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Chapter 1

Introduction

1.1 Background and objective

A cost-effective solution to the problem of guaranteeing backhaul connectivity in
mobile cellular networks is the use of point-to-point microwave links in the Q-Band
and E-Band [3, 4, 5]. The always increasing rate in mobile data traffic makes these
microwave radio links a potential bottleneck in the deployment of high-throughput
cellular networks. This consideration has stimulated a large body of research aimed
at the design of high-capacity backhaul links [6, 7, 8, 3]. One design challenge is
that the use of high-order constellations to increase throughput (512 QAM has been
recently demonstrated in commercial products) makes the overall system extremely
sensitive to phase noise. Another example are communication systems employing
low-cost low-quality RF oscillators, such as in DVB-S2 transceivers (see [9] and
references therein) and in the large-MIMO transceivers currently under theoretical
investigation [10].

A fundamental way to characterize the impact of phase noise on the throughput
of these systems is to study their Shannon capacity. Unfortunately, the capacity of
the phase-noise channel is not known in closed-form, even for simple channel models.

The effect of phase noise in telecommunication systems is more evident in pres-
ence of multiple antennas at transmitter and receiver because of the overlapping
of phase noise contribution in receivers. For this reason the second fundamental
challenge nowadays is well-recovering phase oscillations in order to achieve good
performance.

The thesis proposes in Chapter 2 a simulated-based tool to compute a lower
bound to channel capacity for SISO and MIMO systems in presence of phase noise
with one oscillator shared among the antennas per side. In Chapter 3 we give a non-
asymptotic expression of an upper bound to capacity always for SISO and MIMO
channels and finally in Chapter 4 we show a low complex phase detector based on a
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1 – Introduction

combination of Phase Locked Loop (PLL) exploiting the decisions made by a turbo
decoder.

The aim of this work is showing a way to bound the channel capacity for single-
antenna and multiple-antennas channels impaired by phase noise generated by in-
stabilities in oscillators driving all the transceivers, and compare the performance
of the proposed phase detector to those theoretical limits.

A huge part of the work behind this thesis is related to a research project made
to improve the performance of an actual backhaul link provided by the company
Ericsson and to get a reference in terms of channel capacity.

1.2 Phase noise

Phase noise, caused by both phase and frequency instabilities in the radio-frequency
(RF) oscillators used in wireless transceivers, is one of the major impairments in
certain communication systems [11]. In this Section we present three different way to
model the phase noise process: the well known Wiener model, the characterization
of phase noise by mean of a mask realized by channel measurement campaign or
simulation and, finally, phase noise can be described by the overlapping of first
order Auto-Regressive (AR1) processes.

Having an accurate model describing the evolution in time and frequency of phase
noise is essential to represents the channel by a thorough input-output relationship
between the source and the receiver of a wireless backhaul link.

1.2.1 Wiener model

Phase noise can be modeled as a Wiener process [9, 12, 11], which is a random process
defined as having zero mean normally distributed phase increments [θ(t2)− θ(t1)]
over any interval [t1, t2] and independent phase increments over disjoint time inter-
vals. We assume an incremental variance over a signaling interval equal to σ2

∆ and
also assume that the channel phase θ(t) is slowly varying such that it can be consid-
ered constant over a symbol time T . In other words we assume that only samples
of θ(t) at discrete-time nT are significant. These samples satisfy the discrete-time
Wiener model, defined as1

θk = θk−1 + ∆k, k = 0, . . . , n (1.1)

where {∆k} s a process made by real, independent and identically distributed
wrapped Gaussian random variables with zero mean and standard deviation σ∆.

1See [13] for a discussion on the limitations of this model.
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1.2 – Phase noise

The i.i.d. assumption on {∆k} implies that {θk} is a Markov process. Specifically,

fθk|θk−1,...,θ0 = fθk|θk−1
= f∆ (1.2)

where

f∆(δ) ,
∞∑

l=−∞

1√
2πσ2

∆

exp

{
−(δ − 2πl)2

2σ2
∆

}
, δ ∈ [0,2π) . (1.3)

In other words, f∆ is the probability density function of the innovation ∆k modulo
2π.

Under the additonal assumption that θ0 is assumed uniformly distributed in
[0,2π), we can state that the process {θk} is stationary.

The differential entropy of the Markov process in (1.2) is

h ({θk}) = h(∆) ≤ 1

2
log(2πeσ2

∆). (1.4)

The upper bound, which holds because the Gaussian distribution maximizes the
differential entropy under variance constraint [14, Theorem 8.65], turns out to be
tight whenever σ∆ . 50◦, as shown in [2], and, under this consraint, the expression
of wrapped Gaussian pdf in (1.3) can be approximated to a standard Normal pdf.

1.2.2 Phase noise mask

To characterize an actual channel can be useful making measurement campaign to
study the behavior of phase noise components at different frequencies. In Figure
1.1 and Figure 1.2 are depicted the power spectral density (PSD) of phase noise
measured by Ericsson in an actual backhaul link respectively for 64-QAM and 256-
QAM. In Chapter 4 we take those masks as phase noise reference to show the
performance of a phase detector suitable for real scenarios.

To characterize the phase noise masks we indicate the reference phase noise
power level at frequency f = 105 Hz. In Figure 1.1 the reference power level is −81
dB/Hz for 64-QAM, while for 256-QAM in Figure 1.2, due to the higher density of
constallation, we experience a reference level of −87 dB/Hz.

1.2.3 Auto-regressive model

We now consider a phase noise model exploiting first order Auto-Regressive Gaussian
processes (AR1) as presented in [12]. As we showed in Section 1.2.2 a phase noise
mask, provided by actual channel measurements, is a realistic scenario for phase
noise model. By analyzing, for example, the phase noise mask depicted in Figure
1.1, we note that it can be seen as the sum of two different slopes, corresponding to
the behavior of phase noise at low frequency and at high frequency, and hence the

3
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Figure 1.1. Power spectral density mask of measured phase noise provided
by Ericsson for 64-QAM

phase noise process can be well represented by the sum of two AR1 processes. In
detail, one AR1 describes the phase noise behavior at low frequency (slow process
characterized by high power) while the second one represents the high frequency
variations of phase noise (fast process characterized by lower power). In general a
Gaussian AR1 process is defined as

uk = auk−1 + vk (1.5)

where vk is a zero-mean Gaussian random variable, with variance σ2 and where a
is a real value such that |a| < 1 to ensure stability. By defining Ts the sampling
period, the power spectral density (PSD) of uk is

Su(f) =
σ2

1 + a2 + 2a cos(2πfTs)
, f ∈

[
− 1

2Ts
,+

1

2Ts

]
. (1.6)

Thus, considering the sum of two AR1 process, we have

θk = ua,k + ub,k (1.7)
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Figure 1.2. Power spectral density mask of measured phase noise provided
by Ericsson for 256-QAM

where

ua,k = aua,k−1 + va,k (1.8)

ub,k = bub,k−1 + vb,k. (1.9)

Finally the resulting PSD of (1.7) is

Sθ(f) =
σ2
a

1 + a2 + 2a cos(2πfTs)
+

σ2
b

1 + b2 + 2b cos(2πfTs)
, (1.10)

f ∈
[
− 1

2Ts
,+

1

2Ts

]
.

Hence we can approximate a realistic representation of phase noise, provided by a
phase noise mask, with a double-AR1 process finding the four parameters a, b, σ2

a, σ
2
b

such that the target phase noise mask is well fitted by (1.10).
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1 – Introduction

1.3 MIMO Line of Sight

In the recent years, the ever increasing request for fast wireless communications has
urged to design systems with high-throughput Line of Sight (LoS) backhaul links
[14]. To obtain the desired efficiencies, two main engineering solutions have been
resorted to: multiantenna links and high-efficiency modulations. In comparison
with single-antenna links, MIMO LoS systems offer a relevant throughput increase
but, at the same time, are more sensitive to phase noise, especially when design
considerations impose to have different oscillators feeding each antenna at both
sides.

The idea behind M ×M MIMO LoS is to achieve a full-rank channel matrix H
over a LoS link by a careful placement of the antennas at the transceivers [15, 16, 17].
Indeed, when the antenna spacing d at the transmitter and the receiver satisfies

d ≈
√
λR

M
(1.11)

where λ is the wavelength and R denotes the distance between the transmitter and
the receiver, the channel matrix H can be made not only full-rank, but also unitary
[16, 17].

We next discuss some implications of (1.11) on the design of microwave backhaul
links. Consider, for instance, a microwave backhaul link operating in the E-Band
at 80 GHz. Assume that the transceivers are equipped with 2 antennas each and
are 500 m apart. According to (1.11), the antenna spacing that results in a unitary
channel matrix is about 97 cm, which is compatible with the assumption of using a
single oscillator to drive the RF circuitries of both antennas.

In some cases, it may be convenient to locate the two antennas closer than what
(1.11) prescribes. Then, H ceases to be unitary, although it can still be made full
rank [17].

For a microwave backhaul link operating at 20 GHz over a 3 Km link, (1.11)
results in an antenna spacing of about 3.8 m, which calls for a distributed oscillator
solution.

In this thesis we will focus exclusively on the single-oscillator scenario and we
will consider only the case of H unitary, with shared oscillators. The channel matrix
H we use in next Chapters is

H =

[
1 j
j 1

]
. (1.12)

This model is accurate for MIMO systems where the distance between the an-
tennas at the transceivers is sufficiently small for the RF circuitries at each antenna
to be driven by the same oscillator [3].
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Chapter 2

Lower bound to capacity

In this Chapter we describe a simulation-based technique for the computation of the
mutual information (there is no maximization over all channel input distributions)
by a recursive algorithm for SISO and MIMO system impaired by phase noise.
Capacity lower bounds obtained by numerically computing the information rates
achievable with various families of finite-cardinality independent and identically dis-
tributed (i.i.d.) input processes (e.g., QAM, PSK, and APSK constellations) have
been reported in [9, 1, 18]. The numerical evaluation of these bounds is based on
the algorithm for the computation of the information rates for finite-state channels
proposed in [19].

Mutual information I(X; Y) quantifies the amount of information that can be
carried on a channel with input process X and output process Y, expressed in bits
per channel use. In the following work we will focus on the case where both X and
Y are discrete-time stationary sequences denoted as x and y respectively. Mutual
information between x and y is defined as

I(x; y) , lim
n→∞

1

n
I(x1, x2, . . . , xn; y1, y2, . . . , yn). (2.1)

From information theory [14] we know that, for each channel, I(x; y) can be ex-
pressed as

I(x; y) , H(x)−H(x|y) = H(x) +H(y)−H(x,y) (2.2)

where H(x) is the entropy rate of a source generating the random discrete-time
process x

H(x) , −E [log2 p(x)] , (2.3)

H(x,y) is the joint entropy rate between channel input x and channel output y

H(x,y) , −E [log2 p(x,y)] , (2.4)

and H(y) is the entropy rate of the received random discrete-time process y

H(y) , −E [log2 p(y)] . (2.5)

7



2 – Lower bound to capacity

2.1 SISO scenario

In [19] it is described a method to compute the mutual information of a finite-state
hidden Markov model employing the forward recursion of the well-known BCJR
algorithm [20]. Such a method can be extended to all channel models with an
infinite number of states, like AWGN channels affected by phase noise, finding an
auxiliary finite-state channel well approximating the real one; hence the algorithms
allows to compute a lower bound of the actual mutual information, which tends to
such value when the number of states of the auxiliary channel grows to infinity.

In this section we extend the approach described in [19] to evaluate the mutual
information for a SISO channel impaired by phase noise. The channel model is the
following

yk = xke
jθk + wk, k = 1,2, . . . , n (2.6)

where xk and yk are the transmitted and received symbols,respectively, at time
instant k, wk is white Gaussian noise and θk is the phase noise sample at instant
k, defined as the sum of phase noise at transmitter and at receiver. Phase noise is
modeled as a Wiener process, as shown in the Section 1.2.1.

We consider the problem of computing the information rate between the input
process xn = (x1, x2, . . . , xn), made by independent and uniformly distributed sym-
bols, and the corresponding output process yn = (y1, y2, . . . , yn) with the channel
model described in (4.1). Let {θ} = (θ1, θ2, . . . , θn) is the phase process representing
the evolution of phase noise, we will assume that the state θk takes values in some
finite set and that the process {θ} is ergodic; a sufficient condition for ergodicity is
that p(θk|θ1) > 0 for all sufficiently large k.

Recalling the last expression of mutual information in (2.2) the computation of
entropy rate H(x) and the differential entropy rate H(x|y) can be carried out by
simulation way thanks to the Shannon-MacMillian-Breimann theorem [14, Theorem
16.8.1] which ensures the convergence with probability one of

H(y) = − lim
n→∞

1

n
log p(yn) (2.7)

H(x,y) = − lim
n→∞

1

n
log p(xn,yn). (2.8)

if xn and yn are finite-valued stationary ergodic processes. The entropy rate H(x),
finally, can be analytically evaluated. By replacing (2.7) and (2.8) in (2.2) we get

I(x; y) ' H(x)− 1

n
log p(yn) +

1

n
log p(xn,yn). (2.9)

Hence, from (2.9) it is clear that in order to compute the mutual information is
sufficient to obtain the values of probability p(yn) and p(xn,yn). Such values can

8



2.1 – SISO scenario

be effectively computed by the forward recursion of the BCJR algorithm, employed
to implement a maximum a posteriori probability (MAP) symbol detection strategy
[20]. In order to have a finite representation of the channel we discretize the values
that samples θk may assume in N levels. Obviously, we are approximating the real
channel and, by increasing N , better approximation can be achieved at the price of
higher channel state cardinality. In particular we propose an uniform discretization,
by which samples θk are considered belonging to the below alphabet

θk ∈
{
i
2π

N

}
∀i = 0, . . . , N − 1 (2.10)

The number of discretization phase levels N represents the number of states of
the trellis which the algorithm is based on.

Lets consider the computation of p(yn) in (2.9). By defining µ1,k(θk) = p(yk, θk)
the state metric at time instant k associated to the phase state θk, we obtain,
taking the average on all possible phase states at time k − 1 and on all symbols of
constellation

µ1,k(θk) =
∑
xk

∑
θk−1

p(yk, θk, xk, θk−1)

=
∑
xk,

∑
θk−1

p(yk|yk−1, θk, θk−1, xk)p(y
k−1, θk, θk−1, xk)

=
∑
xk,

∑
θk−1

p(yk|θk, xk)p(θk|θk−1)p(yk−1, θk−1)p(xk)

=
∑
xk,

∑
θk−1

p(yk|θk, xk)p(θk|θk−1)µ1,k−1(θk−1)p(xk) (2.11)

In (2.11) the probability p(yk|θk, xk) is the probability of received symbols, de-
fined as

p(yk|θk, xk) =
1√
2σ2

exp

{
−|yk − xke

jθk |2

2σ2

}
, (2.12)

p(θk|θk−1) represents the markovian transition probability of phase process described
in Section 1.2.1

p(θk|θk−1) =

∫
∆θ

1√
2σ2

θ

exp

{
−(θk − θk−1)2

2σ2
θ

}
dθk, (2.13)

µ1,k−1(θk−1) is the state metric at the previous step and p(xk) is the a-priori proba-
bility of transmitted symbols (in the following we will neglect it because the source
is defined as uniformly distributed). At final trellis step n we can finally compute

9



2 – Lower bound to capacity

p(yn) as the sum of all final state metrics

p(yn) =
∑
θn

µ1,n(θn). (2.14)

Moving to logarithm domain we get

log µ1,k(θk) ∝ log
∑
xk,

∑
θk−1

p(yk|θk, xk)p(θk|θk−1)µ1,k−1(θk−1)

∝ log
∑

xk,θk−1

exp
{
−|yk − xkejθk |2 + log p(θk|θk−1) + log µ1,k−1(θk−1)

}
.

