
29 January 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Data Mining Algorithms for Internet Data: from Transport to Application Layer / Grimaudo, Luigi. - (2014).
[10.6092/polito/porto/2537089]

Original

Data Mining Algorithms for Internet Data: from Transport to Application Layer

Publisher:

Published
DOI:10.6092/polito/porto/2537089

Terms of use:
Altro tipo di accesso

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2537089 since:

Politecnico di Torino

Politecnico di Torino

Doctoral Thesis

Data Mining Algorithms for
Internet Data

from Transport to Application Layer

Author:

Luigi Grimaudo

Supervisor:

Prof. Elena Baralis

Co-supervisor:

Dr. Marco Mellia

A thesis submitted in fulÞlment of the requirements

for the degree of Doctor of Philosophy

in

Information and System Engineering
XXVI cycle

March 2014

ÒNever to limit yourself to one style, to keep an open mind.Ó

Frank Dux

POLITECNICO DI TORINO

Abstract
Information and System Engineering

XXVI cycle

Doctor of Philosophy

Data Mining Algorithms for Internet Data
from Transport to Application Layer

by Luigi Grimaudo

Nowadays we live in a data-driven world. Advances in data generation, collection and

storage technology have enabled organizations to gather data sets of massive size.

Data mining is a discipline that blends traditional data analysis methods with sophisti-

cated algorithms to handle the challenges posed by these new types of data sets.

The Internet is a complex and dynamic system with new protocols and applications

that arise at a constant pace. All these characteristics designate the Internet a valuable

and challenging data source and application domain for a research activity, both looking

at Transport layer, analyzing network tra!c ßows, and going up to Application layer,

focussing on the ever-growing next generation web services: blogs, micro-blogs, on-

line social networks, photo sharing services and many other applications (e.g., Twitter,

Facebook, Flickr, etc.).

In this thesis work we focus on the study, design and development of novel algorithms and

frameworks to support large scale data mining activities over huge and heterogeneous

data volumes, with a particular focus on Internet data as data source and targeting

network tra!c classiÞcation, on-line social network analysis, recommendation systems

and cloud services and Big data.

Acknowledgements

I would like to express my special appreciation and thanks to my advisor Prof. Elena

Baralis, your advices on both research as well as on my career have been priceless. Your

mentoring was precious and fundamental for the development of my PhD work.

I want also like to thank Dr. Marco Mellia, your qualiÞed support and availability helped

me throughout my research activity.

I would like to show my gratitude to Narus Inc. too, and in particular to all the members

of the CTO o!ce. I spent almost a third of my Phd as intern with you, giving me the

opportunity to work on very interesting projects.

My PhD and my university career probably would not have been possible without the

people that accompanied me in these years. I want to thank all my research group col-

leagues, Alberto, Alessandro, Tania, Daniele, Silvia, Paolo and Giulia for their constant

support and suggestions. I would like also to thank all the people I meet during my

PhD studies.

A special thank goes to my family for their constant belief and support. I will be always

grateful to you.

Finally, a special acknowledgement to Piera, my future wife. Her love, madness and

incessant will to ßight abroad for a weekend support me through these years.. . .

iv

Contents

Abstract iii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Transport Layer . 2
1.2 Application Layer . 3
1.3 Association rule mining algorithms and Big data 5

2 Hierarchical Learning for Fine Grained Internet Tra!c ClassiÞcation 7
2.1 Data set and classes. 8

2.1.1 Performance metrics . 10
2.2 Hierarchical ClassiÞcation . 12

2.2.1 Hierarchy DeÞnition . 12
2.2.2 Feature Selection. 13
2.2.3 ClassiÞcation Algorithm Selection 14

2.3 Experimental results . 15
2.3.1 Robustness versus time . 16
2.3.2 Experiment considering other data sets 17
2.3.3 Computational Complexity . 17

3 SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 19
3.1 Related work . 21

3.1.1 Clustering Algorithms . 21
3.1.2 Key features of SeLeCT. 22
3.1.3 Applications to tra!c classiÞcation 22

3.2 Problem statement . 23
3.3 Datasets to evaluate SeLeCT . 24
3.4 The SeLeCT algorithm . 26

v

Contents vi

3.4.1 Iterative clustering . 27
3.4.1.1 The Þltering procedure 28
3.4.1.2 The iterative clustering procedure 29

3.4.2 Labeling . 30
3.4.2.1 Bootstrapping the labeling process. 30

3.4.3 Self-seeding. 31
3.5 Experimental results . 31

3.5.1 Experimental dataset . 31
3.5.2 Performance metrics . 32
3.5.3 Iterative clustering performance. 33

3.6 Interesting Þndings enabled by SeLeCT 37
3.7 Exploring the seeding process. 38

3.7.1 Self-seeding. 39
3.7.2 Bootstrapping . 39

3.7.2.1 dominatedPort Clusters 40
3.7.2.2 randomPort clusters . 41

3.7.3 Seeding evolution. 42
3.8 Parameter sensitivity analysis . 43

3.8.1 Setting Þltering parameters . 43
3.8.2 Sensitivity to portF raction . 45
3.8.3 Sensitivity to k and minPoints . 46
3.8.4 Complexity . 48

4 Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 49
4.1 Motivating example . 50
4.2 Related work . 51
4.3 The Proposed Multiple-Level Clustering Framework 52

4.3.1 Twitter Data Collection and Preprocessing 52
4.3.2 Cluster Analysis . 53
4.3.3 Cluster Evaluation . 54

4.4 Experimental results . 55
4.4.1 Datasets. 55
4.4.2 Framework ConÞguration . 56
4.4.3 Analysis of the Clustering Results 56

4.4.3.1 Tweet Analysis in the Paralympics Dataset. 57
4.4.3.2 Tweet Analysis in the Concert Dataset. 58

4.4.4 Performance Evaluation . 58

5 Analyzing Twitter User-Generated Content Changes 61
5.1 Related work . 63

5.1.1 Generalized itemset mining . 63
5.1.2 Dynamic data mining . 64
5.1.3 Data mining from user-generated content 65

5.2 The TwiChI framework . 66
5.2.1 Twitter data crawling and representation 67

5.2.1.1 Twitter data representation 68
5.2.1.2 Twitter crawler . 69

Contents vii

5.2.2 History Generalized pattern mining 71
5.2.3 The HiGen miner algorithm . 73
5.2.4 Pattern classiÞcation. 74

5.3 Experimental Results. 76
5.3.1 Evaluated datasets and taxonomy 77
5.3.2 Characteristics of the mined patterns. 77
5.3.3 Real-life use-case study . 79

5.3.3.1 Weather forecasting service proÞling. 79
5.3.3.2 Service shaping. 79

6 TUCAN: Twitter User Centric ANalyzer 81
6.1 Related work . 83
6.2 Framework . 84

6.2.1 Bird song generation and cleaning process. 84
6.2.2 Cross-correlation computation . 86
6.2.3 Dashboard visualizer. 86

6.3 Experimental results . 87
6.3.1 Dataset description. 87
6.3.2 The TUCAN GUI . 88
6.3.3 Parameter sensitivity analysis. 88
6.3.4 User centric analysis. 91

7 Personalized Tag Recommendation Based on Generalized Rules 95
7.1 Motivating example . 96

Motivating example 1 . 96
Motivating example 2 . 98

7.2 Related work . 98
7.3 The recommendation system . 100

7.3.1 Problem statement . 101
7.3.2 Preprocessing. 102
7.3.3 Generalized association rule mining. 103

7.3.3.1 TheGenIO Algorithm 105
7.3.3.2 Rule generation . 106

7.3.4 Tag selection and ranking . 106
7.3.4.1 Selection . 106
7.3.4.2 Ranking. 108

7.4 Experimental results . 109
7.4.1 Photo collections . 109
7.4.2 Experimental design . 110
7.4.3 Performance comparison. 112
7.4.4 Real-life use-case. 114
7.4.5 Parameter analysis. 117

8 Misleading Generalized Itemset Discovery 119
8.1 Related work . 121
8.2 Preliminary deÞnitions and notations . 123
8.3 The M isleading GeneralizedI temset mining problem 125

Contents viii

8.4 The M isleading GeneralizedI temset Miner algorithm 127
8.5 Experimental results . 128

8.5.1 Datasets. 129
Recs . 129
TeamLife . 129

8.5.2 Expert-driven MGI validation in a mobile application scenario . . 132
8.5.3 Algorithm parameter analysis . 133

8.5.3.1 E"ect of the maximum NOD threshold 133
8.5.3.2 E"ect of the correlation thresholds 134
8.5.3.3 E"ect of the minimum support threshold 135

8.5.4 Scalability . 136

9 SeARuM : a Cloud-Based Service for A ssociation Ru le M ining 139
9.1 Related work . 140
9.2 Problem statement . 141
9.3 The SeARuM architecture . 142

9.3.1 Network measurement acquisition 142
9.3.2 Data pre-processing . 144
9.3.3 Item frequency computation. 145
9.3.4 Itemset mining . 146
9.3.5 Rule extraction . 146
9.3.6 Rule aggregation and sorting . 146

9.4 Experimental results . 147
9.4.1 Execution time distribution among jobs 148
9.4.2 Evaluation of association rule mining. 149
9.4.3 Network knowledge characterization 150
9.4.4 E"ect of the support and conÞdence thresholds. 151

10 Conclusions 153

Bibliography 157

List of Figures

2.1 Number of ßows in each ISP data set of 1 hour.. 10
2.2 Tree structure for the Hierarchical classiÞer.. 11
2.3 Comparison of di"erent classiÞcation algorithms. Average F-measure and

Recall considering ten-fold cross-validation test on a 1h long trace from
ISP. 15

2.4 F-Measure and Recall for each class for the Hierarchical and Flat classi-
Þers. Training on h.17 data set and testing on h.18 data set. ISP trace.
. 16

2.5 Accuracy of the Hierarchical classiÞer when used in real time. One day
long data set from ISP. 17

2.6 Improvement for each class for the Hierarchical and Flat classiÞers. Test-
ing on Campus data set. 18

3.1 CDF of the ßow length in packets (on the left), and bytes (on the right).
The vertical line is in correspondence of 6 data packets.. 25

3.2 Accuracy of the clusters for simple port-based classiÞer, classic k-means
and SeLeCT. Accuracy computed per ßows on the top, per byte on the
bottom. Results reported for all datasets. 34

3.3 Accuracy before and after the di"erent Þltering steps for Dataset-4S.. . . 36
3.4 Accuracy over di"erent batches.. 38
3.5 eMule recall when onlyS labeled clusters are used as bootstrap at batch

1 for Dataset-4S. 41
3.6 New protocols suddenly appear: HTTPS tra!c is added at batch 3, and

POP3 tra!c is added at batch 6 in Dataset-4S. 42
3.7 Fraction of clustered ßows at each step. 44
3.8 Fraction of ßows directed to the dominating srvPort in each cluster for

di"erent steps for Dataset-4S. 44
3.9 Sensitivity analysis to portF raction : accuracy, fraction of clustered ßows

and number of clusters in left, middle and right plot. 45
3.10 Sensitivity to k. 46
3.11 Sensitivity to MinP oints . 47

4.1 Two simpliÞed example tweets . 51
4.2 The proposed multiple-level clustering framework for tweet analysis. . . . 53

5.1 The TwiChI framework . 66
5.2 Examples of aggregation trees. 69
5.3 Number of mined HiGens. 78

ix

List of Figures x

6.1 TUCAN Web Interface showing the analysis of the WhiteHouse o!cial
account. T = 7 days, plaing cleaning and Cosine similarity are considered.85

6.2 E"ect of di"erent time window sizes T. Plain cleaning and Cosine similarity. 87
6.3 E"ect of di"erent cleaning methods. Cosine similarity and T = 7 days. . . 89
6.4 E"ect of mention removal. T = 7 days, plain cleaning, and Cosine similarity. 89
6.5 Similarity among bird songs for di"erent type of users. T = 7 days, plain

cleaning, Cosine similarity. 92
6.6 Similarity among users over di"erent bird songs. Plain cleaning and Co-

sine similarity. 94

7.1 Example of use-case.. 97
7.2 The recommendation system architecture 101
7.3 Portion of an example generalization hierarchy built over the photo col-

lection tags . 110
7.4 Real-life dataset. Performance comparison by varying the reference rank

k. 115
7.5 Benchmark dataset. Performance comparison by varying the reference

rank k. 116
7.6 Parameter analysis. MRR, S@1/P@1, and P@5 measures.. 118

8.1 Example taxonomy built on DÕs attributes. 121
8.2 Impact of the maximum NOD threshold on the number of minedMGI s.

min sup=1%. 134
8.3 Impact of the maximum negative threshold maxneg cor on the number

of mined MGI s. max NOD=1%, min sup=1%. 134
8.4 Impact of the minimum positive threshold min pos cor on the number of

mined MGI s. max NOD=1%, min sup=1%. 135
8.5 Impact of the minimum support threshold min sup on the number of

mined MGI s. max NOD=1%. 135
8.6 MGI Miner scalability. min sup=1%, max NOD=1%, max neg cor=0.6,

min pos cor=0.7. 136

9.1 Dataset D2: Execution time distribution among jobs for MinSup=30%
and MinConf=50% . 148

9.2 SeARuM speedup on D2 dataset. 148
9.3 Dataset D2 . 149
9.4 Dataset D1: E"ect of MinSup and MinConf thresholds 149
9.5 Dataset D2: E"ect of MinSup and MinConf thresholds 150

List of Tables

2.1 Set of protocols identiÞed by Tstat that have more than 50 samples in
one of the data sets used for training set. 9

2.2 Selected feature on the server to client tra!c. 13
2.3 Computational and memory cost for di"erent classiÞers to execute a train-

ing phase on a 1h long campus data set.. 18

3.1 Datasets used in the Chapter for performance evaluation. The table in-
cludes ßows for which features can be computed.. 24

3.2 Confusion matrix of a classiÞer based on the simple k-means for Dataset-2S.
Columns give the ground truth. 35

3.3 Confusion matrix of the SeLeCT classiÞer for Dataset-2S. Columns give
the ground truth. 35

3.4 Confusion matrix at batch 10 for Dataset-3C. 39
3.5 dominatedPort clusters at batch 1. Bold font highlights clusters on non-

standard ports. 40

4.1 First- and second-level clusters in the paralympics dataset (DBSCAN
parametersMinP ts =30, Eps=0.39 and MinP ts =25, Eps=0.49 for Þrst-
and second-level iterations, respectively). 59

4.2 First- and second- level clusters in the concert dataset (DBSCAN param-
eters MinP ts =40, Eps=0.41 and MinP ts =21, Eps=0.62 for the Þrst-
and second-level iterations, respectively). 59

5.1 Example of HiGens extracted by enforcing the minsup = 10%. 62
5.2 HiGen examples. Minsup = 20%.. 76
5.3 HiGen per category distribution. 78
5.4 HiGen selection. ConÞguration A. minsup = 1%. 80

6.1 Top-words ranked by TF-IDF, Barack Obama. 89

7.1 Generalized rules used for recommending to useruj tags subsequent to
Rome. 107

7.2 Real-life dataset. Performance comparison in terms of S@k, P@k, and
MRR metrics. Statistically relevant worsening in the comparisons be-
tween our system and the other approaches are starred.. 114

7.3 Benchmark dataset. Performance comparison in terms of S@k, P@k,
and MRR metrics. Statistically relevant worsening in the comparisons
between our system and the other approaches are starred. 114

8.1 Example datasetD. 121

xi

List of Tables xii

8.2 MGI mined from D. min sup = 1, max neg cor= 0.65, min pos cor=
0.80, and maxNOD = 100%. 122

8.3 UCI and real mobile dataset characteristics and number of minedMGI s
with max neg cor=0.6 and min pos cor=0.7. 131

8.4 Examples ofMGI s mined from TeamLife. 132

9.1 Pre-processing example . 145
9.2 Sample transactions . 145
9.3 Sample items . 145
9.4 Sample itemsets. 146
9.5 Sample rules . 147
9.6 Sample rules, sorted and aggregated. 147
9.7 Network tra!c datasets . 147

Dedicated to my family and my future wife Piera. . .

xiii

Chapter 1

Introduction

Nowadays we live in a data-driven world. Advances in data generation, collection and

storage technology have enabled organizations to gather data sets of massive size. From

the tweets or comments that users post about any moments of their life to the transaction

data retailers gather from point-of-sale terminals, data is ßooding organizations from

every angle. Furthermore data has inherent value and cannot be discarded anymore. A

new attitude towards data analysis arose: Gather whatever data you can, whenever and

wherever possible. Despite that, extracting useful information is becoming more and

more challenging.

Data mining is a discipline that blends traditional data analysis methods with sophisti-

cated algorithms to handle the challenges posed by these new types of data sets. There

are many data mining tasks. Among the most common ones we can mention classiÞca-

tion (or supervised learning), clustering (or unsupervised learning) and association rule

mining. ClassiÞcation aims to learn a model from data that are labeled with pre-deÞned

classes or categories, while clustering organizes data instances into groups or clusters

according to their similarities (or di"erences). Finally, association rules Þnds out sets of

data items that occur together frequently.

The Internet is a complex and dynamic system with new protocols and applications

that arise at a constant pace. All these characteristics designate the Internet a valuable

and challenging data source and application domain for a research activity, both looking

at Transport layer, analyzing network tra!c ßows, and going up to Application layer,

focussing on the ever-growing next generation web services: blogs, micro-blogs, on-

line social networks, photo sharing services and many other applications (e.g., Twitter,

Facebook, Flickr, etc.).

1

Chapter 1. Introduction 2

On one side in the Internet tra!c management and monitoring Þeld, a critical task

is the identiÞcation of application originating tra!c ßows, possibly in near real-time

and in an automatic way, to support network operators on the adoption of ad-hoc

countermeasures. On the other, on-line social networks and other Web 2.0 applications

represent a powerful source of knowledge and a valuable matter to research on, but

also one of the most common Big data source. Hence, design e!cient data analysis

approaches, able to scale horizontally with the data volumes, is becoming an interesting

challenge.

In this thesis work we focus on the study, design and development of novel algorithms and

frameworks to support large scale data mining activities over huge and heterogeneous

data volumes, with a particular focus on Internet data as data source and targeting

network tra!c classiÞcation, on-line social network analysis, recommendation systems

and cloud services and Big data.

1.1 Transport Layer

Tra!c classiÞcation is still today a challenging problem given the ever evolving nature

of the Internet in which new protocols and applications arise at a constant pace. In

the past, so called behavioral approaches have been successfully proposed as valid al-

ternatives to traditional Deep Packet Inspection (DPI) based tools to properly classify

tra!c into few and coarse classes. We push forward the adoption of behavioral classi-

Þers by engineering a Hierarchical classiÞer [1] that allows proper classiÞcation of tra!c

into more than twenty Þne grained classes. Thorough engineering has been followed

which considers both proper feature selection and testing seven di"erent classiÞcation

algorithms. Results obtained over actual and large data sets show that the proposed

Hierarchical classiÞer outperforms o"-the-shelf non hierarchical classiÞcation algorithms

by exhibiting average accuracy higher than 90%, with precision and recall that are higher

than 95% for most popular classes of tra!c.

Network visibility is a critical part of tra!c engineering, network management, and se-

curity. The most popular current solutions, DPI and statistical classiÞcation, deeply

rely on the availability of a training set. Besides the cumbersome need to regularly

update the signatures, their visibility is limited to classes the classiÞer has been trained

for. Unsupervised algorithms have been envisioned as a viable alternative to automati-

cally identify classes of tra!c. However, the accuracy achieved so far does not allow to

use them for tra!c classiÞcation in practical scenario. To address the above issues, we

propose SeLeCT, a Self-Learning ClassiÞer for Internet Tra!c [2]. It uses unsupervised

Chapter 1. Introduction 3

algorithms along with an adaptive seeding approach to automatically let classes of traf-

Þc emerge, being identiÞed and labeled. Unlike traditional classiÞers, it requires neither

a-priori knowledge of signatures nor a training set to extract the signatures. Instead,

SeLeCT automatically groups ßows into pure (or homogeneous) clusters using simple

statistical features. SeLeCT simpliÞes label assignment (which is still based on some

manual intervention) so that proper class labels can be easily discovered. Furthermore,

SeLeCT uses an iterative seeding approach to boost its ability to cope with new protocols

and applications. We evaluate the performance of SeLeCT using tra!c traces collected

in di"erent years from various ISPs located in 3 di"erent continents. Our experiments

show that SeLeCT achieves excellent precision and recall, with overall accuracy close to

98%. Unlike state-of-the-art classiÞers, the biggest advantage of SeLeCT is its ability to

discover new protocols and applications in an almost automated fashion.

1.2 Application Layer

On-line social network websites such as Facebook, Twitter, and LinkedIn are quickly

transitioned to global phenomena over the last few years. Among the plethora of such

services, we put more focus on Twitter. Twitter is a micro-blog service that has attracted

millions of users that generate a humongous ßow of information at constant pace. The

research community has thus started proposing tools to extract meaningful information

from tweets. At the beginning, we target the generic stream of Twitter messages (i.e.,

tweets) sent continuously by users. We propose a data analysis framework to discover

groups of similar tweets posted on a given event [3]. By analyzing these groups, user

emotions or thoughts that seem to be associated with speciÞc events can be extracted,

as well as aspects characterizing events according to user perception. To deal with the

inherent sparseness of micro-messages, the proposed approach relies on a multiple-level

strategy that allows clustering text data with a variable distribution. Clusters are then

characterized through the most representative words appearing in their messages, and

association rules are used to highlight correlations among these words. To measure

the relevance of speciÞc words for a given event, text data has been represented in the

Vector Space Model using the TF-IDF weighting score. As a case study, two real Twitter

datasets have been analysed.

Moreover, user-generated content (UGC) coming from social networks and online com-

munities continuously grows and changes. By analyzing relevant patterns from the UGC,

analysts may discover peculiar user behaviors and interests which can be used to per-

sonalize Web-oriented applications. In the last several years, the use of dynamic mining

Chapter 1. Introduction 4

techniques has captured the interest of the research community. They are focus on an-

alyzing the temporal evolution of most signiÞcant correlations hidden in the analyzed

data. However, keeping track of all temporal data correlations relevant for user behav-

iors, community interests, and topic trend analysts may become a challenging task due

to the sparseness of the analyzed data. We present a novel data mining system [4] that

performs dynamic itemset mining from both the content and the contextual features

of the messages posted on Twitter. Dynamic itemsets represent the evolution of data

correlations over time. The framework exploits a dynamic itemset mining algorithm,

named HiGen Miner, to discover relevant temporal data correlations from a stream of

tweet collections. In particular, it extracts compact patterns, namely the HiGens, that

represent the evolution of the most relevant itemsets over consecutive time periods at

di"erent abstraction levels. A taxonomy is used to drive the mining process and prevent

the discarding of knowledge that becomes infrequent in a certain time period. Experi-

ments, performed on real Twitter posts, show the e"ectiveness and the usability of the

proposed system in supporting Twitter user behavior and topic trend analysis.

Afterwards, we take a di"erent angle from the mainstream of previous works: we ex-

plicitly target the analysis of the timeline of tweets from Òsingle usersÓ. We deÞne a

framework - named TUCAN [5] - to compare information o"ered by the target users

over time, and to pinpoint recurrent topics or topics of interest. First, tweets belonging

to the same time window are aggregated into Òbird songsÓ. Several Þltering procedures

can be selected to remove stop-words and reduce noise. Then, each pair of bird songs is

compared using a similarity score to automatically highlight the most common terms,

thus highlighting recurrent or persistent topics. TUCAN can be naturally applied to

compare bird song pairs generated from timelines of di"erent users. By showing actual

results for both public proÞles and anonymous users, we show how TUCAN is useful to

highlight meaningful information from a target userÕs Twitter timeline.

A common feature of Web 2.0 services, for instanceDelicious and Flickr , is the ability

to assign a label or metadata, namely atag, to a Web resource (i.e., photo, bookmark,

etc.) to help in describing it. Tag recommendation is the task of predicting folksonomy

tags for a given user and item, based on past user behavior (and possibly other infor-

mation). Tag recommendation is focused on recommending useful tags to a user who is

annotating a Web resource. A relevant research issue is the recommendation of addi-

tional tags to partially annotated resources, which may be based on either personalized

or collective knowledge. However, since the annotation process is usually not driven

by any controlled vocabulary, the collections of user-speciÞc and collective annotations

are often very sparse. Indeed, the discovery of the most signiÞcant associations among

tags becomes a challenging task. We present a novel personalized tag recommendation

system [6] that discovers and exploits generalized association rules,i.e., tag correlations

Chapter 1. Introduction 5

holding at di"erent abstraction levels, to identify additional pertinent tags to suggest.

