” in the 

same graph (Fig. 5.15 and Fig. 5.17). In Fig. 5.16 is shown the zoom of these curves. 

For the 95 % of the data, positive MBE error is about 12 % for the site “Ma” and 13 % 

for the site “Gi”. On the contrary, in Fig. 5.17 the negative errors MBE for the sites “Gi” 

and “Ma” are plotted. In Fig. 5.18 the zoom of these curves shows that for the 95 % of 

the data, negative MBE error is about 10 % for the site “Ma” and about 5.5 % for the 

site “Gi”. 

Finally, for the calculation of Pfore in eq. (5.9), the 1-day ahead forecast data reported to 

the tilt plane, averaged on 15-min basis, are used as inputs of the model previously 

described. In Fig. 5.19 and Fig. 5.20 the error duration curves of positive and negative 

MBE errors are shown for the sites of “Gi” and “Ma”. It is noteworthy that the errors in 
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these situations are higher than in the case with Gtcell as input of the model. In Fig. 5.21 

the zoom of the duration curves for positive MBE errors is shown for the site “Gi” and 

“Ma”. For the 95 % of the data, positive MBE error is about 55 % for the site “Gi” and 

50 % for the site “Ma”. In Fig. 5.22 the zoom of duration curves for negative MBE 

errors is shown for the site “Gi” and “Ma”. For the 95 % of the data, negative MBE 

error is about 13 % for the site “Ma” and about 17 % for the site “Gi”. 

 

 

Fig. 5.11 − Error duration curve of positive and negative MBE errors of the AC power profiles wrt 
experimental results for the year 2012 for the site “Gi”. 
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Fig. 5.12 − Error duration curve of MAE error of the AC power profiles wrt experimental results for the 

year 2012 for the site “Gi”. 

 
Fig. 5.13 − Error duration curve of positive and negative MBE errors of the AC power profiles wrt 

experimental results for the year 2012 for the site “Ma”. 
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Fig. 5.14 − Error duration curve of MAE error of the AC power profiles wrt experimental results for the 

year 2012 for the site “Ma”. 

 
Fig. 5.15 − Error duration curves of positive MBE errors of the AC power profiles wrt experimental 

results for the year 2012 for the sites “Gi” and “Ma”. 
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Fig. 5.16 – Zoom of the error duration curves of positive MBE errors of the AC power profiles wrt 

experimental results for the year 2012 for the sites “Gi” and “Ma”. 

 

 
Fig. 5.17 − Error duration curves of negative MBE errors of the AC power profiles wrt experimental 

results for the year 2012 for the sites “Gi” and “Ma”. 
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Fig. 5.18 – Zoom of the error duration curves of negative MBE errors of the AC power profiles wrt 

experimental results for the year 2012 for the sites “Gi” and “Ma”. 

 

 
Fig. 5.19 − Error duration curve of positive and negative MBE errors of the AC power profiles with the 1-

day ahead prediction as input for the year 2012 in the site “Gi”. 
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Fig. 5.20 − Error duration curve of positive and negative MBE errors of the AC power profiles with the 1-

day ahead prediction as input wrt experimental results for the year 2012 in the site “Ma”. 
 

 
Fig. 5.21 – Zoom of the error duration curves of positive MBE errors of the AC power profiles with the 1-

day ahead prediction as input wrt experimental results for the year 2012 for the sites “Gi” and “Ma”. 
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Fig. 5.22 – Zoom of the error duration curves of negative MBE errors of the AC power profiles with the 
1-day ahead prediction as input wrt experimental results for the year 2012 for the sites “Gi” and “Ma”. 
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In this thesis, the economic aspects of grid-connected PV systems and the 

comparison of irradiance/electric power predictions with respect to experimental results 

have been presented. 

The work has been structured in two parts. First of all, the profitability of investments in 

the rooftop grid-connected PV systems subjected to incentive and the grid-parity 

analysis in the two main European PV markets have been discussed. 

The economic analysis pointed out the variable profit margins of four different 

investments in rooftop PV systems subjected to feed-in tariff in Italy and Germany. The 

results have shown that in Italy, since 2010, the feed-in tariffs framework is affected by 

a stop-and-go mode. Due to the slow political intervention, the incentive rates had a 

little decay in the period 2007 − 2010, when the worldwide economies of scale in PV 

module capacity achieved an impressive decrement in the global costs, boosting the 

investment profitability (“gold rush” effect). The huge profits in the 

commercial/industrial PV systems have almost saturated the global funds in the Italian 

electricity bill. On the contrary, the situation is different in Germany, where the feed-in 

tariff maturity is substantially maintained in the last 7 years. In this case, the Net Present 

Value is subjected to limited fluctuations, thanks to timely legislator regulations after 

the decline of the installation costs. 