(2.15)

Defining the max∗ operator as

max
ai

∗ {a1, . . . , aN} = log
N∑
i=1

exp(ai)

= max
i
{ai}+ log

{
1 + exp

(
−
∣∣∣max

i
{ai} −min

i
{ai}

∣∣∣)} (2.16)

from (2.15) and (2.14) we can derive the expression

log µ1,k(θk) ∝ max
xk,θk−1

∗ {−|yk − xkejθk |2 + log p(θk|θk−1) + log µ1,k−1(θk−1

}
(2.17)

log p(yn) =max
θn

∗ log µ1,θn(θn). (2.18)

The computation of p(yn,xn) in (2.9) is similar to the previous derivation. By
defining µ2,k(θk) = p(yk,xk, θk) a second state metric at instant k, taking only the
average on all possible phase states at instant k − 1, we obtain

µ2,k(θk) =
∑
θk−1

p(yk,xk, θk, θk−1)

=
∑
θk−1

p(yk|yk−1, θk, θk−1,x
k)p(yk−1, θk, θk−1,x

k)

=
∑
θk−1

p(yk|θk, xk)p(θk|θk−1)p(yk−1,xk−1, θk−1)p(xk)

=
∑
θk−1

p(yk|θk, xk)p(θk|θk−1)µ2,k−1(θk−1)p(xk) (2.19)

and at final trellis step n we finally have

p(yn,xn) =
∑
θn

µ2,n(θn). (2.20)
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2.1 – SISO scenario

Moving to the logarithmic domain and using the definition (2.16) in (2.19) and in
(2.20) we obtain the expressions

log µ2,k(θk) ∝max
θk−1

∗ {−|yk − xkejθk |2 + log p(θk|θk−1) + log µ2,k−1(θk−1)
}

(2.21)

log p(xn,yn) =max
θn

∗ log µ2,θn(θn). (2.22)

2.1.1 Simulation results

In this Section we show simulation results for the channel model described in Sec-
tion 2.1. For simulations we used N = 300 quantization levels of phase noise and
sequences of n = 5000 symbols. Phase noise is modeled as a Wiener process with
σ∆ = 6◦.
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Figure 2.1. Lower bound to capacity for PSK modulation with several
cardinalities (4-PSK, 8-PSK, 16-PSK) related to a Wiener phase noise
model with σ∆ = 6◦, AWGN capacity, the upper bound to capacity for
M -PSK modulations computed in [1]
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2 – Lower bound to capacity
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Figure 2.2. Lower bound to capacity for QAM modulation with several cardinal-
ities (4-QAM, 8-QAM, 16-QAM, 32-QAM, 64-QAM, 128-QAM, 256-QAM related
to a Wiener phase noise model with σ∆ = 6◦ and AWGN capacity

In Figure 2.1 is depicted the mutual information for M -PSK modulations. As
you can see, phase noise has no effect on 4-PSK and 8-PSK modulations at high
SNR values, but for higher-order modulations, like 16-PSK, the information rate
is limited at about 3.8 bit/symbol. This result is perfectly in accordance with the
conclusions in [1], in which Barbieri et al. show a theoretical asymptotic upper
bound to the information rate at high SNR for M -PSK at 3.85 bit/symbol.

In Figure 2.2 we show the mutual information of a channel carrying symbols be-
longing to M -QAM modulation. As shown also in [1] QAM modulations outperform
the PSKs and are not saturated. QAM modulations seems to be less sensitive to
the time-varying phase noise, because the information is conveyed by the amplitude
and in the following we will use those results related to QAM constellations as a
lower bound to channel capacity.
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2.2 – MIMO scenario

2.2 MIMO scenario

We now extend the approach described in Section 2.1 to the 2×2 MIMO LoS system
impaired by phase noise described in 1.3. The input-output relation at time instant
k is the following

yk = ejθkHxk + wk. (2.23)

We consider now the problem of computing the information rate between the 2n-
length input sequence xn = (xᵀ

1,x
ᵀ
2, . . . ,x

ᵀ
n), whose components are 2-dimensional

input vectors of independent and uniformly distributed symbols, and the corre-
sponding output sequence yn = (yᵀ

1,y
ᵀ
2, . . . ,y

ᵀ
n).

Phase noise is modeled as a Wiener process (see Section 1.2.1) and for this
channel we need again to evaluate the probability of received sequence p(yn) and
the joint probability p(xn,yn) in (2.2). In particular, by defining µ̃1,k(θk) = p(yk, θk)
and µ̃2,k(θk) = p(xn,yk, θk) we obtain

µ̃1,k(θk) =
∑
xk

∑
θk−1

p(yk, θk,xk, θk−1)

=
∑
xk

∑
θk−1

p(yk|θk,xk)p(θk|θk−1)µ1,k−1(θk−1)p(xk), (2.24)

µ̃2,k(θk) =
∑
θk−1

p(yk,xk, θk, θk−1)

=
∑
θk−1

p(yk|θk,xk)p(θk|θk−1)µ2,k−1(θk−1)p(xk). (2.25)

Moving to the logarithm domain we can compute the entropy rate of received se-
quence H(yn) and the joint entropy rate H(xn,yn) in (2.2), to evaluate the mutual
information, in the following way

H(yn) = − 1

n
max
θn

∗ log µ̃1,θn(θn), (2.26)

H(xn,yn) = − 1

n
max
θn

∗ log µ̃2,θn(θn) (2.27)

where µ̃1,θn(θn) and µ̃2,θn(θn) are the state metrics at final time interval n.

2.2.1 Simulation results

In Figure 2.3 we present the mutual information rate of the described 2× 2 MIMO
LoS channel for 16-QAM, 64-QAM and 256-QAM constallations. The considered
channel is the one we showed in (2.23) with unitary channel matrix (1.12). Oscil-
lators are shared among the antennas as we discussed in Section 1.3 and standard
deviation of Gaussian increment of Wiener process is σ∆ = 6◦.
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2 – Lower bound to capacity

For MIMO channel, as well as the SISO scenario, the mutual information of
QAM modulations does not saturate and can be a reasonable lower bound to channel
capacity. At low SNR region the upper bound to capacity is tight to the AWGN
capacity and the loss increases in high SNR region.
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Figure 2.3. Lower bound to capacity for 16-QAM, 64-QAM and 256-QAM related
to a 2x2 MIMO channel with shared oscillators (phase noise is modeled with a
Wiener process with σ∆ = 6◦) and AWGN capacity
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Chapter 3

Upper bounds to capacity

In this Chapter we present a semi-analytic expression of non-asymptotic capacity
upper bound for a multiple-antenna systems (we treat the SISO scenario as a partic-
ular case of MIMO channel) impaired by a phase noise modeled as a Wiener process
(cfr. Section 1.2.1). We consider, again, the case where a single oscillator is shared
among the antennas at each transceiver.

In Section 3.1 we study the case with average energy constraint, while in Section
3.2 we consider a more stringent constraint on peak-power.

3.1 Upper bound with average energy constraint

Lapidoth [21] obtained a large-SNR characterization of the capacity of the general
class of stationary phase-noise channels (as we stated in 1.2.1 the widely used Wiener
model belongs to this class). Specifically, he showed that the capacity of the phase-
noise channel is asymptotically equal to half the capacity of an AWGN channel with
the same SNR plus a correction term that accounts for the memory in the phase-
noise process. The result in [21] has been recently extended to the waveform phase-
noise channel in [13]. The capacity of the block-memoryless phase-noise channel (a
non-stationary channel) has been characterized in [22] in the large-SNR regime.

Moving away from asymptotic results, Katz and Shamai [23] provided tight upper
and lower bounds on the capacity of memoryless phase noise channels. These bounds
have been recently extended to the block-memoryless phase-noise case in [24]. For
the Wiener phase-noise model, an upper bound on the rates achievable with PSK
constellations has been recently proposed in [1].

The impact of phase noise on multiple-antenna systems has been recently dis-
cussed in [3] where it is shown that different RF circuitries configurations (e.g.,
independent oscillators at each antenna as opposed to a single oscillator driving all
antennas) yield different capacity behavior at high SNR.
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3 – Upper bounds to capacity

In this Section we study the capacity of multiple-antenna systems affected by
phase noise [2]. Specifically, we consider the scenario where a single oscillator drives
all RF circuitries at each transceiver presenting a non-asymptotic capacity upper
bound for the case of Wiener phase noise. When particularized to constant modulus
constellations and to single-antenna systems, our bound recovers the upper bound
obtained in [1]. By exhibiting a matching lower bound, we show that our upper
bound is tight in the large-SNR regime.

Focusing on single-antenna systems, we finally compare our upper bound with
lower bounds obtained by evaluating numerically the information rates achievable
with QAM constellations and discussed in Chapter 2. For the case of a Wiener
phase-noise process with standard deviation of the phase increments equal to 6◦,
our results imply that QAM constellations incur a penalty of more than 3 dB for
medium/high SNR values.

We consider now a generic M ×M MIMO phase noise channel with memory,
described by the following input-output relation

yk = ejθkHxk + wk, k = 1,2, . . . , n (3.1)

Here, xk denotes the M -dimensional input vector at discrete time k, H is the
MIMO channel matrix, which we assume deterministic, full-rank, and known to the
transmitter and the receiver, {θk} is the phase-noise process modeled as a Wiener
model, and wk is the additive Gaussian noise, which is circularly symmetric with
zero mean and covariance matrix IM , i.e., wk ∼ NC(0, IM). This model is accurate
for MIMO LoS systems (see Section 1.3).

We are interested in computing the capacity of the MIMO phase-noise channel
(3.1), which is defined as

C(ρ) = lim
n→∞

1

n
sup I(xn; yn). (3.2)

Here, the supremum is over all probability distributions on the transmitted se-
quence xn = {x1,x2, . . . ,xn} that satisfy the average-power constraint

n∑
k=1

E||xk||2 ≤ nρ. (3.3)

Since the additive noise has unit variance, the parameter ρ ≥ 0 can be thought
of as the SNR. The capacity C(ρ) is not known in closed form. In the following we
shall present a capacity upper bound that will turn out to be tight in the large-SNR
regime.

Before presenting our upper bound, two observations are in order.
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3.1 – Upper bound with average energy constraint

i) As H is known to transmitter and receiver, C(ρ) depends on H only through
its singular values. For simplicity, in the remainder of the paper we shall focus
on the special case when all eigenvalues of H are equal to one. In this case, we
can (and will) assume without loss of generality H = IM .

ii) The following proposition establishes that the capacity-achieving input process
{xk} can be assumed isotropically distributed, a property that will be useful in
our analysis.

Proposition 1. The input process {xk} that achieves the capacity of the channel
(3.1), with H = IM , can be assumed isotropically distributed. Specifically, if {xk}
achieves C(ρ) in (3.2) then {Ukxk}, where the matrix-valued random process {Uk}
is iid and each Uk is uniformly distributed on the set of M ×M unitary matrices,
achieves C(ρ) as well.

Proof. The proof, which exploits that Ukwk ∼ wk, follows the same steps as the
proof of [25, Prop. 7].

We next present an upper bound on C(ρ), which is constructed by extending
to the MIMO case the method used in [21] to derive an asymptotic bound on the
capacity of stationary single-antenna phase-noise channels. We also use the approach
proposed in [24] to make the bound non-asymptotic.

Theorem 1. The capacity of the channel (3.1) can be upper-bounded a C(ρ) ≤ U(ρ),
where

U(ρ) , min
α>0

min
λ≥0
{α log

ρ+M

α
+ dλ,α + log(2π) + max

ξ≥0
gλ,α(ξ, ρ)}. (3.4)

Here,

gλ,α(ξ, ρ) ,(M − α)E

[
log

(
|ξ + z1|2 +

M∑
j=2

|zj|2
)]

− h(|ξ + z|2) + (α− λ)
ξ2 +M

ρ+M

− h ( ξ + z + ∆||ξ + z|) (3.5)

where x denotes the phase of x ∈ C and z, z1, . . . , zM are i.i.d. CN (0,1)-distributed
random variables. Furthermore,

dλ,α , log
Γ(α)

Γ(M)
+ λ−M + 1. (3.6)
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3 – Upper bounds to capacity

Proof. Because of Proposition 1, we can restrict ourselves to input processes that are
isotropically distributed. Specifically, we will consider {xk} of the form {xk = skvk},
where sk = ||xk|| and vk = xk/sk, with vk uniformly distributed on the unit sphere
in CM and independent of sk.

We start by using chain rule as follows

I(xn; yn) =
n∑
k=1

I(xn; yk|yk−1). (3.7)

By proceeding as in [21], we next upper-bound each term on the right-hand side
(RHS) of (3.7) as

I(xn; yk|yk−1) = h(yk|yk−1)− h(yk|yk−1,xn)

(a)

≤ h(yk)− h(yk|yk−1,xn)

= h(yk)− h(yk|yk−1,xk−1,xk)

(b)

≤ h(yk)− h(yk|yk−1,xk−1,xk, θ
k−1)

(c)
= h(yk)− h(yk|xk, θk−1)

= h(yk)− h(yk|xk) + h(yk|xk)
− h(yk|xk, θk−1)

= I(xk; yk) + I(yk; θ
k−1|xk)

(d)
= I(xk; yk) + I(yk; θk−1|xk). (3.8)

Here, in (a) and (b) we used that conditioning reduces entropy; (c) follows because
yk and the pair (yk−1,xk−1) are conditionally independent given (θk−1,xk); finally,
(d) holds because {θk} is a first-order Markov process. Let zk ∼ CN (0,1). The
second term on the RHS of (3.8) can be evaluated as follows:

I(yk; θk−1|xk)
(a)
= I(ejθksk + zk; θk−1|sk)
(b)
= I

(
ejθk(sk + zk); θk−1|sk

)
= I
(
|sk + zk|, sk + zk + θk; θk−1|sk

)
(c)
= I( sk + zk + θk; θk−1||sk + zk|, sk)
= h( sk + zk + θk||sk + zk|, sk)
− h( sk + zk + θk||sk + zk|, θk−1, sk)

(d)
= log(2π)

− h( sk + zk + ∆||sk + zk|, sk). (3.9)
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3.1 – Upper bound with average energy constraint

Here, (a) follows because v†kyk ∼ ejθksk + zk is a sufficient statistics for θk−1; (b) fol-
lows because zk is circularly symmetric; (c) holds because |sk + zk| and θk−1 are
independent; finally, (d) holds because θk ∼ U [0,2π] and because of (1.1).

Substituting (3.9) into (3.8), then (3.8) into (3.7), and using that {θk} is a
stationary process, we get

C(ρ) ≤ sup
Qs
{I(s,v; y) + log(2π)− h( s+ z + ∆||s+ z|, s)} (3.10)

where
y = ejθsv + w (3.11)

with θ ∼ U [0,2π], v uniformly distributed on the unit sphere in CM , z ∼ CN (0,1),
and ∆ distributed as in (1.3); the supremum in (3.10) is over all distributions Qs
on s ≥ 0 that satisfy E[s2] ≤ ρ.

We further upper-bound the first term on the RHS of (3.10) (which corresponds
to the mutual information achievable on a memoryless channel with uniform phase
noise) by using duality [26, Thm. 5.1] and obtain that for every Qs and for every
α > 0 and λ > 0 (see Appendix A)

I(s,v; y) ≤ α log
ρ+M

α
+ dλ,α

+ (M − α)E

[
log

(
|s+ z1|2 +

M∑
j=2

|zj|2
)]

− h(|s+ z|2|s) + (α− λ)
E [s2] +M

ρ+M
. (3.12)

Here, dλ,α is the constant defined in (3.6) and z, z1, . . . , zM are i.i.d. U [0,2π]-
distributed random variables. Substituting (3.12) into (3.10), we obtain

C(ρ) ≤ α log
ρ+M

α
+ dλ,α + log(2π)

+ sup
Qs

{
(M − α)E

[
log

(
|s+ z1|2 +

M∑
j=2

|zj|2
)]

− h(|s+ z|2|s) + (α− λ)
E[s2] +M

ρ+M

− h( s+ z + ∆||s+ z|, s)

}
≤ α log

ρ+M

α
+ dλ,α + log(2π) + max

ξ≥0
gλ,α(ξ, ρ). (3.13)
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3 – Upper bounds to capacity

where gλ,α(ξ, ρ) was defined in (3.5). In the last step, we upper-bounded the supre-
mum over Qs with the supremum over all deterministic ξ ≥ 0. The resulting upper
bound can be tightened by minimizing it over α and λ, which yields (3.4).

This concludes the proof.

It is instructive to note that if we further lower-bound the last term on the RHS
of (3.10) as

h( s+ z + ∆||s+ z|, s) ≥ h( s+ z + ∆||s+ z|, s, s+ z) = h(∆) (3.14)

we obtain

C(ρ) ≤ sup
Qs

{
I(s,v; y)

}
+ log(2π)− h(∆) (3.15)

where sv is the input to the memoryless phase-noise channel with uniform phase
noise (3.11). The inequality (3.15) can be interpreted as follows: the capacity of a
Wiener phase-noise channel is upper-bounded by the capacity of a memoryless phase-
noise channel with uniform phase noise, plus a correction term that accounts for the
memory in the channel and does not depend on the SNR ρ. If we now specialize
(3.15) to single antenna systems and we add the additional constraint on Qs that
|s|2 = ρ with probability one (which holds, for example, if a PSK constellation is
used), the first term on the RHS of (3.15) vanishes and we recover the upper bound
previously reported in [1, Theorem 2].

3.1.1 Large-SNR Regime

In Theorem 4 below, we present an asymptotic characterization of C(ρ), which
generalizes to the MIMO case the asymptotic characterization reported in [21] for
the single-antenna case.