The use of generalized rules relevantly improves the e"ectiveness of traditional rule-based

systems in coping with sparse tag collections, because (i) correlations hidden at the level

of individual tags may be anyhow Þgured out at higher abstraction levels and (ii) low

level tag associations discovered from collective data may be exploited to specialize high

level associations discovered in the user-speciÞc context. The e"ectiveness of the pro-

posed system has been validated against other personalized approaches on real-life and

benchmark collections retrieved from the popular photo-sharing system Flickr.

1.3 Association rule mining algorithms and Big data

We leverage association rule and itemset mining to design many of our analysis frame-

works. Frequent generalized itemset mining is a data mining technique utilized to dis-

cover a high-level view of interesting knowledge hidden in the analyzed data. By ex-

ploiting a taxonomy, patterns are usually extracted at any level of abstraction. However,

some misleading high-level patterns could be included in the mined set. We propose a

novel generalized itemset type, namely theM isleading GeneralizedI temset (MGI) [7].

Each MGI , denoted asX ! E, represents a frequent generalized itemsetX and its set

E of low-level frequent descendants for which the correlation type is in contrast to the

one of X . To allow experts to analyze the misleading high-level data correlations sep-

arately and exploit such knowledge by making di"erent decisions,MGI s are extracted

only if the low-level descendant itemsets that represent contrasting correlations cover

almost the same portion of data as the high-level (misleading) ancestor. An algorithm

to mine MGI s at the top of traditional generalized itemsets is also proposed. The ex-

periments performed on both real and synthetic datasets demonstrate the e"ectiveness

and e!ciency of the proposed approach.

As we have already seen, large volumes of data are being produced by various modern

web applications at an ever increasing rate. The automatic analysis of such huge data

volume is a challenging task since a large amount of interesting knowledge can be ex-

tracted. Association rule mining is an exploratory data analysis method able to discover

interesting and hidden correlations among data. Since this data mining process is char-

acterized by computationally intensive tasks, e!cient distributed approaches are needed

to increase its scalability. We propose a novel cloud-based service, namedSeARuM [8],

to e!ciently mine association rules on a distributed computing model. SeARuM con-

sists of a series of distributed MapReduce jobs run in the cloud. Each job performs

a di"erent step in the association rule mining process. As a case study, the proposed

approach has been applied to the network data scenario. The experimental validation,

Chapter 1. Introduction 6

performed on two real network datasets, shows the e"ectiveness and the e!ciency of

SeARuM in mining association rules on a distributed computing model.

The thesis is organized as follows. A hierarchical classiÞer is described in Chapter 2,

while Chapter 3 presents SeLeCT, a Self-Learning ClassiÞer for Internet Tra!c. A

multi-level clustering approach and a dynamic itemset framework for Twitter data are

described in Chapter 4 and 5, respectively. Chapter 6 presents TUCAN, a Twitter User

Centric ANalyzer. Then, a tag recommendation system is illustrated in Chapter 7, while

Chapter 8 presents a novel generalized itemset type. Moreover,SeARuM , a cloud-based

SErvice for Association RUle Mining is described in Chapter 9. Experimental designs

and results are reported in each chapter. Finally, Chapter 10 derives conclusions and

presents future developments for the proposed approaches.

Chapter 2

Hierarchical Learning for Fine

Grained Internet Tra!c

ClassiÞcation

The identiÞcation and characterization of network tra!c is at the base of network man-

agement activities for an operator. Through the continuous monitoring of the tra!c,

security policies can be deployed and tuned, anomalies can be detected, changes in the

users behavior can be identiÞed so that QoS and tra!c engineering policies can be

continuously improved.

In the last years, several tra!c classiÞcation techniques have been proposed to overcome

the limit of original port-based classiÞers. Most popular approaches are coarsely based

on deep packet inspection(DPI) or behavioral techniques. In the Þrst case, the tra!c

is classiÞed looking for speciÞc tokens inside the packet payload. Behavioral techniques

try to overcome the limitations of DPI by exploiting some description of the application

behavior by means of statistical characteristics, such as the length of the Þrst packets of

a ßow.

Both DPI and behavioral classiÞers are supervised techniques. However, in case of DPI,

the training is often cumbersome and complex, since it involves in most cases the manual

identiÞcation of the tokens and regular expressions that deÞne a class. In case of behav-

ioral classiÞers instead, the adoption of classiÞcation algorithms allows to automatically

deÞne the rules to label ßows, provided a good training set is available. Behavioral ap-

proaches bring other advantages with respect to DPI: i) They do not inspect the packet

payload, thus preserving privacy, and can then be used for lighter monitoring such as

the one o"ered by, e.g., netßow; ii) They can be easily extended by going through a

7

Chapter 2. Hierarchical Learning for Fine Grained Internet Tra!c ClassiÞcation 8

quicker retraining phase; iii) The decision process can be computationally lightweight

since feature computation is typically much simpler than regular expression parsing.

However, behavioral classiÞers su"er from some drawback too [9]: i) A proper training

set must be available, including a training set for the ÒunknownÓ class, i.e., ßows that

do not belong to any of the targeted classes; ii) Training must be customized to the

monitored network, i.e., training is not portable; iii) And they are known to provide

good accuracy when consideringfew and coarsetra!c classes, like HTTP vs Peer-to-

Peer (P2P) vs email. The last issue is particularly critical given the current trend to

have a convergence of most applications going over the same protocol, namely HTTP.

Therefore one natural question arises: is it possible to push further behavioral classiÞers

to correctly identify a large and granular set of classes? For instance, could it be possible

to identify application speciÞc tra!c that runs over HTTP, like distinguishing Facebook,

YouTube, or Google Maps tra!c? How to handle the unknown class? In this work we

address this latter problem by engineering and evaluating the performance of a novel

Hierarchical behavioral classiÞer. The intuition is to split the classiÞcation process of

ßows into several stages. At the beginning, coarser classes are used, while in following

stages Þner grained classiÞcation is performed. ClassiÞers are organized in a tree-based

structure, deÞned according to our domain knowledge. Each node is an independent

classiÞer which operates on a subset of ßow features speciÞcally selected to maximize its

accuracy, precision and recall. The root node simply separates ßows into ÒunknownÓ or

ÒknownÓ protocols. The latter set is then classiÞed into 7 classes, with P2P and HTTP

appearing as generic classes to be further reÞned at the next step. For instance, 10

possible subclasses are possible for HTTP tra!c.

We consider a benchmark in which 23 di"erent classes are provided by an ÒoracleÓ.

We use Tstat [10], our DPI-based tool as ground truth generator. Extensive and thor-

ough experiments are run considering 22 di"erent data sets collected from a large ISP

network and 3 additional data sets collected from our campus network. Results show

that the proposed approach outperforms classical machine-learning based classiÞcation

algorithms, which fail in handling ßows of the ÒunknownÓ class, and when the number

of samples in the training set is heavily unbalanced, as typical in real scenarios. The

hierarchical classiÞer, instead, achieves better results thanks to splitting the decision

process into several stages, each involving fewer classes.

2.1 Data set and classes

For the experiments carried out in this work we rely on the tra!c monitoring and

classiÞcation capabilities of Tstat [10], the passive sni"er developed at Politecnico di

Chapter 2. Hierarchical Learning for Fine Grained Internet Tra!c ClassiÞcation 9

Table 2.1: Set of protocols identiÞed by Tstat that have more than 50 samples in one
of the data sets used for training set.

ID Class Byte Flow Application protocol

1 Unknown/other 1.2G 355k UnclassiÞed or belonging to discarded classes
2 SMTP 394M 44k Simple Mail Transfer Protocol - RFC 5321
3 POP3 182M 6k Post O!ce Protocol - RFC 1939
4 IMAP4 55M 419 Internet Message Access Protocol - RFC 3501
5 SSL/TLS 968M 25k Transport Layer Security protocol - RFC 5246
6 MSN 4M 137 Microsoft Messanger MSN Protocol
7 MSN HTTP 12M 162 Microsoft Messanger MSN

Protocol tunneled over HTTP
8 Flickr 105M 2k Flickr Photo download over HTTP
9 ADV 159M 11k Advertisement content download over HTTP
10 MegaUpload 2.1G 225 Megaupload Þle download over HTTP
11 Gmaps 218M 2k Google Maps images download over HTTP
12 Wiki 28M 661 Wikipedia content download over HTTP
13 Facebook 1.6G 40k Facebook web page content download over HTTP
14 OpenSocial 6M 241 OpenSocial based social networks over HTTP
15 YouTube Video 4.9G 796 YouTube ßash video streams over HTTP
16 YouTube Site 4G 4k YouTube web page static content

download over HTTP
17 Flash Video 848M 560 Generic ßash video streams over HTTP
18 RTMP 72M 56 Generic ßash video streams over

Real Time Messaging Protocol
19 Other Video 200M 60 Generic video content over HTTP
20 ED2K Obf 23.6G 28k Obfuscated Emule Protocol
21 ED2K 59G 17k Plain Emule Protocol
22 BT 3G 14k BitTorrent Peer Wire Protocol
23 BT MSE/PE 3G 16k Encrypted BitTorrent Peer Wire Protocol

Torino since 2000 which is freely available from [11]. Tstat passively monitors network

tra!c carried on a link. It is capable to rebuild each TCP ßow, computing a number of

statistics. A complex DPI classiÞer is able to identify more than 50 di"erent protocols.

Its accuracy has proved to be very reliable in the past [12]. Among all possible tra!c

classes that Tstat is able to classify, we selected those for which at least 50 ßows are

present in each data set. Table2.1 details the list of applications we target, showing also

their predominance in one of the data sets used for training. Protocols and application

are coarsely grouped to easy readability. As it is possible to see, we consider both

simple and well known application protocols (SMPT/POP3/SSL/etc.), and Þner grained

classiÞcation. For example, we would like to distinguish among plain and obfuscated

P2P protocols; for HTTP tra!c, we would like to identify Facebook separately from

social network platforms based on Google OpenSocial protocol. In total we consider 23

di"erent classes.

To run performance evaluation on actual tra!c, packet traces have been collected from

two real networks: a nation-wide ISP in Italy that o"ers us three di"erent vantage

points, and our Campus network. ISP vantage points expose tra!c of three di"erent

Points-of-Presence (POP) in di"erent cities in Italy; each PoP aggregates tra!c from

more then 10,000 ISP customers, which range from home users to Small O!ce Home

O!ce (SOHO) accessing the Internet via ADSL or Fiber-To-The-Home technology. It

represents therefore a very heterogeneous and challenging scenario. We deÞne a data

Chapter 2. Hierarchical Learning for Fine Grained Internet Tra!c ClassiÞcation 10

 200

 300

 400

 500

 600

 700

 800

12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 F

lo
w

s
[x

10
00

]

Training dataset

Figure 2.1: Number of ßows in each ISP data set of 1 hour.

set as the set of all ßows observed from a vantage point during a one-hour long time

interval. In this work we focus our attention to one of the three ISP vantage points

from which we have collected 22 di"erent data sets, i.e., 22h long trace. Fig.2.1 shows

the number of ßows that are present in each ISP data set. As expected, the number of

ßows grows during the day when web tra!c is predominant. During the night, fewer

ßows are present, most of them due to P2P tra!c. At 17:00, tra!c reaches the peak.

We consider this particular data set as Òtraining data setÓ in the following. Other data

sets are used for testing and validation purposes. Table2.1 details the breakdown of the

h.17 data set among di"erent classes for Bytes and ßows. Notice that some classes have

several thousands of ßows, while others count no more than few tens of ßows.

Finally, 3 completely di"erent data sets have been collected from our campus network

and will complete our analysis. This represent a di"erent scenario, in which tra!c

generated by more than 20,000 students, professors and sta" members is present. In

this scenario, there is little P2P tra!c, since a Þrewall blocks plain P2P protocols.

2.1.1 Performance metrics

Performance of a classiÞer are typically assessed considering theoverall accuracy, recall,

precision and F-measure [13].

Chapter 2. Hierarchical Learning for Fine Grained Internet Tra!c ClassiÞcation 11

ROOT

GENERAL UNKNOWN

P2P SMTP POP3 SSL/TLS IMAP4 MSN HTTP

BITTORRENT
BITTORRENT

MSE/PE
ED2K
OBF

ED2K FLICKR
OPEN

SOCIAL
MSN
HTTP

ADV FACEBOOK VIDEO WIKIPEDIA GMAPS MEGAUPLOAD RTMPT

YOUTUBE
SITE

FLASH
VIDEO

YOUTUBE
VIDEO

OTHER
VIDEO

Figure 2.2: Tree structure for the Hierarchical classiÞer.

Accuracy , is the ratio of the sum of all True Positives (prediction and ground truth are

in agreement) to the sum of all tests, for all classes. Accuracy however is biased toward

the most predominant class in a data set.

Precision , for a given class, is the ratio of True Positives and the sum of True Positives

and False Positive (a sample of another class that has been labeled as of this class). It

determines the fraction of samples that actually turns out to be positive in the group

the classiÞer has declared as a positive class. The higher the precision is, the lower the

number of false positive errors committed by the classiÞer.

Recall , for a given class, is the ratio of the True Positives and the sum of True Positives

and False Negatives (a sample of the class is labeled as not). It measures the fraction

of positive samples correctly predicted by the classiÞer. ClassiÞer with large recall have

very few positive example misclassiÞed as the negative class.

F-Measure , a widely used metric in classiÞcation, weights both precision and recall

in a single metric by taking the harmonic mean: 2 ! Recall ! Precision / (Recall +

Precision).

In this work we report Recall and F-Measure metrics to assess per-class performance,

while Accuracy will be provided when comparing overall results. All experiments have

been carried out usingRapidMiner [14] on a 8-cores Intel Xeon E5450 based server PC

equipped with 32GB of ram. Computational costs will be reported considering this

setup.

Chapter 2. Hierarchical Learning for Fine Grained Internet Tra!c ClassiÞcation 12

2.2 Hierarchical ClassiÞcation

All classiÞcation algorithms share the same idea: given a description of the object to

classify in terms of ÒfeaturesÓ, Þnd the most likely class according to a model that has

been derived from a set of objects properly labeled, i.e., the Òtraining setÓ. Which

algorithm and which features to use are key points to address in the design of the

classiÞer. Our proposal has been designed by performing a thorough selection among

di"erent alternatives. The key and novel idea we leverage is to build a classiÞcation

scheme which is based on ahierarchy of classiÞers. This allows each classiÞer to work

on a limited subset of classes and on a specialized subset of features, i.e., the features

that are most suitable to distinguish among the considered classes. In the following we

describe the overall process.

2.2.1 Hierarchy DeÞnition

All classiÞcation algorithms are known to su"er when the number of classes they have

to choose among increases. For example, it can be easy to split P2P tra!c from HTTP

tra!c. How to however correctly classify the single application running over HTTP may

be trickier. Moreover, for example the features that allow to separate P2P tra!c from

HTTP tra!c may be useless when trying to separate YouTube from Facebook ßows.

The key idea we leverage in this work is to design a classiÞcation scheme based on a

hierarchy of classiÞers. At Þrst, the ßow will be classiÞed into few coarse classes. At

the following stages, Þner and Þner grained classiÞcation is achieved. To deÞne the

hierarchy, we rely on our domain knowledge. Fig.2.2 shows the Hierarchical classiÞer

we propose in this work. Gray nodes are sub-classiÞers and white nodes represent the

Þnal classes. We use Þve classiÞers. At the root, ßows are split among the ÒknownÓ and

ÒunknownÓ classes. Then, a general classiÞer decides among protocols that we know

it is easy to distinguish: P2P, HTTP, SMTP, etc., are well deÞned classes that have

been already shown to be easily identiÞed using behavioral algorithms [9]. At the next

step, some classes can be further split into subclasses. For example, P2P tra!c is split

into BitTorrent versus eMule, while HTTP tra!c is split into Þner grained applications.

Finally, video streams over HTTP will be further classiÞed among YouTube streams,

YouTube web site objects, generic Flash Video, or other Video streams.

In the following, for comparison purposes, we consider a classical classiÞer based on a

single stage, in which the classiÞcation decision has to be taken at the root node directly.

We refer to this case as ÒFlatÓ classiÞer.

Chapter 2. Hierarchical Learning for Fine Grained Internet Tra!c ClassiÞcation 13

Table 2.2: Selected feature on the server to client tra!c.

Features

ClassiÞer T
C

P
p

or
t

R
S

T
se

nt
P

U
R

E
A

C
K

se
nt

un
iq

ue
by

te
s

da
ta

pk
ts

da
ta

by
te

s
R

F
C

13
23

w
s

R
F

C
13

23
ts

W
N

D
S

C
A

LE
fa

ct
or

S
er

ve
r

S
A

C
K

re
q.

M
S

S
m

ax
se

gm
en

t
si

ze
m

in
se

gm
en

t
si

ze
R

W
N

D
m

ax
R

W
N

D
m

in
C

W
N

D
m

ax
C

W
N

D
m

in
in

iti
al

C
W

N
D

st
de

v
R

T
T

m
in

T
T

L
m

ax
T

T
L

la
st

se
gm

en
t

tim
e

m
sg

1
si

ze
m

sg
2

si
ze

m
sg

5
si

ze
m

sg
7

si
ze

m
sg

8
si

ze
m

sg
10

si
ze

#
se

gm
en

ts
se

g
1

si
ze

se
g

2
si

ze
se

g
3

si
ze

se
g

4
si

ze
se

g
5

si
ze

se
g

6
si

ze
se

g
7

si
ze

se
g

8
si

ze
se

g
9

si
ze

se
g

10
si

ze
se

g
7

IP
G

#
fe

at
ur

es

Flat x 26
ROOT x x x x x x x x x x 10

General x x x x x x x x x x 10
P2P x x x x x x x x 8

HTTP x 22
Video x x x x x x x x x x x 11

2.2.2 Feature Selection

For each classiÞer, the proper set of features must be selected. In the context of tra!c

classiÞcation, most of the proposals so far relies on a set of features that have been

chosen based on authorsÕ domain knowledge. For example, [15] uses a list of features

that the authors think to be good to distinguish P2P tra!c from client-server tra!c.

Similarly, [16] uses the size of the Þrst packets as features given the focus on the Òearly

tra!c classiÞcationÓ. While the choice of the features can be intuitive when dealing with

few classes of tra!c, it becomes suddenly di!cult to properly select the most prominent

features that allow to distinguish between a large list of applications. For example, how

to distinguish YouTube video streams from other ßash video streams?

In machine learning Þeld, well-known algorithms have been proposed to solve the prob-

lem of feature selection, i.e., techniques for selecting a subset of relevant features for

building robust learning models [17]. Among the di"erent algorithms, the Òminimum-

Redundancy-Maximum-RelevanceÓ (mRMR) algorithm is considered as the state-of-the-

art [18]. mRMR is an approximation of the theoretically optimal maximum-dependency

feature selection that maximizes the mutual information between the joint distribution

of the selected features and the classiÞcation variable. The input of the feature selection

algorithm is a ÒtrainingÓ data set, in whichall possibleßow features are provided and

ßows are correctly labeled. The algorithm selects then the subset of most relevant fea-

tures to properly assign the correct class. As initial set of features, we use all behavioral

layer-4 features that are provided by Tstat. The overall list includes more than 200 fea-

tures, most of which have been proposed in the past literature. For the sake of brevity

we do not report the complete list.

Feature selection can be run independently for each classiÞer. This allows us to actually

select a di"erent set of features for each sub-classiÞer, a key and desirable property.

Chapter 2. Hierarchical Learning for Fine Grained Internet Tra!c ClassiÞcation 14

The results of the feature selection are reported in Table2.2 which report the subset

of features selected for each classiÞer considering server to client ßow features. Three

considerations hold: First, the list of selected features includes some intuitive choices,

but also some unexpected selections. For example, the server RWND scale factor have

been found to be useful by the ROOT and HTTP classiÞer only. Second, di"erent

classiÞers use di"erent features. Third, the Flat classiÞer has to consider 45 (26+19)

features entailing a larger complexity; at most 35 (22+13) features have been selected

for any hierarchical stage.

2.2.3 ClassiÞcation Algorithm Selection

The proper classiÞcation algorithm has to be selected among the large number of ap-

proaches discussed in the literature: Naive Bayes, Bayesian Kernel Estimation, Rule

Based, Decision Trees, Neural Networks, Support Vector Machine (SVM), K-Nearest

Neighbor (K-NN) are popular techniques, each leveraging some di"erent idea [17]. Most

of these have also been used in the context of tra!c classiÞcation [9, 19] with good

results when dealing with few classes.

We run a preliminary set of experiments to see which is the classiÞer that would guar-

antee the best performance. For each algorithm, we consider the training data set.

We apply the ten-fold cross-validation methodology to estimate the accuracy of each

classiÞer.

Figure 2.3 reports the average among classes of the F-Measure and the Recall, on top and

bottom plot, respectively. Performance of the Flat classiÞer (black) and the Hierarchical

classiÞer (gray) are reported for each classiÞcation algorithm. First, notice that we were

not able to complete the test of the SVM and the K-NN Flat classiÞers, that were

not able to complete the experiment after three days. As well known, dealing with a

large number of classes and features poses computational issues for some algorithms.

The Hierarchical solution scales better, since each classiÞer has to deal with a smaller

number of classes and features. More details are provided in Section2.3.3.

Second, the Hierarchical classiÞer outperforms the Flat classiÞer considering any clas-

siÞcation algorithm. Average F-Measure and Recall are both smaller than 80% for the

Flat classiÞer. On the contrary, the Hierarchical classiÞer achieves performance higher

than 95% for both metrics when a Decision tree is used. This suggests that the problem

in designing a Flat classiÞer is not in the choice of the classiÞcation algorithm; rather,

any algorithm performs poorly with a large number of tra!c classes. Therefore some

ingenuity has to be used to improve performance, justifying the need for a hierarchical

solution.

Chapter 2. Hierarchical Learning for Fine Grained Internet Tra!c ClassiÞcation 15

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Bayes

KernelBayes

RuleBased

DecisionTree

NeuralNet

SVM
K-NN

F
-m

ea
su

re
 [%

]

Flat Hier

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Bayes

KernelBayes

RuleBased

DecisionTree

NeuralNet

SVM
k-NN

R
ec

al
l [

%
]

Flat Hier

Figure 2.3: Comparison of di"erent classiÞcation algorithms. Average F-measure and
Recall considering ten-fold cross-validation test on a 1h long trace from ISP.

For the Hierarchical classiÞer, the Decision Tree is the only classiÞer that achieves ex-

cellent results for all sub-classiÞers in the hierarchy. Other algorithms exhibit more

variable results. For example, the SVM performs very well for P2P classiÞcation, but it

performs poorly for Video classiÞcation. Note that the Hierarchical classiÞer allows also

the selection of di"erent classiÞcation algorithms for each internal sub-classiÞer. In the

following we restrict our attention to the Decision Tree classiÞer only.

2.3 Experimental results

We now provide a more extensive and thorough performance evaluation. We start by

considering the performance of the Hierarchical versus Flat classiÞer considering each

subclass. We consider as training data set the ISP trace collected at h.17, and the h.18

trace for testing. Figure 2.4 details the results. Top plots compare the absolute F-

Measure for each class; while plots on the bottom quantify the improvement guaranteed

by the Hierarchical classiÞer for F-measure and Recall, respectively. Classes appear

in the same order as in Table2.1. Results allow to appreciate the beneÞt of the

Hierarchical approach. F-Measure improves for all classes by 28% on average. Notably,

some classes are basically ignored by the Flat classiÞer, e.g., MSN. On the contrary,

the Hierarchical classiÞer deals with MSN ßows at the Generic sub-level, where only 7

classes have to be identiÞed. The F-Measure for MSN class then tops to 98%.

Recall improves by about 10% overall, since for some classes the Flat classiÞer is already

achieving good results. In some cases, the Recall decreases by some percentage points.