Then, a new concept of photovoltaic grid-parity has been presented, regarding three 

typical case studies (dwelling houses, common users of apartment-blocks and tertiary-

sector users), by including the distribution-network limits and the fixed costs of the 

electricity bills. The results have shown that for dwelling houses the grid-parity is 

Conclusions 
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reached in Germany and Central/Southern Italy, whereas it is almost achieved in 

Northern Italy. For the common users of apartment-blocks, the grid-parity is reached in 

Germany, while it is unrealistic in Italy with the current economic/regulatory situation. 

For the tertiary-sector users, the grid-parity is reached in Germany and in Italy. 

In the second part of the thesis, the comparison of irradiance and electric power 

predictions with respect to the experimental results of meteorological stations and grid-

connected PV systems in Southern Italy has been analyzed. The main goals of the PV 

power forecasting are to reduce problems of grid integration, to facilitate energy trading 

and to minimize the costs of energy imbalance in the Italian electricity market. 

With the aim of improving the PV power injection into the grid, the short-term global 

radiation data on annual basis from solar cells on the horizontal and tilted plane (five 

meteorological stations) have been measured as accurately as possible, through the 

comparison with secondary standard pyranometer, taken as reference. The results have 

shown that in spring and summer months, measurements of solar cells are generally 

within the pyranometer uncertainty (± 2 − 5 %). By considering the linearity and the 

correlation between the pyranometer and the solar cells, it has been possible to use the 

solar cell measurements as inputs for the PV production model. 

In order to make a comparison with the measured data for two of the five 

meteorological stations, called synthetically “Gi” and “Ma”, as a sample, the irradiance 

forecasts of 3-days ahead on the horizontal plane are available from a weather forecast 

provider at the same geographic coordinates of the PV plants. Since the forecast length 

is 72 hours, with an output cadence of 3 hours, an interpolation through polynomial 

splines has been first carried out. 

Then, to understand if a strong correlation between the irradiance from measured data 

and from forecasts exists, a method to classify each hour of a day in three categories 

(variable, cloudy, or clear) has been implemented. Examining the results month by 

month, it has been possible to determine the number of passes/fails recorded by the 

hourly classification method from pyranometer measurements with respect to the hourly 
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classification method from 1-day before forecast. In particular, in summer months the 

highest number of hourly passes, in which the 1-day ahead prediction coincides with the 

measurement data from the pyranometer, occurs for the variable − variable condition. In 

winter months, the highest number of hourly passes occurs for the cloudy – cloudy 

condition. On the other hand, in spring months a great number of hourly fails for the 

variable – clear condition has been recorded. The low number of clear-sky days, 

especially in spring and summer months, can be explained by the turbidity in air, e.g. 

due to pollution deriving from human activities. In general, the number of clear-sky 

days in the site “Ma” is lower than the site “Gi”. The reason can be explained by the 

proximity of the site “Ma” with high pollution areas, e.g. due to great quantity of fine 

dust in air from industrial steel mills. 

Comparing the 2-day ahead and 3-day ahead predictions with respect to the 1-day ahead 

prediction, considered as the most accurate, the deviations have shown that in summer 

months, positive and negative deviations are quite negligible (< 20 W/m2 in the site 

“Gi” and ≤ 30 W/m2 in the site “Ma”). Major deviations occur in winter, spring and 

autumn months. In general, for each site, the deviations between the 3-day ahead 

predictions and the 1-day ahead predictions are greater than the 2-day ahead predictions 

with respect to the 1-day ahead predictions. In particular, the site “Gi” has presented 

major deviations than the site “Ma”. The results obtained for the “broken clouds” have 

shown that this particular phenomenon can be considered as a subset of the variable sky 

condition, and the  months with a higher occurrence are in winter and in spring. 

Moreover, the “broken clouds” phenomenon, even if noticeable on 1-min scale, is 

smoothed on 15-min scale and considering more locations (e.g. 3 sites). 

The accuracy between the predicted and measured data has been assessed through the 

use of statistical indicators: the Mean Absolute Error (MAE) and the Mean Bias Error 

(MBE). Considering positive and negative MBE errors, it has been possible to obtain the 

error duration curves for 15-min averaged solar irradiance values and on annual basis. 

As a result, for 95 % of the time, in case of positive errors, in which the prediction is 

highest of the measurement, the MBE is less than 25 % in the site “Gi” and around 22 % 
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in the site “Ma”, on the contrary for negative errors, MBE is less than 20 % in the site 

“Gi” and around 20 % in the site “Ma”. 