Theorem 2. In the large-SNR regime, the capacity of the Wiener phase-noise chan-
nel (3.1) behaves as

C(ρ) =

(
M − 1

2

)
log

2ρ

2M − 1
+ log

Γ(M − 1/2)

Γ(M)
+

1

2
log π − h(∆) + o(1) (3.16)

where o(1) indicates a function of ρ that vanishes in the limit ρ→∞.

Proof. The asymptotic characterization (3.16) is obtained by proving that an ap-
propriately modified version of the upper bound previously presented matches the
lower bound we shall report in this section up to a o(1) term.
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3.1 – Upper bound with average energy constraint

Upper bound We exploit the property that the high-SNR behavior of C(ρ) does
not change if the support of the input distribution is constrained to lie outside a
sphere of arbitrary radius. This result, known as escape-to-infinity property of the
capacity-achieving input distribution [26, Def. 4.11], is formalized in the following
lemma.

Lemma 1. Fix an arbitrary ξ0 > 0 and let K(ξ0) = {x ∈ CM : ‖x‖ ≥ ξ0}. Denote
by C(ξ0)(ρ) the capacity of the channel (3.1) when the input signal is subject to
the average-power constraint (3.3) and to the additional constraint that xk ∈ K(ξ0)
almost surely for all k. Then

C(ρ) = C(ξ0)(ρ) + o(1), ρ→∞ (3.17)

with C(ρ) given in (3.2).

Proof. The lemma follows directly from [25, Thm. 8] and [26, Thm. 4.12].

Fix ξ0 > 0. By performing the same steps leading to (3.13), but accounting for
the additional constraint that x ∈ K(ξ0) almost surely and also setting α = λ =
M − 1/2, we obtain: C(ξ0)(ρ) ≤ U (ξ0)(ρ), where

U (ξ0)(ρ) ,

(
M − 1

2

)
log

2(ρ+M)

2M − 1
+ log

Γ(M − 1/2)

Γ(M)

+ log(2π) +
1

2
+ max

ξ≥ξ0

{
g̃(ξ)

}
. (3.18)

with g̃(ξ) , gλ,α(ξ, ρ)|λ = α = M − 1/2. As limξ→∞ g̃(ξ) = −(1/2) log(4πe)− h(∆)
(see [21, Eq. (9)] and proceed similarly to the proof of [26, Lemma 6.9]), we can
make (3.18) to be arbitrarily close to (3.16) by choosing ξ0 sufficiently large.

Lower bound Take {xk} i.i.d. and isotropically distributed with

‖xk‖2 = ρ
tρ,ρ0

(M − 1/2)
(3.19)

where, for a given ρ0 > 0, the random variable tρ,ρ0 has pdf

ftρ,ρ0 (a) =


f (ρ,ρ0)(a)

Pr{z > ρ0/ρ}
, if a > ρ0/ρ

0, otherwise.

(3.20)

Here, f (ρ,ρ0) denotes the pdf of a random variable that follows a Γ((M − 1/2) ·
Pr{z > ρ0/ρ},1) distribution. Let t ∼ Γ(M − 1/2,1) and denote its pdf by ft. Note
that for all ρ0 the pdf ftρ,ρ0 converges point-wise to ft as ρ→∞. As

E [tρ,ρ0 ≤M − 1/2] (3.21)
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3 – Upper bounds to capacity

the average-power constraint (3.3) is satisfied. A key feature of the distribution of
‖xk‖ in (3.19) is that Pr{‖xk‖ < ξ0} = 0 where

ξ2
0 ,

ρ0

M − 1/2
. (3.22)

Note that ξ0 →∞ as ρ0 →∞, a property that will be useful in the remainder of the
proof. To obtain the desired lower bound, we use chain rule for mutual information
and that mutual information is non negative

I(xn; yn) =
n∑
k=1

I(xk; y
n|xk−1)

≥
n∑
k=2

I(xk; y
k|xk−1). (3.23)

Fix now k ≥ 2 and set

εk , I(xk; θk−1|yk,yk−1,xk−1). (3.24)

We have

I(xk; y
k|xk−1)

(a)
= I(xk; y

k,xk−1)

(b)

≥ I(xk; yk,yk−1,xk−1)

= I(xk; yk,yk−1,xk−1, θk−1)− εk
(c)
= I(xk; yk, θk−1)− εk
(d)
= I(xk; yk|θk−1)− εk
(e)
= I(x2; y2|θ1)− ε2. (3.25)

Here, (a) follows because {xk} are independent; in (b) we used chain rule for mutual
information and that mutual information is nonnegative; (c) follows because xk and
the pair (yk−1,xk−1) are conditionally independent given (θk−1,yk); (d) holds be-
cause xk and θk−1 are independent; finally (e) follows from stationarity. Substituting
(3.25) into (3.23), we obtain

C(ρ) ≥ I(x2; y2|θ1)− ε2. (3.26)

We next investigate the two terms on the RHS of (3.26) separately. Specifically, we
shall show that the first term has the desired asymptotic expansion, while the second
term can be made arbitrarily close to zero by choosing ρ0 in (3.19) sufficiently large.
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3.1 – Upper bound with average energy constraint

The first term on the RHS of (3.26) We write

I(x2; y2|θ1) = h(y2|θ1)− h(y2|x2, θ1) (3.27)

and bound the two terms separately. For the first term, we have that

h(y2|θ1) ≥ h(y2|w2, θ1)

= h(ejθ2x2|θ1)

(a)
= h(x2)

(b)
= h(‖x2‖2) + log

πM

Γ(M)
+ (M − 1)E

[
log ‖x2

2‖
]

(c)
= M log

ρ

M − 1/2
+ log

πM

Γ(M)

+ h(tρ,ρ0) + (M − 1)E [log tρ,ρ0 ] . (3.28)

Here, (a) follows because x2 is isotropically distributed, and, hence, ejθ2x2 ∼ x2; in
(b) we computed the differential entropy in polar coordinates [26, Lemma 6.15 and
6.17];finally, (c) follows from(3.19). For the second term on the RHS of (3.27), we
proceed as follows. Let x2 = s2v2, with s2 = ‖x2‖ and, hence, s2

2 ∼ ρ tρ,ρ0/(M−1/2).
Furthermore, let z2 ∼ N (0,1). Then

h(y2|x2, θ1) = h(y2|s2,v2, θ1) = h(ejθ2s2 + z2|s2, θ1) + log(πe)M−1. (3.29)

Now note that

h(ejθ2s2 + z2|s2, θ1) = h(ejθ2(s2 + z2)|s2, θ1)

(a)
= h(ej∆(s2 + z2)|s2)

(b)
= h(|s2 + z2|2|alts2)

+ h( s2 + z2 + ∆||s2 + z2|, s2)− log 2

(c)

≤ 1

2
E
[
log

(
2πe

[
1 +

4ρ

2M − 1
tρ,ρ0

])]
+ h(∆ + s2 + z2|s2)− log 2. (3.30)

Here, in (a) we used (1.1) and denoted by ∆ a random variable distributed as in
(1.3); in (b) we evaluated the differential entropy in polar coordinates [26, Lemma
6.15 and 6.16]. Finally, (c) follows because the Gaussian distribution maximizes
differential entropy under a variance constraint and because conditioning reduces
entropy. Note finally that

h( s2 + z2 + ∆|s2) ≤ max
ξ≥ξ0

h( ξ + z2 + ∆)h( ξ0 + z2 + ∆). (3.31)
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3 – Upper bounds to capacity

This term can be made arbitrarily close to h(∆) by choosing ρ0 in (3.22) sufficiently
large.

Summarizing, we have shown that

I(x2; y2|θ1) ≥M log
2ρ

2M − 1
+ log

πM

Γ(M)
+ h(tρ,ρ0)

+ (M − 1)E [log tρ,ρ0 ]

− 1

2
E
[
log

(
2πe

[
1 +

4ρ

2M − 1
tρ,ρ0

])]
− h( ξ0 + z2 + ∆)− log

[
2(πe)M−1

]
(a)
=

(
M − 1

2

)
log

2ρ

2M − 1
+ log

Γ(M − 1/2)

Γ(M)

+
1

2
log π − h( ξ0 + z2 + ∆) + o(1). (3.32)

Here, (a) follows because

h(tρ,ρ0) = h(t) + o(1)

E [log(tρ,ρ0)] = E [log t] + o(1)

E [log(1 + cρtρ,ρ0)] = log(cρ) + E [log t] + ø(1), ∀c > 0

where t ∼ Γ(M − 1/2,1) and because

E [log t] = ψ(M − 1/2)

h(t) = (3/2−M)ψ(M − 1/2) +M − 1/2 + log Γ(M − 1/2)

with ψ(·) denoting Euler’s digamma function.

The second term on the RHS of (3.26) Proceeding similarly as in [26, App.
IX], we obtain

I(x2; θ1|y2,y1,x1) = h(θ1|y2,y1,x1)− h(θ1|y2,x2,y1,x1)

≤ h(θ1|y1,x1)− h(θ1|y2,x2,y1,x1, θ2)

= h(θ1|y1,x1)− h(θ1|y1,x1, θ2)

= I(θ1; θ2|y1,x1)

= h(θ2|y1,x1)− h(θ2|y1,x1, θ1)

= h(θ2|ejθ1(s1 + z1), s1)− h(θ2|θ1)

≤ max
ξ≥ξ0

h(θ2|ejθ1(ξ + z1))− h(θ2|θ1)

= h(θ2|ejθ1(ξ0 + z1))− h(θ2|θ1). (3.33)

As claimed, the RHS of (3.33) can be made arbitrarily close to zero by choosing ρ0

in (3.22) sufficiently large.
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3.1 – Upper bound with average energy constraint

3.1.2 Simulation results

In this section, we numerically evaluate the upper bound U(ρ) in (3.4) and the
asymptotic capacity expression (3.16) – the o(1) term is neglected – for a single-
antenna Wiener phase-noise channel with standard deviation of the phase-noise
increment equal to 6◦ (Figure 3.1.2) and 20◦ (Figure 3.1.2). In the figures, we also
show the capacity

Cawgn(ρ) , log(1 + ρ) (3.34)

of an AWGN channel with SNR equal to ρ, which is a tight upper bound on C(ρ)
at low SNR. We also display

Ũ(ρ) , min
{
Cawgn(ρ), U(ρ)

}
. (3.35)

The information rates achievable using QAM constellations of different cardinal-
ity, which are lower bounds on C(ρ), are also depicted. We evaluate these rates using
the algorithm for the computation of the information rates for finite-state channels
described in Chapter 2. Specifically, we use 200 levels for the discretization of the
phase-noise process, and a block of 2000 channel uses.
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Figure 3.1. The upper bound U(ρ) in (3.4), the asymptotic capacity approxima-
tion (3.16), the AWGN capacity (3.34), the tighter upper bound Ũ(ρ) in (3.35),
and the rates achievable with 16, 64, and 256 QAM. In the figure, σ∆ = 6◦.
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Figure 3.2. The upper bound U(ρ) in (3.4), the asymptotic capacity approxima-
tion (3.16), the AWGN capacity (3.34), the tighter upper bound Ũ(ρ) in (3.35),
and the rates achievable with 16, 64, and 256 QAM. In the figure, σ∆ = 20◦.

In both scenarios Cawgn is a tighter upper bound than U(ρ) at low SNR values
where the additive noise is the main impairment. In the high-SNR regime, however,
U(ρ) is tighter. For medium/high SNR values, the large-SNR capacity approxima-
tion (3.16) follows U(ρ) closely. In this regime, QAM constellations incur a penalty
of more than 3dB. The gap to the capacity upper bound might be reduced by
replacing QAM with suitably optimized constellations.

3.2 Upper bound with peak energy constraint

We show now a modified version of upper bound presented in Section 3.1 and a
closed-form high-SNR expression for the capacity of multiple-antenna systems af-
fected by Wiener phase noise (see Section 1.2.1). Our results are developed again
for the scenario where a single oscillator drives all the radio-frequency circuitries at
each transceiver (common oscillator setup), the input signal is subject to a peak-
power constraint, and the channel matrix is deterministic. This scenario is relevant
for LoS multiple-antenna microwave backhaul links with sufficiently small antenna
spacing at the transceivers (see Section 1.3).

26



3.2 – Upper bound with peak energy constraint

For the 2× 2 multiple-antenna case, for a Wiener phase-noise process with stan-
dard deviation equal to 6◦, and at the medium/high SNR values at which microwave
backhaul links operate, the upper bound reported here exhibits a 3 dB gap from a
lower bound obtained using 64-QAM. Furthermore, in this SNR regime the closed-
form high-SNR expression is shown to be accurate.

A fundamental way to characterize the impact of phase noise on the throughput
of microwave backhaul links is to study their Shannon capacity. Unfortunately, the
capacity of the phase-noise channel is not known in closed form even for simple
channel models, although capacity bounds and asymptotic results in the limiting
regime of high SNR have been reported in the literature.

We present a non-asymptotic capacity upper bound for the case of Wiener phase
noise and the practically relevant scenario when the transmit codewords are subject
to a peak-power constraint, which is more stringent than the average-power con-
straint analyzed so far in the phase-noise literature. This upper bound improves
on the one recently reported in [2], which was derived under the assumption of
codewords subject to an average-power constraint. When particularized to constant-
modulus constellations and to single-antenna systems, our bound recovers the upper
bound obtained in [1].

We compare our upper bound with lower bounds obtained by evaluating numer-
ically the information rates achievable with QAM constellations. For the case of a
Wiener phase-noise process with standard deviation of the phase increments equal
to 6◦, the gap between our upper bound and the information rates achievable with
64-QAM is about 3dB for medium/high SNR values.

We also provide a capacity characterization in the high-SNR regime that is ac-
curate up to a term that vanishes as SNR grow large. This characterization yields
a capacity approximation that turns out to be accurate already at moderate SNR
values.

We consider the same channel model described in (3.1), i.e. a M ×M MIMO
phase-noise channel with memory

yk = ejθkHxk + wk, k = 1,2, . . . , n. (3.36)

Here, xk denotes the M -dimensional input vector at discrete time k; H is the
MIMO channel matrix, which we assume deterministic, full-rank, and known to
the transmitter and the receiver; {θk} is the phase-noise process; and {wk} is the
additive Gaussian noise, which we assume i.i.d. circularly symmetric with zero
mean and covariance matrix IM , i.e., wk ∼ CN (0, IM). We assume again that the
phase-noise samples {θk} form a Wiener process (see Section 1.2.1).

Peak-amplitude constraint The results proposed in Section 3.1 were derived
under the assumption that each transmit codeword (x1, . . . ,xn) is subject to the
average-power constraint (3.3).
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3 – Upper bounds to capacity

In practice, each codeword entry xk must obey a given peak-power constraint
to avoid distortions due to nonlinearities and saturation effects at the high-power
amplifier [27].

To account for this and obtain capacity results that are more relevant in practice,
in this paper we substitute (3.3) with the more stringent peak-power constraint

‖xk‖2 ≤ ρ, k = 1, . . . , n. (3.37)

The peak-power constraint (3.37) has been considered previously in the information-
theoretic literature, but not in the contest of phase-noise channels.

Smith [28] proved that the capacity-achieving distribution of an AWGN channel
subject to (3.37) is discrete with a finite number of mass point (in contrast, the
capacity-achieving distribution under (3.3) [14, Chapter 9] is Gaussian). More re-
cently, Lapidoth [29] characterized the high-SNR capacity of single-antenna station-
ary fading channels subject to (3.37) in the setting where no a priori channel-state
information is available at the receiver.

Channel Capacity We are interested in computing the capacity of the MIMO
phase-noise channel (3.36), which – under the peak-amplitude constraint (3.37) – is
given by

C(ρ) = lim
n→∞

1

n
sup I(yn; xn) (3.38)

where xn = (x1, . . . ,xn) and, similarly, yn = (y1, . . . ,yn). Here, the supremum
is over all probability distributions on xn that satisfy (3.37) with probability one
(w.p.1). In Section 3.2.1, we analyze C(ρ) for the case of H being unitary. The
general full-rank case will be discussed in 3.2.4.

3.2.1 The Unitary Case

Capacity Upper Bound We next present an upper bound on C(ρ) that improves
on the one reported in Section 3.1 and [2] for the average-power constrained case.

With some minor adjustments, the bound turns out to be tight in the high-SNR
regime.

Before presenting our upper bound, two observations are in order.

i) As H is known to transmitter and receiver, C(ρ) depends on H only through its
singular values. Since H is unitary, all singular values are equal to one. Hence,
we can (and will) assume without loss of generality that H = IM .

ii) In the following proposition, we establish that the capacity-achieving input
process {xk} can be assumed isotropically distributed, a property that will be
useful in our analysis.
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3.2 – Upper bound with peak energy constraint

Proposition 2. The input process {xk} that achieves the capacity of the channel
(3.36) when H is unitary can be assumed isotropically distributed. Specifically, if
{xk} achieves C(ρ) in (3.38), then {Ukxk}, where the matrix-valued random process
{Uk} is i.i.d. and each Uk is uniformly distributed on the set of M ×M unitary
matrices, achieves C(ρ) as well.