Notice that these are border cases in which the Flat classiÞer reaches good Recall, but

bad F-Measure, i.e., bad Precision. For instance, consider the You-Tube Video class. In

this case, the number of False Negatives is small, but the number of False Positives is

very high. The Hierarchical classiÞer improves the F-Measure (thus lowering the False

Positive) and overall it performs much better also in this case (F-measure grows by

80%).

Chapter 2. Hierarchical Learning for Fine Grained Internet Tra!c ClassiÞcation 16

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SM
TP�

POP3�

IM
AP4�

SSL/TLS�

M
SN�

M
SN_HTTP�

Flickr�

ADV�

M
egaUpload�

GM
aps�

W
iki�

Facebook�

OpenSocial�

YouTube-Video�

YouTube-Site�

Flash-Video�

RTM
PT�

Other-Video�

ED2K�

ED2K-Obf�

BitTorrent�

BitTorrent-M
SE/PE�

Unknown�

F
-m

ea
su

re
 [%

]
Flat Hier

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SM
TP�

POP3�

IM
AP4�

SSL/TLS�

M
SN�

M
SN_HTTP�

Flickr�

ADV�

M
egaUpload�

GM
aps�

W
iki�

Facebook�

OpenSocial�

YouTube-Video�

YouTube-Site�

Flash-Video�

RTM
PT�

Other-Video�

ED2K�

ED2K-Obf�

BitTorrent�

BitTorrent-M
SE/PE�

Unknown�

Im
pr

ov
em

en
t [

%
]

F-measure Improvement

-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

SM
TP�

POP3�

IM
AP4�

SSL/TLS�

M
SN�

M
SN_HTTP�

Flickr�

ADV�

M
egaUpload�

GM
aps�

W
iki�

Facebook�

OpenSocial�

YouTube-Video�

YouTube-Site�

Flash-Video�

RTM
PT�

Other-Video�

ED2K�

ED2K-Obf�

BitTorrent�

BitTorrent-M
SE/PE�

Unknown�

Im
pr

ov
em

en
t [

%
]

Recall Improvement

Figure 2.4: F-Measure and Recall for each class for the Hierarchical and Flat classi-
Þers. Training on h.17 data set and testing on h.18 data set. ISP trace.

Notice that also popular classes are misclassiÞed by the Flat classiÞer. For example, the

Unknown class has very poor performance. Since the Recall is only 15%, the number

of False Negative is very large. This is clearly critical, making it impractical to use

the Flat classiÞer given that most of the unknown ßows will be classiÞed as one of the

known classes. The Hierarchical classiÞer on the contrary is able to achieve excellent

performance, with Recall and F-Measure higher than 95%.

2.3.1 Robustness versus time

One interesting question to answer is how the performance of a classiÞer change over

time. Assume to train the classiÞer with a given data set collected at a given time.

What happens if the classiÞer is used later? To answer this question we consider the

whole ISP data set, which is 22h long. Training of the classiÞer is done considering the

usual h.17 data set. Then performance is evaluated on the other 21 di"erent data sets.

To validate the statistical signiÞcance of the performance improvements, we used the

paired t-test [20] at 95% of signiÞcance level for each data set. The overall Accuracy is

reported in Figure 2.5. It shows that the Hierarchical classiÞer signiÞcantly outperforms

the Flat classiÞer. The former guarantees an overall accuracy always higher than 88%,

while the latter achieves reasonable performance only during night time when the tra!c

Chapter 2. Hierarchical Learning for Fine Grained Internet Tra!c ClassiÞcation 17

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9

A
cc

ur
ac

y
[%

]

Hour of the day

Training dataset

Flat classifier
Hierchical

Figure 2.5: Accuracy of the Hierarchical classiÞer when used in real time. One day
long data set from ISP.

is dominated by P2P tra!c and thus few classes are ÒactiveÓ. During the day it barely

reaches 70% of overall Accuracy.

2.3.2 Experiment considering other data sets

We have repeated the experiment considering other data sets. For the sake of brevity,

we report only one experiment considering two 1-hour long traces collected from our

campus LAN at h.15 and h.19 on a normal working day. As previously, training has

been done considering the h.15 trace and testing is done on the h.19 trace. The Recall

improvement is reported in Figure 2.6. Also in this case the Flat classiÞer provides

good results for some classes, while it completely misses others, while the hierarchical

classiÞer improves results especially for less popular classes.

2.3.3 Computational Complexity

To gauge the overall computational costs of the classiÞers, we were able to completely

classify a 1h long data set in less than 1 second and using a very limited amount of

memory; i.e., classiÞcation cost are very light. The Flat classiÞer can classify 89,750

ßows per second, while the hierarchical classiÞers tops to more than 368,400 decision

per second. This results are mainly due to the adoption of a Decision Tree classiÞer at

each node. Memory cost is also negligible. Notice that the Hierarchical classiÞer can

be naturally implemented using parallel processes organized in a pipeline. These results

show that it is possible to actually use the classiÞer in on-line system.

Chapter 2. Hierarchical Learning for Fine Grained Internet Tra!c ClassiÞcation 18

-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

SM
TP

POP3

IM
AP4

SSL/TLS

M
SN
M

SN_HTTP

Flickr

ADV
M

egaUpload

GM
aps

W
iki
Facebook

OpenSocial

YouTube-Video

YouTube-Site

Flash-Video

RTM
PT

Other-Video

ED2K
ED2K-Obf

BitTorrent

BitTorrent-M
SE/PE

Unknown

Im
pr

ov
em

en
t [

%
]

Recall Improvement

Figure 2.6: Improvement for each class for the Hierarchical and Flat classiÞers. Test-
ing on Campus data set.

Table 2.3: Computational and memory cost for di"erent classiÞers to execute a
training phase on a 1h long campus data set.

Flat Root General HTTP P2P Video Total
CPU time [s] 7849 1207 389 589 48 74 2307
Memory [GB] 29 17 11 13 3.4 2.5 46.9

Considering training cost, Table 2.3 reports the overall time need to perform a training

on a 1h long trace. The campus network data set is considered, in which a total of

1.6M ßows is present. Both total CPU execution time and total memory usage are

reported considering the training phase. As it can be seen, the adoption of a hierarchy

of classiÞers allows to greatly reduce the computational cost and the maximum memory

required at any given time. Each sub-classiÞer indeed beneÞts from the reduced number

of classes and features. Moreover, fewer ßows have to be considered to build the model

and only those ßows that belong to the subset of considered classes have to be taken

into account. Note that the training phase cost is relatively important since it has to be

seldomly performed o"-line.

Chapter 3

SeLeCT: Self-Learning ClassiÞer

for Internet Tra!c

As we have already discussed in Chapter2, a critical part of network management and

tra!c engineering is the ability to identify applications and protocols originating tra!c

ßows. To provide network visibility, in the last years several classiÞcation techniques

have been proposed (see [9, 19] and references therein). Until a decade ago,port-based

approaches were very popular. The e"ectiveness of pure port-based approach has dimin-

ished even if it has been shown that port numbers carry valuable information about the

application and/or protocol [9]. Over the last few yearsdeep packet inspection(DPI)

has become popular [19], and behavioral techniques have been investigated since the

seminal work of [15]. And in the previous Chapter, we proposed a novel approach to

push further behavioral classiÞcation techniques.

However, both DPI and behavioral classiÞers share some limitations. First, to achieve a

high classiÞcation accuracy, either a cumbersome protocol reverse engineering to identify

the signatures in DPI, or a tedious process to generate an accurate training set for

behavioral classiÞers is required. In other words, both approaches requiretraining .

Second, and most critical, the classiÞerscan identify only the speciÞc applications they

have been trained for. All other tra!c is aggregated either in a generic class labeled as

ÒunknownÓ, or, even worse, it is mislabeled as one of the known applications. In other

words, these classiÞers cannot identify the introduction of a new application, or changes

in the applicationsÕ protocol or behavior, unless a re-training phase is entered. Designing

a classiÞcation engine capable of automatically identifying new emerging protocols is still

an open and challenging research topic.

In this Chapter, we propose SeLeCT, a novel algorithm that overcomes the limitations

highlighted above. Our goal is to provide a deeper network visibility for operators.

In other words, we intend to o"er the ability to semi-automatically identify prominent

19

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 20

classes of tra!c, targeting network management and tra!c engineering operations1.

SeLeCT proves to be able to expose classes of tra!c which are very speciÞc and possibly

are not already known to the operator. For example, SeLeCT has been able to separate

Google Mail tra!c from other mail services. It thus automatically allows to discover

new classes of tra!c, allowing arbitrary deÞnition of labels.

In SeLeCT, we leverage unsupervised data mining algorithms to automatically split

tra!c into homogeneous subsets or clusters. We considerßows as the target of the

classiÞcation. Each ßow is characterized by using simple layer-4 metrics, like segment

size and inter-arrival time. These features are known to carry valuable information

about the protocol and/or application that generated the ßow [9].

However, they perform not as good in the context of unsupervised (i.e. clustering) algo-

rithms. Hence we have to adopt some ingenuity in order to improve cluster homogeneity.

To overcome the limitation of o"-the-shelf algorithms, we design aniterative clustering

procedure in which a Þltering phase follows each clustering phase to eliminate possible

outliers. Filtering is based on the still valuable information provided by port numbers.

Note that port number information is not embedded in a metric space, e.g., the distance

between port 79 and 80 is not di"erent from the one between port 80 and 8080. As

such, it is hard to integrate port number as a simple feature into classical clustering

algorithms.

Using tra!c traces collected in di"erent years from various ISPs located in 3 di"erent

continents, we show that the iterative clustering process leads to clusters with excellent

properties. First, SeLeCT generated only a few cluster in each of these traces (typically

less than 150). Second, clusters are very pure, i.e., the overall homogeneity of the clusters

is close to 100%. This allows to easily inspect and label each cluster, thus assigning a

proper label to all ßows belonging to the same cluster.

As soon as some labels are assigned to ßows, SeLeCT will automatically inherit them

for classiÞcation of ßows that arrive in the future.

We refer to this as adaptive or progressiveseeding since ßows labeled in the past are

used to seed the subsequent datasets. Notably, this will minimize the bootstrapping

e"ort required to label applications, and manual intervention is mainly required for the

initial label assignment. This mechanism allows to naturally grow the intelligence of

the system such that it is able to automatically adapt to the evolution of protocols and

applications, as well as to discover new applications.

The idea of leveraging semi-supervised learning has been initially proposed in [21], where

the authors leverage the standard k-means to construct clusters. Part of the ßows to

be clustered are assumed to be already labeled, and a simple voting scheme is used to

extend the dominant label to the whole cluster.
1SeLeCT is not intended for security purposes where every single bit, packet, and/or ßow must be

carefully examined.

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 21

SeLeCT follows similar principles, extending the idea with i) iterative port Þltering and

ii) multi-batch seeding which, as we will see in Section3.5, allow to signiÞcantly boost

overall performance achieving 98% accuracy in practical cases. The iterative clustering

algorithm and self-seeding approach provide several advantages: the number of clusters

is reduced to less than 150, while at the same time homogeneity is signiÞcantly increased.

This simpliÞes the labeling process so that manual inspection becomes almost trivial.

Furthermore, the SeLeCT self-seeding process is more robust and results obtained from

actual tra!c traces show how SeLeCT helps in automatically identifying Þne grained

classes of tra!c (e.g, IMAP vs POP3, XMPP vs Messenger), and even unveiling the

presence of unknown/undesired classes (e.g., Apple push notiÞcation, Bot/Trojan, or

Skype authentication tra!c). In identifying standard protocols SeLeCT proves to be

even more robust than professional DPI based tools which were fooled by non-English

customizations of protocol error messages.

3.1 Related work

3.1.1 Clustering Algorithms

Data mining techniques may be grouped in two families:supervised and unsupervised

techniques [13]. Supervised algorithms assume the availability of a training dataset in

which each object is labeled, i.e., it is a-priori associated to a particular class. This

information is used to create a suitable model describing groups of objects with the

same label. Then, unlabeled objects can be classiÞed, i.e., associated to a previously

deÞned class, according to their features. For unsupervised algorithms, instead, grouping

is performed without any a-priori knowledge of labels. Groups of objects are clustered

based on a notion of distance evaluated among samples, so that objects with similar

features are part of the same cluster.

Supervised algorithms achieve high classiÞcation accuracy, provided that the training

set is representative of the objects. However, labeled data may be di!cult, or time-

consuming to obtain. Semi-supervised classiÞcation addresses this issue by exploiting the

information available in unlabeled data to improve classiÞer performance. Many semi-

supervised learning methods have been proposed [22], unfortunately, no single method

Þts all problems.

The semi-supervised learning approaches closest to our proposal are [23] and [24]. Both

labeled and unlabeled data are clustered by means of (variations of) known clustering

algorithms (k-means in [23] and SOM in [24]). Next, labeled data in each cluster is

exploited to assign labels to unlabeled data. Finally a new classiÞer is trained on the

entire labeled dataset. While we exploit a di"erent, iterative clustering approach to

group data, our labeling process is similar to [23]. Due to its iterative reÞnement process,

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 22

the approach adopted in SeLeCT is also particularly suited to model tra!c ßow changes,

because it allows a seamless adaptation of the obtained tra!c classes to tra!c pattern

evolution.

3.1.2 Key features of SeLeCT

Some of the key features of SeLeCT are:

¥ Adaptive classiÞcation model.A semi-supervised learning approach allows SeLeCT to

learn information from unlabeled data with simpliÞed manual intervention. Once some

labels are provided, SeLeCT automatically adapts the model to changes in the tra!c.

¥ Simple iterative approach. SeLeCT is based on k-means, a simple yet e"ective cluster-

ing algorithm. It uses k-means as a building block in an iterative clustering reÞnement

process, which allows leveraging speciÞc Internet tra!c features such as the server port

that cannot be integrated into classical clustering algorithms in a straightforward fash-

ion. This approach yields strongly cohesive clusters and provides an almost complete

coverage of the considered ßows.

¥ Leverages layer-4 features.SeLeCT relies on the availability of ßow level features that

can be easily acquired at the beginning of the ßow, and it does not assume to see both

directions of tra!c.

¥ Limited complexity. SeLeCT can run in real time by constantly monitoring the incom-

ing tra!c, creating batches of ßows, and processing these batches before the next batch

accumulates.

3.1.3 Applications to tra!c classiÞcation

The application of unsupervised techniques is not new in the tra!c classiÞcation Þeld.

[25] is one of the preliminary works and shows that clustering techniques are useful

to obtain insights about the tra!c. In [26] supervised and unsupervised techniques

are compared, demonstrating that unsupervised algorithms can achieve performance

similar to the supervised algorithms. Other works compare the accuracy of di"erent

and standard unsupervised algorithms [16, 27, 28]. In general, the techniques presented

in these works achieve a moderate accuracy and they typically identify several hundreds

of clusters, therefore questioning the applicability of this methodology in practice.

Recently, [21, 29Ð32] have introduced the semi-supervisedmethodology in the context

of tra!c classiÞcation.

[21] is among the Þrst works that proposes also a simple labeling algorithm. It uses

the o"-the-shelf k-means algorithm and present a performance evaluation considering a

trace collected from a Campus and a small residential network. Limited ground truth

is available and only coarse classes are considered (e.g., P2P, HTTP, EMAIL, CHAT,

etc.). Results show that to achieve good accuracy, a still large number of clusters must

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 23

be used (k " 400) and the labeled dataset must be large (more than 15% of ßows must

be already labeled). We explicitly compare the performance of SeLeCT against the

solution proposed in [21] in Section 3.5.

In [29] the authors propose a simple clustering algorithm based on information entropy

to group ßows. Clusters are then labeled using some ad-hoc engineered algorithm that

can coarsely identify classes like P2P or Client/Server tra!c. Limited performance

evaluation is provided considering tra!c generated by 20 hosts only. Neither learning

nor seeding is proposed. In [30], the authors proposed advanced unsupervised and

semi-supervised machine learning algorithms to cluster ßows. 22 (bi-directional) ßow

level features are used, which include packet size and inter-arrival time. Performance

evaluation considers two small datasets of 4,000 ßows each. Accuracy reaches 85%. [31]

proposes a semi-supervised method which extends [21]. As features, the destination IP

address, server port and transport protocol are considered. k-means is used as basic

building block. Accuracy, evaluated considering two tra!c traces, tops 90%. In [32],

the authors propose an unsupervised tra!c classiÞcation that uses both ßow features

and packet payload. Using a bag-of-words approach and latent semantic analysis, some

clusters are identiÞed. Performance is evaluated using a single trace and reaches 90% of

accuracy.

In all cases, SeLeCT achieves better results in terms of classiÞcation performance, pro-

vides Þner grained visibility on tra!c, and o"ers a simple self-seeding mechanism that

naturally allows the system to increase its knowledge..

3.2 Problem statement

We considerdirected tra!c ßows as the objects to classify. A directed ßow, or ßow for

short, is deÞned as the group of packets that have the same Þve tuple

F = { srcIP, dstIP, srcPort, dstPort, protocol } . Note that packets going in opposite

directions belong to two directed ßows. For instance, in a traditional TCP connection,

packets sent by the client belong to a directed ßow, and packets sent by the server

belong to a di"erent ßow. Considering directed ßows allows the classiÞer to work even

in presence of asymmetric routing (backbone networks for instance).

We assume all packets traversing a link are exposed to the classiÞer which keeps track

of per-ßow state. A ßowF is identiÞed when the Þrst packet is observed; the ßow ends

when no packets have been seen for a given time #T. TCP signaling segments may

be used to detect appropriate ßow start and end. As suggested in [33], we consider a

conservative value of #T = 5min .

For each ßow F , a set of featuresA(F) = { a(F)
1 , a(F)

2 , . . . , a(F)
n } is collected. These

features are used by SeLeCT to characterize ßows and take the classiÞcation decision.

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 24

name DateTime Place Type IP Flow
Dataset-1 Aug05 1pm S.America backbone 108k 527k
Dataset-2 Sep10 10am Asia backbone 111k 1.8M
Dataset-3 Aug11 2am Europe access 111k 885k
Dataset-4 Aug11 5pm Europe access 190k 2.3M

Table 3.1: Datasets used in the Chapter for performance evaluation. The table
includes ßows for which features can be computed.

The goal of SeLeCT is to assign a proper application to each ßowF based on the sole

knowledge of the ßow feature setA(F).

In this work, we choose behavioral features that are well known to carry useful infor-

mation about the application and protocol used at the application layer [9, 19]. In

particular, we select: (i) The server port srvP rt , (ii) the length of the Þrst n segments

with payload, and (iii) their corresponding inter-arrival-time. Note that only ßows that

have more thann segments can be classiÞed. The impact of the choice ofn is discussed

in Section 3.3.

Formally, let L (i F) be the length of the i -th segment of ßowF , and let t(i F) be its

arrival time. The i -th inter-arrival time # t(i F) is # t(i F) = t(i F) # t(i F # 1), i F > 1.

Then

A(F) = { srvP rt, L (i F), # t(i F) $i F % n & L(i F) > 0}

The choice of which features to consider is a matter of optimization and several works

in the literature have proposed and investigated possible alternatives. Our choice stems

from the following intuitions: (i) keep the feature set limited, (ii) include generic layer-4

features that can be easily computed, and (iii) use features that can be collected during

the beginning of a ßow so that we can classify ßows in real-time (i.e., minimize the time

required for identiÞcation). It is out of the scope of this Chapter to compare and choose

which are the most suitable features to use. We will consider this as a part of our future

work. However, given the high accuracy of SeLeCT, we believe that it may be di!cult

to improve it by considering a wider/di"erent set of features.

3.3 Datasets to evaluate SeLeCT

In this section, we brießy describe the datasets that we collected and used to evaluate

SeLeCT. We provide more details in Section3.5. Table 3.1 summarizes the main cha-

racteristics of the datasets. We collected four di"erent traces from access and backbone

networks of large ISPs2. Each dataset is a 1-hour long complete packet trace including

the packet payloads. We selected these traces to create a very heterogeneous bench-

marking set. They include backbone and access scenarios, day and night time periods,

di"erent years, and users from three di"erent continents.

2Due to NdA with ISPs we are not allowed to share the original tra!c traces.

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 101 102

C
D

F
 -

 F
ra

ct
io

n
of

 p
ac

ke
ts

Flow Length [pkts]

Dataset-3C
Dataset-4C
Dataset-3S
Dataset-4S

10-3

10-2

10-1

100

100 101 102 103 104 105

C
D

F
 -

 F
ra

ct
io

n
of

 b
yt

es
Flow Length [pkts]

Figure 3.1: CDF of the ßow length in packets (on the left), and bytes (on the right).
The vertical line is in correspondence of 6 data packets.

In this work, we focus on TCP tra!c only as most applications today rely on TCP. The

extension of SeLeCT to UDP tra!c is straightforward and is not further investigated in

this Chapter.

For each trace, we generate two separate datasets - the set of ßows originated by clients

(i.e., hosts actively opening the TCP connection) and the set of ßows originated by

servers (i.e., hosts that replied to the connection request). A letter ÔCÕ (client-to-server)

or ÔSÕ (server-to-client) is appended at the dataset name when needed. Overall, the oldest

trace - Dataset-1 - was collected in 2005 from a major ISP in South America; it contains

more than half million TCP ßows involving more than 100, 000 hosts. Dataset-2 was

collected from the peering link of an ISP in Asia in September 2010. Finally, Dataset-3

and Dataset-4 were collected at di"erent times of the day from the same vantage point

in Europe during August 2011. Dataset-3 was collected at 2am in the night, while

Dataset-4 was collected at 5pm. The latter contains about 2.3 million ßows directed

to more than 190, 000 hosts. We will primarily use the last two datasets for deeper

investigation in the rest of the Chapter.

Only ßows that have at least n data packets can be considered by SeLeCT. So the Þrst

question to answer is how much tra!c can be classiÞed by SeLeCT for di"erent values

of n. Figure 3.1 reports the Cumulative Distribution Function (CDF) of the number of

packets (on the left) and bytes (on the right) carried by ßows of di"erent length. For

the sake of simplicity, let us focus on Dataset-3 and Dataset-4, which are the two most

recent datasets. The CDF of the fraction of packets (on the left plot) shows that the large

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 26

1: Main ()
2: Output: set C of labeled clusters
3: S = '
4: while (newbatch B) do
5: ProcessBatch(B, U, S, C, N S)
6: S = N S
7: end while
8:

9: ProcessBatch (B, U, S, C, N S):
10: Input : Set B of new ßows, setS of seeds
11: Output: set C of labeled clusters, setN S of new seeds
12: B! = B (S (U /* Merge new ßow, seeding set,
13: and past outliers */
14: C! = doIterativeClustering(B!);
15: C = doLabeling(C!);
16: N S = extractSeeds(C);

Algorithm 1: SeLeCT Main loop.

majority of the ßows are ÒmiceÓ, i.e., ßows with few packets. For instance, 90% of client

ßows have no more than 6 data packets (highlighted by the vertical bar). However, by

looking at the CDF of bytes (reported on right plot), we observe that the mice account

for no more than 1% of the volume of tra!c (notice the log scale on y-axis). Thus, by

considering ßows that have at least 6 data packets: (i) we allow a richer description of

each ßow characteristics (ii) we are discarding the large majority of mice ßows and (iii)

we are looking at more than 99% of tra!c volume. Based on these observations, in the

rest of the Chapter we usen = 6. Thus, as any statistical classiÞer, SeLeCT targets

long-lived ßows.

3.4 The SeLeCT algorithm

We consider a scenario in which tra!c is sni"ed in real time and new ßows enter the

system continuously. Flows are processed inbatches. A new batch B is formed as soon

as a given number of valid ßows is observed. The probe monitors packets and rebuilds

ßows. For a given ßow, as soon as 6 data packets are observed the ßow identiÞer and

features are dispatched to a bu"er where the batch is being formed. When the batch

reaches the target number of ßows, it is dispatched to the classiÞcation algorithm, and

a new batch starts.

SeLeCT analyzes each batch of newly collected ßows via theProcessBatch() function

shown in the pseudo-code reported in Alg.1. This function takes in input

¥ B, the batch of new ßows;

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 27

¥ U, the set of previous outliers that were not assigned to any class when processing

the previous batch;

¥ S, the set of seeding ßows, i.e., ßows already analysed in past batches for which

SeLeCT was able to provide a label;

As output, it produces

¥ C, the set of clusters;

¥ N S, the set of new seeds that are extracted from each cluster;

¥ U, which contains the set of new outliers;

Its main steps (see Alg.1) are (i) clustering batch data to get homogeneous subsets of

ßows (function doIterativeClustering()), (ii) ßow label assignment (function doLa-

beling()), and (iii) extraction of a new set of seeds (functionextractSeeds()).