Finally, the combination of irradiance prediction and PV conversion model provides 

interesting results to boost the PV penetration into the grid. Analyzing the error duration 

curve between the power measured by the meters of the real grid-connected PV systems 

and the AC power calculated from the model, it has been obtained that for 95 % of the 

time, in case of positive errors, MBE is around 13 % in the site “Gi” and around 12 % in 

the site “Ma”, on the contrary for negative errors MBE is around 5.5 % in the site “Gi” 

and around 10 % in the site “Ma”. 
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- Artificial Neural Networks (ANNs) are mathematical tools originally inspired by 

the way the human brain processes information. Their basic unit is the artificial neuron 

that receives (numerical) information through a number of input nodes, processes it 

internally and puts out a response [116],[117]. The most important achievements that 

ANN enables are: 

 The functions approximation, in which the ANN is able to reconstruct the link 

between a set of dependent variables (response variables) and a set of independent 

variables (explanatory variables), approximating with an appropriate function. 

 The pattern recognition, in which the ANN processes a number of input/output 

reference schemes and extracts from them the characteristic data that compares with 

unknown cases, in order to search any matches. The advantage of this approach is to 

solve engineering problems without any a priori knowledge of the mathematical model 

underlying the phenomenon. 

 The associative memories, in which the ANN stores a large number of input/output 

learning schemes to respond with a known output for each input, similar to one acquired 

during learning. 

ANNs are used to solve problems based on input data that are not always well defined 

or contain a certain degree of uncertainty, for which the exact procedures to determine 

the solution are not known. Therefore, the most interesting feature of a neural network 

is its learning ability, that consists in developing a set of observations in order to find 

the relationships that are able to solve the problem optimally. The learning is achieved 

providing the largest possible number of input/output relationships to the system, so that 

each new signal can be classified identifying the path that it take within the network. 

Glossary 
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This process involves the definition of a cost function, whose purpose is to establish 

how the prediction of the model is far from the experimental value. This function must 

be constructed in order to minimize the error between the generated output and the 

desired value, in order to proceed with the adjustment of weight coefficients associated 

to the connections of each neuron. 

ANNs can be classified in two main types: “Feed-forward” and “Vector quantization” 

networks. The first type contains the Multilayer Perceptron (MLP) and the Recurrent 

Neural Networks (RNN) as distributed knowledge, and the Radial Basis Function 

network (RBF) as Kernel-based. The second type contains the Kohonen’s Self-

Organizing Map (SOM). As per the Feed-forward network architecture, the flow of 

information moves forward, that is the outputs of one layer are used as the inputs of the 

following layer. If a feedback line is also considered, the algorithm is called “back-

propagation”, which uses the error between the real and the desired output to adjust the 

weights of the connections and make more effective the minimization of the cost 

function. In order to reduce the learning time, that the back-propagation algorithm 

requires to reach the global minimum, the Levenberg-Marquardt (LM) algorithm can be 

utilized. The difference between these two algorithms is that for the back-propagation 

algorithm the weights are updated for each input, each epoch denotes a pass from all 

inputs. In comparison, for the LM all inputs are presented to the network at the same 

time on each epoch. For each epoch, the LM requires more computational time and 

memory. 

In the MLP type, the neurons are organized in layers. In particular, each neuron is 

connected to the following ones, forming a set, that can be divided into 3 layers. The 

first layer operates directly on the inputs and it is used to adjust the signals in order to 

be processed by the subsequent levels. The second layer is called “hidden” because it is 

not directly knowable from the outside, only observing the network behavior, it is 

responsible for processing and can be also composed of more arrays of neurons. The 

third level corresponds to the output stage, that collects the results and adapts them to 

the particular characteristics that must have to interface with what is downstream. 
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In the RNN type, the neurons are also organized in layers. Because the information is no 

longer transmitted only in one direction but it is also transmitted backwards, this fact 

creates an internal state of the network which allows it to exhibit dynamic temporal 

behavior. So, in the basic topology of RNN, the artificial neuron is directly connected to 

every other neuron in all direction. 

The Kernel-based networks are supervised networks with three layers, that allow 

knowledge removal and incremental learning. In particular, the RBF is composed of: an 

input layer that computes the Euclidean distance amongst the input vector and the 

weight vectors of the hidden layer; a hidden layer composed by units with Gaussian 

transfer function (radial bases), whose weight vectors form a vectorial quantization of 

the input space; and a linear output layer. This type of ANN performs a linear 

combination of non-linear functions of the input values; and concerning the learning 

process, it is divided in two parts: first, the weight vectors of the hidden layer (centroids 

of the radial bases) are found by clustering techniques or randomly assigned in the input 

space, or alternatively employing an optimal method; afterwards, the weights of the 

output layer are computed by linear regression. 