Proof. The proof, which exploits that Ukwk ∼ wk, follows the same steps as the
proof of [25, Proposition 7].

Our upper bound on C(ρ) is constructed by extending to the MIMO case the
method used in [21] to derive an asymptotic bound on the capacity of stationary
single-antenna phase-noise channels. We also use the approach proposed in [23, 24]
to make the bound non-asymptotic, and some of the tools developed in [30] to
account for the presence of the peak-power constraint (3.37).

For convenience, we introduce the following notation: for every a > 0, we let

φl(a) , 1 + zl/
√
a (3.39)

where the random variables {zl}l∈mathbbZ are i.i.d. N (0,1)-distributed and x denotes
the phase of the complex number x.

Roughly speaking, φl(a) is the noise level in the estimation of the phase-noise
sample θl from the channel output yl given that the input vector xl is known and
‖xl‖2 = a.

Theorem 3. The capacity of the channel (3.36) under the peak-power constraint
(3.37) can be upper-bounded as C(ρ) ≤ U(ρ), where1

U(ρ) , min
α>0

{
α log

ρ+M

α
+ dα + log(2π) + max

0≤ξ≤√ρ
gα(ξ, ρ)

}
. (3.40)

Here,

gα(ξ, ρ) , (M − α)E

[
log

(
|ξ + z1|2 +

M∑
j=2

|zj|2
)]

+ α
ξ2 +M

ρ+M
− ∼ (|ξ + z0|2)

− ∼
(
θ0 + φ0(ξ2)| {θl + φl(ρ)}−1

l=−∞ , |ξ + z0|
)

(3.41)

where {zl} are i.i.d. N (0,1)-distributed random variables and

dα , log
Γ(α)

Γ(M)
−M + 1 (3.42)

with Γ(·) standing for the Gamma function.

1Throughout the work, log stands for the natural logarithm.
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3 – Upper bounds to capacity

Proof. Because of Proposition 1, we can restrict ourselves to isotropically distributed
input processes. Specifically, we consider {xk} of the form {xk = skvk}, where
sk = ‖xk‖ and vk = xk/sk, with vk uniformly distributed on the unit sphere in CM
and independent of sk. We start by using chain rule as follows

I(yn; xn) =
n∑
k=1

I(yk; x
n|yk−1). (3.43)

By proceeding similarly to [2, Equation (10)], but accounting for the peak-power
constraint,2 we next upper-bound each term on the right-hand side (RHS) of (3.43).
We first note that

I(yk; x
n|yk−1) = h(yk|yk−1)− h(yk|yk−1,xn)

(a)

≤ h(yk)− h(yk|yk−1,xn)

(b)
= h(yk)− h(yk|yk−1,xk−1,xk). (3.44)

Here, in (a) we used that conditioning reduces entropy, and in (b) that yk and
(xk+1, . . . ,xn) are conditionally independent given (yk−1,xk). We next focus on the
conditional differential entropy (the second term) on the RHS of (3.44). Intuitively,
the past inputs xk−1 and the past outputs yk−1 can be used to obtain noisy estimates
of the past phase-noise samples {θl}k−1

l=1 . These estimates help us to guess the value
of the current phase-noise sample θk. We next use this intuition to obtain a lower
bound on h(yk|yk−1,xk−1,xk), and, hence, an upper bound on I(yk; x

n|yk−1) in
(3.43).

For each pair (yl,xl), l = 1, . . . , k − 1, we compute the phase of the projection
of yl onto xl. This projection is distributed as θl + φl(s

2
l ). Since yk and yk−1 are

conditionally independent given both xk and {θl + φl(s
2
l )}k−1

l=1 , we obtain

h(yk|yk−1,xk−1,xk) = h
(
yk|
{
θl + φl(s

2
l )
}k−1

l=1
,xk−1,xk

)
≥ h

(
yk|
{
θl + φl(ρ)

}k−1

l=1
,xk

)
. (3.45)

In the last step, we used that the best noisy estimate of the past phase-noise
samples {θl}k−1

l=1 is achieved by transmitting inputs at peak power, i.e., s2
l = ρ,

l = 1, . . . , k − 1.

2Recall the the upper bound developed in [2] holds for the average-power constraint case.
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3.2 – Upper bound with peak energy constraint

Substituting (3.45) into (3.44), we obtain

I(yk; x
n|yk−1) ≤ h(yk)− h

(
yk|
{
θl + φl(ρ)

}k−1

l=1
,xk

)
= I

(
yk;
{
θl + φl(ρ)

}k−1

l=1
,xk

)
(a)
= I

(
y0;
{
θl + φl(ρ)

}−1

l=−(k−1)
,x0

)
≤ I

(
y0;
{
θl + φl(ρ)

}−1

l=−∞,x0

)
= I(y0; x0) + I

(
y0;
{
θl + φl(ρ)

}−1

l=−∞|x0

)
. (3.46)

Here, (a) follows because {θk} is a stationary process. Substituting (3.46) into
(3.7) and then (3.43) into (3.38), we obtain

C(ρ) ≤ sup
{
I(y0; x0) + I

(
y0; {θl + φl(ρ)}−1

l=−∞ |x0

)}
. (3.47)

The supremum in (3.47) is over all probability distributions on x0 = s0v0 such that
s0 and v0 are independent, v0 is uniformly distributed on the unit sphere in CM ,
and s2

0 ≤ ρ w.p.1.
We next upper-bound the first term on the RHS of (3.47), which corresponds

to the mutual information of a memoryless phase-noise channel with uniform phase
noise using a method similar to the one used in [24, 23].

Specifically, we use the duality approach [26, Theorem 5.1] and choose an output
probability distribution for which y0 is isotropically distributed and r = ‖y0‖2

follows a Gamma distribution with parameters α to be optimized later and β ,
(ρ+M)/α. To summarize the probability density function (pdf) of r is given by

qr(r) =
rα−1e−r/β

βαΓ(α)
. (3.48)

This output distribution is optimal at high SNR (i.e., it achieves capacity up to
a term that vanishes as SNR grows large) for the average-power constraint case [2].
However, it is not optimal for the peak-power constraint case, as we shall discuss in
the Appendix A. Nevertheless, it leads to a bound that is accurate for medium SNR
values (see 3.2.5).

Using (3.48), we upper-bound I(x0; y0) as follows (see [2]):

I(y0; x0) ≤ α log
ρ+M

α
+ dα

+ (M − α)

[
log

(
|s0 + z1|2 +

M∑
j=2

|zj|2
)]

− h
(
|s0 + z0|2|s0

)
+ α

E [s2
0] +M

ρ+M
. (3.49)
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Here, dα is the constant defined in (3.42) and z0, z1, . . . , zM are i.i.d. CN (0,1)-
distributed random variables.

The second term on the RHS of (3.46) can be evaluated as follows:

I
(
y0;
{
θl + φl(ρ)

}−1

l=−∞|x0

)
(a)
= I

(
ejθ0s0 + z0;

{
θl + φl(ρ)

}−1

l=−∞|s0

)
(b)
= I

(
ejθ0(s0 + z0);

{
θl + φl(ρ)

}−1

l=−∞|s0

)
= I

(
|s0 + z0|, θ0 + φ0(s2

0);
{
θl + φl(ρ)

}−1

l=−∞|s0

)
(c)
= I

(
θ0 + φ0(s2

0);
{
θl + φl(ρ)

}−1

l=−∞||s0 + z0|, s0

)
= h

(
θ0 + φ0(s2

0)||s0 + z0|, s0

)
− h

(
θ0 + φ0(s2

0)|
{
θl + φl(ρ)

}−1

l=−∞, |s0 + z0|, s0

)
(d)
= log(2π)

− h
(
θ0 + φ0(s2

0)|
{
θl + φl(ρ)

}−1

l=−∞, |s0 + z0|, s0

)
.

(3.50)

Here, (a) follows because vH0 y0 ∼ ejθ0s0 + z0 is a sufficient statistics for {θl +
φl(ρ)}−1

l=−∞; (b) follows because z0 is circularly symmetric; (c) holds because |s0 +z0|
and {θl + φl(ρ)}−1

l=−∞ are independent; finally, (d) holds because θ0 ∼ U [0,2π].
We substitute (3.49) and (3.50) into (3.47), upper-bound the supremum over all

probability distributions on s0 satisfying s0 ≤
√
ρ w.p.1 with the supremum over all

deterministic ξ ∈ [0,
√
ρ], and tighten the resulting bound by minimizing it over the

optimization parameter α > 0.
This concludes the proof.

Remarks The coarser upper bound provided in [2, Th. 2] can be obtained from
U(ρ) in (3.40) by assuming perfect knowledge of the past phase-noise samples.

This results in the following cruder lower bound on h(yk|yk−1,xk−1,xk) (cf.,(3.45))

h(yk|yk−1,xk−1,xk) ≥ h(yk|θk−1,xk)

= h(yk|θk−1,xk). (3.51)

An even coarser bound can be obtained by assuming perfect knowledge of the
additive noise φ0(s2

0) affecting the current phase-noise sample (see (3.50)). This
results in the following simple capacity upper bound

C(ρ) ≤ sup {I(y0; x0)}+ log(2π)− h(∆) (3.52)

where ∆ is distributed as in(1.3).
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3.2 – Upper bound with peak energy constraint

The inequality (3.52) can be interpreted as follows: the capacity of a Wiener
phase-noise channel is upper-bounded by the capacity of a memoryless phase-noise
channel with uniform phase noise, plus a correction term that accounts for the
memory in the channel and does not depend on the SNR ρ.

If we now specialize (3.52) to single-antenna systems and we add the additional
constraint that |s| = √ρ w.p.1 (which holds, for example, if a PSK constellation is
used), the first term on the RHS of (3.52) vanishes and we recover the upper bound
previously reported in [1, Theroem 2].

The last term in (3.5) can be computed by using a slightly modified version of
the algorithm described in [19].

3.2.2 Asymptotic Behavior

In Theorem 4 below, we present an asymptotic characterization of C(ρ) that gen-
eralizes to the MIMO case and to the case of peak-power-constrained inputs the
asymptotic characterization reported in [21] for the single-antenna case and average-
power-constrained inputs.

Theorem 4. In the high-SNR regime, the capacity of the Wiener phase-noise chan-
nel (??) behaves as

C(ρ) =

(
M − 1

2

)
log ρ− log

(
M − 1

2

)
− log Γ(M)

+
1

2
log π −

(
M − 1

2

)
− h(∆) + o(1) (3.53)

where o(1) indicates a function of ρ that vanishes in the limit ρ→∞.

Proof. The proof, which is rather technical, is relegated [2].

3.2.3 Average power versus peak power

By comparing the asymptotic capacity expansion provided in Theorem 4 with the
one reported in [2, Theorem 3] for the case of average-power-constrained input sig-
nals, we can assess the throughput loss at high SNR due to the presence of the more
stringent peak-power constraint (3.37). Specifically, let Cap(ρ) denote the capacity
of the channel in (3.36) when the input signal is subject to (3.3) instead of (3.37).
Furthermore, let C(ρ) as in (3.2). Then

lim
ρ→∞
{Cap(ρ)− C(ρ)} = log Γ

(
M − 1

2

)
−
(
M − 3

2

)
log

1

M − 1/2
+

(
M − 1

2

)
.

(3.54)
For the single-antenna case (i.e., M = 1) this asymptotic capacity loss is about 1
bit/s/Hz.
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3.2.4 The Non-unitary Case

As mentioned in Section 1.3, practical considerations may force the channel matrix H
to be non-unitary. In this section, we derive non-asymptotic upper and lower bounds
on C(ρ) for the general case of full rank H, which are function of the capacity for
the case of unitary H. This allows us to extend the results reported in 3.2.1 to the
non-unitary case.

Let λmin and λmax denote the smallest and the largest eigenvalue of HHH, respec-
tively. The following theorem gives upper and lower bounds to C(ρ) for arbitrary
full-rank matrix.

Theorem 5. Let Cunitary(ρ) be the capacity of the channel in (3.36) for the case
of unitary H. The capacity for the case of an arbitrary full-rank matrix H with
smallest and largest singular values given by

√
λmin and

√
λmax, respectively, can be

bounded as follows:

Cunitary(λminρ) ≤ C(ρ) ≤ Cunitary(λmaxρ). (3.55)

Proof. Since H has full rank and is known at both sides, precoding at the transmitter
can be done in order to invert the channel. Precisely, set xk = H−1x̃k, so that (3.36)
becomes

yk = ejθk x̃k + wk, k = 1,2, . . . , n. (3.56)

The peak-power constraint (3.37) forces x̃k within the hyperellipsoid

x̃Hk
(
HHH

)−1
x̃k ≤ ρ, k = 1, . . . , n (3.57)

w.p.1. By definition:

Cunitary(λmaxρ) = lim
n→∞

1

n
sup I(x̃n; yn) (3.58)

where the supremum is over all distributions on x̃n that satisfy

‖x̃k‖2 ≤ λmaxρ, k = 1, . . . , n, w.p.1. (3.59)

The peak-power constraint in (3.59) is looser than (3.57). Indeed,

‖x̃k‖2/λmax ≤ x̃Hk
(
HHH

)−1
x̃k ≤ ‖x̃k‖2/λmin. (3.60)

Hence, if (3.57) holds, then (3.59) holds as well. This implies that

C(ρ) ≤ Cunitary(λmaxρ). (3.61)

In the same way, (3.60) and the definition of Cunitary(ρ) allow us to conclude that

C(ρ) ≥ Cunitary(λminρ). (3.62)
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3.2 – Upper bound with peak energy constraint

As a consequence of (3.55), bounds for the case of unitary H can be transformed
into bounds for the case of full-rank H at the cost of a power offset. Using the
asymptotic expression for Cunitary(ρ) reported in (3.53), we see that in the high-SNR
regime the gap between the upper and lower bounds in (3.55) is equal to

Cunitary(λmaxρ)− Cunitary(λminρ) =

(
M − 1

2

)
log

λmax

λmin

+ o(1) (3.63)

which tends to a constant as SNR increases.
Note that both the upper and the lower bound are obtained by neglecting the

actual structure of (3.57). In order to take this structure into account, a non-
isotropic distribution of x̃k, with power allocated according to a waterfilling strategy,
may result in a tighter lower bound.

3.2.5 Simulation Results

In this section, we numerically compute the upper bound in (3.40) and compare
it with the asymptotic expression in (3.53), for a standard deviation of the phase-
noise increments equal to σ∆ = 6◦, in the two cases M = 1 (single-antenna system)
and M = 2. In Figure 3.3, the curves for the single-antenna case are displayed.
The bound approaches the asymptotic expression as SNR grows large, although it
remains below it for all the SNR values considered. In the figure, we also show
the upper bound from [2, Theorem 2] and its asymptotic expansion [2, Equation
(17)]. Although these results were derived for an average-power constraint, they
serve as upper bounds for the capacity under a peak-power constraint, since the
latter is more stringent than the former. Finally, we also plot an upper bound that
is obtained from (3.40) by substituting the conditional differential entropy

h
(
θ0 + φ0(ξ2)| {θl + φl(ρ)}−1

l=−∞ , |ξ + z0|
)

(3.64)

with
h
(
∆ + φ0(ξ2)||ξ + z0|

)
. (3.65)

This bound, which we refer to as Us(ρ) (where the letter “s” stands for “simpli-
fied”) is much simpler to evaluate numerically than U(ρ). Furthermore, its compu-
tational complexity does not scale with the number of antennas (on the contrary,
the computational complexity of U(ρ) increases exponentially with the number of
antennas). Unfortunately,Us(ρ) is less tight than U(ρ) because

h
(
θ0 + φ0(ξ2)| {θl + φl(ρ)}−1

l=−∞ , |ξ + z0|
)
≥ h

(
∆ + φ0(ξ2)||ξ + z0|

)
. (3.66)

The newly derived bounds improve on the previous ones by 6-7 dB at moder-
ate and high SNR values, in accordance with what reported in Subsection 3.2.3.
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3 – Upper bounds to capacity

Finally, the numerically computed mutual information for the case of 64-QAM is
also shown.3 A gap ranging from 2 dB to 3 dB is observed between (3.40) and the
64-QAM curve, depending on the SNR. From the plot, we see that the asymptotic
capacity expression, which, differently from both upper and lower bounds, is trivial
to compute, accurately describes the behavior of the capacity for SNR larger than
16dB.

In Fig. 3.4, the curves for the caseM = 2 are shown. As in Fig. 3.3, we also depict
the upper bound from [2, Theorem 2] together with its asymptotic version [2, Equa-
tion (17)], the simplified upper bound Us(ρ), and the mutual information achieved
by 64-QAM. The newly derived bounds improve on the previous ones by about 3 dB
in the high-SNR region. For the MIMO case, the gap between (3.40) and the QAM
curve is about 3.5 dB in the high-SNR region and larger for smaller SNR values.
In this case, the asymptotic capacity expression seems to describe accurately the
capacity behavior for SNR values as small as 4 dB.