Note that ßows that are not assigned to any cluster are returned in theU set. Those

ßows are then aggregated in the next batch, so that they can eventually be aggregated

to some cluster3. In the following we detail each step of the batch processing.

3.4.1 Iterative clustering

Clustering algorithms group objects with similar characteristics [13]. Objects are de-

scribed by means of features which map each object to a speciÞc position in a hyperspace.

The similarity between two objects is based on theirdistance. The closer the two objects

are, the more likely they are similar and thus should to be grouped in the same cluster.

Typically, the Euclidean distance is used.

Iterative clustering is the core of SeLeCT. It exploits the k-means clustering algo-

rithm [13] to group ßows into subsets orclusters which are possibly generated by the

same applications.

We selected the k-means algorithm since it is well understood and it has been previously

used in previous works. We tested also other clustering algorithms like DBSCAN [13].

Results are similar or worse, with a trickier sensitivity to parameter settings.

In this context, it is natural to consider two ßows with similar packet lengths and inter-

arrival times to be close (i.e., to be likely generated by the same application). However,

the same property does not hold for thesrvPort feature. For instance, two ßows directed

to port 25 and to port 80 are not more likely to be similar than two ßows directed to

port 80 and to port 62000. ThesrvPort feature is a nominal feature [13], thus it cannot

be included in Euclidean distance computations.

3It would be possible to limit the number of batches some ßows may be still in the U set and output
them in a ÒunclassiÞableÓ set to avoid delaying classiÞcation process.

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 28

Still, the srvPort is an important feature for tra!c classiÞcation [9]. Two cases can be

distinguished: protocols and applications i) running on one (or more) speciÞcsrvPort

on servers, or ii) running on a randomsrvPort selected by each server. We denote them

as dominatedPort and randomPort protocols respectively. In both cases, thesrvPort

carries valuable information if applied as aÞlter.

In the past, several researchers have applied clustering algorithms to tra!c analysis [21,

27]. However, to the best of our knowledge, none of the previous works exploited the

speciÞc characteristic of thesrvPort feature in a clustering process. This is mainly

related to the fact that port numbers are not embedded in a metric space. Thus ingenuity

is required to smartly include them. In our work we engineer an iterative procedure to

identify clusters of ßows in which the srvPort information is used to Þlter elements in

each cluster. As reported in Alg. 3, we devise an iterative process, in which clustering

phases and Þltering phases alternate. We use a set-based notation. Names of the sets

are deÞned in the pseudo code.

3.4.1.1 The Þltering procedure

1: doFiltering (I , C, U, DP , portF raction , DominatingPhase)
2: Input : cluster I of ßows to be Þltered,DominatingPhase ßag to select the

Þltering
3: Output: set C of clusters, setU of outliers, set DP

of dominant ports
4: DP = '
5: if ||I|| < minPoints then
6: U = U (I ; return
7: end if
8: if DominatingPhase == TRUE then
9: /* Processing dominatedPort cluster */

10: if (topPortFreq(I) > portF raction) then
11: C! = getFlows(I ,DP)
12: C = C (C! /* Add the Þltered cluster to C /*
13: R = I \ C !

14: U = U (R /* Put discarded ßows in U */
15: dp = dominantPort(I)
16: DP = DP ({ dp} /* Record dominant port */
17: else
18: U = U (I /* I ßows must be reclustered */
19: end if
20: else
21: C = C (I /* I is a good cluster at last */
22: end if

Algorithm 2: Filtering of clusters.

The Þltering procedure is reported in Alg.2. Filtering is performed on the cluster I pro-

vided as input. First, doFiltering() discards clusters which have less thanminPoints

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 29

1: doIterativeClustering (B)
2: Input : Set B of ßows to be clustered
3: Output: set of clustersC, set of outliers U
4: U = B, DP = '
5: for (step=1; step % itermax ; step++) do
6: C! = k-means(U)
7: U = '
8: for I in C! do
9: /* look for dominatedPort clusters Þrst */

10: doFiltering(I ,C,U,DP ,portF raction ,true)
11: end for
12: end for
13: /* Last step: process random port clusters */
14: for dp in DP do
15: delFlows(U,dp) /* Discard ßows still to DP */
16: end for
17: C! = k-means(U)
18: for I in C! do
19: /* look for randomPort clusters now */
20: doFiltering(I ,C,U,DP ,0,false)
21: end for
22: return C, U

Algorithm 3: Iterative Clustering

ßows to avoid dealing with excessively small clusters. Discarded ßows are returned in

set U, the set of unclustered ßows that will undergo a subsequent clustering phase (lines

5-7).

DominatingPhase is a ßag that is used to select the type of Þltering: when it is TRUE,

the Þltering processes onlydominatedPort clusters.

To this aim, the srvPort distribution is checked. If the fraction of ßows with the most

frequent srvPort in I exceeds the thresholdportF raction , the cluster is adominatedPort

cluster. The ßows involving the dominant srvPort are clustered together and added to

the set C of Þnal clusters (line 11-12), while ßows not involving the dominantsrvPort

are removed and put in U (lines 13-14). The dominant port dp is included in the set

DP of dominant ports (lines 15-16). If there is no dominant port, all ßows fromI are

put in U (lines 17-18).

When DominatingPhase is FALSE, randomPort clusters are handled. In this case,

cluster I (with all its ßows) is simply added to the set of Þnal clusters (line 21).

3.4.1.2 The iterative clustering procedure

The iterative clustering procedure is reported in Alg. 3 which receives as input the

current batch B of ßows. It iteratively generates dominated port clusters alternating

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 30

clustering and Þltering phases. At last, it generates random port clusters. More specif-

ically, the set of ßowsB to be clustered is processed foritermax iterations. At each

iteration the set U of ßows that are not yet assigned to any cluster is processed (lines

5-12). k clusters are formed using the well-known k-means algorithm that returns the

set C! of k clusters. Each cluster inC! undergoes a Þltering phase (lines 8-11), which is

looking for dominatedPort clusters at this stage. ThedoFiltering() procedure returns

in U ßows that did not pass the Þlter and must be processed at the next iteration.

After itermax iterations, randomPort clusters are handled. In this case, the information

carried by the dominant port has been already exploited in previous phases. The set

DP of dominant ports contains the srvPort that appeared as dominant in the past.

Intuitively, if a srvPort emerged as dominant port, then ßows that have not been already

put into srvPort dominated clusters should be considered outliers.

As such, we Þrst remove from the setU of ßows to be clustered all those ßows directed to

any dominating port that has been found in the previous iterations (lines 14-16). Then,

the Þnal clustering is completed (line 17-21).

3.4.2 Labeling

Once ßows have been clustered, thedoLabeling(C!) procedure (see Alg.1 - line 15)

assigns a label to each cluster. For each clusterI in C!, ßows are checked.

If I contains someseeding ßows, i.e., ßows (extracted fromS) that already have a label,

a simple majority voting scheme is adopted: the seeding ßow label with the largest

frequency will be extended to all ßows inI , possibly over-ruling a previous label for other

seeding ßows. More complicated voting schemes may be adopted (e.g., by requiring that

the most frequent label wins by 50% or more). However, performance evaluation shows

that the homogeneity of clusters produced by the iterative clustering procedure is so

high that simple schemes work very nicely in practice as shown in Section3.7.

3.4.2.1 Bootstrapping the labeling process

If no seeding ßows are present,I is labeled as ÒunknownÓ and passed to the system

administrator that should manually label the cluster. This will clearly happen during

the bootstrapping of SeLeCT, when no labeled ßows are present.

To address this issue, several solutions can be envisioned. For example, labels can be

manually assigned by using the domain knowledge of the system administrator, sup-

ported by all the available information on the ßows in the cluster (e.g., port number,

server IP addresses or even the ßow payload, if available). We show how easily this can

be done in Section3.7. A second option is to use a bootstrapping ßow set from some

active experiments in which tra!c of a targeted application is generated. Similarly, a

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 31

set of bootstrapping ßows can be generated by providing labels obtained by some other

available tra!c classiÞcation tools, (as in [21]).

In all cases, the complexity of the labeling process is reduced to the analysis of few clus-

ters, instead of hundred of thousands of ßows. This mechanism can be also automated

as suggested by [34], but this is outside the scope of this Chapter.

3.4.3 Self-seeding

Once some clusters have been labeled, SeLeCT is able to automatically reuse this in-

formation to process next batches. This is simply achieved by extracting someseeding

ßows from labeled clusters by means of theextractSeeds(C) procedure (see Alg.1 -

line 16).

It implements a stratiÞed sampling technique, i.e., from each cluster, the number of

extracted seeds is proportional to the cluster size. StratiÞed sampling ensures that

at least one observation is picked from each of the cluster, even if probability of it

being selected is far less than 1. Thus, it guarantees that in the seeding set there are

representatives of each cluster and avoids the bias due to classes having much more ßows

than others. Let numSeeds be the target number of seeding ßows, i.e.,numSeeds =

||N S|| .

For each labeled clusterI , a number NSI of labeled ßows proportional to the cluster

size is extracted at random. That isNSI = 1 +
!

||I||
numSeeds

"
ßows are randomly selected

from each clusterI .

This mechanism enforces a self training process that allows the system to grow the set

of labeled data and thus augment the coverage of the classiÞcation process. Section3.7

provides some evidence to support this statement.

3.5 Experimental results

3.5.1 Experimental dataset

We performed several experiments to assess the performance of SeLeCT using the

datasets described in Section3.3. All traces have been processed to generate directed

ßow level logs. Recall that we only consider TCP ßows in this work. We use two sep-

arate advanced DPI classiÞers to label ßows and use these labels as our ground truth.

The Þrst one is provided by the NarusInsight4 professional tool, and the second one is

implemented in Tstat [10], the Open Source tra!c monitoring developed at Politecnico

di Torino. A total of 23 di"erent protocols are identiÞed including web (HTTP/S, RTSP,

4http://www.narus.com/

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 32

TLS), mail (SMTP/S, POP3/S, IMAP/S), chat (XMPP, MSN, YAHOOIM), peer-to-

peer (BitTorrent, eMule, Gnutella, Fasttrack, Ares) and other protocols (SMB, FTP,

Telnet, IRC).

To be conservative, we label as ÒunknownÓ those ßows that do not match any of the

DPI rules, or for which DPIsÕ labels are di"erent. Each dataset has a di"erent share of

application labels, with a typical bias toward most popular protocols like HTTP and/or

P2P that dominate the datasets; we do not report these details for the sake of brevity.

3.5.2 Performance metrics

We consider two metrics to characterize the output of the iterative clustering algorithm:

number of clustersand clustered ßows percentage(i.e., the ratio of ßows ||C!|| clustered

by doIterativeClustering(B!) to the total number of ßows ||B!|| provided as input

expressed in percentage).

In order to evaluate classiÞcation performance, we use theconfusion matrix. The con-

fusion matrix is a matrix in which each row represents the instances in a predicted class

(i.e., the decision of SeLeCT), while each column represents the instances in an actual

class (i.e., the ground truth). The name stems from the fact that it highlights cases in

which the system is confusing two classes (i.e., it is mislabeling one as another). To eval-

uate the classiÞcation performance of SeLeCT, we use three metrics:overall accuracy,

recall, and precision.

¥ Accuracy is the ratio of the sum of elements in the main diagonal (i.e., the total true

positives) of the confusion matrix to the sum of all elements (i.e., the total samples).

Accuracy does not distinguish among classes and is biased towards dominant classes

in the dataset. For instance, consider a scenario where 90% of ßows are HTTP ßows.

A classiÞer that always returns the ÒHTTPÓ label will have accuracy of 90%, despite

completely missing all the other classes. Although accuracy is an important metric, it

does not capture all the characteristics of the classiÞer.

¥ Recall for the i -th class, is the ratio of the element (i, i) (i.e., the true positives) in the

confusion matrix to the sum of all elements in the i -th column (i.e., the total samples

belonging to the i -th class). It measures the ability of a classiÞer to select instances of

classi from a data set. In the same example as before, always returning ÒHTTPÓ would

have a recall of 0% for all classes except for ÒHTTPÓ.

¥ Precision, for the i -th class, is the ratio of the element (i, i) in the confusion matrix

to the sum of all the elements in the i -th row (i.e., the true positives plus the false

positives). It measures the ability of the classiÞer in assigning only correct samples to

classi . In the example above, always returning ÒHTTPÓ would have a precision of 90%

for the HTTP class and of 0% for the other classes.

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 33

In the rest of this section, we consider the following parameter settings: Batch size

||B|| = 10, 000, number of ßows used for seedingnumSeeds= 8 , 000, minPoints = 20,

itermax = 3, portF raction = 0 .5 for step < itermax , and portF raction = 0 .2 for step

itermax . Extensive parameter sensitivity is carried over in Section3.8. For the k-means

algorithm, we set k = 100, number of iterations smaller than 1, 000, 000 and, to avoid

the initial centroid placement bias, we execute 10 independent runs and select the result

with the best Sum of Squared Errors (SSE) [13].

3.5.3 Iterative clustering performance

We Þrst evaluate the beneÞts of the iterative clustering procedure in SeLeCT.

We compare the accuracy against i) simple port-based classiÞer and ii) classic k-means

as proposed in [21]. The simple port-based classiÞers uses thesrvPort to label ßows. It

considers well-known ports for the most common protocols, and port 4662 for eMule.

Experiments here consider, for each dataset, the Þrst batch of 10,000 ßows only. For both

algorithms, labeling is performed by thedoLabeling() procedure. The labeling process

adopts a simple majority voting scheme: given a cluster, the most frequent label among

seeding ßows in the cluster is extracted, and used to label all ßows (mimicking [21]).

The assigned label is then compared to the original label that the DPI assigned to each

ßow.

Figure 3.2 reports results for all datasets.

Flow-wise and byte-wise accuracy are reported in top and bottom plot, respectively.

The former is computed as the percentage of the correctly classiÞed ßows, while the

latter is computed as the percentage of the bytes carried by correctly classiÞed ßows.

Results highlight the beneÞt of the iterative clustering process for which the accuracy is

about 97.5% on average, with a worst case of 94.2% for Dataset-3C considering ßow-wise

accuracy.

The simple k-means adopted in [21] results in no more than 85% ßow-wise accuracy,

which is in line to the Þndings in [21, 27]. The port-based classiÞer performs poorly

in some scenarios where protocols not using a well-known port. This is the case for

Dataset-1C where the presence of P2P tra!c is predominant.

SeLeCT is the only classiÞer that o"ers excellent results for all datasets, and considering

both ßow-wise and byte-wise accuracy. Given the marginal di"erences of the two metrics,

in the following we consider only ßow-wise performance indexes.

An interesting observation in Figure 3.2 is that the Server datasets show better accuracy

than the Client datasets. The reason is that layer-4 features carry more valuable infor-

mation to di"erentiate between classes when considering packets sent by servers rather

than by clients, e.g., the typical lengths of packets sent by HTTP and SMTP servers

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 34

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

1C 2C 3C 4C 1S 2S 3S 4S

A
cc

ur
ac

y
[%

]

Dataset

k-means SELECT Port-based

 30
 40
 50
 60
 70
 80
 90

 100

1C 2C 3C 4C 1S 2S 3S 4S

A
cc

ur
ac

y
[%

]

Dataset

k-means SELECT Port-based

Figure 3.2: Accuracy of the clusters for simple port-based classiÞer, classic k-means
and SeLeCT. Accuracy computed per ßows on the top, per byte on the bottom. Results

reported for all datasets.

are di"erent, while the client queries could be more similar. The intuition is that server

responses have more peculiar lengths than client queries.

Table 3.2 shows the confusion matrix for Dataset-2S, which represents thebest casefor

the k-means based classiÞer. The bold font highlights true positives. First, notice that

the HTTP, SMTP, and Unknown classes are clearly predominant, possibly causing a

Òcapture e"ectÓ so that other classes vanish. In fact, most of the ßows of other classes

are misclassiÞed as one of these three predominant classes, impairing recall and precision,

even if the accuracy is still high (90% in this case - see Figure3.2). For example, POP3S

and Telnet have 0% for both recall and precision. For the HTTPS ßows - which are a non

negligible fraction of samples - precision is 74% and recall is as low as 54%, i.e., about

half of the HTTPS ßows are misclassiÞed. Finally, the predominant class performance

is impaired as well. For example, SMTP precision drops to 78% because of the high

number of false positives. In summary, the standard k-means clustering exhibits poor

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 35

B
T

H
T

T
P

H
T

T
P

S

M
S

N

P
O

P
3

P
O

P
3S

S
M

B

S
M

T
P

S
S

H

Te
ln

et

U
N

K

X
M

P
P

BT 34 9 2 0 0 0 0 1 0 0 11 0
HTTP 185829 175 10 1 2 0 27 0 0 118 1

HTTPS 3 18345 5 0 0 0 18 0 0 65 0
MSN 0 0 0 0 0 0 0 0 0 0 0 0

POP3 3 6 1 0 16 2 0 3 0 0 14 0
POP3S 0 0 0 0 0 0 0 0 0 0 0 0

SMB 0 0 0 0 0 0 0 0 0 0 0 0
SMTP 21 18 85 14 45 53 182247 0 43 276 5

SSH 0 0 0 0 0 0 0 0 0 0 0 0
Telnet 0 0 0 0 0 0 0 0 0 0 0 0
UNK 21 35 35 6 0 1 0 29 9 0214 0

XMPP 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.2: Confusion matrix of a classiÞer based on the simple k-means for Dataset-2S.
Columns give the ground truth.

B
T

H
T

T
P

H
T

T
P

S

M
S

N

P
O

P
3

P
O

P
3S

S
M

B

S
M

T
P

S
S

H

Te
ln

et

U
N

K

X
M

P
P

BT 3 0 0 0 0 0 0 0 0 0 3 0
HTTP 05769 0 0 0 0 0 0 0 0 30 0

HTTPS 0 0 530 0 0 0 0 0 0 0 0 0
MSN 0 0 0 7 0 0 0 0 0 0 1 0

POP3 0 0 0 0 42 0 0 0 0 0 0 0
POP3S 0 0 0 0 0 46 0 0 0 0 0 0

SMB 0 0 0 0 0 0 8 0 0 0 0 0
SMTP 0 0 0 0 0 0 02217 0 0 102 0

SSH 0 0 0 0 0 0 0 0 9 0 0 0
Telnet 0 0 0 0 0 0 0 0 0 43 0 0
UNK 4 0 0 2 0 0 0 0 0 0 83 0

XMPP 0 0 0 0 0 0 0 0 0 0 0 5

Table 3.3: Confusion matrix of the SeLeCT classiÞer for Dataset-2S. Columns give
the ground truth.

performance for not dominant classes.

SeLeCT signiÞcantly boosts performance as depicted in Table3.35. The overall accuracy

tops to 98.82% and the confusion matrix exhibits almost perfect results. Interestingly,

only ßows in the Unknown class have been (possibly) misclassiÞed.

For example, 102 ßows that the DPI labeled as Unknown are instead labeled as SMTP

by SeLeCT. We manually cross-checked these ßows, and found that 97 out of 102 ßows

are indeed SMTP ßows which the DPI was not able to correctly classify because the

SMTP banner sent by the server was not the usual one, and its pattern was not included

5Totals are di"erent than in Table 3.2 since SeLeCT adopts a conservative approach by deferring the
clustering of ÒnoiseÓ ßows to next batches.

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 36

 70
 72
 74
 76
 78
 80
 82
 84
 86
 88
 90
 92
 94
 96
 98

 100

Step 1 Step 2 Step 3 Step 4

A
cc

ur
ac

y
[%

]

k-means
MinPoints-filter

port-filter

Figure 3.3: Accuracy before and after the di"erent Þltering steps for Dataset-4S.

in the DPI engine signature set. Double checking unknown ßows that SeLeCT classiÞed

as HTTP, we also veriÞed that the DPI was fooled by some HTTP messages which

included non-English text (recall this dataset was collected from an ISP in the far east).

This shows that SeLeCT is able to automatically adapt classes to small variations of

features.

SeLeCT is more robust than the DPI-based classiÞer because layer-4 features are less

sensitive to small feature changes than the DPI pattern matching rules. The latter can

be fooled by a simple character change.

Figure 3.3 gives more insights about the beneÞts of the Þltering steps in the iterative

clustering process. It reports the overall accuracy after (i) running the k-means only

(line 6 of Alg. 3), (ii) after all clusters with less than minPoints samples have been

discarded (lines 4-6 of Alg.2), and (iii) after the Þnal port based Þltering is performed

(lines 7-18 of Alg. 2). Accuracy is evaluated at each of the four steps independently

of the others, i.e., the results are not cumulative. The Þrst 10,000 ßows in the Þrst

batch of the Dataset-4S trace are considered. In this case, ßows are labelled by the

original DPI label; ßows in a cluster are then re-assigned the majority label, and the

original and the new label are then compared. . Results show that discarding clusters

with less than minPoints provides small improvements, while the port-based Þltering

is the key to boost accuracy to 98% whendominatedPort clusters are selected. Only

at the last step, when randomPort clusters are considered and the port-based Þltering

is disabled, accuracy lowers to 82%. In this case, discarding the clusters smaller than

minPoints helps improving recall and precision for all classes (see Table3.3). This last

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 37

step is important since it allows to properly look for Peer-to-Peer (P2P) protocols that

typically do not run on standard server ports.

These results show the beneÞts of the iterative clustering approach. In particular, they

highlight the beÞts of the Þltering mechanisms that allows exploiting the information

carried by the srvPort , which was not leveraged by previous clustering approaches.

3.6 Interesting Þndings enabled by SeLeCT

One of the interesting possibilities o"ered by SeLeCT is its ability to automatically group

ßows in homogeneous clusters. It is thus interesting to verify if the clusters o"er more

Þne-grained classiÞcation than traditional protocol classiÞcation. We Þrst investigate

dominatedPort clusters whose DPI inherited label is ÒUnknownÓ for all datasets. We

found:

¥ srvPort = 5223 - the Apple push notiÞcation server over TLS is identiÞed in

Dataset-3 and Dataset-4;

¥ srvPort = 5152 - Backdoor.Laphex.Client tra!c is identiÞed in Dataset-1;

¥ srvPort = 12350 - the Skype proprietary authentication protocol is identiÞed in

Dataset-3 and Dataset-4;

SeLeCT automatically unveils clusters of tra!c generated by services that appear as real

unknown to the network administrator. This is the case of the Apple Push NotiÞcation

system for iOS devices and iCloud enabled devices, which is based on the SSL/TLS

protocol, but running on a non standard srvPort = 5223. All ßows in this cluster are

labeled by the DPI as SSL/TLS protocol. To Þnd the correct label, awhois lookup for

the srvIP addresses reveals that the servers are all registered to Apple Inc. By running

an active experiment, it is possible to conÞrm that all ßows in this cluster are related to

Apple Push NotiÞcation and iCloud services.

A second cluster of unknown ßows aggregates tra!c generated by the malwareBack-

door.Laphex.Client Bot/Trojan . Manual inspection of ßows payload conÞrms this as-

sumption. Similarly the cluster of ßows directed to srvPort = 12350 turns out to

unveil Skype Authentication protocol tra!c. Also in this case, the srvIP of all ßows

reveals strong clues about the application. All ßows are directed tosrvIP in the subnet

213.146.189.0/24, registered to Skype Inc.

We then analyze clusters labeled as HTTP tra!c. There are several tens of them

in each dataset, and some share some clear threat. As proposed in [35], the srvIP

feature reveals interesting information. For instance,srcIP addresses in some clusters

clearly belong to the same subnet. By means of a simplewhois query, it is possible to

identify clusters containing only Google, Dailymotion or Amazon services, respectively.

Similarly, a POP3S cluster refers to mail.google.com servers scattered in 4 di"erent

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 38

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y
[%

]

Batch

Dataset-1C
Dataset-1S
Dataset-2C
Dataset-2S
Dataset-3C
Dataset-3S
Dataset-4C
Dataset-4S

Figure 3.4: Accuracy over di"erent batches.

subnets in Dataset-4, while a second POP3S cluster aggregates together all ßows of

other mail providers.