As per the Vector quantization type, it concerns the unsupervised/supervised networks 

that project data from a high dimensional space in a bi-dimensional map, preserving as 

much as possible the original topology In this context, the Kohonen’s SOM is a 

rectangular grid of competitive units, in which each unit has a fixed position in the grid 

and is associated to a weight vector of N components, where N is the dimension of the 

input space. Concerning the learning procedure, the weights are randomly initialized; 

the units compete and the unit closest to the input vector is the winning unit; the weights 

of the winning unit and those of the adjacent units (neighborhood) are adjusted to get 

closer to the input vector; the procedure is repeated until the map becomes stable [118]. 

- Fuzzy logic (FL) is based on the fuzzy theory, first introduced in 1965 by Zadeh 

[119]. Its peculiarity lies in the being a logic that does not apply the non-contradiction 

principle and is, therefore, an extension of classical set theory. Fuzzy logic, in fact, does 
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not attach to a proposition a degree of absolute truth, that is totally true (value 1) or 

totally false (value 0), but gives it a degree of truth between the extremes of true (1) and 

false (0). Therefore, according to this theory, it does not exist a set of true propositions 

distinct from that of false propositions, because the two sets have boundaries that may 

overlap, for this reason it is interesting to speak of membership degree of an element to 

a certain set. Typically, a model of fuzzy logic is a functional relationship between two 

multidimensional spaces. 

The Fuzzy Associative Memories (FAM) are the relationships between the known input 

and the fuzzy output, in which are referred both the linguistic variables and the 

attributes, applying the association rules between the different sets. Therefore, fuzzy 

logic allows to solve mathematical problems, applying rules based on natural language, 

without addressing the difficulty of building a mathematical model that defines the 

mathematical relationships between the input and the output variables. However, its 

main disadvantage is the lack of self-learning ability, i.e. it is not able to extract useful 

information from data, only partially valid, or to deal with unknown events. 

- Adaptive Network based Fuzzy Inference System (ANFIS) is a mathematical 

model that combines the fuzzy logic with the neural networks, first introduced in 1993 

by Jang [120]. The architecture of this system provides for the acquisition of the 

knowledge by typical operation algorithms of neural networks, while their 

representation is via fuzzy logic rules. ANFIS combines the learning ability of a neural 

network with the reasoning ability of fuzzy logic, creating a very complex information 

processing system. The ANFIS strategy is widely used in cases that involve 

considerable uncertainty or imprecision in the variables definitions, that constitute the 

behavior of the system. In fact, ANFIS has the ability to shape qualitatively a 

phenomenon without knowing it; it is also able to identify linear systems and predict the 

chaotic behavior of time-dependent systems. 

- Genetic Algorithms (GA) are research and optimization heuristic methods, inspired 

by the principle of natural selection, that regulates the biological evolution. The idea of 
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mathematically mimic the evolution process of populations by selecting only 

individuals most suitable for the survival has proven very efficient in resolution of a 

wide variety of optimization problems, not suitable for classical algorithms, in particular 

if the objective function is discontinuous, derivable or not strongly nonlinear [121]. 

Generally, a genetic algorithm starts from a number of possible solutions, referred to as 

“population”, which are made to evolve during the program execution. For each 

iteration, it makes a selection among individuals (or chromosomes) of the population 

according to a fitness function, that is a measure of how the solution is able to respond 

to the problem. If the result is not satisfactory, it is used to generate new elements of the 

population, that will replace an equal number of individuals already present and thus 

constitute a new population for the next iteration, that is a new generation. This 

succession of generations evolves towards an optimal solution of the assigned problem. 

As in nature, the evolution is obtained by the partial recombination of solutions. It is 

assumed that each individual transmits a portion of its gene to its offspring, but during 

this process it happens that random mutations in the starting population can be 

introduced. Occasionally, individuals with not included features among those present in 

the genetic of the original species are born. This mutation is used to explore new 

solutions avoiding to trapped in a local optimum. At the end of the evolution, the 

population of solutions is analyzed and the best solutions to solve the problem are 

chosen. In biological terms, it means that only individuals who have the most suited 

qualities to the environment in which they are and have a better chance of surviving and 

reproducing, are preserved. These solutions will undergo a new stage of development 

and so on. The algorithm stops when one of the stopping criteria is satisfied, or after a 

certain number of iterations. The characteristic of this method is that there is no way to 

know in advance whether it will actually able to find an acceptable solution. 
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