It is appropriate to point out that there is no guarantee that our upper bound
U(ρ) converges to the asymptotic capacity expression (3.16) as SNR grow large. In
fact, the output distribution used in the duality step in the two cases is different.
Obtaining a tighter non-asymptotic bound based on the output distribution that is
optimal asymptotically remains an open problem.

Plots for the case of a non-unitary matrix H can be obtained directly from
Figure 3.4 by shifting the upper bound to the left by λmax (expressed in dB), and
shifting the lower bound to the right by λmin (expressed in dB). The gap between
the resulting upper and lower bounds increases proportionally to the logarithm of
the ratio between λmax and λmin in accordance to (3.63).

3.2.6 Conclusions

We presented an asymptotic (high-SNR) characterization, as well as nonasymptotic
bounds, on the capacity of MIMO microwave backhaul links affected by Wiener
phase noise. Our results are developed for the case of common oscillator at the
transceivers, and under the practically relevant assumption that the transmit signal
is subject to a peak-power constraint. By numerical simulations, we showed that
our asymptotic capacity expression, which—differently from the capacity upper and
lower bounds—is trivial to compute, is accurate at the SNR values typically en-
countered in microwave backhaul links (15 dB or higher). In the regime where our
asymptotic capacity formula is tight, QAM constellations exhibit a gap of about 3

3Specifically, we use the algorithm for the computation of the information rates for finite-state
channels proposed [?]. We choose 200 levels for the discretization of the phase-noise process, and
average over a block of 2000 channel uses.
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Figure 3.3. The upper bound U(ρ) in (3.40), its simplified version Us(ρ), the
asymptotic capacity approximation (3.53), the upper bound from [2, Theorem
2] and its asymptotic version [2, Equation (17)], and the rates achievable with
64-QAM. In the figure, σ∆ = 6◦.
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3 – Upper bounds to capacity

dB. The gap to the capacity upper bound may be reduced by replacing QAM with
suitably optimized constellations. Furthermore, the upper bound could be further
tightened by substituting the Gamma distribution (3.48) used in the duality step
with the asymptotically optimal output distribution (A.20), and then by optimiz-
ing over the parameter ε. This, however, may further increase the computational
complexity associated to the numerical evaluation of the upper bound.

38



Chapter 4

Phase recovery receivers

4.1 PLL-based receiver for SISO channels

For single-antenna systems, there is a vast literature concerning phase-noise de-
tection algorithms. For the classical phase-locked loop (PLL) solution, see [11]
and references therein. More modern solutions rely on message-passing algorithms,
among which [31], [32] and [33] are a few examples. Regarding phase noise, the
main problem lies in a suitable parameterization of phase-noise messages, a problem
which is solved by resorting to Tikhonov distributions in [31] and to particle filter-
ing discretization in [32]. In [33], instead, the Expectation-Maximization algorithm,
represented as an algorithm of message-passing, is proposed in order to perform
joint phase recovery and channel decoding.

In this Section we present a PLL-based joint detection-decoding scheme, de-
signed to exploit the decision made by an iterative decoder that are fed back to the
carrier synchronizer for a SISO channel impaired by a correlated phase noise and in
Section 4.2 it will be extended to a LoS MIMO channel. We first present, in Section
4.1.1, a simplified Feed-Forward version of the algorithm without any feedback (we
call it Open-Loop scheme) and finally, in Section 4.1.2, we show the advantages to
exploit the decision made by the iterative decoder to improve the performance of
the detector and the overall system.

4.1.1 Open Loop Code-Aided algorithm

The system model of the SISO channel is

yk = xke
jθk + wk, k = 1,2, . . . , n (4.1)

where xk and yk are the transmitted and received symbols, respectively, at time
instant k, wk is white Gaussian noise and θk is the phase noise sample at instant k,
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4 – Phase recovery receivers

defined as the sum of phase noise at transmitter and at receiver. Phase noise has
been generated using an infinite impulse response (IIR)-filtered Gaussian process,
which has been obtained by matching the phase noise mask in Figure 1.1. The
transfer function of the filter in Z-transform domain, is given by

H(z) = 10−3 0.2932− 1.137z−1 + 1.654z−2 + 1.068z−3 + 0.2589z−4

1− 4.922z−1 + 9.693z−2 − 9.542z−3 + 4.696z−4 − 9.245z−5
(4.2)

We assume that the transmitted stream is divided into slots of Nd modulated
symbols and the beginning of each slot is composed by Np pilots, while the remaining
Nd−Np symbols are left for the data. The overhead is then obtained as η = Np/Nd.

The overhead is not considered in the evaluation of the Eb/N0 in following re-
sults, in order to see only the performance degradation due to the carrier recovery
algorithm. The actual information energy to noise ratio Eb,inf/N0 is related to the
coded energy-to-noise ratio by the following expression

Eb,code
N0

= Rc(1− η)
Eb,inf
N0

=
1

m

Es
N0

(4.3)

where Rc is the Forward Error Correction (FEC) code rate, m is the number of bits
per modulated symbol, Es is the energy per modulation symbols, and Eb,code is the
energy associated to a coded bit.

yk
Phase

detector
Demod

Bit
LLR

Compu-
tation

Iterative
decoder

x̂k

Figure 4.1. Open Loop receiver block diagram

In Figure 4.1 the block scheme of the receiving chain for the Open Loop scenario
is presented. The received symbols from the channel are fed into the proposed PLL-
based synchronization scheme (it will be discussed later in detail) returning the
phase compensated symbols ready to be processed by the soft modulator. A LLR
computation block transforms the LLR on symbols in LLR on coded bits that are
sent to the iterative decoder (for simulation results we take into account a LDPC
and SCCC decoder). Finally decoded bits are provided.

In the following we concentrate on the phase detector, whose structure in the
Open-Loop structure is shown in Figure 4.2. The received samples are first split
into pilots and data symbols by a switch. The pilot samples enter a Maximum-
Likelihood instantaneous phase estimator, followed by a smoothing filter. Such
phase estimations based on pilot symbols are linearly interpolated to obtain a rough
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Figure 4.2. Block diagram of the Open-Loop version of PLL-based phase detector

estimation at data rate and added to the one tracked by the Costas Loop of PLL
(red branch in Figure 4.2), characterized by the time constant γ [11] to compensate
the phase of the received data samples.

Smoothing of phase pilot estimates In order to reduce the burst length with-
out increasing the pilot overhead, and thus reducing the effect of error propagation
and cycle slips, we have considered a phase estimation based on distributed indi-
vidual pilot symbols using an optimal smoothing filter to improve the quality of the
estimates. The coefficients of the optimal Minimum Mean Square Error (MMSE)
smoothing filter that process the instantaneous phase estimate can be obtained by
the Wiener-Hopf equation

h =
(
R−1

θ̂
rθθ̂

)∗
(4.4)

where Rθ̂ is the autocorrelation matrix of the sequence of estimate, and rθθ̂ is the

correlation of the estimated phase sample θ̂ at pilot time instant k with the true
phase θ at time k − q (q is the delay introduced by the filter, in terms of number
of symbols). The optimal smoothing filter is a function of the level of noise and
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4 – Phase recovery receivers

its length must be such as to include all significant coefficients. We have designed
a 7-tap filter, optimized for the phase noise masks in Figure 1.1 and Figure 1.2, a
coded signal-to-noise ratio of 13 dB, and a delay of three periods. It is symmetric
with the tap coefficients

h =
[
1.09e−2, 6.99e−2, 1.92e−1, 4.543e−1, 1.92e−1, 6.99e−2,1.09e−2

]
.

After the instantaneous phase estimation then we use a linear interpolation be-
tween successive phase estimates according to

θ̂
′

kNd+i = θ̂k +
i

Nd

(
θ̂k+1 − θ̂k

)
i = 0, . . . , Nd − 1 (4.5)

The interpolation requires to wait for the next pilot, and thus introduces a delay
equal to the pilot insertion period.

Costas Loop In Figure 4.2 the red branch of the proposes phase detector shows
a Costas Loop [11] running to track the residual phase between the interpolated
estimates. Increasing the bandwidth of the loop increases its tracking capabilities
but also increases the probability of having cycle slips and error propagation. To
find the best trade off between these two effects, we have optimized the normalized
Costas Loop bandwidth obtaining a value of 0.0175, corresponding to the value of
γ = 0.07. The residual phase noise at the output of the phase recovery circuit is a
highly correlated process owing to the presence of cycle slips and error propagation
between successive pilot estimates. The adoption of a memoryless Feed-Forward
data aided estimation limits the correlation to the spacing between pilots (Nd). Due
to the low signal-to-noise ratio at which the phase synchronizer has to work, the
symbol error probability at the output of the hard detector of the Costas Loop is
rather high. This makes the loop highly unstable and subject to error propagation
and cycle slips for large loop bandwidths. In order to reduce this effect the phase
estimation must rely heavily on the pilot symbols. To get a good trade off between
the overhead introduced by pilots insertion and the pilot based phase tracking, we
keep fixed the overhead introduced by the pilots addition to 5% (i.e. 1 pilot symbol
every 20 information symbols).

4.1.2 Iterative Code-Aided algorithm

In this Section we describe an improvement of the Open-Loop algorithm described
in Section 4.1.1, which results in a modified version of the algorithm, called Code-
Aided recovery algorithm. The motivation behind the design of this scheme is that
a more effective phase compensation algorithm may reduce the constraints on the
phase mask, reducing the cost of components.
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4.1 – PLL-based receiver for SISO channels

Code-Aided algorithm exploits the information provided by the the soft decision
made by an iterative decoder to perform the phase compensation (instead of the
embedded hard decsions by Costas Loop in PLL branch of detector) several times,
with improved a-priori knowledge of the transmitted symbols. In the following
paragraphs we explain the behavior of the algorithm underlining the improvement,
in terms of BER, by mean of simulation results.

Code-Aided detection is indicated for high order modulation schemes, e.g. 64-
QAM or 256-QAM, more sensitive to phase noise, for which the previous Open-Loop
structure may be not sufficient. The feedback between the detector and the decoder
not only improves performance of phase synchronization but also the decoder ones
exploiting the correlation between bits belonging to the same modulation symbol.
The resulting receiver may outperform the Open-Loop structure, even in the absence
of phase noise.

In Figure 4.3 the block diagram of the Code-Aided receiver algorithm is depicted.
It is similar to the Open-Loop structure with the addition of an outer feedback
loops from the decoder to the phase detector. The detector takes the samples
from the channel and delivers phase compensated symbols to the demodulator that
computes symbols LLRs. The bit LLR Computation block transforms symbols
LLRs in bit LLRs that the decoder updates during each iteration. The updated
a-priori probabilities are then sent back to the detector, which exploits them to
improve the error phase compensation. At the last iteration, the decoder finally
returns the decoded data. As you can see in Figure 4.4, the Data-Aided branch
(blue part) is the same as the Open-Loop scenario, whereas the Decision-Directed
(red part) recovery scheme exploits soft decisions provided by the decoder. The
new algorithm requires the optimization of the scheduling between the number of
outer (from decoder to detector) and inner (inside the decoder) iterations in order to
maximize the performance, keeping constant the total number of decoder iterations
(i.e. the product of outer iterations and inner iterations).

The drawback of this solution is the additional memory and complexity required,
as the detector and decoder algorithms need to run several times.

yk
Phase

detector
Demod

Bit
LLR

Compu-
tation

Iterative
decoder

x̂k

Figure 4.3. Code-Aided receiver block diagram
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Figure 4.4. Block diagram scheme of proposed Code-Aided PLL-based phase
detector for SISO systems
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Figure 4.5. Genie-Aided receiver block diagram

Genie-Aided algorithm In Figure 4.5 a so called Genie-Aided version of the
Code-Aided algorithm is shown. To evaluate the maximum achievable performance
of Code-Aided we simulated a Genie-Aided receiver, for which data are provided
with no errors to drive the loop. In other words we assume all symbols to be pilots.
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4.1 – PLL-based receiver for SISO channels

4.1.3 Simulation results

We present in this Section some simulation results for the proposed joint decoder-
detector scheme, for 64-QAM and 256-QAM modulations, with the following general
setting: we set the symbol rate equal to 6.2 MHz, highly used in back-haul links,
and a pilot overhead equal to 1 pilot every 20 symbols (a pilot overhead equal to
5%). For 64-QAM we used a 2 codewords channel interleaver and for 256-QAM
modulation we adopted a 4 codewords channel interleaver (the length of interleavers
has been optimized by simulation).
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Figure 4.6. Performance, in terms of BER, of Code-Aided, Genie-Aided and
Open-Loop algorithms for 64-QAM modulation and LDPC decoder, as well
as AWGN reference

In Figure 4.6 and Figure 4.7 we show the simulation results for 64-QAM, with
a LDPC and SCCC decoder respectively. In Figure 4.8 the results for LDPC and
SCCC are showed together for comparison. Notice that we used 20 iterations inside
the LDPC decoder and only 10 iterations for the SCCC decoder because of the
more decoding capability of serially concatenated iterative decoders. The feedback
iteration settings, i.e. the number of decoder iterations and the number of iterations
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Figure 4.7. Performance, in terms of BER, of Code-Aided, Genie-Aided and
Open-Loop algorithms for 64-QAM modulation and SCCC decoder, as well
as AWGN reference

between decoder and synchronizer, as well as the PLL time constant γ have so
been optimized under those constraints. For LDPC we have γ = 0.1 with 2 outer
iterations (from decoder back to detector) and 10 inner decoder iteration per each;
for SCCC we get γ = 0.2 and again only 2 outer iterations (and consequently 5
decoder iterations) are necessary to get the maximum improvement of performance
w.r.t. the Open-Loop solution. In the charts, for the sake of comparison, we have
also reported the results obtained using the Open-Loop algorithm under the same
PLL settings.

In Figure 4.6 we can see that, for 64-QAM modulation, the activation of the
Closed-Loop algorithm permits to reduce the loss w.r.t. Genie-Aided performance
from 0.6 dB, related to the Open-Loop scheme, to less than 0.05 dB using a LDPC
decoder. In Figure 4.7 the gap is reduced from 0.5 dB for the Open-Loop algorithm
to 0.15 dB with the adoption of the Closed-Loop scheme for the SCCC decoder. The
BER level for performance analysis is 10−6. In both cases we notice a steeper slope.
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Figure 4.8. Performance, in terms of BER, of Code-Aided, Genie-Aided and
Open-Loop algorithms for 64-QAM modulation and both LDPC and SCCC de-
coders, as well as AWGN reference

The differences between LDPC and SCCC are non-existent for the Genie-Aided as
you can clearly see in Figure 4.8.

In Figure 4.9 we show simulation results for 256-QAM, with 4 codewords in-
terleavers. Only the case of SCCC decoder has been considered in this case. The
curves show that the gap w.r.t. the Genie-Aided reference has been reduced from
0.6 dB for Open-Loop algorithm to 0.2 dB thank to the adoption of Closed-Loop
scheme, with a much steaper slope.

Phase recovery results compared with capacity As we said in Section 1.2.3
the phase noise process can be split into two components, one at low frequency and
one at high frequency. The slowly varying phase component is usually well recovered
by phase synchronization systems (included the detector presented in this Chapter),
so we are interested in comparing the performance of the proposed solution with
the theoretical limit of a channel impaired by the residual fast phase noise. In
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Figure 4.9. Performance, in terms of BER, of Genie-Aided, Code-Aided and Open
Loop algorithms, for 256-QAM, as well as AWGN reference

Figure 4.10 and 4.11 blue curve represents the PSD measured by simulation of high
frequency phase noise process component, and the red curve is the actual phase
noise mask (see Figure 1.1 and Figure 1.2), respectively for 64-QAM and 256-QAM
modulations. To let the PSD correctly fits the phase noise mask, we chose (recalling
the definition of the AR1 process in (1.5)) α = 0.998 and σ∆ = 1.64 deg for 64-
QAM and α = 0.998 σ∆ = 0.4 deg for 256-QAM modulation. We used those AR1
processes to model the phase noise for the computation of the constraint capacity
with the tool described in Chapter 2.