These examples conÞrm the ability of SeLeCT to automatically reveal new classes of

tra!c that would be hard to highlight by means of any supervised technique. Once

SeLeCT is augmented with this knowledge by injecting these labels, ßows are correctly

classiÞed in all subsequent batches thanks to the seeding mechanism.

Overall, we were able to Þnd labels for about 90% of unknown clusters. The remaining

10% of clusters contains ßows that appear to be encrypted, and for which the IP ad-

dresses refer to end-user addresses assigned by ISPs to modems. We suspect those could

be Skype ßows, but we are not able to conÞrm this assumption.

3.7 Exploring the seeding process

So far we have analyzed the performance of SeLeCT considering a single batch provided

as input. We are interested now in analyzing the performance of the seeding process. To

accomplish this, we run SeLeCT on ten successive batches of ßows. As previously done,

the bootstrapping at batch 1 is done using the DPI labels. Then, for the subsequent

batches, extractSeeds() is used to seed the labeling process from batchn to batch

n + 1. Each batch performance is evaluated by comparing the DPI labels in the ground

truth with the labels provided by SeLeCT.

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 39

B
T

eM
ul

e

H
T

T
P

H
T

T
P

S

IM
A

P
S

P
O

P
3

P
O

P
3S

U
N

K

BT 157 105 0 0 0 0 0 8
eMule 122 3556 0 0 0 0 4 24
HTTP 0 0 10815 0 0 0 0 5

HTTPS 0 0 1 1291 0 0 0 14
IMAPS 0 0 0 0 53 0 0 0

POP3 0 0 0 0 0 145 0 3
POP3S 0 0 0 0 0 0 25 0

UNKNOWN 0 0 18 0 0 0 0196

Table 3.4: Confusion matrix at batch 10 for Dataset-3C.

3.7.1 Self-seeding

Figure 3.4 shows the results for all datasets. First, notice that the accuracy of SeLeCT

is extremely high and stable over time for all server datasets. As we already mentioned

before, this is due to the better representativeness of the layer-4 features for server ßows.

Other metrics (i.e., the number of clusters and the percentage of clustered ßows) remain

unchanged over di"erent batches and hence we do not report these results.

For client Dataset-3C and Dataset-4C, the accuracy slightly decreases over time. For

instance, in Dataset-3C it decreases to about 90% during the Þrst 7 batches, then it

stabilizes. Investigating further, we notice that both recall and precision of SeLeCT

are higher than 98% for all classes of tra!c except for BitTorrent and eMule protocols

which tend to be confused with each other. This is detailed by the confusion matrix

of the 10-th batch in Table 3.4. Note that the total number of ßows exceeds the batch

size, since at step 10 SeLeCT processes also seeding ßows. The relative higher fraction

of P2P tra!c in the Dataset-3C (collected at 2am) results in a global decrease in the

overall accuracy. Similar considerations hold for the Dataset-4C which refers to peak

time. However, in this case the fraction of P2P ßows is smaller than during the night

and thus it has less impact on the overall accuracy. An important and desirable property

is that confusion actually happens among P2P protocols only. The lack of dominating

port for P2P protocols makes it more challenging for SeLeCT to clearly distinguish the

tra!c.

Based on the results of our experiments, we believe that SeLeCT shows very good

performance in terms of accuracy, precision, and recall. For most protocols, SeLeCT

correctly classiÞes ßows for which labels have been provided with no confusion.

3.7.2 Bootstrapping

As we noted before, SeLeCT requires manual intervention to provide labels to clusters.

When a label for a few ßows is introduced, SeLeCT will carry on these labels for future

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 40

%scriptsize

SrvP ort 25 80 88 110 443 9951935 4662 5223 12350
cluster 1 46 1 3 30 2 1 51 1 1

Label S
M

T
P

H
T

T
P

H
T

T
P

P
O

P
3

H
T

T
P

S

P
O

P
3S

R
T

M
P

eM
ul

e

A
pp

le

S
ky

p
e

Table 3.5: dominatedPort clusters at batch 1. Bold font highlights clusters on non-
standard ports.

classiÞcation. In the previous experiments we used the labels provided by a DPI to

bootstrap the classiÞcation and seeding process. We now investigate how di!cult it can

be to manually bootstrap the system. We assume that a network operator is o"ered

clusters of ßows, and s/he has to use her/his domain knowledge to provide labels.

We consider the Dataset-4S trace and ignore all the DPI labels. In other words, no

labels are provided to SeLeCT. At the end of the Þrst batch, the operator has to analyze

the clusters that have been formed to label them.

3.7.2.1 dominatedPort Clusters

To assign a label, the information provided by the srvPort for dominatedPort clusters

proves to be very valuable. Table3.5 reports the srvPort and the number of correspond-

ing dominatedPort clusters on the Þrst and second row, respectively, while the third row

reports the class label that we assigned. Overall, protocols running on well-known ports

are straightforward to identify. Notice that SeLeCT can identify several clusters that

refer to the same protocol (e.g., 46 clusters of HTTP ßows). In general, the number of

clusters is proportional to i) the number of ßows, and ii) the variability of the services

o"ered on a given protocol.

It is interesting that SeLeCT naturally created some clusters whose protocol was not

known to the DPI. These clusters are highlighted using bold fonts. By simply searching

the web, protocols are easily identiÞed: Port 1935 is used by the Macromedia ßash

server to stream videos using the RTMP protocol; port 4662 is the default eMule port.

At last, port 5223 is used by Apple push notiÞcation service for iOS devices running

over TLS, and port 12350 cluster contains ßows going to Skype Inc. managed servers

(see above). Following this approach, 136 clusters can be immediately labeled. Only one

cluster dominated by srvPort = 88 remains ambiguous. Looking at the closest cluster,

it reveals that ßows in this cluster are very likely to be HTTP ßows, since the 6 closest

clusters are HTTP clusters. A simple packet inspection on some ßows conÞrms this

hypothesis. This process can be possibly automated in the future.

Once SeLeCT is augmented with the knowledge of these labels, ßows are correctly clas-

siÞed in all subsequent batches thanks to the seeding mechanism. From Figure3.7, we

can see that more than 80% of ßows are typically clustered indominatedPort clusters

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 41

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l [

%
]

Batch

S=1
S=2
S=3

Figure 3.5: eMule recall when onlyS labeled clusters are used as bootstrap at batch
1 for Dataset-4S.

at the end of step 3. In other words, more than 80% of ßows can be easily labeled using

simple information obtained from the dominating srvPort , whose accuracy is close to

100% (refer to Figure3.3).

3.7.2.2 randomPort clusters

At the last iteration, SeLeCT disables the port Þlters in doClustering() and the re-

maining 10-20% of ßows are clustered inrandomPort clusters. The analysis of those

clusters is expected to be more complicated since thesrvPort information is, by con-

struction, providing limited information. First of all, it is easy to see whether a cluster

is grouping some P2P protocol or traditional client-server protocols by looking at the

srcIP, dstIP of ßows, as proposed in [15, 36].

Interestingly, srvPort analysis still provides vital clues about the protocol when analyz-

ing the port number frequency distribution by considering all ßows in a cluster together.

For instance, consider a P2P protocol in which the user can manually change the port

used by the application. It is very likely that the port the user would choose is ÒsimilarÓ

to the default number o"ered by the application, therefore biasing the port frequency

distribution. Consider a cluster in which the topmost ports are 4664, 4661, 8499, 7662,

6662, 5662, 4663, 64722,. . . The intuition suggests to label ßows in that cluster as

eMule whose default port is 4662 (which turns out to be the correct label). On the

contrary, clusters in which port numbers are uniformly distributed clearly suggest that

the application itself is enforcing a random port selection, as done, e.g., by most popular

BitTorrent applications.

At last, packet inspection can been considered as another option to labelrandomPort

clusters. Unlike traditional per-ßow analysis, the inspection of clustered ßows simpliÞes

the identiÞcation of signatures since a set of ßows is exposed and can be analyzed in

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 42

 75

 80

 85

 90

 95

 100

 1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y
[%

]

Batch

DS-4S

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

P
re

ci
si

on
 [%

]

Batch

HTTPS
POP3

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l [

%
]

Batch

HTTPS
POP3

Figure 3.6: New protocols suddenly appear: HTTPS tra!c is added at batch 3, and
POP3 tra!c is added at batch 6 in Dataset-4S.

parallel to identify common headers. Once a label has been found, SeLeCT extend it to

all the ßows in the same cluster.

3.7.3 Seeding evolution

To show the ability of SeLeCT to increase its knowledge over time, we perform the

following experiment. Consider Dataset-4S and focus on the eMule ßows not having

the default 4662 srvPort (which are clustered asdominatedPorts clusters). At the

end of batch 1 processing, only the largestS randomPort clusters are manually labeled

as eMule (e.g., by checking the port number distribution as above). Labeled ßows are

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 43

then used to bootstrap the seeding process. Figure3.5 reports the recall evolution over

the di"erent batches for di"erent values of S. For S = 3, corresponding to only 28%

ßows selected as bootstrap at the end of batch 1, SeLeCT already achieves 98% of recall

at batch 10. Worst case precision is 98.6%. These results show that SeLeCT seeding

process is successfully bootstrapped even if onlyS = 1 cluster is used as initial seed.

We now perform another experiment in which we simulate the sudden appearance of a

new class of tra!c. We consider the Dataset-4S trace, from which we removed all POP3

and HTTPS ßows. Then, during the third and sixth batch, HTTPS and POP3 tra!c

is injected to simulate the sudden birth of new protocols. We run SeLeCT over all 10

batches. Results are reported in Fig.3.6. The top plot reports the overall accuracy, while

middle and bottom plots report precision and recall, respectively. Notice how SeLeCT

rapidly detects the presence of new tra!c classes. In particular, at batch 3, accuracy

severely drops since HTTPS ßows are labeled as ÒUnknownÓ. We then bootstrap the

HTTPS seeding as before, i.e., by labeling the largest Unknown tra!c cluster as HTTPS.

Bootstrapping in this case is much faster then for eMule thanks to the purity of HTTPS

clusters. Indeed, at batch 4, accuracy returns to 97.5%, and HTTPS precision and recall

approach 100%.

At batch 6, the same transient is observed when POP3 ßows are injected. Being their

number small, the impairment on accuracy is less evident. Then, from batch 7 on, the

bootstrapping of the POP3 protocol is completed so that accuracy, recall and precision

get back to excellent values.

These examples show that SeLeCT allows an easy identiÞcation of protocols that, in

our example, were not detected by the DPI because no signature was present. This

enhances the operatorÕs network visibility by providing homogeneous clusters of ßows

whose analysis is much easier, due to the aggregated information provided by the ßows

in the cluster.

3.8 Parameter sensitivity analysis

In this section we present an extended set of experiments to evaluate the impact of the

parameter choices on SeLeCT. In general, SeLeCT is very robust to various parameter

settings and its behavior is stable in di"erent scenarios. In this section, we report some

of the most interesting Þndings.

3.8.1 Setting Þltering parameters

Figure 3.7 reports the percentage of clustered ßows during di"erent iterations of the

iterative clustering. Only Server datasets are considered for the sake of simplicity. As

we can see, SeLeCT clusters most of the ßows during step 1, when there are many

dominatedPort clusters (i.e., clusters in which most of the ßows involve the same port).

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 44

 50

 60

 70

 80

 90

 100

Step 1 Step 2 Step 3 Step 4

C
lu

st
er

ed
 fl

ow
s

[%
]

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

Figure 3.7: Fraction of clustered ßows at each step.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

D
om

in
at

in
g

F
lo

w
 [%

]

Cluster ID

Step 1
Step 2
Step 3

Figure 3.8: Fraction of ßows directed to the dominating srvPort in each cluster for
di"erent steps for Dataset-4S.

Small clusters and outlier ßows are discarded and passed to step 2. At this point, an

additional fraction of dominatedPort clusters are identiÞed, allowing to add about 10-

15% more ßows. This Þltering is repeated one more time at step 3 when another 5-10%

of ßows is clustered. As a last step, SeLeCT looks forrandomPort clusters and an

additional fraction of ßows gets properly clustered (e.g., P2P protocols). As the curves

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 45

suggest, the beneÞt of adding moredominatedPort Þltering phases is limited, and little

improvement is achieved by settingitermax larger than 3.

To conÞrm this intuition, Figure 3.8 reports, for each step, the fraction of ßows directed

to the dominating port in each cluster with more than minPoints ßows. Clusters are

sorted in decreasing fraction for ease of visualization. The number ofdominatedPort

clusters is large during step 1, with 70 clusters having more than 50% of ßows that

are directed to the samesrvPort . Given portF raction = 0 .5, SeLeCT picks ßows in

these clusters. In step 2, the number ofdominatedPort clusters decreases, and only 17

clusters pass theportF raction = 0 .5 Þlter. In step 3, very fewdominatedPort clusters

are present. This conÞrms the intuition that it is useless to add more than 3 steps

because the information carried by thesrvPort has already been exploited. In addition,

the intuition suggests to relax the portF raction threshold during the last step, thus we

set portF raction = 0 .2.

3.8.2 Sensitivity to portF raction

 80

 85

 90

 95

 100

 0 20 40 60 80 100

A
cc

ur
ac

y
[%

]

PortFraction [%]

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 20 40 60 80 100

F
ra

ct
io

n
of

 c
lu

st
er

ed
 p

oi
nt

s
[%

]

PortFraction [%]

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100

N
um

be
r

of
 c

lu
st

er
s

PortFraction [%]

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

Figure 3.9: Sensitivity analysis to portF raction : accuracy, fraction of clustered ßows
and number of clusters in left, middle and right plot.

To complete the sensitivity analysis, Fig. 3.9 shows how the choice ofportF raction

impacts performance. More speciÞcally, the left plot, which reports the overall accuracy,

shows that the impact on accuracy is limited, and only values larger than 80% exhibit

some severe degradation on accuracy (note the y-range). The middle plot, which shows

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 46

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 20 40 60 80 100 120 140

A
cc

ur
ac

y
[%

]

K

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 20 40 60 80 100 120 140

N
um

be
r

of
 c

lu
st

er
s

K

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 20 40 60 80 100 120 140

C
lu

st
er

ed
 fl

ow
s

[%
]

K

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 20 40 60 80 100 120 140

A
cc

ur
ac

y
[%

]

K

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 20 40 60 80 100 120 140

N
um

be
r

of
 c

lu
st

er
s

K

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 20 40 60 80 100 120 140

C
lu

st
er

ed
 fl

ow
s

[%
]

K

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

Figure 3.10: Sensitivity to k.

the fraction of clustered points, suggests to select smaller values forportF raction , since

this results in a larger fraction of clustered ßows. However, a trade-o" is shown in

the right plot, because the number of clusters notably increases for small values of

portF raction . Small values cause the algorithm to accept a lot of clusters in the Þrst

Þltering steps (refer to Fig.3.8), causing the total number of clusters to increase rapidly.

Values of 0.3 < portF raction < 0.8 o"er a good trade-o".

3.8.3 Sensitivity to k and minPoints

Finally, we show the sensitivity of k and minPoints in Figures 3.10 and 3.11, respec-

tively. Plots report the overall accuracy, number of clusters, and the fraction of clustered

ßows from left to right, the Client and Server ßows on the top and bottom plots, re-

spectively. Figure 3.10shows that accuracy is typically higher than 90% except for very

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 47

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30

A
cc

ur
ac

y
[%

]

MinPoints

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 100

 120

 140

 160

 180

 200

 220

 240

 0 5 10 15 20 25 30

N
um

be
r

of
 c

lu
st

er
s

MinPoints

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30

C
lu

st
er

ed
 fl

ow
s

[%
]

MinPoints

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30

A
cc

ur
ac

y
[%

]

MinPoints

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 100

 120

 140

 160

 180

 200

 220

 240

 0 5 10 15 20 25 30

N
um

be
r

of
 c

lu
st

er
s

MinPoints

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30

C
lu

st
er

ed
 fl

ow
s

[%
]

MinPoints

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

Figure 3.11: Sensitivity to MinP oints .

small values ofk. Larger values ofk improve accuracy, since SeLeCT is allowed to form

more clusters. This is conÞrmed by the total number of clusters which increases almost

linearly with k up to a saturation point. However, fragmenting ßows into many clusters

causes cluster size to be small. Hence, the parameter setting,minPoints = 20, Þlters

a larger fraction of ßows, causing the percentage of clustered ßows to decrease. Finally,

notice that Dataset-3C and Dataset-4C are the two most critical scenarios due to the

mix of protocols that is present in this network and the relatively weaker descriptiveness

of the layer-4 features for client ßows.

A similar reasoning applies when varyingminPoints . It has limited impact on the

overall accuracy as already noticed in Figure3.3, while the number of clusters and the

fraction of clustered ßows exhibit an inverse dependence onminPoints : small values

cause both of these metrics to grow quickly, whileminPoints higher than 15-20 starts

Chapter 3. SeLeCT: Self-Learning ClassiÞer for Internet Tra!c 48

showing a saturation. This is true especially for the Server datasets.

Overall, the choice ofk and minPoints is not critical; choosingk = 100 and minPoints =

20 allows a good trade-o" between high accuracy, limited number of clusters, and large

fraction of clustered ßows.

3.8.4 Complexity

The complexity of SeLeCT is mainly driven by the complexity of the k-means algorithm.

To Þnd the optimal solution consideringn objects, k clusters, and ad dimensional space,

the problem can be optimally solved in O(ndk+1 logn), which would turn out to be

deÞnitively too much for real time applications. However, by considering the centroids

computation and re-clustering steps for a Þxed number of iterations, the computational

time is deterministic. In our case, we choose the number of iteration to be smaller

than 1,000,000, and we repeat the k-means 10 times to avoid possible bias do to bad

initial centroid choice. Considering these settings, for Dataset-4S, the scenario with the

highest ßow arrival rate, SeLeCT was able to complete the processing of batchn before

the collection of ßows of batchn + 1 was complete, thus enabling real-time operation

even if the current prototype is not optimised. Notice that only ßows that have at least

6 data packets are passed to SeLeCT, i.e., 70-90% of ßows are actually not considered

in practice, see Fig.3.1. As a Þnal note, several functions of SeLeCT can also be run in

parallel.

Chapter 4

Analysis of Twitter Data Using a

Multiple-Level Clustering

Strategy

In recent years, social networks and online communities have become a powerful source

of knowledge. Social network users are used to publish and continuously update multi-

media resources, posts, blogs, etc. Actions undertaken by Web users reßect their habits,

personal interests, and professional skills. Hence, the analysis of the user-generated con-

tent coming from social networks has received an increasingly high attention in several

application contexts. For instance, data mining techniques have already been applied

to recommend personalized services and products based on social annotations [37], [38],

[39], organize and make social knowledge accessible [40], and perform email spamming

based on social networks [41]. In particular, data mining from UGC published on the

popular Twitter micro-blogging Website has achieved promising results in the analysis

of most notable user behaviors [42], [43] and topic trends [44].

Twitter textual data (i.e., tweets) can be analysed to discover user thoughts associated

with speciÞc events, as well as aspects characterizing events according to user perception.

Clustering techniques can provide a coherent summary of tweets, which can be used to

provide summary insight into the overall content of the underlying corpus. Nevertheless

clustering is a widely studied data mining problem in the text domain, clustering twitter

messages imposes new challenges due to their inherent sparsness.

This Chapter proposes a data analysis framework to discover, in a data collection with

a variable distribution, cohesive and well-separated groups of tweets. Our framework

exploits a multiple-level clustering strategy that iteratively focuses on disjoint dataset

portions and locally identiÞes clusters. The density-based DBSCAN algorithm [45] has

been adopted because it allows the identiÞcation of arbitrarily shaped clusters, is less

susceptible to noise and outliers, and does not require the speciÞcation of the number

49

Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 50

of expected clusters in the data. To highlight the relevance of speciÞc words for a given

tweet or set of tweets, they have been represented in the Vector Space Model (VSM)

[46] using the TF-IDF weighting score [46]. The cluster content has been compactly

represented with the most representative words appearing in their tweets based on the

TF-IDF weight. Association rules representing word correlations are also discovered

to point out in a compact form the information characterizing each cluster. To our

knowledge, this work is the Þrst study addressing a jointly exploitation of a multiple-

level clustering strategy with association rules for tweet analysis.

As a reference case study, the proposed framework has been applied to two real datasets

retrieved from Twitter. The results showed that, starting from a tweet collection, the

framework allows the identiÞcation of clusters containing similar messages posted on an

event. The multiple-level strategy iterated for three levels compute clusters that pro-

gressively contain longer tweets describing the event through a more varied vocabulary,

talking about some speciÞc aspects of the event, or reporting user emotions associated

with the event.

4.1 Motivating example

Tweets are short, user-generated, textual messages of at most 140 characters long and

publicly visible by default. For each tweet a list of additional features (e.g., GPS coor-

dinates, timestamp) on the context in which tweets have been posted is also available.

This Chapter focuses on the analysis of the textual part of Twitter data (i.e., on tweets)

to provide summary insight into some speciÞc aspects of an event or discover user

thoughts associated with speciÞc events. Clustering techniques are used to identify

groups of similar tweets. Cluster analysis partitions objects into groups (clusters) so

that objects within the same group are more similar to each other than those objects

assigned to di"erent groups [13]. Each cluster is then compactly described through the

most representative words occurring in their tweets and the association rules modeling

correlations among these words. Association rules [47] identify collections of itemsets

(i.e., sets of words in the tweet analysis) that are statistically related in the underlying

dataset. Association rules are usually represented in the formX) Y , where X and Y

are disjoint itemsets (i.e., disjoint conjunctions of words).

A simpliÞed example of the textual part of two Twitter messages is shown in Figure4.1.

Both tweets regard the Paralympic Games that took place in London in year 2012. As

described in Section4.3.1, to suit the textual data to the subsequent data mining steps,

tweets are preprocessed in the framework by removing links, stopwords, no-ascii chars,

mentions, and replies.

Our proposed framework assigns the two example tweets to two di"erent clusters, due

to their quite unlike textual data. Both example tweets contain words as

Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 51

{ paralympics, olympic, stadium } , overall describing the paralympics event. In addition,

{ f ireworks, closingceremony } and

{ amazing, athletics } are the representative word sets for Tweets 1 and 2, respectively,

reporting the speciÞc subject of each message. The association rules

{ closingceremony) f ireworks } and

{ amazing) athletics } model correlations among representative words in the two

tweets. They allow us to point out in a compact form the representative information

characterizing the two messages. While the Þrst tweet talks about a speciÞc event in

the closing ceremony (i.e., the Þreworks), the second one reports a positive opinion of

people attending the event.

TWEET 1 - text: {Fireworks on! paralympics closingceremony at Olympic Stadium}

TWEET 2 - text: {go to Olympic Stadium for amazing athletics at Paralympics}

Figure 4.1: Two simpliÞed example tweets

4.2 Related work

The application of data mining techniques to discover relevant knowledge from the User

Generated Content (UGC) of online communities and social networks has become an

appealing research topic. Many research e"orts have been devoted to improving the

understanding of online resources [42, 48], designing and building query engines that

fruitfully exploit semantics in social networks [49, 50], and identifying the emergent

topics [43, 51]. Research activity has been carried out to on Twitter data to discover

hidden co-occurrences [42] and associations among Twitter UGC [44, 52, 53], and analyse

Twitter UGC using clustering algorithms [54Ð56].

SpeciÞcally, in [42] frequently co-occurring user-generated tags are extracted to discover

social interests for users, while in [53] association rules are exploited to visualize relevant

topics within a textual document collection. [44] discovers trend patterns in Twitter

data to identify users who contribute towards the discussions on speciÞc trends. The

approach proposed in [52], instead, exploits generalized association rules for topic trend

analysis. A parallel e"ort has been devoted to studying the emergent topics from Twitter

UGC [43, 51]. For example, in [43] bursty keywords (i.e., keywords that unexpectedly

increase the appearance rate) are Þrstly identiÞed. Then, they are clustered based on

their co-occurrences.

Research works also addressed the Twitter data analysis using clustering techniques.

[54] proposed to overcome the short-length tweet messages with an extended feature

vector along with a semi-supervised clustering technique. The wikipedia search has

Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 52

been exploited to expand the feature set, while the bisecting k-Means has been used

to analyze the training set. In [55], the Core-Topic-based Clustering (CTC) method

has been proposed to extract topics and cluster tweets. Community detection in social

networks using density-based clustering has been addressed in [56] using the density-

based OPTICS clustering algorithm.

Unlike the above cited papers, our work jointly exploits a multiple-level clustering tech-

nique and association rules mining to compactly point out, in tweet collections with a

variable distribution, the information posted on an event.

4.3 The Proposed Multiple-Level Clustering Framework

The proposed framework to analyse Twitter data is shown in Figure4.2 and detailed in

the following subsections.

The textual content of Twitter posts (i.e., the tweets) is retrieved through the Twitter

Stream APIs (Application Programming Interfaces) and preprocessed to make it suitable

for the subsequent mining steps. The multiple-level clustering approach is then applied

to discover, in a dataset with a variable distribution, groups of tweets with a similar

informative content. The DBSCAN algorithm has been exploited for the cluster analysis.

Clustering results are evaluated through the Silhouette [57] quality index, balancing both

intra-cluster homogeneity and inter-cluster separation. To analyse tweets contained in

the cluster set, each cluster has been characterized with the most representative words

appearing in its tweets and the association rules modeling correlations among these

words. We validated both the meaning and the importance of the information extracted

from the tweet datasets with the support of news available on the web. This allows us

to properly frame the context in which tweets were posted.

4.3.1 Twitter Data Collection and Preprocessing

Tweet content and their relative contextual data are retrieved through the Stream Appli-

cation Programming Interfaces (APIs). Data is gathered by establishing and maintaining

a continuous connection with the stream endpoint.

To suit the raw tweet textual to the following mining process, some preliminary data

cleaning and processing steps have been applied. The textual message content is Þrst

preprocessed by eliminating stopwords, numbers, links, non-ascii characters, mentions,

and replies. Then, it is represented by means of the Bag-of-Word (BOW) representation

[46].

Tweets are transformed using the Vector Space Model (VSM) [46]. Each tweet is a vector

in the word space. Each vector element corresponds to a di"erent word and is associated

with a weight describing the word relevance for the tweet. The Term Frequency (TF)

- Inverse Document Frequency (IDF) scheme [46] has been adopted to weight word

Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 53

Twitter data
collection

and
preprocessing

Tweet
dataset

Cluster analysis

Representative
Words and

Rules extraction

Representative
Words and Rules

Cluster set

Cluster
evaluation

News
on the event

Extracted
knowledge

Data collection and Preprocessing

Cluster analysis

Cluster evaluation

Figure 4.2: The proposed multiple-level clustering framework for tweet analysis

frequency. This data representation allows highlighting the relevance of speciÞc words

for each tweet. It reduces the importance of common terms in the collection, ensuring

that the matching of tweets is more inßuenced by discriminative words with relatively

low frequency in the collection. In short-messages as tweets, the TF-IDF weighting score

could actually boild down to a pure IDF due to the limited word frequency within each

tweet. Nevertheless, we preserved the TF-IDF approach to consider also possible word

repetitions.

The tweet collection is then partitioned based on trending topics, identiÞed by analysing

the most frequent hashtags. A dataset partition is analyzed as described in the following

sections.

4.3.2 Cluster Analysis

Di"erently from other clustering methods, density-based algorithms can e"ectively dis-

cover clusters of arbitary shape and Þlter out outliers, thus increasing cluster homogene-

ity. Additionally, the number of expected clusters in the data is not required. Tweet

datasets can include outliers as messages posted on some speciÞc topics and clusters can

be non-spherical shaped. Besides, the expected number of clusters can be hardly guessed

a priori, because our aim is discovering groups of similar tweets through an explorative

data analysis. For these reasons, the DBSCAN density-based method has been selected

for tweet cluster analysis.

In the DBSCAN algorithm [45], clusters are identiÞed as dense areas of data objects

surrounded by an area of low density. Density is evaluated based on the user-speciÞed

Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 54

parametersEps and MinP ts . A dense region in the data space is a n-dimensional sphere

with radius Eps and containing at least MinP ts objects. DBSCAN iterates over the

data objects in the collection by analyzing their neighborhood. It classiÞes objects as

being (i) in the interior of a dense region (a core point), (ii) on the edge of a dense region

(a border point), or (iii) in a sparsly occupied region (a noise or outlier point). Any two

core points that are close enough (within a distanceEps of one another) are put in the

same cluster. Any border point close enough to a core point is put in the same cluster

as the core point. Outlier points (i.e., points far from any core point) are isolated.

One single execution of DBSCAN discovers dense groups of tweets according to one

speciÞc setting of theEps and MinP ts parameters. Tweets in lower density areas are

labeled as outliers and not assigned to any cluster. Hence, di"erent parameter settings

are needed to discover clusters in datasets with a variable data distribution as the one

considered in this study.

In application domains where data collections have a variable distribution, clustering

algorithms can be applied in a multiple-level fashion [58]. In this study we coupled a

multiple-level clustering approach with association rule mining to discover representative

clusters and the information characterizing them. Our approach iteratively applies the

DBSCAN algorithm on di"erent (disjoint) dataset portions. The whole original dataset

is clustered at the Þrst level. Then, at each subsequent level, tweets labeled as outliers

in the previous level are re-clustered. The DBSCAN parametersEps and MinP ts are

properly set at each level by addressing the following issues. To discover representative

clusters for the dataset, we aim at avoiding clusters including few tweets. In addition,

to consider all di"erent posted information, we aim at limiting the number of tweets

labeled as outliers and thus unclustered.

The cosine similarity measure has been adopted to evaluate the similarity between tweets

represented in the VSM model using the TF-IDF method. This measure has been often

used to compare documents in text mining [46].

4.3.3 Cluster Evaluation

The discovered cluster set is evaluated using the Silhouette index [59]. Silhouette allows

evaluating the appropriateness of the assignment of a data object to a cluster rather

than to another by measuring both intra-cluster cohesion and inter-cluster separation.

The silhouette value for a cluster C is the average silhouette value on all its tweets.

Negative silhouette values represent wrong tweet placements, while positive silhouette

values a better tweet assignments. Clusters with silhouette values in the range [0.51,0.70]

and [0.71,1] respectively show that a reasonable and a strong structure have been found

[59]. The cosine similarity metric has been used for silhouette evaluation, since this

measure was used to evaluate tweet similarity in the cluster analysis (see Section4.3.2).

Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 55

Each cluster has been characterized in terms of the words appearing in its tweets and

the association rules modeling strong correlations among these words. News available

on the web are used to properly frame the context in which tweets were posted and

validate the extracted information. SpeciÞcally, the most representative words for each

cluster are highlighted. These words are the relevant words for the cluster based on

the TF-IDF weight. They occur with higher frequency in tweets in the cluster than in

tweets contained in other clusters.

The quality of an association rule X) Y , with X and Y disjoint itemsets (i.e., sets of

words in this study), is usually measured by rule support and conÞdence. Rule support

is the percentage of tweets containing bothX and Y . Rule conÞdence is the percentage

of tweets with X that also contain Y , and describes the strength of the implication.

To rank the most interesting rules, we also used the lift index [13], which measures the

(symmetric) correlation between setsX and Y . Lift values below 1 show a negative

correlation between setsX and Y , while values above 1 indicate a positive correlation.

The interest of rules having a lift value close to 1 may be marginal. In this work, to

mine association rules representing strong word correlations, rules with high conÞdence

value and lift grater than one have been selected.

4.4 Experimental results

This section presents and discusses the preliminary results obtained when analysing two

real collections of twitter messages with the proposed framework.

4.4.1 Datasets

We evaluated the usefulness and applicability of the proposed approach on two real

datasets retrieved from Twitter. Our framework exploits a crawler to access the Twitter

global stream e!ciently. To generate the real Twitter datasets we monitored the public

stream endpoint o"ered by the Twitter APIs over a 1-month time period and tracked

a selection of keywords ranging over two di"erent topics, i.e., Sport and Music. The

crawler establishes and maintains a continuous connection with the stream endpoint to

collect and store Twitter data.

For both Twitter data collections, we analyzed the most frequent hashtags to discover

trending topics. Among them, we selected the following two reference datasets for our

experimental evaluation: the paralympics and the concert datasets. Theparalympics

dataset contains tweets on the Paralympic Games that took place in London in year

2012. Theconcert dataset contains tweets on the MadonnaÕs concert held in September

6, 2012, at the Yankee Stadium located at The Bronx in New York City. Madonna is an

American singer-songwriter and this concert was part of the ÓMdna 2012 World TourÓ.

Tweets in each dataset are preprocessed as described in Section4.3.1. Hashtags used for

Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 56

tweets selection have been removed from the corresponding dataset, because appearing

in all its tweets.

The main characteristics of the two datasets are as follows. The paralympics dataset

contains 1,696 tweets with average length 6.89. The concert dataset contains 2,960

tweets with average length 6.38.

4.4.2 Framework ConÞguration

In the proposed framework, the procedures for data transformation and cluster evalua-

tion have been developed in the Java programming language. These procedures trans-

form the tweet collection into the VSM representation using the TF-IDF scheme and

compute the silhouette values for the cluster set provided by the cluster analysis. The

DBSCAN [45] and FPGrowth [47] algorithms available in the RapidMiner toolkit [14]

have been used for the cluster analysis and association rule extraction, respectively.

To select the number of iterations for the multiple-level clustering strategy and the

DBSCAN parameters for each level, we addressed the following issues. We aim at

avoiding clusters including few tweets, to discover representative clusters, and at limiting

the number of unclustered tweets, to consider all posted information. For both datasets

we adopted a three-level clustering approach, with each level focusing on a di"erent

dataset part. The Eps and MinP ts values at each iteration level for the two datasets

are reported in Section4.4.3.

To extract association rules representing strong correlations among words appearing in

tweets contained in each cluster, we considered a minimum conÞdence threshould greater

than or equal to 80%, lift greater than 1, and a minimum support threshold greater than

or equal to 10%.

4.4.3 Analysis of the Clustering Results

Starting from a collection of Twitter data related to an event, the proposed framework

allows the discovery of a set of clusters containing similar tweets. The multiple-level

DBSCAN approach, iterated for three levels, computed clusters progressively containing

longer tweets, that (i) describe the event through a more varied vocabulary, (ii) focus on

some speciÞc aspects of the event, or (ii) report user emotions and thoughts associated

with the event.

First-level clusters contain tweets mainly describing general aspects of the event. Second-

level clusters collect more diversiÞed tweets that describe some speciÞc aspects of the

event or express user opinions about the event. Tweets become progressively longer

and more focused in third-level clusters, indicating that some additionally speciÞc as-

pects have been addressed. Since at each level clusters contain more speciÞc messages,

a lower number of tweets are contained in each cluster and the cluster size tends to

Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 57

reduce progressively. By further applying the DBSCAN algorithm on the subsequent

levels, fragmented groups of tweets can be identiÞed. Clusters show good cohesion and

separation as they are characterized by high silhouette values. Both the meaning and

the importance of the information extracted from the two datasets has been validated

with the support of news on the event available on the web.

Cluster properties are discussed in detail in the following subsections. Tables4.1 and

4.2 report, for each Þrst- and second-level cluster in the two datasets, the number of

tweets, the average tweet length, the silhouette value, and the most representative words.

Representative association rules are also reported, pointing out in a compact form the

discriminative information characterizing each cluster. Clusters are named asCi j in the

tables, wherej denotes the level of the multiple-level DBSCAN approach providing the

cluster and i locally identiÞes the cluster at each levelj .

4.4.3.1 Tweet Analysis in the Paralympics Dataset.

First-level clusters can be partitioned into the following groups: clusters containing

tweets that (i) post general information about the event (clusters C11 and C21), (ii) re-

gard a speciÞc discipline (C31) or team (C41 and C51) among those involved in the event,

(iii) report user emotions (C61), and (iv) talk about the closing ceremony (C71).

SpeciÞcally, clustersC11 and C21 mainly contains information about the event loca-

tion (rule { london}) { stadium, olympics }). Clusters C41 is about the Great Britain

team taking part in the Paralympics event (rule { teamgb}) { olympic}). Clusters

C31 and C61 focus on the athletics discipline. While clusterC31 simply associates ath-

letics with the Olympic event, users in cluster C61 express their appreciation on the

athletics competitions they are attending (rule { athletics }) { amazing, day}). Finally,

tweets in cluster C71 talk about the seats of people attending the Þnal ceremony (rule

{ closingceremony, stadium}) { seats}).

Second-level clusters contain more diversiÞed tweets. The following categories of clusters

can be identiÞed: clusters with tweets posting information on (i) speciÞc events in the

closing ceremony (clustersC12 and C22), (ii) speciÞc teams (clusterC32) or competitions

(cluster C42) in Paralympics, and (iii) thoughts of people attending Paralympics (cluster

C52).

More in detail, cluster C12 focuses on the ßame that was put out on the day of the clos-

ing celebration (rule { stadium, london }) { f lame, closingceremony}), while cluster

C22 is on the Þreworks that lit up LondonÕs Olympic stadium in the closing ceremony

(rule { stadium, closingceremony}) { f ireworks }). Cluster C32 is about the Great

Britain team taking part to athletics discipline (rule { teamgb, park}) { athletics }).

Tweets in cluster C42 address the Þnal basketball competition in the North Green-

wich Arena. They contain the information about the event location and the German

Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 58

womenÕs team involved in the competition (rules{ f inal }) { north, germany } and

{ f inal }) { basketball, germany}). Tweets in cluster C52 show an enthusiastic feeling

on Paralympics (rule { stadium, olympic }) { london, fantasticf riday }) and the desire

to share pictures on them (rule{ pic, dreams}) { stadium, time }).

Third-level clusters (with DBSCAN parameters MinP ts = 15, Eps = 0 .65) show a

similar trend to second-level clusters. For example, clusters contain tweets on some

speciÞc aspects of the closing ceremony, as the participation of the ColdPlay band (rule

{ london}) { coldplay, watching}), or tweets about a positive feeling on the Paralympics

event (rules { love}) { summer, olympics} and { gorgeous}) { day}). By stopping the

multiple-level DBSCAN approach at this level, 808 tweets labeled as outliers remain

unclustered, with respect to the initial collection of 1,696 tweets.

4.4.3.2 Tweet Analysis in the Concert Dataset.

Among Þrst-level clusters, we can identify groups of tweets mainly posting information on

the concert location (clustersC11 , C21 , and C31 with rule { concert, mdna}) { yankee}).

The remaining clusters talk about some aspects of the concert. For example, clusterC41

regards the opening act (rule { yankee, stadium}) { opening, act}). Cluster C51 is

on the participation of the Avicii singer (rule { wait }) { yankee, avicii }), cluster C61

on the ÓforgiveÓ writing on MadonnaÕs back (rule{ forgive }) { stadium, nyc }), and

cluster C71 is about the raining weather (rule { rain }) { yankee, stadium}). Finally,

cluster C81 regards people sharing concert pictures (rule{ queen}) { instagram }).

In second-level clusters, tweets focus on more speciÞc aspects related to the concert. For

example tweets in clusterC22 refer to Madonna with the ÓmadgeÓ nickname typically

used by her fans (rule{ singing }) { stadium, madge}).

Similar to the paralympics dataset, also in the concert dataset third-level clusters (with

DBSCAN parameter Eps=0.77 and MinP ts =23) show a similar trend to second-level

clusters. For example, clusters contain tweets regarding some particular songs. At this

stage, 1660 tweets labeled as outliers remain unclustered, with respect to the initial

collection of 2,960 tweets considered at the Þrst level.

4.4.4 Performance Evaluation

Experiments were performed on a 2.66 GHz Intel(R) Core(TM)2 Quad PC with 8 GB

main memory running linux (kernel 3.2.0). The run time of DBScan at the Þrst, second,

and third level is respectively 2 min 9 sec, 1 min 9 sec, and 48 sec for the paralympics

dataset, and 4 min 4 sec, 1 min 53 sec, and 47 sec for the concert dataset. The run time

progressively reduces because less tweets are considered at each subsequent level. The

time for association rule extraction is about 24 sec for the cluster set at each level.

Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 59

Table 4.1: First- and second-level clusters in the paralympics dataset (DBSCAN
parametersMinP ts =30, Eps=0.39 and MinP ts =25, Eps=0.49 for Þrst- and second-

level iterations, respectively)

First-level clusters

Cluster Tweets Avg Avg Words Association Rules
Length Sil

C11 70 3 1 olympic, stadium olympic " stadium
C21 30 7.33 0.773 olympics, london, stadium london" stadium, olympics

C31 124 4.47 0.603 london, park, athletics, day
london, day " athletics
olympic " park, athletics

C41 30 6.67 0.710 heats, teamgb, olympic
teamgb" olympic
heats" teamgb

C51 30 5.67 0.806 mens, olympic, stadium mens" olympic

C61 40 6 0.620 day, pic, amazing, athletics
athletics " amazing, day
day, pic " stadium

C71 36 5.72 0.804 closingceremony, seats, park, stadium
closingceremony, stadium " seats
olympic, park " closingceremony

Second-level clusters

Cluster Tweets Avg Avg Words Association Rules
Length Sil

C12 90 5.67 0.398
ßame, closingceremony,

london, stadium
stadium,london " ßame,closingceremony

C22 36 6.67 0.616
Þreworks, closingceremony,

hart, stadium
stadium,closingceremony " Þreworks
Þreworks, hart " stadium

C32 26 6.08 0.722
teamgb, athletics, park,

olympic, london

teamgb, park " olympic
teamgb, park " athletics
olympic, park " teamgb, london

C42 34 9.65 0.502
greenwich, north, arena, basketball

germany, Þnal, womens

Þnal" north, germany
Þnal" basketball, germany
Þnal" womens, germany

C52 40 6.5 0.670
fantasticfriday, dreams, time, pic

olympic, london, stadium

pic, dreams" stadium,time
stadium,olympic " london, fantas-
ticfriday

Table 4.2: First- and second- level clusters in the concert dataset (DBSCAN parame-
ters MinP ts =40, Eps=0.41 and MinP ts =21, Eps=0.62 for the Þrst- and second-level

iterations, respectively)

First-level clusters

Cluster Tweets Avg Avg Words Association Rules
Length Sil

C11 148 5.05 0.817 concert, mdna, yankee, stadium
concert, yankee" stadium
concert, mdna " yankee

C21 340 4 1 bronx, yankee, stadium yankee, stadium " bronx
C31 160 3 1 yankee, stadium stadium " yankee

C41 40 6 0.950
opening, act, mdna,

yankee, stadium
act" opening
yankee, stadium " opening, act

C51 60 6 0.779 avicii, wait, concert wait " yankee, avicii
C61 84 6.19 0.794 forgive, nyc, mdna, stadium forgive" stadium, nyc
C71 40 7 0.986 rain, yankee, stadium rain " yankee, stadium
C81 40 6 0.751 queen, instagram, nyc queen" instagram

Second-level clusters

Cluster Tweets Avg Avg Words Association Rules
Length Sil

C12 60 6.67 0.523 raining, mdna, stop raining " mdna, stop

C22 40 7 0.667 madge, dame, named, singing
singing" stadium, madge
madge, singing, named" stadium,
dame

C32 44 7.64 0.535
surprise, brother, birthday,

avicii, minute
yankee, stadium, surprise " birthday

C42 22 8.55 0.893
style, way, vip, row

livingthedream
style" vip, livingthedream

Chapter 5

Analyzing Twitter

User-Generated Content Changes

In the previous Chapter, we proposed a novel analysis framework to discover, in a data

collection with a variable distribution, cohesive and well-separated groups of tweets.

Besides that, Twitter user-generated content consists of a large collection of short textual

messages (i.e., the tweets) posted by Web users and their contextual information (e.g.,

publication time and date). Since the Twitter user-generated content and contextual

data continuously evolve over time, a relevant research issue is the application of data

mining techniques to discover most signiÞcant pattern changes. Dynamic itemset mining

[60] entails discovering itemsets that (i) frequently occur in the analyzed data, and (ii)

may change from one time period to another. The history of the main itemset quality

indexes reßects the most relevant temporal data correlation changes. However, the

sparseness of the analyzed data makes dynamic itemset mining from UGC a challenging

task. In fact, potentially relevant itemsets discovered at a certain time period are likely

to become infrequent (i.e., their support value becomes lower than a given threshold)

in at least another one. Hence, the information associated with the discovered itemsets

may be lost, unless lowering the support threshold and mining a huge amount of other

(potentially redundant) itemsets.

This Chapter presents the TwiChI (Twitter Change mIner) system that aims at support-

ing experts in the analysis of Twitter UGC changes targeted to user behavior and topic

trend analysis. TwiChI exploits the Twitter Application Programming Interfaces (APIs)

to retrieve both tweet textual contents and their contextual features (i.e., publication

date, time, place). Data crawling is continuously executed using the Twitter Public

stream endpoint to track the temporal evolution of the frequent itemsets occurring in

the analyzed data. The retrieved data is analyzed by the proposed HiGen Miner algo-

rithm [61], which discovers compact patterns, named the History Generalized Patterns

(HiGens). HiGens represent the evolution of frequent itemsets across consecutive time

61

Chapter 5. Analyzing Twitter User-Generated Content Changes 62

Timestamped tweet dataset ItemSet Support(%)
DJan 2012 (Place, New York City), (Time, 3.45 p.m.) 20%

(Keyword, Obama), (Place, New York City) 10%
DF eb2012 (Place, New York State), (Time, from 3 to 6 p.m.) 50%

(Keyword, President of USA), (Place, New York City) 16%

Table 5.1: Example of HiGens extracted by enforcing the minsup = 10%.

periods. To avoid the discarding of rare but potentially relevant knowledge, itemsets

that become infrequent in a certain time period with respect to the minimum support

threshold are generalized at a higher level of abstraction by exploiting a taxonomy (i.e.,

a set of is-a hierarchies built on data items). A generalized version of a traditional item-

set is an itemset that represents the same knowledge at a higher level of aggregation

according to a given taxonomy [62]. Hence, the knowledge associated with itemsets that

rarely occur at certain time periods is still maintained by replacing the low level itemset

versions with their frequent generalizations with least abstraction level.

Consider, for instance, tweet messages and related contextual information (e.g., publi-

cation time, geographical location) retrieved in the period January and February 2012.

The tweet collection may be partitioned into two distinct monthly time periods. Ana-

lyzing the two sub-collections, the TwiChI framework may discover the HiGens reported

in Table 5.1. Suppose that(Keyword, Obama), (Place, New York City) is the reference

itemset under analysis. Since it occurs frequently in January 2012 according to the

enforced minimum support threshold (i.e., a minimum frequency of occurrence in the

source data), then it is reported for the corresponding time period as is. Instead, since in

February 2012 the reference itemset becomes infrequent, it is generalized by exploiting

an analyst-provided taxonomy. In particular, item (Keyword, Obama) is generalized as

the corresponding government role and the corresponding high level version of the ref-

erence itemset(Keyword, President of USA), (Place, New York City) is reported. Note

that by generalizing the reference itemset at a higher level of abstraction, its associated

information becomes frequent with respect to the support threshold and is kept instead

of the infrequent version.

Experiments, performed on real Twitter datasets, show the applicability of the proposed

system to real-life use-cases. For instance, the HiGen reported in Table5.1 may be used

to discover which Twitter message topics (e.g., politics) are more likely to be matter of

contention in certain time slots. The achieved experimental results show that TwiChI

is particularly suitable for supporting domain expert analysis targeted to user behavior

analysis and topic trend detection.

Chapter 5. Analyzing Twitter User-Generated Content Changes 63

5.1 Related work

This section overviews main state-of-art approaches related to (i) generalized itemset

mining, (ii) dynamic data mining, and (iii) data mining from user-generated content.

5.1.1 Generalized itemset mining

Frequent itemset mining is a widely exploratory data mining technique that allows the

identiÞcation of hidden and interesting correlations among data. Introduced in the con-

text of market basket analysis, this mining activity nowadays Þnds applications in a wide

range of di"erent contexts (e.g., network tra!c characterization [63], context-aware ap-

plications [64]. However, the suitability of data mining approaches for business decisions

strictly depends on the abstraction level of the analyzed data. Traditional frequent item-

set mining algorithms (e.g., Apriori [65], FP-Growth [47]) are sometimes not e"ective in

mining valuable knowledge, because of the excessive detail level of the mined informa-

tion. In fact, to make the mining processcomputationally tractable a minimum support

threshold is commonly enforced to select only the patterns that frequently occur in the

analyzed data. Hence, rare but potentially relevant knowledge is discarded.

Generalized itemsets [62] are patterns that represent high level correlations among data.