In the following we want to compare the performance of the proposed Closed-
Loop phase detector to the theoretical limit expressed by the AWGN capacity and
the lower bound to capacity derived in Chapter 2. In Figure 4.12 you can see
a chart related to the 64-QAM modulation where the green curve represents the
AWGN capacity and the red curve is the capacity for a system impaired by phase
noise modeled as we described before; the gap between them, due to the presence
of phase noise, is 0.6 dB in correspondence to a target spectral efficiency η = 5.63
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Figure 4.10. Phase noise mask provided by Ericsson, PSD measured and simulated
for only high frequency phase noise component for 64-QAM

(dotted black line in the chart), due to the presence of a decoder with a code rate
of 15/16. The green mark represents the coded Eb/N0 related to a BER=10−6 for
the AWGN channel; the loss w.r.t. the AWGN capacity is about 1.1 dB, depending
only on thermal noise. The loss of our proposed Closed-Loop scheme w.r.t. the
constrained capacity (blue curve) is 1.8 dB (upside down triangle red mark), while
the minimum gap we could expect if we used the Genie-Aided algorithm is about 1.6
dB. All those values are taken at a reference BER level of 10−6. In Figure 4.13 similar
simulation results for 256-QAM are depicted; also in this case the BER level is 10−6

and the loss between the capacity curves is about 0.7 dB, while the performance for
the AWGN channel is 1.4 dB far from the AWGN capacity, a loss greater then the
previous case. The best performance achieving Genie-Aided algorithm shows a loss
of 1.5 dB w.r.t. the constrained capacity, while the Closed-Loop scheme shows a
gap w.r.t. capacity of 1.7 dB.

We can conclude that the performance of proposed Closed-Loop scheme are quite
close to the channel capacity and that the optimization of feedback settings permits
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Figure 4.11. Phase noise mask provided by Ericsson, PSD measured and simulated
for only high frequency phase noise component for 256-QAM

to get just a loss of about 0.3 dB from the performance of a system considering all
symbols to be pilots.

4.2 PLL-based receiver for LoS MIMO channels

In this Section we present a synchronization algorithm for a 2 × 2 MIMO LoS
system, that is an extension of what we described in Section 4.1.2. We assume that
the channel matrix is unitary, a condition that can be imposed on the system by
suitably arranging the antennas (see Section 1.3). The algorithm is a combination
of a Data-Aided (DA) part and a Decision-Directed (DD) part. The former is
composed by a pilot-based phase estimator and a filtering stage exploiting the time
correlation of phase-noise processes and the space correlation offered by multiple
antennas. The latter is based on PLL algorithms to estimate and compensate a
set of phase parameters, also based on the feedback provided by a channel decoder.
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Figure 4.12. AWGN capacity, lower bound to capacity and results achieved by
phase detector, compared to AWGN performance, for 64-QAM

While the PLL is a well-known circuit for phase tracking in single antenna systems
(see [11, Section 5.3]), we present a non-trivial generalization for MIMO systems
that is able to conjugate very good performance with an affordably low complexity.

All the algorithms for phase recovery in SISO systems, when extended in a
trivial way to MIMO systems, result in solutions that either perform poorly or have
a too high complexity to be practically feasible. Out of the papers that tackle
the problem of phase-noise recovery for MIMO systems, in [34] a space-time filter
is used to simultaneously exploit the correlation between phase-noise samples in
time and between phase processes at different receive antennas. In [35] a phase
estimator is presented, which is based on the Least Square and Extended Kalman
filter algorithms.

We consider a 2 × 2 MIMO LoS system impaired by phase noise, whose input-
output relationship, at time instant k, is given by

ŷk = H̃kxk + nk, (4.6)
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Figure 4.13. AWGN capacity, lower bound to capacity and results achieved by
phase detector, compared to AWGN performance, for 256-QAM

where xk is the vector of the two transmitted symbols, ŷk the vector of the two
received samples and nk is a vector of uncorrelated, white Gaussian noise samples
with zero mean and variance σ2 per real dimension. The equivalent channel matrix
H̃k is defined as

H̃k = Θr
kHΘt

k. (4.7)

where Θt
k and Θr

k are the diagonal matrices of phase-noise coefficients, at the trans-
mit and receive side respectively, written as:

Θt
k =

[
ejθ

k
t1 0

0 ejθ
k
t2

]
,

Θr
k =

[
ejθ

k
r1 0

0 ejθ
k
r2

]
,

where θkti and θkrj are the realizations of phase-noise processes at the i-th transmit
antenna and j-th receive antenna, respectively, assumed to be unknown at both
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sides. Such atomic phase-noise processes are assumed in this paper to be inde-
pendent, identically distributed stationary processes with arbitrary power spectral
density Sθ(f) depicted in Figure 1.1 and generated using the infinite impulse re-
sponse (IIR)-filtered Gaussian process in (4.2).

The 2× 2 channel matrix H will be considered fixed and known at the receiver.
Moreover, throughout the paper, we will also suppose that H is (proportional to)
a unitary matrix, i.e., HHH = I. Such assumption is not unrealistic in the LoS
scenario, where, by proper positioning of the transmit and receive antennas, the
link gains are controllable by design. In this case, a unitary matrix allows for the
maximum channel capacity among all matrices with a given Frobenius norm. A
possible parameterization of the 2× 2 unitary matrices, which will be useful in the
following, reads as:

H =

[
cosα ejψ sinα

−e−jψ sinα cosα

]
. (4.8)

where α ∈ [0, π) and ψ ∈ [0,2π).

Before describing the proposed solution, let us notice that the entries h̃mn of the
equivalent channel matrix defined in (4.7) are related to the entries hmn of H as
follows (omitting the time index k):

h̃mn = hmne
jφmn , m, n = 1,2. (4.9)

where we have defined the sum phase process:

φmn = θrm + θtn. (4.10)

Notice that, out of the four sum phase processes, one is a linear combination of the
other three, namely:

φ22 = φ12 + φ21 − φ11. (4.11)

(In the general Nt × Nr case, out of NtNr sum phase processes, only Nt + Nr − 1
are linearly independent.) Thus, the receiver has to estimate only three sum phase
processes, which are however correlated with each other.

4.2.1 Data-aided detector

The data-aided scheme is represented in Fig. 4.14 by a cascade of functional block,
described in details in the following paragraphs. Instantaneous phase estimatation
block is followed by an MMSE filter, exploiting spatial correlation of MIMO system,
and smoothing filters, exploiting temporal correlation of phase noise and return-
ing the estimates of atomic phase noise processes. These are finally interpolated
and recombined to obtain three sum phase-noise parameters to be delivered to the
decision-directed part, described in 4.2.2.
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, 

Figure 4.14. Block diagram of Data-Aided branch of proposed solution

Istantaneous phase estimation We suppose that pilots are regularly inserted in
the transmission frame, at a rate of one transmitted pilot vector every Nd data trans-
missions. To simplify the instantaneous phase estimation, an orthogonal (single-
antenna) pilot matrix can be used, namely

p =

[
p1 0
0 p2

]
. (4.12)

This pilot structure allows for trivially obtaining rough estimates φ̂mn for the four
sum phase processes. Notice that such rough estimates are linearly related to the
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atomic phase-noise samples:
φ̂11

φ̂12

φ̂21

φ̂22

 =


1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1



θt1
θt2
θr1
θr2

+ n. (4.13)

where n, the estimation noise, can be assumed to be Gaussian with zero mean
and variance equal to the channel termal noise variance σ2. In writing (4.13), we
have assumed that phase-noise processes can be considered as constant during pilot
transmission time, which is true in most realistic cases.

Minimum Mean Square Error filtering The correlation of the sum phase
processes due to MIMO signalling can be exploited to improve the quality of the
data-aided estimation through a linear MMSE filter, in order to counteract the effect
of noise. The MMSE filter is based on the relationship in (4.13). Assuming that
the atomic phase processes are independent and uniformly distributed over [0,2π),
a straightforward computation holds the following expression:

θ̂t1
θ̂t2
θ̂r1
θ̂r2

 = C


ε+ 3 −1 ε+ 3 −1
−1 ε+ 3 −1 ε+ 3
ε+ 3 ε+ 3 −1 −1
−1 −1 ε+ 3 ε+ 3



φ̂11

φ̂12

φ̂21

φ̂22

 (4.14)

where C = 1
(ε+4)(ε+2)

and ε is the ration between noise variance and phase noise
variance:

ε =
3σ2

π2
. (4.15)

Smoothing filter and interpolation While the estimated phase-noise samples
at the output of the MMSE filter in (4.14) are independent, further enhancement
against noise can be obtained by exploiting time correlation in the phase-noise sam-
ples. In order to do that, the proposed solution is to smooth the estimated atomic
phase-noise processes by a bank of four linear MMSE filters (see [14]), matched to
the actual time correlation of such processes, which depends on the power spectral
density Sθ(f). In Figure 4.14, the output (at pilot rate) of the bank of smoothing

filters is represented by
{
θ̂′t1, θ̂

′
r1, θ̂

′
t2, θ̂

′
r2

}
.

Finally such estimates are interpolated and recombined to obtain a sequence (at
data rate) of rough sum-processes phase estimates to be delivered to the decision-
directed algorithm. We choose the following variables as the three-element basis for
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our solution: 
ϕ′1 = θ̂t1 + θ̂r1
ϕ′2 = θ̂t2 + θ̂r1
∆ϕ′ = θ̂r1 − θ̂r1

. (4.16)

4.2.2 Decision-directed algorithm

We start by providing some intuition to understand the motivation lying behind this
work. Let y be the vector containing received symbols after to be processed with
the Hermitian version of channel matrix

y = H†ŷ = H†(H̃x + n). (4.17)

Expanding the expression of (4.17), we obtain

y1 =x1e
jϕ1(cosα2 + sinα2ej∆ϕ)+

x2e
jϕ2ejψ sinα cosα(1− ej∆ϕ) + ñ1,

y2 =x2e
jϕ2(sinα2 + cosα2ej∆ϕ)+

x1e
jϕ1e−jψ sinα cosα(1− ej∆ϕ) + ñ2, (4.18)

where ñ1 and ñ2 are filtered version of gaussian samples noise. It can be noticed
that, if ∆ϕ was equal to zero, then each received symbols would depend just on
the correspondent transmitted symbol. This means that, if we are able to well
compensate the differential phase error process at the receiver, then we can estimate
the other processes independently.

An other way to understand the idea this work is based on is considering the
correlation coefficient c between y1 and y2. From (4.17) and assuming that ∆ϕ is
equal to zero, we can write

ck = E[y1y
∗
2] ∝ E [x1x

∗
2] = 0 (4.19)

This result shows again that, if we are able to compensate ∆ϕ, then channels of
MIMO system will get orthogonal and could be treated in independent way.

The PLL-based algorithm Considering our model, we can see that there are
four atomic phase noise processes, but one of them is a deterministic function of
the others. The idea is that we can estimate just three sum-processes to perform
a correct phase compensation using one of the atomic parameters as reference. In
this way we are able to low down the complexity of overall system and to simplify
the treatment. A possible choice of phase-noise parameters array is the following

Φ =

 ϕ1

ϕ2

∆ϕ

 =

θt1 + θr1
θt2 + θr1
θr2 − θr1

 . (4.20)
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In this case we have chosen θr1 as reference to reduce the overall complexity of the
synchronization stage, obtaining the following equivalent channel model

H̃ =

[
1 0
0 ej∆ϕ

] [
cosα ejψ sinα

−e−jψ sinα cosα

] [
ejϕ1 0

0 ejϕ2

]
. (4.21)

Let’s consider now the log-likelihood function Λ of received samples y1 and y2

Λ(y) = log {P (y1, y2|ϕ1, ϕ2,∆ϕ, x1, x2)}

∝ − 1

2σ2
[|y1 − ỹ1|2 + |y2 − ỹ2|2] (4.22)

In (4.22) y1 and y2 are received symbols and ỹ1 and ỹ2 are the hypothesis about
them, dependent on phase parameters we want to estimate, i.e. versions of (4.18)
without termal noise. To derive the optimal phase paramter estimates we take the
maximum of (4.22) w.r.t. the phase parameters

(ϕ1, ϕ2,∆ϕ)opt = arg max
(ϕ1,ϕ2,∆ϕ)

Λ(y). (4.23)

To solve the maximization problem we have to solve the following non-linear
system of equations obtained setting to zero the partial derivatives of Λ(y) w.r.t
each phase parameter 

∂λ(y)
∂ϕ1

= 0
∂λ(y)
∂ϕ2

= 0
∂λ(y)
∂∆ϕ

= 0

. (4.24)

Lets consider the partial derivative w.r.t ϕ1. We have

∂λ(y)

∂ϕ1

∝ ∂

∂ϕ1

[−|y1 − ỹ1|2 − |y2 − ỹ2|2]

(a)
=

∂

∂ϕ1

[−∆y1∆y∗1 −∆y2∆y∗2]

(b)
= 2<

{
∂ỹ1

∂ϕ1

∆y∗1 +
∂ỹ2

∂ϕ1

∆y∗2

}
= 0 (4.25)

where in (a) we define ∆yi as (yi− ỹi), for i = 1,2 and in (b) we exploit the linearity
of derivative operator. The expression in (4.25) takes two solutions (a minimum and
a maximum) due to the 2π-periodicity of phase parameters. From (4.25) implies the
following expression

arg

{
−j ∂ỹ1

∂ϕ1

∆y∗1 − j
∂ỹ2

∂ϕ1

∆y∗2

}
= 0. (4.26)
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The solution of (4.26) is the following

arg

{
−j ∂ỹ1

∂ϕ1

∆y∗1 − j
∂ỹ2

∂ϕ1

∆y∗2

}
=

= arg
{
ejϕ1x1y

∗
1(cos2 α + sin2 αej∆ϕ)

+ejϕ1x1y
∗
2e
−jψ sinα cosα(1− ej∆ϕ)

}
= ϕ1 + arg

{
x1y

∗
1(cos2 α + sin2 αej∆ϕ)

+x1y
∗
2e
−jψ sinα cosα(1− ej∆ϕ)

}
= ϕ1 − arg

{
x∗1y1(cos2 α + sin2 αe−j∆ϕ)

+x∗1y2e
jψ sinα cosα(1− e−j∆ϕ)

}
= 0. (4.27)

From (4.27) we get the optimal estimate of ϕ1

ϕ1,opt = arg
{
x∗1(y1 cos2 α + y2e

jψ sinα cosα)

+x∗1e
−j∆ϕ(y1 sin2 α− y2e

jψ sinα cosα)
}
. (4.28)

The other two solutions of (4.24) are computed in a similar way taking the derivatives
of likelihood function w.r.t ϕ2 and ∆ϕ. Finally we have

ϕ1,opt = arg
{
x∗1(y1 cos2 α + y2e

jψ sinα cosα)

+x∗1e
−j∆ϕ(y1 sin2 α− y2e

jψ sinα cosα)
}

ϕ2,opt = arg
{
x∗2(y1e

−jψ sinα cosα + y2 sin2 α)

+x∗2e
−j∆ϕ(y2 cos2 α− y1e

−jψ sinα cosα)
}

∆ϕopt = arg
{
x∗1e
−jϕ1(y1 sin2 α− y2e

jψ sinα cosα)

+x∗2e
−jϕ2(y2 cos2 α− y1e

−jψ sinα cosα)
}
. (4.29)

The solutions are dependent on each other, but under the reasonable assumption,
in feedback error domain, that (ϕ1, ϕ2,∆ϕ) ' 0, we can approximate (4.29) with
the following system of independent error generating functions

δϕ1|(ϕ2,∆ϕ)'0 = arg {y1x
∗
1}

δϕ2|(ϕ1,∆ϕ)'0 = arg {y2x
∗
2}

δ∆ϕ|(ϕ1,ϕ2)'0 = arg
{
x∗1(y1 sin2 α− y2e

−iψ sinα cosα)

+x∗2(y2 cos2 α− y1e
−iψ sinα cosα)

}
(4.30)

The first two equations are the error functions of two independent SISO channels
relating just on the respective received and transmitted symbols. The third one is
the error generating function for ∆ϕ, depending on all received symbols and the
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structure of the channel. As the estimations of ϕ1 and ϕ2 in closed-loop branch are
independent to each other, we can use uncorrelated Costas loop filters. We have, at
time instant k 

φ
(k)
1 = φ

(k−1)
1 + γ1δϕ1

φ
(k)
2 = φ

(k−1)
2 + γ2δϕ2

φ
(k)
3 = φ

(k−1)
3 + γ3δ∆ϕ

. (4.31)

where (φ1, φ2, φ3) are phase estimates and (γ1, γ1, γ1) are time constants, represent-
ing the step-size characteristic of Costas Loop. Finally estimates provided by open
loop (4.16) are added to (4.31).

4.2.3 Simulation results
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Figure 4.15. Block diagram of Decision-Directed branch of proposed solution

In this Section we present the design of simulations and performances of proposed
2 × 2 MIMO scheme for 256-QAM modulation, with the following channel model,
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obtained setting in (4.21) α = π
4

and ψ = π
2

H̃ =
1√
2

[
1 0
0 ej∆ϕ

] [
1 j
j 1

] [
ejϕ1 0

0 ejϕ2

]
. (4.32)

You can notice that the resulting channel matrix H is the same presented in (1.12).
Regarding the phase noise statistics, phase noise processes at each antenna have
been generated from the phase noise mask in Figure 1.2 and generated using the
infinite impulse response (IIR)-filtered Gaussian process in (4.2).

In order to have a good trade-off between pilot overhead and synchronization
capability, orthogonal pilot symbols are inserted in the transmitted codewords with
a rate of Np = 1 pilot every N = 20 symbols (i.e. a data frame length of Nd = 19),
to perform the rough phase estimation in Data-Aided branch. The noise level in the
optimum smoothing filter, set by simulation way, is 0.007 with 7 taps.

Transmitted symbols are coded with a Serially Concatenated Convolutional Code
(SCCC) with code rate 15/16 and codewords of length 12720 coded bits. The
modulation format is 256-QAM and random channel interleaving has been employed.
At the receiver, the SCCC decoder performs at most 10 iterations. The PLL-based
phase detector has been optimized in sumulating way, obtaining the optimal values
for time constants (γ1, γ2, γ3) = (0.07,0.08,0.01).

In Figure 4.15 you can see the circuit of described PLLs for the channel model
in (4.32). With previous setting, simulation results in Figure 4.16 show the per-
formance, in terms of BER of the proposed algorithm. The black curve refers to
the AWGN case, i.e. in absence of phase noise, the blu curve refers to the BER
of the algorithm and the red curve refers to a scenario in which we switched off all
PLL circuits in Decision-Directed branch. As you can see, the introduction of PLL-
based detector achieves a gain of about 1 dB (at BER=10−5) w.r.t the Data-Aided
synchronization scheme.

As a remark, we obtained the same results (not reported here) also with the intro-
duction of the optimum filter exploiting temporal and spatial correlation described
in [34].

In Figure 4.17 we want to underline the contribution of each functional block
in Data-Aided part, showing the Mean Square Error (MSE) of residual phase noise
as function of SNR. Green curve depicts the MSE after the istantaneous phase
estimator, red curve refers to the MSE resulting from MMSE filter and blu curve
represents the behaviour of MSE after smoothing filtering stage. As you can see MSE
decreases after each block processing and the more we work in low SNR region, i.e.
the more termal noise is high, the more this behavior is evident.

Complexity analysis We now present the computational complexity of proposed
solution, analyzed for each block of the algorithm, in terms of number of operations
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Figure 4.16. Performance, in terms of BER, of proposed phase detector for MIMO
channel with and without the PLL circuit and AWGN channel

per information symbol. For each block, we computed the required number of sums,
products, divisions and look-up table accesses (LUTs), where the last refers to com-
putations of non-elementary functions like exponentiation, trigonometric functions,
etc., that can be realized through the access to a proper look-up table. Regarding
sums, products and divisions, they are always considered with respect to real vari-
ables (so that one complex sum corresponds to two real sums, etc.). Table 4.1 shows
the complexity analysis referring to simulations settings. In view of this table, we
can state that the complexity of the proposed solution is very low and feasible for a
lot of cases of practical interest, due to the simplicity of PLL filters adopted here.

In this Section, we have introduced a phase-noise estimator for MIMO systems,
which is based on PLL algorithm. This work is a generalization of classical ap-
proaches for phase detection in SISO systems, but it is far from being straightfor-
ward, because multiple antennas introduce overlapping of phase noice samples, not
easy to manipulate. Simulation results show that the performance of the proposed
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Figure 4.17. MSE of residual phase noise after Istantaneous Phase Estimation
block, MMSE filter and Smoothing filter

solution loses about 2.5 dB from the performance of AWGN scenario and its compu-
tational complexity is taken very low, due to the simplicity of PLL circuits adopted
here.

This solution is so a good trade-off between performance and complecity, making
it feasible for real applications.

Variance analysis of phase detection In this Section we present a comparison
between the performance of the proposed PLL-based phase detector, in terms of
the variance of the estimated phase, and the Cramér-Rao bound (BCRB) derived
in [36]. In the following we refer to general settings described in Appendix B where
we show the extended computation of the BCRB.

Lets consider a 2×2 MIMO LoS system with channel matrix defined in (1.12) and
with independent equal oscillators at each antenna and Wiener phase-noise model.
In particular, we consider the case where the blocklength T is large enough and
derive analytical expressions for the bound in the middle of the block.
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Functional blocks LUTs Sums Products Divisions

Inst. phase est. 0.21 0.84 1.68 0.21

MMSE filter 0 0.63 0.63 0

Smoothing filter 0 2.21 2.21 0

Interp. 0 4 8 0

Recombination 0 5 0 0

PLL filtering 6 26 31 0

PLL hard decision 4 0 0 0

Total 10.21 38.68 43.52 0.21

Table 4.1. Number of operations per transmitted symbol for simulated scenario

described in Section 4.2.3

Figure 4.18 shows the BCRB as a function of the time step n for a blocklength
T = 600. BCRBs for both smoothers (blue curves) and filters (red curves) are
shown. Two values of SNR are plotted: SNR = 5 dB (circles) and SNR = 10
dB (crosses), where SNR = 1/σ2. Moreover, ρ = 0.3 degrees (see Appendix B for
further details); although phase noise is not Wiener, the model defined by (B.2) with
ρ = 0.3 degrees is a good approximation for the actual statistics. As it can be seen,
all cases converge to their limit after a transient dependent on initial conditions.
The case with low SNR employs more time steps (about 200) to reach its limit value
than the case with high SNR, which takes about 100 time steps.

Next, we show the comparison between the BCRBs and the performance of two
different phase detectors. The first is the EM-based detector described in [37],[8],
whose reference BCRB is the one in (B.14), since it smooths the phase estimates by
looking at past and future samples. The second is the PLL-based proposed solution
for MIMO channels presented in this Section, and as such must be compared to the
BCRB in (B.28).

For the PLL solution, we show the Genie-Aided performance where the data are
perfectly known, while for the EM solution, data knowledge is actually obtained
by iterating between detector and decoder. As a channel code, we have used a
serial concatenation of convolutional codes (SCCC), with rate 15/16 and a code-
word length of 12720 coded bits. We employed 4i-QAM modulation formats, for
i = 1, . . . ,4. Pilots are introduced at a rate of 1 pilot every 20 transmitted sym-
bols. Random interleaving has been employed before transmission. All the other
parameters are as in Figure 4.18.
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Figure 4.18. BCRB for 2× 2 MIMO case as a function of the time step n.

Figure 4.19 shows the BCRBs and the performance for the two phase detectors
in the 2 × 2 case. As it can be seen, both phase detectors approach the respective
BCRB with sufficiently high SNR. The EM detector reaches within 1-2 dB from the
BCRB, while about 3 dB separate the PLL solution from the BCRB for filtering.
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Figure 4.19. Performance of phase detectors. 2× 2 MIMO case.
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Chapter 5

Conclusions and acknowledgments

In this PhD thesis we wanted to make a step into the problem related to the improve-
ment of wireless links affected by phase noise. We presented a low complex turbo
synchronizer, feasible for actual application, achieving good performance close to the
channel capacity. The evaluation of the capacity for multiple-anntennas channels
has been also investigated, through a semi-analytical and non-asymptotic expression
of a capacity upper bound and a simulation-based tool to compute a capacity lower
bound, to give a complete set of results.

This work could be a basis for the design of other detection algorithms and for
the evaluation of always tighter bounds to channel capacity.

I would like to thank Giuseppe Durisi, who helped me during my abroad period in
Chalmers University in Gothenburg and Alberto Tarable, who has always supported
me during the PhD program. I want to thank also Giulio Coluccia for his friendship
and for giving me useful suggestions during my work. Last, but not the least, thank
Guido Montorsi, a great mind and a pride for the Italian Academia.
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Appendix A

Proof of Theorem 4

The asymptotic characterization (3.53) is obtained by proving that the upper bound
(3.52) matches up to a o(1) term the lower bound we shall report in Appendix A.1
below.

A.1 Lower bound

We take {xk} i.i.d. and isotropically distributed according to Proposition 1. Specif-
ically, we let xk ∼

√
ρzρ,ρ0 where for a given ρ0 > 0 the random variable zρ,ρ0 has

the following pdf:

fzρ,ρ0 (a) =
fz(a)

P‖z‖2 ≥ ρ0/ρ}
1
{
ρ0

ρ
≤ ‖a‖2 ≤ 1

}
. (A.1)

Here, 1{·} denotes the indicator function and the pdf fz of the random variable z
is given by

fz(a) =

(
M − 1

2

)
Γ(M)

πM
1

‖a|
1
{
‖a‖2 ≤ 1

}
. (A.2)

Note that for every ρ0 > 0 the pdf fzρ,ρ0 converges pointwise to fz as ρ → ∞. The
rationale behind the choice of fz is that it turns out to maximize h(z)− E [log ‖z‖]
under the constraint that ‖z ≤ 1 w.p.1. The pdf fzρ,ρ0 is constructed from fz so as
to guarantee that ‖xk‖2 ≥ ρ0, a property that will be useful in the remainder of the
proof. To obtain the desired lower bound, we first proceed as in [?] and use chain
rule for mutual information and that mutual information is non-negative to obtain

I(xn; yn) =
n∑
k=1

I(xk; y
n|xk−1) ≥

n∑
k=2

I(xk; y
k|xk−1). (A.3)

Fix now k ≥ 2 and set

εk , I(xk; θk−1|yk,yk−1,xk−1). (A.4)
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A – Proof of Theorem 4

We have

I(xk; y
|xk−1)

(a)
= I(xk; y

k,xk−1)

(b)

≥ I(xk; yk,yk−1,xk−1)

= I(xk; yk,yk−1,xk−1, θk−1)− εk
(c)
= I(xk; yk, θk−1)− εk
(d)
= I(xk; yk|θk−1)− εk
(e)
= I(x2; y2|θ1)− ε2. (A.5)

Here, (a) follows because the {xk} are independent; in (b) we used chain rule for
mutual information and that mutual information is nonnegative; (c) follows because
xk and the pair (yk−1,xk−1) are conditionally independent given (θk−1,yk); (d) holds
because xk and θk−1 are independent; finally (e) follows from stationarity.

Substituting(A.5) into (A.3) and then (A.3) into (3.38), we obtain

C(ρ) ≥ I(x2; y2|θ1)− ε2. (A.6)

We next investigate the two terms on the RHS of (A.6) separately. We shall
show that the first term has the desired asymptotic expansion, while the second
term can be made arbitrarily close to zero by choosing ρ0 sufficiently large.

The first term on the RHS of (A.6) We write

I(x2; y2|θ1) = h(y2|θ1)− h(y2|x2, θ1) (A.7)

and bound the two terms separately. For the first term, we have that

h(y2|θ1) ≥ h(y2|w2, θ1)

= h(ejθ2x2|θ1)

(a)
= h(x2)

= M log ρ+ h(zρ,ρ0)

(b)
= M log ρ− log

(M − 1/2)Γ(M)

πMP{‖z‖2 ≥ ρ0/ρ}
+ E [log ‖zρ,ρ0‖] . (A.8)

Here (a) follows because x2 is isotropically distributed and (b) holds because of (A.1)
and (A.2). For the second term on the RHS of (A.7), we proceed as follows. Let
x2 = s2v2, with s2 = ‖x2‖ and, hence, s2

2 ∼ ρ‖zρ,ρ0‖2. Furthermore, let z2 ∼ N (0,1).
Then, proceeding as in [24, Equation (10)]

h(y2|x2, θ1) = h(y|s2,v2, θ1) = h(ejθ2s2 + z2|s2, θ1) + log(πe)M−1. (A.9)
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A.1 – Lower bound

The first term on the RHS of (A.9) can be bounded as follows

h(ejθ2s2 + z2|s2, θ1) = h(ejθ2(s2 + z2)|s2, θ1)

(a)
= h(ej∆(s2 + z2)|s2)

(b)
= h(|s2 + z2|2|s2) + h(φ2(s2

2) + ∆||s2 + z2|, s2)− log 2

(c)

≤ 1

2
E
[
log
(
2πe

[
1 + 2ρ‖zρ,ρ0‖2

])]
+ h(φ2(s2

2) + ∆|s2)− log 2.

(A.10)

Here, in (a) we used (1.1) and denoted by ∆ a random variable distributed as
in (1.3); in (b) we evaluated the differential entropy in polar coordinates using [26,
Lemma 6.15 and Lemma 6.16]. Finally, (c) follows because the Gaussian distribution
maximizes differential entropy under a variance constraint and because conditioning
reduces entropy. Note that

h(φ2(s2
2) + ∆|s2) ≤ max

ξ≥√ρ0
h(φ2(ξ2) + ∆) = h(φ2(ρ0) + ∆). (A.11)

This term can be made arbitrarily close to h(∆) by choosing ρ0 in (A.1) sufficiently
large. Summarizing, we have shown that

I(x2; y2|θ1) ≥M log ρ− log
(M − 1/2)Γ(M)

πMP{‖z‖2 ≥ ρ0/ρ}
+ E [log ‖zρ,ρ0‖] (A.12)

− 1

2
E
[
log
(
2πe

[
1 + 2ρ‖zρ,ρ0‖2

])]
− h(φ2(ρ0) + ∆) + log 2− log(πe)M−1

=

(
M − 1

2

)
log ρ− log

(
M − 1

2

)
− log Γ(M)

+
1

2
log π −

(
M − 1

2

)
− h(φ2(ρ0) + ∆) + o(1). (A.13)

Here, the last step follows because

E
[
log(1 + cρ‖zρ,ρ0‖2)

]
= log(cρ) + E log ‖zρ,ρ0‖2 + o(1) (A.14)

for all c > 0, and
lim
ρ→∞

P{‖z‖2 ≥ ρ0/ρ} = 1. (A.15)

The second term on the RHS of (A.6) Let x1 = s1v1 and z1 ∼ N (0,1).
Proceeding similarly as in [26, Appendix IX], we obtain (see [2, Equation (25)])

I(x2; θ1|y2,y1,x1) = h(θ2|ejθ1(
√
ρ0 + z1))− h(θ2|θ1). (A.16)

As claimed, the RHS of (A.16) can be made arbitrarily close to zero by choosing ρ0

in (A.1) sufficiently large.
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A.2 Upper Bound

We exploit the property that the high-SNR behavior of C(ρ) does not change if the
support of the input distribution is constrained to lie outside a sphere of arbitrary
radius. This result, known as escape-to-infinity property of the capacity-achieving
input distribution [26, Definition 4.11], is formalized in the following lemma.

Lemma 2. Fix an arbitrary ξ0 > 0 and let K(ξ0) = {x ∈ CM : ‖x‖ ≥ ξ0}. Denote
by C(ξ0)(ρ) the capacity of the channel (3.36) when the input signal is subject to the
peak-power constraint (3.37) and to the additional constraint that xk ∈ K(ξ0) almost
surely for all k. Then

C(ρ) = C(ξ0)(ρ) + o(1), ρ→∞ (A.17)

with C(ρ) given in (3.38).

Proof. The lemma follows directly from [26, Theorem 8] and [26, Theorem 4.12].

Fix ξ0 > 0. By proceeding as in (3.52), we obtain 1

C(ξ0)(ρ) ≤ sup
{
I(y; x)

}
+ log(2π)− h(∆) (A.18)

where, this time, the supremum is over all probability distributions on x that satisfy
‖x‖2 ∈ [ξ2

0 , ρ] w.p.1. We next upper-bound I(y; x) by using duality as in (3.49), i.e.,
we exploit that

I(y; x) ≤ −E log qy(y)‖ − h(y|x) (A.19)

for every output distribution qy(y). We choose a different qy(y) than the one re-
sulting in (3.48). Roughly speaking, we want qy(y) to be the output distribu-
tion induced by the input distribution (A.1) we used for the lower bound. When
constructing qy(y), we shall ignore the additive noise over the support of the in-
put distribution, and consider the effect of the additive noise only outside an ε-
neighborhood of the set {x ∈ CM : ‖x‖2 ≤ ρ}.2 Specifically, we shall set r , y/

√
ρ,

Sε , {r ∈ CM : ‖r− x′‖ ≤ εfor some‖x′‖ ≤ 1} and choose the following probability
distribution for r

qr(r) =

{
(M−1/2)
πMKρ,ε

Γ(M)
‖r‖ , if r ∈ Sε

ρM

πMKρ,ε
e−ρ‖r‖

2
, if r /∈ Sε

(A.20)

1To keep notation compact, we write x0 simply as x; same convention for y0.
2This choice is inspired by [38], where the rates achievable with dense constellations over an

AWGN channel (no phase noise) are analyzed.
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A.2 – Upper Bound

where

Kρ,ε =

∫
r∈Sε

(M − 1/2)

πM
Γ(M)

‖r︸ ︷︷ ︸ dr‖,K∞,ε +

∫
r/∈Sε

ρM

πM
e−ρ‖r‖

2

dr. (A.21)

This yields

− E [log qy(y)] = M log ρ− E [log qr(r)] (A.22)

where

−E [log qr(r)] = −
[
log

(M − 1/2)Γ(M)

πMKρ,ε

]
P{r ∈ Sε}

+ E [(log ‖r‖)1{r ∈ Sε}]−
[
log

ρM

πMKρ,ε

]
P{r /∈ Sε}

+ E
[
ρ‖r‖21{r /∈ Sε}

]
. (A.23)

We next characterize each term on the RHS of (A.23) in the limit ρ→∞.