By exploiting a taxonomy (i.e., a set of is-a hierarchies) that aggregates data items

into upper level generalizations, generalized itemsets are generated by combining items

belonging to di"erent abstraction levels. Generalized itemsets may allow better sup-

porting the expert decision process than traditional ones, because they provide a high

level view of the analyzed data and also represent the knowledge covered by their low

level infrequent descendants.

The Þrst generalized association rule mining algorithm, namely Cumulate, was presented

in [62]. It is an Apriori-based algorithm that generates generalized itemsets by consid-

ering, for each item, all its parents in the hierarchy. One step further towards a more

e!cient extraction process for generalized association rule mining was based on new op-

timization strategies [66, 67]. In [67] a faster support counting is provided by exploiting

the TID intersection computation, which is common in rule mining algorithms designed

for the vertical data format. Di"erently, in [66] an optimization based on top-down

hierarchy traversal and multiple-support thresholds is proposed. It aims at identifying

in advance generalized itemsets that cannot be frequent by means of an Apriori-like ap-

proach. To further increase the e!ciency of generalized rule mining algorithms, in [68]

a FP-tree based algorithm is proposed, while in [69] both subset-superset and parent-

child relationships in the lattice of generalized itemsets are exploited to avoid generating

meaningless patterns. More recently, in [70] authors propose an algorithm that performs

support-driven itemset generalization, i.e., a frequent generalized itemset is extracted

only if it has at least an infrequent (rare) descendant.

Chapter 5. Analyzing Twitter User-Generated Content Changes 64

This work focuses on analyzing the temporal evolution of generalized itemsets mined

from Twitter data. The mining algorithm integrated in TwiChI [61] extends the gen-

eralization procedure Þrst proposed in [70] to a dynamic context. However, unlike [70],

it does not extract all frequent generalizations of an infrequent low level itemset, but

considers only the ones characterized by minimum abstraction level.

5.1.2 Dynamic data mining

Traditional itemset and association rule mining approaches do not take the temporal

evolution of the extracted itemsets/association rules into account. Instead, dynamic

data mining focuses on tracing the evolution of the main itemset and/or association rule

quality indexes to Þgure out the most signiÞcant temporal changes.

The problem of discovering relevant changes in the history of itemsets or association

rules has already been addressed by a number of previous works [60, 61, 71Ð74]. For

instance, active data mining [60] has been the Þrst attempt to represent and query the

history collection of the discovered association rule quality indexes. Rules are mined from

datasets collected at consecutive time periods and evaluated based on well-known quality

indexes (e.g., support, conÞdence). Then, the analyst is in charge of specifying a history

pattern in a trigger which is Þred when such a pattern trend is exhibiting. The history

patterns are exploited to track most notable pattern index changes. More recently, other

time-related data mining frameworks tailored to monitor and detect changes in rule

quality measures have also been proposed [71, 72, 74]. For instance, in [72], patterns are

evaluated and pruned based on both subjective and objective interestingness measures,

while in [71] authors focus on monitoring pattern mining with a limited computational

e"ort. To this aim, new patterns are observed as soon as they emerge, while old patterns

are removed from the rule base as soon as they become extinct. Furthermore, at one

time period a subset of rules is selected and monitored, while data changes that occur in

subsequent periods are measured by their impact on the rules being monitored. Similarly,

the work proposed in [74] also addresses itemset change mining from time-varying data

streams. Di"erently, in [73] authors deal with rule change mining by discovering two

main types of rules: (i) stable rules, i.e., rules that do not change a great deal over time

and, thus, are likely to be reliable and could be trusted, and (ii) trend rules, i.e., rules

that indicate some underlying systematic trends of potential interest.

Since all the above-mentioned approaches do not consider itemsets/rules at di"erent

abstraction levels, their ability in capturing relevant data correlation changes may be

biased by the support threshold enforcement. In fact, some relevant trends may be dis-

carded, because the underlying recurrences become infrequent at a certain time period.

To overcome this issue, in [61] a dynamic itemset mining approach has recently been

Chapter 5. Analyzing Twitter User-Generated Content Changes 65

proposed. It discovers History Generalized Patterns, which represent a sequence of gen-

eralized itemsets extracted in consecutive time periods. Each HiGen is mainly focused

on a reference itemset, whose support index values are traced in the consecutive time

periods. In case an itemset becomes infrequent in a certain time period, its generaliza-

tion with least abstraction level is maintained to avoid discarding potentially relevant

knowledge. This Chapter proposes a data mining system that discovers History Gener-

alized Patterns from Twitter UGC and exploits them to drive the knowledge discovery

process.

5.1.3 Data mining from user-generated content

The proliferation of the UGC, posted by Web users in di"erent data formats (e.g., posts,

tags, videos), has increased the attention of the research community in developing new

methods to manage and analyze this huge amount of information. The UGC coming from

social networks and online communities is a powerful resource of information which can

be analyzed by means of di"erent data mining approaches. Even if the most signiÞcant

research e"orts have been devoted to improving the performance of recommendation and

categorization systems, in the last several years the analysis and the identiÞcation of the

evolution of the UGC content, user behaviors and interests have been received more and

more attention by the research community. In particular, the proposed approaches are

mainly addressed to (i) improve the knowledge discovery processes from online resources,

(ii) discover topic trends of the news published online and (iii) understand the dynamics

behind social networks and online communities.

One of the main research directions is the discovery of most relevant online community

user behaviors [75, 76]. For instance, in [75] common user activities (e.g., universal

searches, message sending, and community creation) are discovered by means of click-

stream data analysis. Di"erently, [76] study the UGC lifetime by empirically analyzing

the workloads coming from three popular knowledge-sharing online social networks, i.e.,

a blog system, a social bookmark sharing network, and a question answering social

network.

The UGC published on social networks, such as Facebook and Twitter, can be very

useful for proÞling user behaviors and discovering patterns valuable for further analysis.

In particular, several new approaches have been proposed to support knowledge discovery

from Twitter by means of data mining techniques. For instance, TwitterMonitor [43] is

focused on the detection of topic trends from Twitter streams. This system Þrst identiÞes

and clusters the ÒburstyÓ keywords (i.e., keywords that appear in tweets at unusually

high rate), and then performs contextual knowledge extraction to compose an accurate

description of the identiÞed trends. Trend patterns can also be exploited to support

decision-making and recommendation processes. For instance, [44] analyze the trend of

Chapter 5. Analyzing Twitter User-Generated Content Changes 66

Figure 5.1: The TwiChI framework

the topics and the demographics of the sets of Twitter users who contribute towards

the discussion of particular trends to support decision-making activities. Di"erently,

[77] combine RSS news and UGC coming from microblogs into a news recommendation

system. In particular, they mine Twitter message content to identify emerging topics

and breaking events. The RSS stories have been ranked based on a weighted score that

takes the Lucene tf-idf score of each article term and the information provided by tweets

into account.

Similarly, this Chapter also presents a data mining system to perform knowledge discov-

ery from messages posted on Twitter. Unlike previous approaches it exploits both the

content and the contextual information associated with Twitter posts to perform user

behavior and topic trend analysis. To this aim, it extracts generalized dynamic patterns

that represent the evolution of the most relevant patterns over consecutive time periods

at di"erent abstraction levels.

5.2 The TwiChI framework

The TwiChI (Twitter Change mIner) is a data mining system aimed at supporting

the discovery of dynamic patterns that represent the historical evolution of the most

valuable correlations among textual content and publication context of messages posted

on Twitter (tweets). The extracted patterns can represent the changes in user behaviors

and/or topic trends. In Figure 5.1 the TwiChI framework architecture is shown, while

the main blocks of the system are brießy described in the following.

Twitter data crawling and representation. This block aims at retrieving and pre-

processing user-generated messages (tweets) posted on Twitter. Tweets are partitioned

Chapter 5. Analyzing Twitter User-Generated Content Changes 67

in a sequence of collections according to their publication date. For each collection, the

main tweet features are modeled into two di"erent representations: (i) a relational data

schema, and (ii) a taxonomy model. The relational data schema includes both content

(i.e., the message words) and contextual (e.g., the geographical location) features. The

taxonomy model is composed of a set of hierarchies built over the tweet contextual and

content features and is generated by a semi-automatic process. In particular, aggrega-

tion functions based on hierarchical models are exploited to aggregate values of lower

level features (e.g., the GPS coordinates) into their higher level aggregations (e.g., cities

and regions). Aggregation functions may be generated by exploiting either established

knowledge bases (e.g., WordNet) or Extraction, Loading, and Transformation (ETL)

processes.

History Generalized pattern mining. This block focuses on discovering History

Generalized patterns (HiGens) from the sequence of timestamped tweet collections by

exploiting the recently proposed HiGen Miner algorithm [61]. HiGens represents the

most signiÞcant data correlation changes by also considering knowledge at di"erent

abstraction levels.

Pattern classiÞcation. The last block focuses on categorizing the extracted HiGens

based on their main characteristics to ease the expert in-depth analysis. HiGens are

classiÞed as (i) stable HiGens, (ii) monotonous HiGens, and (iii) oscillatory HiGens,

according to the time-related trend. In particular, the evolution trend of the abstrac-

tion level at which patterns are represented within each time period is considered as

discriminative feature.

In the following sections a more detailed description of the main TwiChI framework

blocks is given.

5.2.1 Twitter data crawling and representation

This block addresses the retrieval and preprocessing of the tweets posted on Twitter.

User-generated tweets are at most 140 characters long and publicly visible by default.

Moreover, they are enriched by several contextual features (e.g., publication location

in terms of GPS coordinates, date, and hour) which are peculiar characteristics of the

context in which tweets are posted. Since data retrieved by Twitter Stream APIs (Appli-

cation Programming Interfaces) is not suitable for being directly analyzed by a dynamic

miner, an ad-hoc crawling procedure and a preprocessing phase are needed. In the

following, the data representation and the Twitter crawler of the TwiChI system are

presented.

Chapter 5. Analyzing Twitter User-Generated Content Changes 68

5.2.1.1 Twitter data representation

Given a collection of retrieved tweets, we deÞne two di"erent data representations which

will be exploited by the subsequent TwiChI mining step: (i) a relational data schema,

and (ii) a taxonomy model. In the following each data representation is better for-

malized. Relational data schema. Tweets belonging to a retrieved collection are

composed of the textual message and a set of contextual features (e.g. publication date,

time, location). To represent tweets into a relational schema both message words and

contextual feature values are modeled as data items, where an item (li , vi) is a couple

(attribute, value) and the value vi belongs to the discrete domain attribute of the at-

tribute l i . When coping with continuous attributes, the value range is discretized into

intervals and the intervals are mapped to consecutive positive integers. Items represent

either the textual message content, (e.g., text word ÒtravelÓ), or a contextual feature

value (e.g., Date, 2012-07-28). A tweet could be represented as a set of items, called

record, as stated in the following.

DeÞnition 1. Record.Let L = l1, l2, . . . , ln be a set of attributes and $ = $ 1, $ 2, . . . , $ n

the corresponding domains. A recordr is a set of items that contains at most one item

for each attribute in L. Each record is characterized by a time stampt.

The time stamp t is deÞned by the analyst during the crawling process and may represent

the tweet publication date or time. A set of records (tweets) whose time stamps belong

to a Þxed time periodT is called timestamped relational tweet collection.

DeÞnition 2. Timestamped relational tweet collection. Let L = l1, l2, . . . , ln be a set of

attributes and $ = $ 1, $ 2, . . . , $ n the corresponding domains. A relational tweet col-

lection DT is a collection of records, where each recordr has a time stamp that belongs

to the time period T.

For instance, when considering as timestamp the tweet publication date and as time

period T = [July 1st 2012, July 31st 2012] each crawled tweet that has been published

in July 2012 is included in the timestamped tweet collection relative toT.

To enable the dynamic mining process, tweets are organized in a sequence of times-

tamped relational tweet collections relative to consecutive time periods. For instance,

tweets crawled in the Þrst trimester of the year 2012 may be partitioned in a sequence

of three timestamped collections, each one related to a distinct monthly time period.

Taxonomy model. Semantic relationships between attribute values belonging to a

tweet collection are usually not deÞned in the relational data schema. To drive the

generation of generalized itemsets we deÞne a taxonomy, which is a hierarchical model

that represents the is-a relationships holding between data instances (i.e., the data items)

relative to the same concept (i.e., the attributes). To aggregate attribute values into

higher level concepts, we introduce the notion of aggregation tree, i.e., an aggregation

hierarchy built on the domain of one attribute of the relational tweet collection.

Chapter 5. Analyzing Twitter User-Generated Content Changes 69

Figure 5.2: Examples of aggregation trees.

DeÞnition 3. Aggregation tree.Let l i be an attribute and $ i its domain. An aggregation

tree Ai is a tree representing a predeÞned set of aggregations over values in $i . Ai leaves

are all the values in $i . Each non-leaf node inAi is an aggregation of all its children.

The root node * aggregates all values for attributel i .

Figure 5.2 reports two examples of aggregation trees built on thePlace and Time at-

tributes, respectively.

We deÞne a taxonomy as a set of aggregation trees built over distinct data attributes.

Despite a taxonomy may potentially include many aggregation trees over the same at-

tribute, for the sake of simplicity in the following we exclusively consider taxonomies

that contain at most one aggregation treeAi in" per attribute l i inL . Given a taxon-

omy #, we formalize the concept of generalized item as an item (li , ei) such that ei is a

non-leaf node in someAi in #.

DeÞnition 4. Generalized item.Let l i be an arbitrary attribute, $ i its domain, and Ai

an aggregation tree built on values in $i . A generalized item (li , ei) assigns the value

ei to attribute l i . ei is a non-leaf node inAi which deÞnes an aggregation value over

values in $i . leaves(ei) + $ i is the set of items whose values are leaf nodes descendant

of ei in Ai .

The support of a generalized item (li , ei) in a relational tweet collection dt is the (ob-

served) frequency of leaves(ei) in DT .

For instance, if the words ÒBootsÓ and ÒTennis ShoesÓ occur, respectively, in half and

one third of the tweets of a collection, their supports are 50% and 33%. If ÒBootsÓ

and ÒTennis ShoesÓ are the only descendants of the common generalization ÒShoesÓ,

according to a given taxonomy, the support of ÒShoesÓ is 50%.

The two data representations are generated by the Twitter crawler described in the fol-

lowing, which also partitions the retrieved data into collections based on the publication

timestamp.

5.2.1.2 Twitter crawler

Twitter APIs are general-purpose tools that allow the e!cient retrieval of tweets from the

Web. However, tweets inherent to the submitted queries are retrieved disregarding the

Chapter 5. Analyzing Twitter User-Generated Content Changes 70

temporal and semantic relationships among their content. Moreover, tweets are provided

in a data format which is commonly unsuitable for further analysis. For instance, the

tweet geographical provenance is provided as a couple of GPS coordinates, but the

related city, region, and/or state are usually missing. Furthermore, it may be not easy

to di"erentiate between tweets published in close time periods (e.g., during the last 12

hours) from the ones that are rather far from (e.g., the tweets published the day before).

Since our system addresses the analysis of the dynamic data correlation changes that

occur in the messages posted by the community, we exploit a tweet crawler that auto-

matically collects and organizes timestamped relational tweets relative to a sequence of

given time periods. To this aim, D is deÞned as the original set of tweets collections and

DT is a collection of tweets whose time stamps are contained in the time periodT. The

tweet crawler has the following parameters: (i) the sequence of time periods whereby

tweets are partitioned, and (ii) a set of Þltering parameters. Filtering parameters include

all the parameters provided by Twitter APIs, such as the selection of keywords and the

geographical radius used to select the tweets of interest from the Public stream. The

crawler continuously monitors the stream and retrieves tweets according to the search

parameters. At the end of a given time period, a new collectionDT is deÞned according

to the predeÞned time scheduling.

Since data is retrieved in the JSON format, a preprocessing step is applied to suit tweets

to the two-way data representation (see Section ÒTwitter data representationÓ). The

relational data schema is generated by a data cleaning process which discards useless and

redundant information and correctly manages missing values. For each tweet, the textual

message is tailored to the Bag-of-Word (BOW) representation. It includes only the terms

selected by a stemming algorithm. The stemming method integrated in the TwiChI

system discards noisy data such as stopwords, numbers, and links. The relational data

schema, composed of the set of distinct terms belonging to the BOW representation, is

then enriched with the set of contextual information (e.g., GPS coordinates, publication

date, Twitter username) provided by the Twitter APIs.

To build a taxonomy over the Twitter relational data distinct aggregation trees are

built over each tweet feature (e.g, spatial information, and message words). To properly

manage data associated with distinct attributes, the aggregation values used for gener-

alizing low level item values are extracted by means of semi-automatic procedures called

aggregation functions. In particular, we exploit a set of ad-hoc aggregation functions

tailored to each attribute domain. To prevent discarding useful information and enrich

the tweet features, the aggregation functions can exploit established semantics-based

models, such as controlled vocabularies or lexical/domain-speciÞc databases. For in-

stance, an aggregation function that accesses a geographical database is used to deÞne

the relationship between the GPS coordinates and their corresponding region or state.

Similarly, the WordNet lexical database (http://wordnet.princeton.edu) is queried to

Chapter 5. Analyzing Twitter User-Generated Content Changes 71

retrieve the most relevant semantic relationships holding between tweet term couples.

More speciÞcally, we focus on the hyponyms (i.e., is-a-subtype-of relationships). Terms

belonging to these relationships are considered as generalizations of the original term.

Consider, as an example, the term ÒdogÓ. Since the semantic relationship< dog> is-a-

subtype-of < domestic animal> is retrievable from the WordNet database, then the term

Òdomestic animalÓ is selected as the upper level generalization of the term ÒdogÓ. To

enrich the aggregation tree built over textual features, the database querying process is

deepened to Þnd all the possible upper level aggregations (e.g.,< dog > is-a-subtype-of

< animal>). If no semantics-based model is available for a given attribute, the ag-

gregation functions may extract is-a relationships by simply parsing the corresponding

attribute domain values, by exploiting an approach similar to the Extraction, Trans-

formation and Load (ETL) processes used in data warehousing (Kimball et al., 2002).

Consider, for instance, the Ò DateÓ attribute and its high level aggregation ÒSemesterÓ.

The corresponding mapping may be simply derived by parsing the lower level ÒDateÓ

domain values (e.g., 2012-07-28) and generating upper level concepts (e.g.,2nd Semester

2012) according to the corresponding aggregation function (i.e., Date) Semester). The

generalization hierarchies extracted by means of the above-mentioned aggregation func-

tions are combined in a taxonomy, which will be used to drive the dynamic generalized

itemset mining process, as described in the following.

5.2.2 History Generalized pattern mining

This block aims at discovering from the collection of timestamped relational tweet col-

lections dynamic patterns, namely the History Generalized patterns (HiGens) that rep-

resent the evolution of the most notable data correlation changes.

Correlations among the tweet content and context collected within each time period

are represented in the form ofgeneralized itemsets. A formal deÞnition of generalized

itemset follows.

DeÞnition 5. (Generalized) itemset.Let L be a set of attributes, $ the corresponding

domains, and # a taxonomy deÞned on values in $. An itemsetI is a set of items (lk ,

ek) in which each attribute lk , L may occur at most once. A generalized itemset is an

itemset that includes at least a generalized item (tk , ek) such that ek , # .

For instance, (Place, New York), (date, October 2010) is a generalized itemset of length

2 (i.e., a generalized 2-itemset).

A (generalized) itemset covers a given record (tweet) with timestampt if all its (possibly

generalized) itemsx , X are either contained in r or ancestors of itemsi , r (i.e., i

leaves(x), i , r). The support of a (generalized) itemsetX in a timestamped relational

tweet collection DT is given by the number of tweetsr , DT covering X divided by the

cardinality of DT .

Chapter 5. Analyzing Twitter User-Generated Content Changes 72

The generalization level of a (generalized) itemset is a"ected by the highest generalized

item level according to the given taxonomy.

DeÞnition 6. (Generalized) itemset level.Let X = { (t1, e1), . . . , (tk , ek)} be a (general-

ized) k-itemset. Its level L[X] is the maximum item generalization level by considering

items in X, i.e., L [X] = max1# j # kL [(l j , ej)].

It follows that the level of a not generalized itemset is 1.

A descendant of an itemset represents part of its knowledge at a lower aggregation level.

DeÞnition 7. (Generalized) itemset descendant/ancestor.Let Q be taxonomy. A (gen-

eralized) itemset X is a descendant of a generalized itemsetY if (i) X and Y have the

same length and (ii) for each itemy , Y there exists at least an itemx , X that is a

descendant of y with respect to Q. IfX is a descendant ofY then Y is an ancestor of

X.

Consider the generalized itemset (Place, New York State), (date, from 3 to 6 p.m.).

According to the taxonomy reported in Table 5.1, its level is 2 because (Place, New

York) and (date, from 3 to 6 p.m.) have levels 2. Furthermore, it is an ancestor of

(Place, New York City), (date, 3.45 p.m.). If (Place, New York State), (date, from 3 to

6 p.m.) covers half of the tweets contained in the analyzed timestamped collection, its

support is 50%.

The generalized itemset mining task entails discovering all itemsets (generalized and not)

that satisfy a minimum support threshold minsup, i.e., the itemsets whose frequency of

occurrence is above or equal tominsup. Itemsets satisfying the above constraint are said

to be frequent.

To analyze changes in the evolution of the extracted itemsets in consecutive time peri-

ods, TwiChi discovers the dynamic patterns, namely the History Generalized patterns

(HiGens), proposed in [61].

DeÞnition 8. HiGen. Let D = { D1, . . . , Dn} an ordered sequence of timestamped re-

lational tweet collections, # a taxonomy built on D, it a not generalized itemset,

namedreference itemset, and minsup a minimum support threshold. A HiGen HGit

relative to it is an ordered sequence of generalized itemsetsg1, . . . , gn such that:

¥ if it is frequent in Di , D then gi = it

¥ elsegi is an frequent ancestor characterized by minimal generalization level with

respect to # among the frequent ancestors ofit

Each HiGen is associated with a (not generalized) reference itemset and describes its

evolution, in terms of its main quality indexes, from one time period to another. Notice

that, by DeÞnition 8, each not generalized itemset may be associated with one or more

HiGens. In case the considered reference itemset becomes infrequent with respect to

the support threshold in a given time period, it is substituted by its generalization(s)

Chapter 5. Analyzing Twitter User-Generated Content Changes 73

with minimal level. Hence, the knowledge covered by the considered pattern is still

maintained at a higher level of abstraction for this time period.

For instance, the HiGens, reported in Table5.1, may represent the evolution of the refer-

ence itemset{ (Place, New York City), (Time, 3.45 p.m.) } over two example timestamped

relational tweet collections DJan 2012 and DF eb2012, retrieved in two consecutive monthly

time period (January and February 2012, respectively), by enforcing a minimum support

threshold equal to 20% and by exploiting the taxonomy reported in Figure5.2. Since the

reference itemset, which is frequent inDJan 2012 , becomes infrequent inDF eb2012 with

respect to the support threshold its frequent generalization{ (Place, New York State),

(Time, from 3 to 6 p.m.) } is kept in place of it.

A brief description of the algorithm exploited to extract HiGens is given in the following.

5.2.3 The HiGen miner algorithm

Given a sequence of timestamped relational tweet collections, a taxonomy, and a min-

imum support threshold, HiGen Miner discovers all HiGens, according to DeÞnition

8.

To avoid extracting HiGens as a postprocessing step that follows the traditional gen-

eralized itemset mining phase, HiGen Miner exploits an Apriori-based support-driven

generalized itemset mining approach in which the generalization procedure is triggered

on infrequent itemsets only. The generalization process does not generate all possible

ancestors of an infrequent itemset at any abstraction level, but it stops at the general-

ization level in which at least a frequent ancestor occurs. Furthermore, the taxonomy

evaluation procedure over a pattern is postponed after its support evaluation in all

timestamped collections to avoid multiple (computationally expensive) evaluations.