The first term By construction (see (A.21)), we have that

lim
ε→0

lim
ρ→∞

Kρ,ε = lim
ε→0

K∞,ε = 1. (A.24)

Furthermore, let w ∼ N (0, IM). Then

P{r /∈ Sε}
(a)
= P{‖w‖/√ρ ≥ ε}
(b)
=

Γ(M, ε2ρ)

Γ(M)

(c)
=

(ε2ρ)M−1e−ε
2ρ

Γ(M)
+ o(ρM−1e−ε

2ρ), ρ→∞. (A.25)

Here, (a) follows because r ∼ x′+w/
√
ρ for some ‖x′‖ ≤ 1; in (b), the function Γ(·, ·)

is the upper incomplete Gamma function [39, Equation 6.5.3]; finally,(c) follows from
[39, Equation 6.5.32]. Using (A.25), we conclude that the first term on the RHS of
(A.23) admits the following asymptotic expansion:[

log
(M − 1/2)Γ(M)

πMKρ,ε

]
Pr{r ∈ Sε} = log

(M − 1/2)Γ(M)

πMK∞,ε
+ o(1). (A.26)

Furthermore, (A.24) implies that K∞,ε can be made arbitrarily close to 1 by choosing
ε sufficiently small.
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The second term Note that

E [(log ‖r‖)1{r ∈ Sε}] =
1

2
E
[
(log ‖y‖2)1{y/√ρ ∈ Sε}

]
− 1

2
log ρ. (A.27)

Assume without loss of generality that ρ > 1. Then (y/
√
ρ) /∈ Sε implies that

‖y‖2 > ρ > 1. Hence, we conclude that log ‖y‖2 > 0 whenever (y/
√
ρ) /∈ Sε. As a

consequence, we can upper-bound (A.27) by adding

1

2
E
[
(log ‖y‖2)1{y/√ρ /∈ Sε}

]
(A.28)

and obtain

E [(log ‖r‖)1{r ∈ Sε}] ≤
1

2
E
[
log ‖y‖2

]
− 1

2
log ρ. (A.29)

The third term It follows from (A.25) that[
log

ρM

πMKρ,ε

]
P{r /∈ Sε} = o(1). (A.30)

The fourth term We have that

E
[
ρ‖r‖21{r /∈ Sε}

] (a)

≤ ρ
√
E [‖r‖4P{r /∈ Sε}]

(b)
= o(1). (A.31)

Here, (a) follows from Chaucy-Schwarz inequality and (b) follows from (A.25). We
next substitute (A.26), (A.27), (A.30), and (A.31) into (A.23) and then (A.23) into
(A.22) and obtain

− E [log qy(y)] =

(
M − 1

2

)
log ρ− log

(M − 1/2)Γ(M)

πMK∞,ε
+

1

2
E
[
log ‖y‖2

]
+ o(1).

(A.32)
Set now s = ‖x‖ and z ∼ N (0,1). By proceeding as in [2, Equation (33)], we can
rewrite the conditional differential entropy h(y|x) on the RHS of (A.19) as

h(y|x) = h(|s+ z|2|s) + log πM +M − 1. (A.33)

Substituting (A.32) and (A.33) into (A.19) and using that

‖y‖2 ∼ |s+ z1|2 +
M∑
j=2

|zj|2 (A.34)
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where zj ∼ N (0,1), j = 1, . . . ,M , we obtain

I(y; x) ≤
(
M − 1

2

)
log ρ− log

(M − 1/2)Γ(M)

K∞,ε

+
1

2
E

[
log

(
|s+ z1|2 +

M∑
j=2

|zj|2
)]
− h(|s+ z|2|s)− (M − 1) + o(1)

≤
(
M − 1

2

)
log ρ− log

(M − 1/2)Γ(M)

K∞,ε
− (M − 1)

+ max
ξ0≤ξ≤

√
ρ

{
1

2
E

[
log

(
|ξ + z1|2 +

M∑
j=2

|zj|2
)]
− h(|ξ + z|2)

}
+ o(1) (A.35)

Substituting (A.35) into (A.18) and using that

lim
ξ→∞

{
1

2
E

[
log

(
|ξ + z1|2 +

M∑
j=2

|zj|2
)]
− h

(
|ξ + z|2

)}
= −1

2
log(4πe) (A.36)

which follows by [21, Equation (9)] and by proceeding similarly to the proof of [26,
Lemma 6.9], we conclude that we can make the bound on C(ξ0)(ρ) just derived to
be arbitrarily close to (3.53) in the high-SNR regime by choosing ε sufficiently small
and ξ0 sufficiently large.
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Appendix B

Evaluation of BRCB

In the recent years, the ever increasing request for fast wireless communications has
urged to design systems with high-throughput LoS backhaul links. To obtain the de-
sired efficiencies, two main engineering solutions have been resorted to: multiantenna
(MIMO) links and high-efficiency modulations. In comparison with single-antenna
(SISO) links, MIMO LoS systems offer a relevant throughput increase but, at the
same time, are more sensitive to phase noise, especially when design considerations
impose to have different oscillators feeding each antenna at both sides.

In this Appendix, we show the computation of the Bayesian Cramér-Rao bound
(BCRB) for a MIMO LoS system with independent Wiener phase noise at each
antenna. The BCRB gives a lower bound to the mean-square error achievable by
any phase detector, and represents thus a fundamental tool to evaluate the perfor-
mance of phase detectors. More in particular, we concentrate on large blocklengths
and derive the BCRB in the middle of the block. The BCRB for the MIMO case
with distributed phase noise is already computed in [40], where however no explicit
expression of the BCRB is presented in the large-blocklength regime. Moreover,
we obtain analytic expressions for the particular MIMO scenario where the chan-
nel matrix entries have constant modulus. As in [40, 37], we distinguish the case
where information can be gleaned both from the past and from the future (as it is
in smoothing algorithms) from the case where only the past symbols can be used
(like in filtering algorithms).

The structure of the Appendix is as follows: in Section B.1, we describe the
system of interest; in Section B.2, we derive the BCRB for any phase-detection
algorithm; in Section B.3, we particularize the BCRB for filtering algorithms.

Throughout the treatment, matrices and vectors are denoted with boldface upper-
and lower-case letters, respectively. IN represents an identity matrix of size N , while
0M,N and 1M,N denote an all-zero and an all-one matrix with size M ×N (the sub-
scripts can be dropped whenever the dimension can be inferred from the context).
AT, A∗ and AH denote the transpose, conjugate and transpose conjugate of matrix
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A. A � B means that A − B is positive semidefinite. Finally, � represents the
Hadamard (elementwise) product.

B.1 System description

We consider an Nt ×Nr MIMO LoS channel with independent phase noise at each
antenna, whose input-output relationship at time n = 1,2, . . . , T is given by

y[n] = ΦR[n] H ΦT [n]x[n] + z[n] (B.1)

where:

• H is the Nr ×Nt LOS channel matrix, assumed to be constant and known at
the receive side;

• ΦT [n] = diag
(
ejφ1[n], . . . , ejφNt [n]

)
and ΦR[n] = diag

(
ejφNt+1[n], . . . , ejφNt+Nr [n]

)
are the diagonal matrices of transmit and receive phase-noise coefficients at
time n, respectively, assumed to be unknown at both sides;

• x[n] and y[n] are the column vectors of the Nt transmitted symbols and Nr

received samples at time n, respectively;

• z[n] is a size-Nr vector of zero-mean, circularly-invariant Gaussian-noise sam-
ples, with variance σ2 per real dimension, which are supposed to be indepen-
dent across time and receive antenna.

Notice that the fact of having a fixed, known channel matrix arises from the
hypothesis of LoS conditions [17].

We will suppose hereafter that the transmitted symbols are i.i.d., with zero mean
and normalized average power E|xi[n]|2 = 1, where xi[n] is the i-th element of vector
x[n]

For the phase-noise samples, time dependency is kept into account by assuming
Wiener phase-noise processes:

φi[n] = φi[n− 1] + wi[n], i = 1, . . . , Nr +Nt, n = 1,2, . . . (B.2)

where φ1[0], . . . , φNr+Nt [0] are independent and uniformly distributed over [0,2π)
and wi[n], . . . , wNr+Nt [n], are independent zero-mean white Gaussian processes with
power ρ2 (all processes have the same power, unlike in [40]). Each tap of the MIMO
channel is affected by the sum of one transmit and one receive phase-noise process.
Define a sum phase-noise process as:

φii′ [n] = φi[n] + φNt+i′ [n], i = 1, . . . , Nt, i
′ = 1, . . . , Nr (B.3)
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Unlike the atomic φi[n] processes, sum phase-noise processes are correlated. Indeed,
they can all be written as linear functions of the basis {{φi1[n], i = 1, . . . , Nt}, {φ1i[n], i =
2, . . . , Nr}}. Although atomic phase-noise processes have a simpler statistical char-
acterization, they are not observable, so that phase estimation must pass through
sum phase-noise process estimation.

We define for future use the size-(Nt + Nr) vector φ[n], whose i-th element is
φi[n], i = 1, . . . , Nr +Nt, and the size-(Nt +Nr − 1) vector φsum[n], which contains
the elements of the basis defined above. Furthermore, φ̄ = [φ[1], . . . ,φ[T ]] and
φ̄

sum
= [φsum[1], . . . ,φsum[T ]].

B.2 Derivation of the BCRB

In this section, we compute the BCRB for the system described in the previous sec-
tion, in the hypothesis that the transmitted symbols are known at the receiver. This
hypothesis well suits the case of an iterative receiver based on the “turbo” principle,
which iterates between phase detector and channel decoder for a certain number
of times: if convergence eventually occurs, the output of the channel decoder after
several iterations provides the phase detector with (almost) perfect knowledge of the
transmitted symbols. If pilots are inserted into the transmitted symbol sequence,
the analysis below can also be applied to a rough phase estimate based on such
pilots only.

The BCRB allows to lower-bound the mean-square error (MSE) between the
unknown phase-noise sample sequence and its estimate performed by the phase

detector at the receiver. Let ̂̄φsum

be any possible estimate of φ̄
sum

. The covariance
matrix Σ of such estimate is given by

Σ = Eφ̄,ȳ,x̄

{(̂̄φsum

− φ̄
sum
)(̂̄φsum

− φ̄
sum
)

T
}

(B.4)

The BCRB then states that
Σ �M−1 (B.5)

where M is the Bayesian information matrix (BIM) defined by

M = −Eφ̄,ȳ,x̄

{
∇φ̄

sum∇φ̄
sum

T log f
(
ȳ, φ̄

sum|x̄
)}
. (B.6)

Conditioning on x̄ in the above definition corresponds to the hypothesis of known
transmitted symbols. The BCRB implies that:

(Σ)i,i ≥ (M−1)i,i (B.7)

I.e., the BCRB provides lower bounds to the MSE for every estimator of the sum
phase-noise samples.
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The computation of the BIM has been carried out in [?] for a system very similar
to the one in (B.1), and, in a more general setting, in [?]. The result is summarized
in the following proposition.

Proposition 3. For the channel model in (B.1), if ρ� 2π, the BIM M defined in
(B.6) is given by

M =


M0 M1

M1 M0 M1

M1 M0
. . .

. . . . . . M1

M1 M0

 (B.8)

where M0 = JTM̃0J and M1 = JTM̃1J, being J the Jacobian of the transformation
from sum processes to atomic processes at a given time n, M̃1 = − 1

ρ2
INt+Nr and

M̃0 = M̃Y
0 + 2

ρ2
INt+Nr , and finally

M̃Y
0 =

1

σ2

[
ΓT (H�H∗) T

H�H∗ ΓR

]
(B.9)

being ΓT and ΓR two diagonal matrices whose diagonal elements are given by eiH
HHei,

i = 1, . . . , Nt, and eiHHHei, i = 1, . . . , Nr, respectively.

Proof: The computation of the BIM M can be performed by computing first the
BIM for the atomic processes, which is given by

M̃ = −Eφ̄,ȳ,x̄

{
∇φ̄∇φ̄

T log f
(
ȳ, φ̄|x̄

)}
. (B.10)

and applying the following relationship between BIMs:

M = JTM̃J (B.11)

where
J = diag (J,J, . . . ,J) (B.12)

The hypothesis ρ2 � 2π, which is usually realistic, allows to approximate the
Wiener model as

f(φ[n+ 1]|φ[n]) ' K ′
Nt+Nr∏
i=1

e
− (φi[n+1]−φi[n]+2πki[n])

2

2ρ2 (B.13)

where K ′ is a constant and ki[n] is a signed integer that minimizes the modulus of
the exponent.

For more details, see [40].
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The inversion of matrix M can be performed by using standard results on the
inversion of tridiagonal symmetric matrices. Let M†

n,n be the n-th size-(Nt+Nr−1)
square diagonal block of the inverse matrix M−1. It satisfies

M†
n,n = (MY

0 + Ξ[n] + Θ[n])−1 (B.14)

where MY
0 = JTM̃Y

0 J. The matrices Ξ[n] and Θ[n] are computed through forward
and backward recursions as

Ξ[n] = −M1 −M1

(
MY

0 −M1 + Ξ[n− 1]
)−1

M1, (B.15)

Θ[n] = −M1 −M1

(
MY

0 −M1 + Θ[n+ 1]
)−1

M1 (B.16)

with initial conditions Ξ[0] and Θ[T ].
In this paper, we are interested in the large-blocklength regime, so that we let

T →∞. With this hypothesis, Ξ[T/2] = Ξ[∞] = limn→∞Ξ[n]. By defining

Ξ̃[∞] = M−1
1 Ξ[∞] (B.17)

and
M10 = M−1

1 MY
0 . (B.18)

we find that Ξ̃[∞] must satisfy the fixed-point equation

Ξ̃[∞] = −I−
(
M10 − I + Ξ̃[∞]

)−1

. (B.19)

Now, if the diagonalization of M10 reads as

M10 = ΨΛΨ−1 (B.20)

then we can verify that Ξ̃[∞] satisfies

Ξ̃[∞] = Ψ∆Ψ−1 (B.21)

with the diagonal matrix ∆ given by

∆ = −Λ

2
−

((
Λ

2

)2

−Λ

)1/2

(B.22)

irrespective of the initial conditions. The same result can be obtained for Θ[T/2].
Substituting the above expressions into (B.14), we then find

M†
T/2,T/2 = −Ψ

(
Λ2 − 4Λ

)−1/2
Ψ−1M−1

1 (B.23)
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We can go on with computations for the case of a constant-modulus channel
matrix, where each element of H has the same modulus α. This case is practically
important when the distance between the transmit antenna array and the receive
antenna array is large with respect to antenna separation at both sides [17]. In such
a case, the MSE in the middle of the block will be the same for all sum processes
by symmetry. The straightforward but tedious computations give

(M−1)T/2,T/2 =a

(
1

Nt

+
1

Nr

)
+ b

(
1− 1

Nt

)
+ c

(
1− 1

Nr

) (B.24)

where

a =
σ

α
(Nt +Nr)

−1/2

(
α2

σ2
(Nt +Nr) +

4

ρ2

)−1/2

(B.25)

b =
σ

α
N−1/2
r

(
α2

σ2
Nr +

4

ρ2

)−1/2

(B.26)

c =
σ

α
N
−1/2
t

(
α2

σ2
Nt +

4

ρ2

)−1/2

(B.27)

B.3 The BCRB for filtering

The above computed BCRB holds for smoothing algorithms that use both past and
future samples to compute the phase estimates. Instead, filtering algorithms (like
the classical PLL algorithm) only consider past phase samples. Because of that, the
BCRB must be changed in order to take into account this constraint.

When filtering is considered, only the forward recursion is to be considered. Thus
(B.14) becomes

(M†
n,n)filt = (MY

0 + Ξ[n])−1 (B.28)

where Ξ[n] obeys the same recursion (B.15).
In the case of a constant-modulus H with filtering, the BCRB retains the same

expression as in (B.24), but with different parameters:

afilt =

(
α2

σ2

Nt +Nr

2
+
a−1

2

)−1

(B.29)

bfilt =

(
α2

σ2

Nr

2
+
b−1

2

)−1

(B.30)

cfilt =

(
α2

σ2

Nt

2
+
c−1

2

)−1

(B.31)
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B.3 – The BCRB for filtering

where a, b and c are given in (B.25)-(B.27).
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