A pseudo-code of the HiGen MINER is reported in Algorithm 1. At an arbitrary it-

eration k, HiGen MINER performs the following three steps: (i) k-itemset generation

from each timestamped collection inD (line 3), (ii) support counting and generalization

of infrequent (generalized) k-itemsets of increasing level (lines 6-37), (iii) generation of

candidate itemsets of length k+1 by joining k-itemsets and infrequent candidate pruning

(line 39). After being generated, frequent k-itemsets are included in the corresponding

HiGens contained in the HG set (line 9), while infrequent ones are generalized by means

of the taxonomy evaluation procedure (line 17). Given an infrequent itemsetc of level

l and a taxonomy, the taxonomy evaluation procedure generates a set of generalized

itemsets of levell+1 by applying, on each item the corresponding generalization hierar-

chy. All the itemsets obtained by replacing one or more items inc with their generalized

versions of level textitl+1 are generated and included into the Gen set (line 21). Finally,

generalized itemset supports are computed by performing a dataset scan (line 26). Fre-

quent generalizations of an infrequent candidatec, characterized by levell+1 , are Þrst

Chapter 5. Analyzing Twitter User-Generated Content Changes 74

added to the corresponding HiGen set and then removed from the Gen set when their

lower level infrequent descendants in each time period have been fully covered (lines

27- 32). In such a way, their further generalizations at higher abstraction levels are

prevented. Hence, the taxonomy evaluation over an arbitrary candidate of lengthk is

postponed when the support of all candidates of lengthk and generalization levell in

each timestamped dataset is known. The sequence of support values of an itemset that

is infrequent in a given time period is store and reported provided that (i) it has at least

a frequent generalization in the same time period, and (ii) it is frequent in at least one

of the remaining time periods. The generalization procedure stops, at a certain level,

when the Gen set is empty, i.e., when either the taxonomy evaluation procedure does

not generate any new generalization or all the considered generalizations are frequent

in each time period and, thus, have been pruned (line 30) to prevent further knowledge

aggregations. The algorithm ends the mining loop when the set of candidate itemsets is

empty (line 40).

5.2.4 Pattern classiÞcation

Domain experts are usually in charge of analyzing the results of the data mining process

to discover patterns valuable for targeted analysis. TwiChi provides to the experts a

selection of dynamic generalized patterns, i.e., the HiGens, which represents potentially

valuable Twitter data correlation changes. However, the amount of the discovered pat-

terns may be large, especially when low support threshold values are enforced. Hence,

a preliminary pattern classiÞcation is desirable to ease the knowledge discovery process.

TwiChi categorizes the extracted HiGens based on their time-related trend in the se-

quence of timestamped relational collection. In particular, to better highlight the tem-

poral evolution of the knowledge associated with the HiGen reference itemset, HiGens

are classiÞed as: (i) stable HiGens, i.e., HiGens that include generalized itemsets belong-

ing to the same generalization level, (ii) monotonous HiGens, i.e., HiGens that include a

sequence of generalized itemsets whose generalization level shows a monotonous trend,

and (iii) oscillatory HiGens, i.e., HiGens that include a sequence of generalized itemsets

whose generalization level shows a variable and non-monotonous trend.

Since a generalized itemset of level l may have several generalizations of level l + 1 and

taxonomies may have unbalanced data item distributions, stable HiGens are further

partitioned in: (i) strongly stable HiGens, i.e., stable HiGens, in which items contained

in its generalized itemsets and belonging to same data attribute, are characterized by

the same generalization level, and (ii) weakly stable HiGens, i.e., stable HiGens in which

items contained in its generalized itemsets and belonging to the same attribute, may be

characterized by di"erent generalization levels.

Chapter 5. Analyzing Twitter User-Generated Content Changes 75

Input: sequence of timestamped relational tweet collectionD = D1, D2, .., Dg,
minimum support threshold minsup, taxonomy #
Output: set of HIGENs HG

1: k = 1 // Candidate length
2: HG = HiGen set;
3: Ck = set of distinct k-itemsets in D
4: repeat
5: for all c in CK do
6: scan all D i in D and count the support of c in Di

7: end for
8: L i

k = itemsets c in Ck that satisfy minsup for any Di

9: HG = update HIGEN set(Lik, HG)
10: l = 1 // Candidate generalization level
11: Gen = generalized itemset container
12: repeat
13: for all c in Ck of level l do
14: D inf

c = Di in D Ñ c is infrequent in Di

15: if D inf
c is empty then

16: gen(c) = set of new generalizations of itemset c of level l+1
17: gen(c) = taxonomy evaluation(c,#)
18: for all gen in gen(c) do
19: gen.desc = c
20: end for
21: Gen = Gen (gen(c)
22: end if
23: end for
24: if Gen is not empty then
25: for all gen 2 Gendo
26: scan all D i in D inf gen.desc and count the support of gen inDi

27: for all gen frequent in any Di in D inf
gen.desc do

28: HG = update HIGEN set(gen, HG)
29: if gen is frequent in all Di in D inf

gen.desc then
30: remove gen from Gen
31: end if
32: end for
33: end for
34: Ck = Ck (Gen
35: end if
36: l = l + 1
37: until Gen is empty
38: k = k + 1
39: Ck+1 = candidate generation(Ck)
40: until Ck is empty
41: return HG

Algorithm 4: The HiGen Miner algorithm

Chapter 5. Analyzing Twitter User-Generated Content Changes 76

Collection ItemSet Support(%)
Strongly Stable HiGen

Reference itemset: (Place, New York City), (Time, 3.45 p.m.)
DJan 2012 (Place, New York City), (Time, 3.45 p.m.) 20%
DF eb2012 (Place, New York City), (Time, 3.45 p.m.) 50%
DMar 2012 (Place, New York City), (Time, 3.45 p.m.) 25%

Weakly Stable HiGen
Reference itemset: (Place, New York City), (Time, 4.00 p.m.)

DJan 2012 (Place, New York State), (Time, from 3 to 6 p.m.) 27%
DF eb2012 (Place, New York City), (Time, from 3 to 6 p.m.) 21%
DMar 2012 (Place, New York State), (Time, from 3 to 6 p.m.) 25%

Monotonous HiGen
Reference itemset: (Place, New York City), (Time, 5.00 p.m.)

DJan 2012 (Place, New York City), (Time, from 5.00 p.m.) 28%
DF eb2012 (Place, New York City), (Time, from 3 to 6 p.m.) 25%
DMar 2012 (Place, New York City), (Time, p.m.) 21%

Oscillatory HiGen
Reference itemset: (Place, New York City), (Time, 6.00 p.m.)

DJan 2012 (Place, New York City), (Time, from 6.00 p.m.) 20%
DF eb2012 (Place, New York City), (Time, from 3 to 6 p.m.) 24%
DMar 2012 (Place, New York City), (Time, from 6.00 p.m.) 21%

Table 5.2: HiGen examples. Minsup = 20%.

In Table 5.2 a HiGen example relative to each category is reported. HiGens have been

extracted from an example sequence of tweet collections by enforcing a minimum support

threshold equal to 20% and by exploiting the taxonomy reported in Figure5.2. For each

HiGen the corresponding reference itemset is also reported. Notice that the itemsets

contained in the strongly and weakly stable HiGens are all characterized by the same

generalization level (i.e., 1 and 2, respectively) while for the monotonous HiGen the level

of the reported itemsets increases from 1 to 3 from January to March 2012. Finally, for

the oscillatory HiGen the generalization level varies with a non-monotonous trend.

Examples of HiGens mined from a real-life Twitter dataset are reported in Section

ÒExpert validationÓ.

5.3 Experimental Results

In the previous sections, we introduced and thoroughly described the TwiChI framework.

To assess the e"ectiveness of the devised approach, in this section we report and describe

a set of experiments we performed on real datasets coming from Twitter.

All the experiments were performed on a 3.2 GHz Pentium IV system with 8 GB RAM,

running Ubuntu 12.04.

Chapter 5. Analyzing Twitter User-Generated Content Changes 77

5.3.1 Evaluated datasets and taxonomy

The TwiChi frameworks exploits a crawler to e"ectively access to TwitterÕs global stream

of Tweet data. We monitored the public streams endpoint o"ered by the Twitter API,

covering the time period from 2012-07-07 to 2012-07-23 and tracking a selection of key-

words ranging over di"erent topics (e.g., weather, Þnance, sport). The crawler establishes

and maintains a continuous connection with the stream endpoint to collect and store

the Twitter data. As described in Section Twitter crawler, the tweets are preprocessed

to represent the data into the relational data format and extract the taxonomies over

content and context features.

In our crawling session, we collected 5047 tweets over 13 consecutive days in the time

period [07/07/2012, 23/07/2012] posted by 708 distinct users located in 101 di"erent

GPS coordinates. To build the taxonomy model over the tweet textual content, we

used the semantic generalizations of 3-levels Wordnet hyponym (i.e., is-a-subtype-of).

Similarly, over the spatial attribute, a geographical hierarchy, which aggregates single

locations into larger regions (province, region, state, continent) was built as well. Since

the tweets contain only the GPS coordinates from which tweet are posted, we mapped

the coordinates to the nearest location (i.e., city). Finally, the twitting date and time

are analyzed by the aggregation functions to derive a hierarchy over the corresponding

attributes (i.e., time, day, period).

5.3.2 Characteristics of the mined patterns

TwiChi analyzes sequences of timestamped tweet collections to discover the most sig-

niÞcant pattern changes. We analyzed the characteristics of the patterns generated by

TwiChi by setting two di"erent temporal conÞgurations: the former conÞguration, de-

noted in the following as ConÞguration A, aggregates tweets relative to the 13 considered

time periods as follows: [2012-07-07, 2012-07-12], [2012-07-13, 2012-07-17], [2012-07-18,

2012-07-23]. The latter conÞguration (ConÞguration B) aggregates tweets based on the

following time periods: [2012-07-07, 2012-07-09], [2012-07-10, 2012-07-13], [2012-07-14,

2012-07-18], [2012-07-19, 2012-07-23].

Figure 5.3 reports the number of HiGens mined from the real-life collections by varying

the minimum support threshold in the range [0.5%, 5%] and by setting ConÞgurations

A and B. The number of mined HiGens increases more than linearly when lowering the

support threshold due to the combinatorial increase of the number of generated combi-

nations. To have a deep insight into the achieved results, we also analyzed the per level

distribution of the itemsets contained in the mined HiGens. When rather low support

thresholds (e.g., 0.5%) are enforced, many HiGens (53%) exclusively contain level-1 (not

generalized) itemsets representing the reference itemset in each considered time period.

When increasing the support threshold, the reference itemset becomes infrequent in

Chapter 5. Analyzing Twitter User-Generated Content Changes 78

Figure 5.3: Number of mined HiGens.

ConÞguration Minsup (%) Number of Stable HiGens (%) Number of
monotonous
HiGens (%)
(%)

Number of
oscillatory
HiGens(%)

Weak Strong Total
0.15% 15 41 56 18 26

A 1 % 23 14 37 27 36
5 % 30 11 41 24 45
0.5% 13 46 59 11 30

B 1% 27 9 36 21 43
5% 35 8 43 13 44

Table 5.3: HiGen per category distribution.

some time periods. Hence, it is generalized by exploiting the given taxonomy and upper

level itemsets are also included in the mined HiGens. For instance, at medium support

thresholds (e.g., 1%) at least two out of three HiGens contain a generalized itemset and

the percentage of level-2 itemsets contained in the mined HIGens is rather high (66%).

When high support thresholds are enforced (e.g., 5%) most of the mined HiGen (78%)

exclusively contain generalized itemsets and the number of itemsets with level higher

than 2 becomes signiÞcant (39%). Notice that the high level information covered by the

generalized itemsets is representative of the one associated with the low level reference

itemset discarded due to the support threshold enforcement.

Since TwiChi classiÞes the extracted dynamic patterns based on their temporal trends

(see Section ÒPattern classiÞcationÓ), we also analyzed the per category distribution of

the extracted HiGens. Table5.3 reports the percentages of HiGens classiÞed as strongly

stable, weakly stable, monotonous, and oscillatory mined by enforcing three di"erent

support thresholds, i.e., 0.5%, 1%, and 5%.

Chapter 5. Analyzing Twitter User-Generated Content Changes 79

When low support thresholds are enforced, the majority of the extracted patterns are

stable because, in many cases, the knowledge covered by the reference itemset remains

frequent in all the considered time periods. Di"erently, when medium and large support

thresholds are enforced, the number of monotonous and oscillatory HiGens increases

due to the higher selectivity of the support threshold. At high support thresholds (e.g.,

5%) the number of stable HiGen still slightly increases because some of the extracted

HiGens contain (possibly generalized) itemsets with the same level in all the considered

time periods. The percentages of extracted monotonous and oscillatory HiGens are also

a"ected by the number of considered time periods, as comes out from the comparison

between ConÞguration A (3 time periods) and B (4).

5.3.3 Real-life use-case study

In this section, we present two real use-cases for the TwiChi system targeted to user

behavior and topic trend analysis. Examples of the discovered HiGens are also given.

5.3.3.1 Weather forecasting service proÞling

Consider an application scenario for the TwiChi system in which experts are interested in

discovering peculiar user behaviors in order to shape service provisioning to the actual

user interests and needs. Through the TwiChi system, analysts may automatically

retrieve tweet collections posted by users coming from di"erent cities in consecutive

time periods and Þgure out the most relevant data correlation changes.

Consider, as an example, the real-life collections and taxonomy described in Section

ÒEvaluated datasets and taxonomyÓ. By setting the conÞguration A (see Section ÒCha-

racteristics of the mined patternsÓ) and the minimum support threshold to 1% the

HiGens 1 and 2 reported in Table 5.3 are extracted. Users coming from Los Ange-

les (California, USA) frequently posted weather information during the analyzed time

period. Hence, they may be likely to be interested in receiving automatic weather fore-

casting information. Similarly, people from Philadelphia frequently posted information

about daily temperatures. The information may be deemed useful for proÞling weather

forecasting services to actual user needs. Notice that the interest about temperature

information decreases in the second and third time periods. However, the weather topic,

which is a generalization of the former one, remains of interest in the considered city.

5.3.3.2 Service shaping

Consider again the previous application scenario. Suppose that analysts are now in-

terested in shaping the bandwidth of an online weather forecast service to improve

the e!ciency of the provided service. Analysts may focus on the HiGens that show a

Chapter 5. Analyzing Twitter User-Generated Content Changes 80

Time period ItemSet Support(%)
Strongly Stable HiGen 1

Reference itemset: (Place, Los Angeles), (Word, Rain)
[07-07, 07-12] (Place, Los Angeles), (Word, Rain) 1%
[07-13, 07-17] (Place, Los Angeles), (Word, Rain) 1.3%
[07-18, 07-23] (Place, Los Angeles), (Word, Rain) 1%

Monotonous HiGen 2
Reference itemset: (Place, Philadelphia), (Word, Temperature)

[07-07, 07-12] (Place, Philadelphia), (Word, Temperature) 1.2%
[07-13, 07-17] (Place, Philadelphia), (Word, Weather) 1.6%
[07-18, 07-23] (Place, Philadelphia), (Word, Weather) 1%

Monotonous HiGen 3
Reference itemset: (Place, New York City), (Word, Weather)

[07-07, 07-12] (Place, New York State), (Word, Weather) 1%
[07-13, 07-17] (Place, USA), (Word, Weather) 2.1%
[07-18, 07-23] (Place, USA), (Word, Weather) 1.8%

Table 5.4: HiGen selection. ConÞguration A. minsup = 1%.

monotonous or oscillatory trend to Þgure out which user groups, coming from speciÞc

cities or regions, are less used to request for weather forecasts.

Consider, for instance, the HiGen 3 reported in Table5.4. It turns out that the interest

in the weather service in the New York State becomes rather low in the second and

third time periods. In fact, the location is generalized as USA, because the correlation

with the New York State remains infrequent in the considered time periods. Indeed, the

discovery of the reported HiGen may prompt service bandwidth reallocation in order to

optimize resource usage.

Chapter 6

TUCAN: Twitter User Centric

ANalyzer

In Chapter 4 and Chapter 5 we addressed the analysis of user-generated content from

the Twitter micro-blogging Website. And, as we have discussed, most of previous works

on Twitter focus on the analysis of Òa community of twittersÓ, whose tweets are analysed

using text and data mining techniques to identify the topics, moods, or interests. [43,

51, 78Ð80].

In this Chapter we take a di"erent angle: we focus on the analysis of a Twittertarget

user. We consider set of tweets that appear on his Twitter public page, i.e., the target

userÕs timeline, and deÞne a methodology to explore exposed content and extract possible

valuable information. Which are the tweets that carry the most valuable information?

Which are the topics he/she is interested into? How do this topics change over time? A

further goal is to compare the Twitter activity of two (or more) target users. Do they

share some common traits? Is there any shared interest? What is the most common

interest of these two users, regardless of the time they are interested in it?

We propose a graphical framework which we term as TUCAN - Twitter User Centric

ANalyzer. TUCAN highlights correlations among tweets using intuitive visualization,

allowing exploration of the information exposed in them, thus enabling the extraction

of valuable information from userÕs timeline. Given a number of limitations on the

topic analysis of Twitter messages, such as limited length of messages, prevalent use

of non-dictionary words (i.e., abbreviations, mentions, hashtags, re-tweets, slang, and

cultural words), and lack of contextual resources (e.g., due to extensive use of Twitter for

ÒprivateÓ purposes [81]), lots of ingenuity is required to automatically extract signiÞcant

information out of tweets. From a methodology stand-point, we build upon text mining

techniques, adapting them to cope with the speciÞc Twitter characteristics.

As input, we group a userÕs tweets based on a window of time (e.g., a day, or a week) so

to form bird songs, one for each time window. At the next step, Þltering is applied to

81

Chapter 6. TUCAN: Twitter User Centric ANalyzer 82

each bird song using either simple stop-word removal, stemming, lemmatization, or more

complicated transformations based on lexical databases. Next, terms in bird songs are

scored using classic Term Frequency-Inverse Document Frequency (TF-IDF) [82] to pin-

point those terms that are particularly important for the target user. Each pair of birds

songs are Þnally compared by computing a similarity score, so to unveil those bird songs

that contain overlapping, and thus persistent, topics. The output is then represented

using a coloured matrix, in which cell colour represents the similarity score. As a result,

TUCAN o"ers a simple and natural visual representation of extracted information that

easily unveils the most interesting bird songs and the persistent topics the target user

is interested into during a given time period. Moreover, comparisons among bird songs

give intuitions on the transition of user interests as well as the signiÞcance of topics to

the user.

The framework is naturally extended to Þnd and extract similarities among tweets of

two or more target users. TUCAN computes and graphically shows the similarity among

bird songs generated from the timelines of the pairs of target users, revealing similarities

and common interests that are present possibly during di"erent time periods.

TUCAN demonstrates to be useful to highlight correlation among tweets, which in turn

proves very valuable in identifying topics of interest in the Twitter timeline of a user.

This is very instrumental in generic individual proÞling or surveillance applications,

where the information hidden inside the target userÕs ßow of tweets has to naturally

emerge. TUCAN is also very powerful to compare individuals, to examine their time-

lines in parallel, hunting for similarities, pinpointing common interests, and observing

changes, deviations, etc. For instance, comparing a well-known public proÞle timeline,

e.g., President Barack Obama, against a generic target user would unveil if they share

common political interests. Alternatively, two casual targets can be compared to see

if some common trait/interest exist (possibly at di"erent time), e.g., to evaluate the

success of an Internet dating or marriage.

To demonstrate the e"ectiveness of TUCAN on real-world microblogs, we applied it to

two month long history of 712 Twitter users. Results show that the correlation among

tweets turns out to be a key point in the identiÞcation and analysis of twitter users over

time; analyzing tweet messages of a politician, we were able to conÞrm that his topics

and topic durations well matched with ongoing political events at the time. Comparing

his tweets against tweets from the US government, a subset of topics that are in-line

with the governmentÕs positions were picked up. Analysis on topic changes revealed

transitions in usersÕ social relationships.

Chapter 6. TUCAN: Twitter User Centric ANalyzer 83

6.1 Related work

The increasing availability of valuable information from microblogging platforms pushed

the research community to investigate e"orts for mining textual information from them.

Text topic extraction and modeling. A plurality of works ([81, 83Ð87]) is based on a

well known topic modeling technique called, the Latent Dirichlet Allocation (LDA) [88].

[85] extends LDA to infer descriptions of entities (e.g., authors) separately from their

relationships. [81] incorporates supervision to LDA, leveraging hashtags of Twitter for

topic labeling. Generalizing topic extraction to Tweets without hashtags, [86] directly

applies LDA to individual sentence within each Tweet message.

To further enhance the performance of topic extraction from short and sparse messages,

author-topic (AT) model was proposed [89, 90]. By creating topic mixture at the level

of authors rather than individual documents, AT is claimed to obtain more stable set

of topics than LDA. [80] conducts empirical comparisons of LDA, AT, and simple TF-

IDF on aggregates of Tweet messages. The work discovers that the accuracy of the topic

models are highly inßuenced by the length of the documents. It also Þnds that with long

enough documents, the model based approaches become less e"ective compared to the

baseline TF-IDF. Based on the observations, we design TUCAN to ßexibly aggregate

messages into bird songs. With e"ectively formed bird songs, TUCAN can provide

powerful topic analysis even with generic TF-IDF.

Time-series analysis in microblogs. Many literatures on topic analysis ([51, 81,

86]) focus on detecting emergence of anomalous topics or prominent shifts on topic

trends. Leveraging groups of semantically associated document tags, [51] discovers

temporally emergent topics from Twitter data stream. [81] deÞnes four types of Tweet

categories and classiÞes streamed messages into them. Because these time-series analysis

work on the entire group of users as a whole and do not distinguish single users, they

cannot express topical relationships across individuals. We, on the other hand, focus on

building dynamic relationships among the users. Aimed at similar goal, [91] proposes

to detect topical relationships across entities over time. However, they only focus on

time correlated co-occurring events. Instead, TUCAN aims to detect topic correlations

even if they occur at di"erent time frames. Recently, [92] proposed an interactive tool

to analyse topic extracted from a stream of tweets organized in adjacent time slices of

equal length. LDA is applied to mine topics and cosine similarity is leveraged to align

them from the di"erent time bins. Again, TUCAN is more user-centric and ßexible

enough to reveal topic correlations from time periods not strictly consecutive in time.

Chapter 6. TUCAN: Twitter User Centric ANalyzer 84

6.2 Framework

The TUCAN architecture includes three modules: (i) bird song generator, (ii) cross-

correlation computation engine, and (iii) dashboard visualizer. A set of target Twitter

users,e.g., their screen names or user-ids, is provided to the system as an input. The

system collects tweets related to such users on which various analytics are executed.

Their outcome is visualized to enable the operator to gain knowledge about the users

and the topics they are twitting about.

6.2.1 Bird song generation and cleaning process

Let T W(u) be the set of tweets of a single useru that are retrieved from Twitter,

time stamped with their generation time, stored and organized in a repository in binary

format, to be easily accessed and further analyzed when necessary. Bird songs are

created by aggregating tweets fromT W(u) generated within a time period T, to then

be analyzed. We deÞne thei -th bird song for the useru, BS(u, i), as the subset of tweets

in T W(u) that appear in the i -th time period of duration T, i.e., the set of tweets that

are generated in the [(i # 1)T, (i)T), i > 0 window of time.

A Òplain cleaningÓ pre-processing is applied to bird songs to discard stopwords, HTML

tag entities, and links. Plain cleaning can be possibly substituted by more advanced

text cleaning mechanisms; the following are also considered in this work: (i) removal

of Twitter ÔmentionsÕ, (ii) stemming, (iii) lemmatization, and (iv) ontology-based lexi-

con generalization. TUCAN allows the analyst to select the most appropriate cleaning

method to take advantage of di"erent e"ects of them in di"erent contexts. Twitter men-

tions are words that begins with @ signs representing the mentioning of some named

entities. The intuition behind removing the mentions comes from the fact that they

do not provide insight in the topics being addressed, being just Twitter-ID of other

users. Stemming and lemmatization are common text processing techniques aiming at

reducing a word to its root form to lower sparseness present in a text document. The

main di"erence between stemming and lemmatization is that the former is based on

the heuristic of removing the trailing part of a word, while the latter brings a word to

a canonical form based on a vocabulary and a morphological analysis the word. Here

the Porter stemming algorithm [93] was deployed, while lemmatization is derived from

the well-established Wordnet lexical database [94]. At last, our ontology-based lexicon

generalization method leverages the Wordnet database to derive the most general con-

cept for each word in the bird song. For instance, ÒgunÓ and ÒrißeÓ are replaced by

the more generic term ÒweaponÓ. The impact of the di"erent cleaning methods will be

exempliÞed by the experimental results presented in Section6.3.

